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Abstract

The theme of this paper is the application of linear

analysis to simplify and extend convex analysis. The central

problem treated is the standard convex program -- minimize a

convex function subject to inequality constraints on other

convex functions. The present approach uses the support

planes of the constraint region to transform the convex pro-

gram into an equivalent linear program. Then the duality theory

of infinite linear programming shows how to construct a new

dual program of bilinear type. When this dual program is trans-

formed back into the convex function formulation it concerns

the minimax of an unconstrained Lagrange function. This result

is somewhat similar to the Kuhn-Tucker theorem. However no

constraint qualifications are needed and yet perfect duality

maintains between the primal and dual programs.
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CONVEX ANALYSIS TREATED BY LINEAR PROGRAMMING

by

R. J. Duffin

1. Introduction,

The point of departure of this paper is the following

standard extremal problem of convex analysis.

Program P. Let g^(z),gn(z),...,g (z) be convex functions— u l p

for z e R . Seek the value

M
P =

 i n f 9 0
( 2 )

for all z subject to the constraints

9j(z) £ 0 j = 1,...,p.

This is, of course, a constrained extremal problem.

Far reaching consequences, both for theory and for computa-

tion, develop when one attempts to convert to an unconstrained

program by way of Lagrange multipliers. The best known and

most important result in that direction is the Kuhn-Tucker

theorem. However, the Kuhn-Tucker theorem applies only if a

further proviso termed a "constraint qualification" is added.

For example, the superconsistency condition of Slater postu-

lates the existence of a point z* such that

g(z*) < 0 j = 1,...,p.

Here we wish to avoid such ad hoc assumptions.



To develop a corresponding Lagrange program the follow-

ing new Lagrange function is introduced

P n

L(z,A) = gQ(z) + SAjg.(z) + S A ^ z , .

Here the A. are Lagrange multipliers. By use of this function

the constraints, g. <̂  0, are eliminated in the following program.

Program £. Seek the value

M = lim sup inf L(z,A)
0 v->oo A z

for all A . subject to the constraints
3

inf L(z,A) > -co
z

Aj ^ 0 j = 1,2,...,p,

v"1 ^ A_j ^ -v"1 j = 1,2,...,n,

and for v = 1,2,....

This program, of minimax type, is termed a Lagrange dual

of P.

We shall say Program P is consistent if its constraints

can be satisfied for some z. We shall say Program Q is con-

sistent if its constraints can be satisfied for arbitrarily

large integers v.

A central result of this paper is that P and Q are

dual in the following sense.



DEFINITION, Two extremal programs are said to be in perfect'

duality when the following properties hold:

(a) jEf one program is consistent and has a. finite value

then the other program is consistent,

(b) I_f both programs are consistent they have equal

finite values.

The method of proof is to view Program P as a question

about a closed convex set. But such a set can be defined by

support planes. In this way Program P is reformulated as a

linear program termed Program A. Then linear programming

theory is employed to show that Program A is in perfect dual-

ity with a bilinear program termed Program E. But Program E

is simply a reformulation of Program Q.

The main thrust of the proof is furnished by a perfect

duality theorem for infinite linear programs given in a pre-

vious paper [1]. This approach is appealing because linear

analysis has a much better developed structure than convex

analysis. Thus proofs are simplified and new concepts are

suggested. The linear approach was also employe^ in a pre-

vious paper, "Linearizing geometric programs'1 [3], That paper

gave a new proof of the perfect duality theorem of geometric

programming. The work "convex" was not needed or used.

Application of linear programming to convex analysis has

also been made by Kallina and Williams [11] and by Kortanek [6].

Their applications relate to results of Rockafellar [10] and of

Peterson [9] .



2* Ordinary and subordinary programs,

A program 0 is said to be subconsistent if the constraints

can be satisfied to an arbitrary close degree of approximation [1]

Alternatively the program can be restated in a form S in which

the relaxation of the constraints is made explicit. In this

paper 0 is termed an ordinary program and S is termed a

subordinary program. Thus saying a program is subconsistent is

equivalent to saying its subordinary form is consistent. The

value of the subordinary program is termed the subvalue of the

ordinary program.

The subordinary form of Program P is termed P* and is

defined as follows.

Program P*. Seek the value

M ^ = lim inf gQ(z)
v~* co z

for all z subject to the constraints

9j (z) 1 1/v j = l,...,p,

and for v = 1,2,... •

Program p*, as well as Program P, can be transformed to an extre-

mal problem about a closed convex set. Then the support planes

to this set lead to a linear program. When this is done the lin-

ear theory suggests a corresponding Lagrange dual program of the

following form.



