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Abstract

The theme of this paper is the application of linear
analysis. . to simplify and extend convex analysis. The central
problem treated is the standard convex program -- minimize a
convex function subject to inequality constraints on other
convex functions. The present approach uses the support
planes of the constraint region to transform the convex pro-
gram into an equivalent linear program. Then the duality theory
of infinite linear programming shows how to construct a new
dual program of bilinear type. When this dual program is trans-
formed back into the convex function formulation it concerns
the minimax of an unconstrained Lagrange function. This result
is somewhat similar to the Kuhn-Tucker theorem. However no
constraint qualifications are needed and yet perfect duality

maintains between the primal and dual programs.
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CONVEX ANALYSI S TREATED BY LI NEAR PROGRAMM NG

by
R J. Duffin

1. | nt roducti on,

The point of departure of this paper is the follow ng

standard extremal problem of convex anal ysis.

Program P.  Let qj(z),gp(z),...,gp(z) be convex functions
or zeR' Seek the val ue

M, = inf g (2)

for all z subject to the constraints

9j(z) £0 ] =1,...,p.

This is, of course, a constrained extrenmal problem
Far reaching consequences, both for theory and for conputa-
tion, develop when one attenpts to convert to an unconstrai ned
program by way of Lagrange multipliers. The best known and
nost inportant result in that direction is the Kuhn-Tucker
theorem However, the Kuhn-Tucker theoremapplies only if a
further proviso termed a "constraint qualification" is added.
For exanpl e, the superconsistency condition of Slater postu-

| ates the existence of a point z* such that

g(z*) <0 i =1,....,p.

Here we wi sh to avoid such ad hoc assunpti ons.



To develop a corresponding Lagrange program the follow-

ing new Lagrange function is introduced

n
.g.(z) + _E x_.z..

P
L(z,\) = go(z) + _E %J 3 -3%3
J'_.-

j=1
Here the A. are Lagrange multipliers. By use of this function

the constraints, gj < 0, are eliminated in the following program.

Program Q. Seek the value

M.Q = lim sup inf L(z,\)
V>0 A b4

for all A. subject to the constraints

inf L(z,A\) > -o0
?\.ZO j=1:29'~°’p’
\) 2)\_3- 2"\) j = 1,2,.0.,1'1,

and for v =1,2,... .

This program, of minimax type, is termed a Lagrange dual
of P.

We shall say Program P is consistent if its constraints
can be satisfied for some 2z. We shall say Program Q is con-
sistent if its constraints can be satisfied for arbitrarily
large integers .

A central result of this paper is that P and Q are

dual in the following sense.




DEFINITION, Two extremal programs are said to be in perfect’

— ai——

duality when the followi ng properties hol d:

(a) |H one programis consistent and has a. finite value

then the other program is consistent,

(b) _1f both programs _are consistent they have egual

finite val ues.

The met hod of proof is to view Program P as a question
about a closed convex set. But such a set can be defined by
support planes. In this way Program P is reformulated as a
linear program termed Program A, Then linear progranmm ng
theory is enployed to show that Program A is in perfect dual-
ity with a bilinear program termed Program E. But Program E
is sinmply a refornmulation of Program Q

The main thrust of the proof is furnished by a perfect
duality theorem for infinite |linear programs given in a pre-
vious paper [1l]. This approach is appealing because Iinear
anal ysis has a much better devel oped structure than convex
analysis. Thus proofs are sinplified and new concepts are
suggested. The linear approach was also enploye” in a pre-

vi ous paper, "Linearizing geometric prograns'® [3], That paper
gave a new proof of the perfect duality theorem of geometric
programm ng. The work "convex" was not needed or used.

Application of linear programmng to convex analysis has
also been made by Kallina and WIlliams [11] and by Kortanek [6]..
Their applications relate to results of Rockafellar [10] and of

Peterson [9] .




2. Ordinary and subordinary programs.

A program O is said to be subconsistent if the constraints

can be satisfied to an arbitrary close degree of approximation [1].
Alternatively the program can be restated in a form S in which
the relaxation of the constraints is made explicit. In this

paper O 1is termed an ordinary program and S is termed a

subordinary program. Thus saying a program is subconsistent is

equivalent to saying its subordinary form is consistent. The
value of the subordinary program is termed the subvalue of the
ordinary program.

The subordinary form of Program P is termed P* and is

defined as follows.

