/ps --

5-16-72

THE PROXIM TY OF
(ALGEBRAI ) GEQOVETRI C PROGRAMM NG
TO LI NEAR PROGRAMM NG

by
R J. Duffinand E. L. Peterson

Report 72-13

May 1972

T USRARY
CAMKBE-REIIAN ~ tpne==="



THE PROXI M TY OF (ALGEBRAIC) GEOVETRI C PROGRAMM NG
TO LI NEAR PROGRAWMM NG
by
R J. Duffin and Elnor L. Peterson

ABSTRACT

Geonetric progranmng with (posy)nmonomals is known to be
synononous with |inear programm ng, Ifais note reduces al gebraic

progranmmng to geonetric progranmng with (posy)binomals.

* car negi e- Mel I on Uni versity, Pittsburgh, Pennsylvania, 15213.
Partially supported by the Army under research grant
DA- - AROD- 31-124-71- GL7.

H-Nort hwest ern Uni versity, Evanston, Illinois, 60201. Partially
supported by the Northwestern University Urban Systens Engi neering
Center under research grant #731.




1. Introduction. In [3] we demonstrate the reduction of each

well-posed "algebraic program" to an equivalent "posynomial
program" in which a posynomial is to be minimized subject only
to inequality posynomial constraints (some of which may have a
"reversed direction"). Of course, each of those posynomial pro-
grams can be reformulated so that its objective function is a
(posy) monomial in that it includes only one posynomial term.

(To make such a reformulation, simply minimize an additional
independent variable that is constrained to be at least as large
as the posynomial objective function,)

The purpose of this note is to show that each of those
posynomial programs can be further reformulated so that every
constraint function is a (posy)binomial in that it includes at
most only two posynomial terms. This reformulation is rather
striking in view of Federowicz's observation [5, Appendix D]
that (posy)monomial programming (i.e., posynomial programming
with (posy)monomial objective and constraint functions) is
synonomous with linear programming. In fact, we suspect that
the resulting proximity of algebraic programming to linear program-

ming may have important computational and theoretical implications.




2. The Refornulation, In [3] (and [2]) we actually show that

one need only consider "prototype posynonial constraints'?

P(t) £1 (1)
and "reversed posynom al constraints"”

P(t) ™ 1 (2)

If the posynomal P(t) is not already a (posy)binomal it nust

have the form

n- 2
P(t) = S u«(t) + up.o(t) + up(t),
1

where its nunber of terns n ”* 3.
| ntroducing an additional independent variable s, we readily
see that the prototype constraint (1) is equivalent to the two

prototype constraints

un_l(t) +un(t) A S (la)
and
n- 2
Su. (1) +s < 1L (I'b)
1

We also see that the reversed constraint (2) is equivalent to

the two reversed constraints

and




n-2
Tu.(t) + s> 1, (2b)
1 1

After division by the positive variable s, constraint (1la)
clearly turns into a prototype (posy)binomial constraint, and
constraint (2a) clearly turns into a reversed (posy)binomial
constraint, each of which constrains the vector variable (s,t).
Of course, constraint (1lb) is a prototype posynomial constraint,
and constraint (2b) is a reversed posynomial constraint, each of
which has only (n-1) terms. Thus, the number of terms in each
of the resulting constraints does not exceed (n-1), and a repe-
tition of the preceding technique a total of (n-3) additional
times leads to the presence of only (posy)binomial constraints.,

If n > 4, the first additional repetition should probably
replace un_3(t) + un_z(t) (rather than un_z(t) + s) with an
additional independent variable r, so that as many as possible
of the resulting terms involve only a single scalar variable in
linear fashion.

Every repetition of the preceding technique applied to either
a single prototype posynomial constraint or a single reversed
posynomial constraint clearly increases by one the total number
of terms in the program formulation. But since every repetition
also increases by one the total number of independent variables,
the program's "degree of difficulty" remains constant.

Although every repetition increases by one both the number of
rows and the number of columns in the program's "exponent matrix",
most of the additional matrix entries are zero, and the other

entries are either minus one or plus one. Hence, this




reformulation should not drastically increase the number of matrix
computations needed to compute feasible solutions to the corres-
ponding "geometric dual program" [3].

We expect this reformulation to be especially useful in
conjunction with the "linearization procedure" of Duffin [2],
the "condensation procedure" of Avriel and Williams [1], and the

"inversion procedure" of Duffin and Peterson [4].

References

[1] Avriel, M., and A. C. Williams, "Complementary Geometric
Programming", SIAM Jour,. Appl. Math. 19(1970), 125-141.

[2] Duffin, R. J., "Linearizing Geometric Programs", SIAM
Rev. 12(1970), 211-227.

[3] Duffin, R. J., and E. L. Peterson, "Geometric Programming
with Signomials", Jour. Opt. Th. Appls., to appear.

[4] Duffin, R. J., and E. L. Peterson, "Reversed Geometric
Programs Treated by Harmonic Means", to appear.

[5] Duffin, R. J., E. L. Peterson, and C. Zener, Geometric
Programming - Theory and Applications, John Wiley, New
York, 1967.