Program Q*. Seek the value

P
M = sup inf [gn(z) + SA.g.(z)]
Q A z ° j=l 3 3

for all A. subject to the constraints;

P
inf [gn(z) + LA g. (z) ] > -co,
z u j=l 3 3

A_. ̂ . 0 j = 1,. .. ,p.

We shall say that Program P* is consistent if the constraints

can be satisfied for arbitrarily large integers v and

M / +00 . Program Q* is consistent if the constraints can

be satisfied for some A. The linear programming analysis

which shows that P and Q are in perfect duality also shows

that P* and Q* are in perfect duality.

The Lagrange program Q* is a variant of a program stud-

ied by John, Kuhn, Tucker, Dorn, Wolfe, Stoer and very many

others. For detailed references see the book of Mangasarian [8]

and the survey by Geoffrion [5].



3. The value gap.

An ordinary program P can be inconsistent and yet the

subordinary program P* may be consistent and have a finite

value. An example of this state is the minimization of the

function g = e" subject to the single constraint g, = e" £ 0.

This program is inconsistent but allowing x —> +00 shows that

the subordinary program has value zero.

If the ordinary program is consistent then the subordinary

program is necessarily consistent. It might be supposed that

these programs have the same value. However consider the

counterexample.

Program R.. Seek the infimum of e~y subject to the constraint

(x 2
+ y

2) 1 / 2 - x ! o.
2 2 1/2

The function (x +y ) / is a cone standing on its vertex and so

is convex. The sum of convex functions is convex so g., =

2 2 1/2
(x +y ) / - x is convex. However the constraint can onlv be

satisfied if y = 0 and x ;> 0. This means that M^ = 1.

Next consider the corresponding subordinary program. Given

any fixed value of y it is easily checked that g 1 —> 0 as

x —• 00. This shows that M ^ = 0. Thus JV̂  > M and the

demonstration is complete that there is a. finite gap between the

value and the subvalue of Program R.



4. Infinite linear programs.

We wish to phrase a linear program which is analogous to

the convex program P. Thus let a.. and c. be real constants

for i e I and j € J where I and J are index sets. The

set I is arbitrary but J is specified (at first) to be the

set of all integers. Then J will denote the positive inte-

gers and J will denote the negative integers. In this

terminology a linear program is now defined.

Program A. Seek the value

MA = inf x 0

X

for all x subject to the constraints:

SjaijXj ^ C i i 6 l >

There is a formal procedure for expressing the dual of a

linear program. Thus the formal dual of Program A has the fol-

lowing statement.

Program B1. Seek the value

Mg, = sup SiYici

Y

for all y subject to the constraints:

= 0 jeJ_,

= 1 j = 0,
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. a. . > 0 j e J, ,
1 ID +

y± ^ O i€ I.

If I and J are finite sets then both A and Bf are

finite linear programs. Then, as a consequence of the duality

theory for finite linear programming, it is well-known that the

formal dual programs A and B1 are also in perfect duality,

When I or J are infinite sets then A and B! are

infinite linear programs. However counterexamples are known

in which A and Bf are formal duals but are not in perfect

duality [2,4,7]. In that case we say there is a duality gap.

In a paper titled "infinite Programs" [1] it was shown that

perfect duality can be insured by relaxing the constraints of

the ordinary dual B1. This follows directly from the first

theorem of that paper which we term the perfect duality theorem.

To apply the PD theorem it is first necessary to introduce

a vector space U for the rows of the matrix a... Moreover U

must be assigned a locally convex topology. The PD theorem is a

very general theorem so this selection is in no way unique. It

is convenient to let U have the ordinary product topology

R x R x ... . Then, as is well known, the conjugate space U*

of U consists of vectors x with components x. for j e J

such that x. = 0 except for a finite set of indices j. Be-

cause of this property U* has been termed a finite sequence

space. The bilinear form relating U and U* is then

(u,x) = EjUjX..



Next a vector space V must be introduced for the columns

of the matrix a. .. Let this space also be assigned the product

topology. Then the conjugate space V* is a finite sequence

space. It consists of vectors y with components y. for

ie I such that y. = 0 except for a finite set of indices i.

Hie bilinear form relating V* and V is

Next the PD theorem requires "positive" cones P, X, Q,

and Y in the spaces U, U*, V and V* respectively. The

natural choice here is to take Q to be the positive orthant

in V. Then Y must be taken to be the polar cone of Q.