Program P*, Seek the value

MP* = lim inf go(z)
V300 2

for all =z subject to the constraints

gj(z) il/\) j=1l,...,pP,

and for v = 1,2,... .

Program P*, as well as Program P, can be transformed to an extre-
mal problem about a closed convex set. Then the support planes
to this set lead to a linear program. When this is done the lin-
ear theory suggests a corresponding Lagrange dual program of the

following form.




Program Q. Seek the value

P
Mx = sup inf [gn(z) + SA.0.(2)]
Q Az ° j=l 73
or all Aj subject to the constraints;

P
igf [9p(2) +j:L|A39-3(Z)] > - o,

Aj..o ] = 1,....,p.

We shall say that Program P* is consistent if the constraints
can be satisfied for arbitrarily large integers v and
M, / +00 . Program Q* is consistent if the constraints can
be satisfied for some A The l|inear progranm ng analysis
which shows that P and Q are in perfect duality also shows
that P* and Q are in perfect duality.

The Lagrange program Q@ is a variant of a program stud-
i ed by John, Kuhn, Tucker, Dorn, Wolfe, Stoer and very many
others.. For detailed references see the book of Mangasarian [8§]

and the survey by CGeoffrion [5].




3. The value gap.

An ordinary program P can be inconsistent and yet the
subordinary program P* may be consistent and have a finite
value. An example of this state is the minimization of the
function g, = e ¥ subject to the single constraint g, = e ¥ < o.
This program is inconsistent but allowing x —» +00 shows that
the subordinary program has value zero.

If the ordinary program is consistent then the subordinary
program is necessarily consistent. It might be supposed that

these programs have the same value. However consider the

counterexample,
Program R. Seek the infimum of e Y subject to the constraint
(x2+y2) 2z _ £ o.
The £ . 2,..2.1/2 . .

e function (x"+y7) 1s a cone standing on its vertex and so
is convex. The sum of convex functions is convex so g, =
(x2+y2)1/2 - X 1s convex. However the constraint can onlv be

satisfied if y = 0 and x > O. This means that M, = 1.

Next consider the corresponding subordinary program. Given
any fixed value of y it is easily checked that 9, — 0O as
X — oco. This shows that M, = O. Thus M, > M, and the

demonstration is complete that there is a finite gap between the

value and the subvalue of Program R,




4, Infinite linear programs.

We wish to phrase a linear program which is analogous to
the convex program P. Thus let aij and cy be real constants
for ieI and jeJ where I and J are index sets. The
set I 1is arbitrary but J is specified (at first) to be the
set of all integers. Then J, will denote the positive inte-
gers and J_ will denote the negative integers. In this

terminology a linear program is now defined.

Program A. Seek the value

MA = inf XO
X

for all x subject to the constraints:

Zﬁaijxj Z.Ci 1e1I,
xjgo Jed,.

There is a formal procedure for expressing the dual of a
linear program. Thus the formal dual of Program A has the fol-

lowing statement.

Program B'. Seek the value

Mg, = S;P IY;Cy

for all y subject to the constraints:

Z&Yiaij =0 Jed_,

ry;a;4 = 1 j =0,




EIyiaij > 0 jed ,
y; 20 iel.

If I and J are finite sets then both A and B! are
finite linear programs. Then, as a consequence of the duality
theory for finite linear programming, it is well-known that the
formal dual programs A and B' are also in perfect duality.

When I or J are infinite sets then A and B' are
infinite linear programs. However counterexamples are known
in which A and B' are formal duals but are not in perfect

duality [2,4,7]. In that case we say there is a duality gap.

In a paper titled "Infinite Programs" [1] it was shown that
perfect duality can be insured by relaxing the constraints of
the ordinary dual B'. This follows directly from the first

theorem of that paper which we term the perfect duality theorem.

To apply the PD theorem it is first necessary to introduce
a vector space U for the rows of the matrix aij' Moreover U
must be assigned a locally convex topology. The PD theorem is a
very general theorem so this selection is in no way unique. It
is convenient to let U have the ordinary product topology
RXRX ... « Then, as is well known, the conjugate space U*
of U consists of vectors x with components xj for jedgd
such that Xj = O except for a finite set of indices j. Be-

cause of this property U* has been termed a finite sequence

space. The bilinear form relating U and U* is then

(u,x) = qujxj.




