
THE PROXIMITY OF

(ALGEBRAIC) GEOMETRIC PROGRAMMING

TO LINEAR PROGRAMMING

by

R. J. Duffin and E. L. Peterson

Report 7 2-13

May 1972

/ps -- 5-16-72

U8RARY
CAMKBE-REllflN !!!""

THE PROXIMITY OF (ALGEBRAIC) GEOMETRIC PROGRAMMING

TO LINEAR PROGRAMMING

by

R. J. Duffin and Elmor L. Peterson

ABSTRACT

Geometric programming with (posy)monomials is known to be

synonomous with linear programming, Ifais note reduces algebraic

programming to geometric programming with (posy)binomials.

Carnegie-Mellon University, Pittsburgh, Pennsylvania, 15213.
Partially supported by the Army under research grant
DA--AROD-31-124-71-G17.
-
Northwestern University, Evanston, Illinois, 60201. Partially
supported by the Northwestern University Urban Systems Engineering
Center under research grant #731.

1. introductiorio In [3] we demonstrate the reduction of each

well-posed "algebraic program" to an equivalent "posynomial

program" in which a posynomial is to be minimized subject only

to inequality posynomial constraints (some of which may have a

"reversed direction"). Of course, each of those posynomial pro-

grams can be reformulated so that its objective function is a

(posy)monomial in that it includes only one posynomial term.

(To make such a reformulation, simply minimize an additional

independent variable that is constrained to be at least as large

as the posynomial objective function.)

The purpose of this note is to show that each of those

posynomial programs can be further reformulated so that every

constraint function is a (posy)binomial in that it includes at

most only two posynomial terms. This reformulation is rather

striking in view of Federowicz's observation [5, Appendix D]

that (posy)monomial programming (i.e., posynomial programming

with (posy)monomial objective and constraint functions) is

synonomous with linear programming. In fact, we suspect that

the resulting proximity of algebraic programming to linear program-

ming may have important computational and theoretical implications.

2. The Reformulation, In [3] (and [2]) we actually show that

one need only consider "prototype posynomial constraints'1

P(t) £ 1 (1)

and "reversed posynomial constraints"

P(t) ^ 1. (2)

If the posynomial P(t) is not already a (posy)binomial it must

have the form

n-2
P(t) = S u±(t) + un-1(t) + u n(t),

where its number of terms n ^ 3.

Introducing an additional independent variable s, we readily

see that the prototype constraint (1) is equivalent to the two

prototype constraints

un-l (t) + u n (t) ^ s (la)

and

n-2
S u. (t) + s <1 1. (lb)

We also see that the reversed constraint (2) is equivalent to

the two reversed constraints

Un-l (t) + U n (t) ^ s (2a)

and

n-2
L u. (t) + s ̂ 1. (2b)

After division by the positive variable s, constraint (la)

clearly turns into a prototype (posy)binomial constraint, and

constraint (2a) clearly turns into a reversed (posy)binomial

constraint, each of which constrains the vector variable (s,t).

Of course, constraint (lb) is a prototype posynomial constraint,

and constraint (2b) is a reversed posynomial constraint, each of

which has only (n-1) terms. Thus, the number of terms in each

of the resulting constraints does not exceed (n-1), and a repe-

tition of the preceding technique a total of (n-3) additional

times leads to the presence of only (posy)binomial constraints.

If n J> 4, the first additional repetition should probably

replace u ~(t) + u o(t) (rather than u o(t) + s) with ann— <J n— cL n— ^

additional independent variable r, so that as many as possible

of the resulting terms involve only a single scalar variable in

linear fashion.

Every repetition of the preceding technique applied to either

a single prototype posynomial constraint or a single reversed

posynomial constraint clearly increases by one the total number

of terms in the program formulation. But since every repetition

also increases by one the total number of independent variables,

the program's "degree of difficulty" remains constant.

Although every repetition increases by one both the number of

rows and the number of columns in the program's "exponent matrix",

most of the additional matrix entries are zero, and the other

entries are either minus one or plus one. Hence, this

reformulation should not drastically increase the number of matrix

computations needed to compute feasible solutions to the corres-

ponding "geometric dual program" [3].

We expect this reformulation to be especially useful in

conjunction with the "linearization procedure" of Duffin [2],

the "condensation procedure" of Avriel and Williams [1], and the

"inversion procedure" of Duffin and Peterson [4].

References

[1] Avriel, M. , and A. C. Williams, "Complementary Geometric
Programming", SIAM Jour.. Appl. Math. 19_(197O) , 125-141.

[2] Duffin, R. J., "Linearizing Geometric Programs", SIAM
Rev. 12(1970), 211-227.

[3] Duffin, R. J., and E. L. Peterson, "Geometric Programming
with Signomials", Jour. Opt. Th. Appls., to appear.

[4] Duffin, R. J., and E. L. Peterson, "Reversed Geometric
Programs Treated by Harmonic Means", to appear.

[5] Duffin, R. J., E. L. Peterson, and C. Zener, Geometric
Programming - Theory and Applications, John Wiley, New
York, 1967.