Thus Y consists of vectors y whose components satisfy

y± ^ 0, i € I.

The cone P in U is defined by the relations:

U. ^ 0 , j € J+,

Uj = 0, j ft J+.

Then X must be taken to be the polar cone of P so

Xj 1 0 j e J+,

x. arbitrary j/J •

This completes the requirements of the PD theorem. The

conclusion of the PD theorem is that an ordinary program and

its subordinary dual are in perfect duality.
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(Before proceeding, the following extension of the PD

theorem is worth noting. The PD theorem as stated requires

that u* be the conjugate space of U. However an inspection

of the proof shows that it is only necessary that the spaces U

and U* be "in duality" as defined by Bourbaki. This obser-

vation is due to Kretschmer [7]).

It is now understood that in the statements of Programs A

and B1 the vectors x and y are in finite sequence spaces•

As a consequence the summations appearing in Programs A and BT

are automatically convergent. The finite sequence space was

introduced in programming by Charnes, Cooper, and Kortanek,

see [4] .

To proceed it is necessary to formulate the subordinary

program to B1. We term this program B and the specifications

of the PD theorem give it the following form.

Program B. Seek the value

M = lim sup ZLy.c.
B v-»co y ^ x x

for all y subject to the constraints:

v"1 ^ Siy^ij 2. -v"1 j = -1,-2,...,-v,

v"1 ^ SEyiaij - 1 ̂  -v"1 j = o,

Ziyiaij

y± ^ o ie i.

and for v = 1,2,...

Comparing Programs Bf and B we see the following difference.
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In Program B! there are equalities to the zero vector of U

space. But in Program B the zero vector is replaced by an

£,-neighborhood of the origin where £ = \T . In accord

with the formulation of the PD theorem the equality in the

space V* is not relaxed in the subordinary program.

The conclusions of the PD theorem now insures that Pro-

gram A and Program B are in perfect duality. To check this it

is necessary to translate the new terminology of this paper into

the language of [1] and to note that condition (b) is then obvious.

It is convenient to employ the following terminology. A

sequence y(1),y(2),... which satisfies the constraints of

Program B corresponding to v = 1,2,. •. is termed a feasible

sequence. Moreover, if

lim ^ y i C i = M^
v-*oo

then y(1),y(2),. • • is termed an optimal feasible sequence.

To relate Program A to Programs P and Q we now introduce

a chain of Programs A, B, C, D, and E.
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5. Infinite parametric programs.

Given an arbitrary set of parameters

A . for j e J

a linear program C, related to B, is now defined.

Program C. Seek the value function

M.(A) = lim sup 2Ly.c.
c v-*co y L x x

for all y subject to the constraints;

v"1 ^ SIYiaij - Aj ^ v"1 j = O,+l, . . . , i

y± ^ 0 i€ I.

and for v = 1,2,. . .

Clearly the following program is a formal dual of C!

Program ID. Seek the value function

= i n f

for all x subject to the constraints

j j * ci i e I -

Program D is in ordinary form and Program C is in subordinary

form. Thus by virtue of the PD theorem the programs C and D

are in perfect duality. As a consequence they have the same

value functions. It is worth noting with Kallina and Williams [11]

that this value function is concave.
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6. The Lagrange bilinear program

In order to eliminate the constraints

X j £ 0 for j e J+

from Program A the Lagrange function

L(x,A) = Sj^jX.

is introduced in a bilinear program termed E. This program

stems from Program D and is defined as followso

Program E. Seek the value

M_ = lim sup inf 2_A.x.
E v-*oo A x J 3 3

for all x subject to the constraints;

£jaijxj ;> c± i e i

and for all A subject to the constraints;

inf Dj^jX. > -oo 9

v" ^ Aj ^ -v" j = -1,-2,. .. ,-v,

v"1 ^ Aj - 1 ^ -v""1 j = 0,

*j >- -v" j = 1,2,. .. ,v.

and for v = 1,2,...

A sequence (A(v)} which satisfies these conditions for v = 1,2,

is said to be a feasible multiplier sequence. If, in addition,

Mg = lim inf L(x,A(v)) (possibly +oo)
v~> oo x

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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then {A(v)} is said to be an optimal multiplier sequence.

We term the bilinear program E the Lagrange dual of Program A,

the following basic lemma reveals a close relationship between

Program A and Program E.

Duality Inequality Lemma, Suppose that Programs A and E are both

consistent. Then

and both these values are finite.