Next a vector space V nust be introduced for the colums
of the matrix aij. Let this space al so be assigned the product
topol ogy. Then the conjugate space V* is a finite sequence
space. It consists of vectors y wth conponents Y. for
el such that y., = O except for a finite set of indices .

Hie bilinear formrelating V and V 1is

(y,v) = Elyivi'

Next the PD theoremrequires "positive" cones P, X Q
and Y in the spaces U U, V and VWV respectively. The
natural choice here is to take Q to be the positive orthant
in V. Then Y nust be taken to be the polar cone of Q

‘Thus Y consists of vectors y whose conponents satisfy
y: 20, i €1.
The cone P in U is defined by the rel ations:

U 20, | €J.
J

Uy =0, jftJ.
Then X nust be taken to be the polar cone of P so
X 10 j e Jds,

xj arbitrary j/J,;

This conpletes the requirenments of the PD theorem The
conclusion of the PD theoremis that an ordinary program and

its subordinary dual are in perfect duality.
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(Before proceeding, the following extension of the PD
theorem is worth noting. The PD theorem as stated requires
that U* be the conjugate space of U. However an inspection
of the proof shows that it is only necessary that the spaces U
and U* be "in duality" as defined by Bourbaki. This obser-
vation is due to Kretschmer [7]).

It is now understood that in the statements of Programs A
and B' the vectors x and y are in finite sequence spaces.
As a consequence the summations appearing in Programs A and B!
are automatically convergent. The finite sequence space was
introduced in programming by Charnes, Cooper, and Kortanek,
see [4].

To proceed it is necessary to formulate the subordinary
program to B'. We term this program B and the specifications

of the PD theorem give it the following form.

Program B. Seek the value

for all y subject to the constraints:
v'1 2~zﬁyiaij 2_-v"l J o= =1,-2,...,-V,
v'1 > Elyiaij - 1> vt j = 0,
zﬁyiaij > -v'l J = 1,2,000,5V,
y; 20 ielI.

and for v = 1,2,... .

Comparing Programs B' and B we see the following difference.
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In Program B' there are equalities to the zero vector of U
space., But in Program B the zero vector is replaced by an
€ -neighborhood of the origin where £ = v-l. In accord
with the formulation of the PD theorem the equality in the
space V¥ 1is not relaxed in the subordinary program.,

The conclusions of the PD theorem now insures that Pro-

gram A and Program B are in perfect duality. To check this it

is necessary to translate the new terminology of this paper into
the language of [1] and to note that condition (b) is then obvious.
It is convenient to employ the following terminology. A
sequence y(l),y(Z);... which satisfies the constraints of
Program B corresponding to v = 1,2,..,. is termed a feasible
sequence, Moreover, if
\1)1_;“00 Iry;c; = Mp

then vy(1),y(2),... is termed an optimal feasible sequence.

To relate Program A to Programs P and Q we now introduce

a chain of Programs A, B, C, D, and E.
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5. Infinite parametric programs.

Given an arbitrary set of parameters
%j for jedg

a linear program C, related to B, is now defined.

Program C. Seek the value function

M.(\) = 1lim sup Z y.c.
C Voo y TrY;Cy

for all y subject to the constraints:

-1 -1 .
\) 2 EIviaij b )\j 2 v J - O,il,co.,i'_ ‘\),
y; >0 ier.

and for v =1,2,... .

Clearly the following program is a formal dual of <C'.

Program D. Seek the value function

MD(X) = inf Zaijj

for all x subject to the constraints

EJ‘ainj 2 cy ielI.

Program D is in ordinary form and Program C is in subordinary

form. Thus by virtue of the PD theorem the programs C and D
are in perfect duality. As a consequence they have the same

value functions. It is worth noting with Kallina and Williams [11]

that this wvalue function is concave.
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The Lagrange bili near program
to elimnate the constraints

6.
I n order

Xj £ 0 for jeJ+

from Program A the Lagrange function
L(x,A) = § 7 X:j

is introduced in a bilinear programternmed E. This program

stens from Program D and is defined as foll ows,

Seek the val ue

Prodram E.

M =1lim sup inf 2_AX.
J3 3

B v-*oo A X

to the constraints;

for all x subject
£j%j% = cs i e
and for all A subject to the constraints,
I nf Dj’\jxj>-oog
% .
v"l"Aj "-v"l j :-1,-2,...,-V,
vt A - 1Ayt j =0,
1
o> - i =1,2, ,V
and for v=12,... |,
A sequence (A(v)} which satisfies these conditions for v =1,2,...
is said to be a feasible multiplier sequence. |If, in addition,

M = 1lim inf L(x,A(v)) (possibly +00)

V=00 X

HUNT  LIBRARY
CARNEGIE-MELLON  UNIVERSITY
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then {A(v)} is said to be an optinmal nultiplier seguence.

W termthe bilinear program E the Lagrange dual of Program A,
the followng basic lenmma reveals a close relationship between

Program A and Program E.

Duality | nequality Lemm, Suppose that Prograns A and E are both

consi stent. Then

Mp 2 Mg

and both these values are finite.

Proof . Let x* be any point which satisfies the constraints of
Program A, Let {Al be a feasible nultiplier sequence. Then re-

call that the sum £ A x. has only a finite nunber of non-zero

J 33
terns so as v —00 the following limts hold.

lim5_ A x* =0,
J» 33

limAXE = x£, and

[imS A_x! ~0.
+ 33

The last inequality foll ows because xg £0 for | eJ+ if o x*
is feasible for ProgramA.  Thus given a 6 > 0 there exists

Vo such that for v ][> Vo

L(x*,A) 17 +5.
Hence

inf L(x,A) £ L(x*, A £x*0+5.
X
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Now allow VvV — o0 sO

M, = lim sup inf L(x,A\) < xg + 5.
V200 A X

Taking the infimum with respect to x* gives ME < MA + 4.

Since & is arbitrary this proves the stated inequality of the

lemma.

We now state the key theorem of this paper.

THEOREM 1. Programs A and E are in perfect duality.

Proof. First suppose that the constraints of Program A are con-

sistent and that the value MA is finite. Then since A and B

are in perfect duality it follows that My = M,. Also there is
an optimal feasible sequence for Program B, say V*(1l),y*(2),...

Let x satisfy the constraint

2

Jaijxj 2 3 1el.

Then since yz > O we see that

* *
IrY;¢; < TyLy¥i344%y

This relation can be written as

N * *
(1) L¥;c; < Tyl

where Kg is defined by the equations
* X .
%j = Z&yiaij jed.

Thus the sequence {y*(v)] leads to the associated sequence {A*(V)]}.
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1 1

Moreover we see that |%§(v)| L v~ for J, |%g(\0-1| £ Vv, and

)\;f(\,) 2_—\)-1 for J,_ but 13] < v.
In the inequality (i) takes the infimum for x satisfying

the constraints of Program D. This gives
. *
(ii) y;c; < M (A*) .

Thus (A* (v)} is a feasible multiplier sequence for Program E.
gince both A and E are consistent the lemma shows that ME
is finite. This proves half of part (a) of the definition of
perfect duality.

Next suppose that Program E is consistent and has finite
value. Let {A'(p)} be a feasible multiplier sequence for
p=1,2,... . Then for A = A'(u) the Program D is consistent
and has a finite value. Then since C and D are in perfect
duality it follows that Program C is consistent. Thus for
each p there is a feasible sequence {y;(v,p)} for v =1,2,...

such that
-1 .
|z&y£(v,p)aij - %'(p)l < v for j = O,+,1,...,%+ V.

Taking u = vV gives:

2/v 2 Ty (v,Vagy 2 -2/v § = =1,-2,000,-V
2/v > Z&y;(v,v)aij - 1>-2/v j = 0,
EIY;.(\),\))aij Z -2/\) j = l,2,o.o,\).

Thus vy" (V) = y'(2v,2v) is a feasible sequence for B.
Since Program B has a feasible sequence it also has an

optimal feasible sequence, say y* (1) ,y*(2),..., - Conceivably
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My = lim ZLy.%c.:L = 00.
vaoo * 1
Nevert hel ess we can still define A*, as in the first part, of

the proof and again obtain relations (i) and (ii). Then take

the limt superior of relation (ii) as v — 00. SO
(iii) A& = Iin1z&yici < lim MD(X*) < M.

Thus M is finite and since A and B are in perfect duality
it follows that A is consistent. This conpletes the proof of
condition (a) of the definition of perfect duality.