Proof. Let x* be any point which satisfies the constraints of

Program A. Let {A} be a feasible multiplier sequence. Then re-

call that the sum £_A.x. has only a finite number of non-zero
J 3 3

terms so as v —> oo the following limits hold.

lim 5: A.x* = 0,
J» 3 3

lim AQx£ = x*, and

lim Sj A.x! ̂ 0 .

The last inequality follows because x* £ 0 for j e J if x*

is feasible for Program A. Thus given a 6 > 0 there exists

vQ such that for v ]> v

L(x*,A) 1 ^ + 5 .

Hence

inf L(x,A) £ L(x*,A) £ x* + 5.
x
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Now allow v —> oo so

M = lim sup inf L(x,A) £ x* + 5.
v-»oo A x

Taking the infimum with respect to x* gives M <̂  M^ + 5.

Since 6 is arbitrary this proves the stated inequality of the

lemma•

We now state the key theorem of this paper.

THEOREM .1. Programs A and jE are in perfect duality.

Proof, First suppose that the constraints of Program A are con-

sistent and that the value M- is finite. Then since A and B

are in perfect duality it follows that M = M-. Also there is

an optimal feasible sequence for Program B, say y*(1),y*(2) ,... .

Let x satisfy the constraint

Then since y* ^ 0 we see that

This relation can be written as

where A* is defined by the equations

Thus the sequence (y*(v)} leads to the associated sequence (A*(v)}
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Moreover we see that |A^(v) | £ v"1 for J_, |A* (v)-l| 1 v"1, and

(v) ^ -v"1 for J+ but |j| £ v.

In the inequality (i) takes the infimum for x satisfying

the constraints of Program D. This gives

(ii)

Thus [A*(v)} is a feasible multiplier sequence for Program E.

Since both A and E are consistent the lemma shows that M

is finite. This proves half of part (a) of the definition of

perfect duality.

Next suppose that Program E is consistent and has finite

value. Let {V (/i) ) be a feasible multiplier sequence for

\l = 1,2,. •• . Then for A = A1 {\i) the Program D is consistent

and has a finite value. Then since C and D are in perfect

duality it follows that Program C is consistent. Thus for

each [i there is a feasible sequence (y! (V,JLI)} for #v = 1,2,...

such that

I Sj-y^VjixJa^ - A! ((i) | £ v" for j = 0,±,,l,.. .,+ v.

Taking \i = v gives:

2/v ^ Sj-Yi^^aij L̂ -2/v j = -1,-2,...,-v

2/v ^ SjY^VjVja.^ - 1 ̂  -2/v j = O,

Siy[(v,v)aij ^ -2/v j = 1,2,...,v.

Thus y" (v) = y1 (2v,2v) is a feasible sequence for B.

Since Program B has a feasible sequence it also has an

optimal feasible sequence, say y*(1),y*(2),...„ o Conceivably
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= lim ZLy.c. = oo.

Nevertheless we can still define A*, as in the first part, of

the proof and again obtain relations (i) and (ii). Then take

the limit superior of relation (ii) as v —> oo. So

(iii) Jŷ  = lim

Thus M^ is finite and since A and B are in perfect duality

it follows that A is consistent. This completes the proof of

condition (a) of the definition of perfect duality.

It remains to prove part (b) of the definition. Thus sup-

pose that both A and E are consistent then the lemma states

that M- and M^ are finite and M- ^ M . However relation

(iii) holds so

MA =

Hence M = M and the proof is complete.

There are various modifications of the theorem just proved.

For example we could make J or J finite index sets. For

application to convex programming in Rn we take both J and

J_ to be finite index sets. Moreover we take A = 1. This is

no loss of generality because if A(v) is a feasible sequence

so also is A! (v) = A (2v)/AQ(2v) .
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7. Programs defined by a. convex set.

In Program A specialize J to be the integers

-n,... ,-1,0,1,... ,p where n ;> 0 and p ;> 1. Then the first

constraint on x stated in Program A is

In other words x is restricted to a region in R ^ formed

by the intersection of half-spaces. But such a region is a

convex set. Moreover any given closed convex set ft can be

represented as such an intersection of half-spaces. This is

accomplished by choosing

V i j x j = c i LeI

to be a suitable set of support planes at the boundary points

of a

Let Program A so specialized be termed Program A • It

may be stated in the following equivalent form.

Program A . Let Q be. a. closed convex set in Rn ^ for

n ;> 0 and p > 1. Let (x .... ,x .. .. ,x) be the coordinates

of a point x in Rn ^ Ihen seek the value

M = inf x
A x

for all x subject to the constraints

X € Q,

O, xo £ O,...,x^ ̂  0.
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Likewise the Lagrange program E specialized to the same

closed convex set has the form.