It remains to prove part (b) of the definition. Thus sup-
pose that both A and E are consistent then the |lemma states
t hat Nh and Nt are finite and Nh A ME' However relation

(it1) holds so
v = Mp S Mg

Hence Nk = N% and the proof is conplete.

There are various nodifications of the theorem just proved.
For exanple we could meke J, or J_ finite index sets. For
application to convex progranming in R' we take both J, and
J to be finite index sets. Moreover we fake A0 = 1. This is

no |loss of generality because if A(v) is a feasible sequence

soalsois A (v) =A(2v)/AL2v) .
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7. Programs defined by a convex set.

In Program A specialize J to be the integers
-Ny...,-1,0,1,...,p where n > O and p > 1. Then the first

constraint on x stated in Program A is

Zbaijxj 2 cy ielT.

n+p+1l

In other words X 1is restricted to a region in R formed

by the intersection of half-spaces. But such a region is a
convex set. Moreover any given closed convex set () can be
represented as such an intersection of half-spaces. This is

accomplished by choosing

aijxj = Ci 1el

Ly

to be a suitable set of support planes at the boundary points

of Q.

Let Program A so specialized be termed Program Al. It

may be stated in the following equivalent form.

rOTPHL

1 ,
Program A", _Let Q be a closed convex set in for

n>O0 and p > 1. Let (x_n,...,x .»X_) be the coordinates

o’-- p

of a point x in Rn+p+1. Then seek the value
M _= inf x
Al X ©

or all x subject to the constraints

X e Q,

Xy < 0, X, < O,...,xp < O.
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Likewise the Lagrange program E specialized to the same

closed convex set has the form.

Program lEi . Seek the value

M = lim sup inf T_A.x.
El V=00 A X J 33

for all x subject to the constraint

xed

and for all » subject to the constraints:

inf T A.x. > -00,

< 97373
-1 -1 .
\) 2)\j 2-\) J = —l,ooo,-n,
?\o =1
-1 .
7\j 2"\) j = l,oo-,po

and for v =1,2,... .

Then Theorem 1 specializes to give the following result.

COROLLARY 1. Programs i and E_l_ are in perfect duality.

By making an additional hypothesis on the set  we are

led to an important further specialization.

COROLLARY 2. Let Program _A_2. be Program &]; when Q has the

property that if xe Q then x+e Q where x; > xj for j > 0

and x. = X, otherwise. Then Programs g\__z_ and ﬁ are in perfect

J
duality where Program _}_3_3 is the same as Program E:L

except that

the last constraint is replaced by

)\jzo j=l’o-o’po
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Proof. Let x; = xk + m for one k>0 and m > 0. Let

x, = x, if j # k. Thus
J J
+
L(x ,N\) = L(x,\) + mkk.
Allowing m — +oo shows that if %k < O then inf L(x+,%) = -00.

This is a violation of the constraints so it is necessary that
xk >0 for k =1,...,p. This proves the corollary.
Next consider a more radical modification in which J is

the set of integers O0,l,...,p. Then the set § 1is in Rp+l.

COROLIARY 3. Let Programs éi and gi_gg Programs Ai and gz_when

n = 0. Then Programs Ai and gi are in perfect duality.

Proof. This is a direct consequence of Corollary 2. Note that

Program E3 can be written in the following simplified form.

Program gi. Seek the value

ME = s;p 1§f (xo+7\1xl +oo.t kpxp)

for all x subject to the constraint

xe &

and for all A subject to the constraints

)\jz_o j=l,...,p.
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8. The perfect duality of P and Q.

To relate Programs A and P consider the convex function
go(z),...,gp(z) for ze:Rn. These functions were introduced
in Program P. Then define functions Go(x),...,Gp(x) for

n+p+1

xeR by the relations

Gj(X) =gj(Z) - Xy J = 0,.0.,P

X . = Z. i =1,...,n0,

Clearly the functions Gj are also convex. A set  in

n+p+1

R is defined by the inequalities

Go(x) < 0, Gl(x) g_o,...,Gp(x) < 0.

As is well-known this implies that § is a closed convex set.

Moreover if xc¢§ then x ¢@ Aif x; > Xy for j > O and
x; = x. otherwise. Thus the set ) satisfies the conditions
J

of Corollary 2.
Consider Program A2 for the set Q Jjust defined. If

X e §§ we have Gj(x) < O and this is equivalent to gj(z) g_xj.

Thus the constraint xj < O implies gj(z) < 0. No further

constraints are imposed on z. This shows that if A2 is

consistent so also is P.

Conversely if P 1is given to be consistent let x. = gj(z)

J
for j = 0,1,...,p and we see that A1 is consistent. Clearly

inf go(z) = inf X, so MP = MA. Thus Programs P and A2 are

equivalent,
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COROLLARY j4. Programs P _and Qare in perfect duality.

Pr oof , Consi der Prograns Q and E2.  Then if xeQ and A
satisfies the constraints Aj NOQ for J o=1,...,p we see

P n

P
gg(z) +§A6% (2) +1£,?:D.23. £§%.x..

This will be an equality if for a given z we put x.J = gj(z)

for j =0,...,p. It follows that inf L(z,A in Q is the
2
sane as inf L(x,A) in E . Consequently N, = M2and it is
2 E
seen that Q and E are equivalent. But it was seen above

that P and A are equivalent so the proof is conplete.
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9. The perfect duality of P* and Qx.

Consider Program P*¥. Let (xo,xl,...,xp) be the coordin-
ates of a point x in Rp+l. Let ° be the set in Rp"'1

such that xe&° if

gj(z) ng J =O:l)-°"p

for some 2z in Rn. If x' and x" are both in Qo then

ax; + bjxg > agj(z') + bgj (z") > gj(az'+bz")

provided a > 0, b > 0 and a + b = 1. Thus the set o is
convex.

The set ° may not be a closed set so let { be its
closure. Then ) 1is a closed convex set. It is clear from
the definition that if xc¢§ then x ¢ provided x; > xj
for j = 0,...,p. Thus Corollary 3 applies to  and we first
compare Programs Q* and E3.

For a given A the function L(x,\) is continuous in x
so inf L(x,\) is the same whether x is allowed to vary over

&° or over Q. But for xc¢ Qo we have gj(z) < xj for some

b4 sO

p p
go(z) + f?\jgj(z) g-xo + ]z-}ijj,

For a given 2z this can be made into an equality by taking

:»cj = gj(z) . This shows that

(1) inf L _(z,\) = inf L_(x,\).
z Q X E
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Thus Program Q* is consistent if and only if Program E3 is

consistent. Mreover it follows from (1) that 14 = M,.

Thus Progranms Q and E3 are equival ent. -

COROLLARY 5 Prograns P* and O are in perfect duality.

Proof. Suppose Program P* is consistent and has a finite val ue
M”. Then it is clear that the point (M"+v~ :,Lv~ 1 ...,v~1) is

in fIP for an arbitrary positive integer v. Formng the

closure as v — oo shows that the point (th"PO,. ..,0) 1is in £2
Thus M3 <2 M*« On the other hand if (x OO,...,O) isin Sl

A -
t hen (x0+v~‘, \T ,.*.9v™ ) isin O for an arbitrary positive

integer Vv so xo"l\/p** Hence Mj; = M.
! 3 A -
Conversely suppose Program A is consistent and has a fi-
nite value M”. Then it is clear that (M”,0, eee« 0) isin Q
A

and that again M* = M*,
A P
This shows that Program P* is consistent and has a finite
value if and only if ProgramA™ is consistent and has a finite

val ue. Moreover Mz = M*, Previously we had seen that Pro-

3

A
grans Q* and E” are equivalent. Thus Corollary 3 now proves

that P* and @ satisfy part (a of the definition of perfect
duality. Mreover M~A =Mp*#

Next consider part (b) of the PD definition. W are given

that P and Q* are both consistent. If P* has a finite val ue
then (b) follows fromthe above argunent. |If p* does not have
a finite value then we may have M" = -oo but not M" = +00

by the definition of consistency* But if M = -00 then it




25

is clear that (0,0,..,0) isin Q so Progran1A? i's consistent.

But by the equival ence of @ and E3 we know E3

IS consistent.
Thus Corollary 3 states that A’ and E° have equal finite val ues.
So P* nust also have a finite value. QED

The proofs in this paper all rest on the general perfect
duality theoremof |inear programmng given in reference [1].
In that paper argunents were based on abstract topol ogica
consi derations. However the special case of the PD theorem
needed for this paper can be proved directly by elenentary
limt theorens.

The writer is indebted to Kenneth Kortanek for many stinu-

| ati ng di scussi ons concerning the concepts in this paper.
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