Program E . Seek the value

M 1 = lim sup inf £_A.x.
_i _ J i nE v-»co A x J J

for all x subject to the constraint

XG a

and for all > subject to the constraints:

inf £TA.x. > -co,
x J ^ 3

v"1 ^ Aj ^ -v"1 j = -l,...,-n,

2̂
Aj ^ -v j = 1,.. . ,p.

and for v = 1,2,...

Then Theorem 1 specializes to give the following result.

COROLLARY jU Programs A and E are in perfect duality.

By making an additional hypothesis on the set C2 we are

led to an important further specialization.

2 1
COROLLARY 2̂ . Let Program A be Program A when Q has the

property that if x e Q then x e £2 where X. J> x. for j > 0

+ 2 2
and x. = x. otherwise. Then Programs A and E are in perfect

3 3
2 1

duality where Program E is the same as Program E except that
the last constraint is replaced by

Aj ^L 0 j = 1,. .. ,p.
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Proof• Let x, = x, + m for one k > 0 and m > 0. Let

x. = x. if j ̂  k. Thus

L(x ,A) = L(x,A) + HIAJ,

Allowing m —» +oo shows that if Afc < 0 then inf L(x+,A) = -oo,

This is a violation of the constraints so it is necessary that

Â . ̂  0 for k = l,...,p. This proves the corollary.

Next consider a more radical modification in which J is

the set of integers 0,1,...,p. Then the set £2 is in Bp

3 3 2 2
COROLLARY 3̂  Let Programs A and E be Programs A and E when

n = 0. Then Programs A and E are in perfect duality.

Proof. This is a direct consequence of Corollary 2. Note that

Program E can be written in the following simplified form.

Program E . Seek the value

JVL, = sup inf (X-+A..X.. +...+ A x)
^ A x O i l p p

for all x subject to the constraint

xefl,

and for all A subject to the constraints

^ 0 j = 1,...,p.
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8. The perfect duality of P and Q.

To relate Programs A and P consider the convex function

g (z),. •. ,g (z) for z € R . These functions were introduced

in Program P. Then define functions G (x),...,G (x) for

x € R n + P + 1 by the relations

Gj(x) = g^(z) - Xj j = 0,...,p,

x_j = Zj j = 1,...,n.

Clearly the functions G. are also convex. A set Q in

Rn+p+l i s define(j by tlie inequalities

G0(x) £ 0, G1(x) £0,...,G (x) 1 0 .

As is well-known this implies that O is a closed convex set.

Moreover if x € Q, then x+ e SI if xi" ;> x. for j > 0 and

x. = x otherwise. Thus the set Q satisfies the conditions
3 j

of Corollary 2.
2

Consider Program A for the set Q just defined. If

x e O we have G.(x) ̂ 0 and this is equivalent to g.(z) £ x..

Thus the constraint x. £ 0 implies g.(z) <̂  0. No further
2

constraints are imposed on z. This shows that if A is

consistent so also is P.

Conversely if P is given to be consistent let x. = g.(z)

for j = 0,1,...,p and we see that A is consistent. Clearly
2

inf gQ(z) = inf x Q so ML = M . Thus Programs P and A are
equivalent.
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COROLLARY j4. Programs P and Q are in perfect duality.

o
Proof, Consider Programs Q and E . Then if x e Q and A

satisfies the constraints A. ^ 0 for j = l,...,p we see

P n p
go(z) + £ A .g. (z) + £ A .z . £ S A .x..
° 1 D D 1 "D 3 -n D D

This will be an equality if for a given z we put x. = g.(z)

for j = 0,...,p. It follows that inf L(z,A) in Q is the

2
same as inf L(x,A) in E . Consequently Mn = M and it is

2 E

seen that Q and E are equivalent. But it was seen above
2

that P and A are equivalent so the proof is complete.
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9. The perfect duality of P* and Q*.

Consider Program P*. Let (x ,x-,,.,,x ) be the coordin-

ates of a point x in Rp Let 0° be the set in Rp

such that x e ii° if

g.(z) ^ x. j = 0,1,...,p

for some z in Rn. If xf and xtf are both in Q, then

aXj + b j X ^ ^ ag.(z') + bgj(z") ^ gj(az'+bz")

provided a ;>. 0, b ;> 0 and a + b = 1. Thus the set fiP is

convex.

The set flP may not be a closed set so let £2 be its

closure. Then Q is a closed convex set. It is clear from

the definition that if X€ ft then x e O provided x. ^ x.

for j = 0,...,p. Thus Corollary 3 applies to Q and we first
3

compare Programs Q* and E .

For a given A the function L(x,A) is continuous in x

so inf L(x,A) is the same whether x is allowed to vary over

flP or over Q. But for xeflP we have g.(z) £ x. for some

z so

P P
gQ(z) + S A^g^ (z) £ x Q + £ *jXj f

For a given z this can be made into an equality by taking

x. = g.(z). This shows that

(1) inf LQ(z,A) = inf L E(x,A).
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Thus Program Q* is consistent if and only if Program E is

consistent. Moreover it follows from (1) that 14 = M o.

3Thus Programs Q* and E are equivalent.

COROLLARY 5^ Programs P* and Q* are in perfect duality.

Proof. Suppose Program P* is consistent and has a finite value

Mp^. Then it is clear that the point (Mp^+v~ ,v~ , ...,v~ ) is

in flP for an arbitrary positive integer v. Forming the

closure as v —> oo shows that the point (tfL̂  ,0,. . . ,0) is in £2.

Thus M 3 <^ M^*« On the other hand if (x ,0,...,0) is in SI

then (x +v~ , \T ,.•.9 v" ) is in O for an arbitrary positive

integer v so x ^ Mp** Hence M 3 = M̂ .̂.

3 A

Conversely suppose Program A is consistent and has a fi-

nite value M ̂ . Then it is clear that (M ̂ ,0, • • • ,0) is in Q,

A

and that again M ^ = M^*.
A P

This shows that Program P* is consistent and has a finite
value if and only if Program A is consistent and has a finite

value. Moreover M 3 = M^*. Previously we had seen that Pro-

3 A

grams Q* and E are equivalent. Thus Corollary 3 now proves

that P* and Q* satisfy part (a) of the definition of perfect

duality. Moreover M̂ .̂ = Mn* #

Next consider part (b) of the PD definition. We are given

that P* and Q* are both consistent. If P* has a finite value

then (b) follows from the above argument. If p* does not have

a finite value then we may have Mp̂ . = -oo but not M-^ = +oo

by the definition of consistency* But if M^ = -oo then it
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is clear that (0,0,..,0) is in Q, so Program A is consistent.

3 3But by the equivalence of Q* and E we know E is consistent.

Thus Corollary 3 states that A and E have equal finite values.

So P* must also have a finite value. QED.

The proofs in this paper all rest on the general perfect

duality theorem of linear programming given in reference [1].

In that paper arguments were based on abstract topological

considerations. However the special case of the PD theorem

needed for this paper can be proved directly by elementary

limit theorems.

The writer is indebted to Kenneth Kortanek for many stimu-

lating discussions concerning the concepts in this paper.



26

References

[1] Duffin, R. J. , "infinite programs", in Linear Inequalities
and Related Systems (H. W. Kuhn and A. Tucker, eds.),
Princeton University Press, Princeton, N, J., 1956.

[2] , MAn orthogonality theorem of Dines related
to moment problems and linear programming", Jour, of Comb,
Theory 2_(1967) , 1-26.

[3] , "Linearizing geometric programs", SIAM Re-
view JL2 (1969) , 221-227.

[4] and L. A. Karlovitz, "An infinite linear
program with a duality gap", Management Sciences 1^(1965),
122-134.

[5] Geoffrion, A. M., "Duality in nonlinear programming: A
simplified applications-oriented development", SIAM Re-
view 19.(1971) , 1-37.

[6] Kortanek, K., "Compound classification schemes for convex
conjugate transform dual families", GSIA Report No. 270,
February 1972, Carnegie-Melion University.

[7] Kretschmer, K. S., "Programmes in paired spaces", Canadian
J. Math. JL3_(1961) , 222-238.

[8] Mangasarian, 0. L., Nonlinear Programming9 McGraw-Hill,
New York, 1969.

[9] Peterson, E. L., "Symmetric duality for generalized uncon-
strained geometric programming", SIAM J. Appl. Math. 19
(1970), 487-526.

[10] Rockafellar, R. T., Convex Analysis, Princeton University
Press, 1971.

[11] Kallina, Carl and A. C. Williams, "Linear programming in
reflexive spaces", SIAM Review 12(1971), 350-376.

Carnegie-Melion University
Pittsburgh, Pennsylvania 15213

/ps — 4/6/72


