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ABSTRACT. If H denotes the classical Hilbert transform and

Hu(x) = v(x) then the functions u(x) and v(x) are the values

on the real axis of a pair of conjugate functions, harmonic in

the upper half-plane. This note gives a generalization of the

above concepts in which the Laplace equation AU =0 is replaced

2

by the Yukawa equation AU = jLl u and in which the Cauchy-

Riemann equations have a corresponding generalization. This

leads to a generalized Hilbert transform H . The kernel

function of this new transform is expressable in terms of the

Bessel function K . The transform is of convolution type.

This study partially supported by Grant DA-AROD-31-124-71-G17,
Army Research Office (Durham) .



Introduction and Formulation of Two Theorems

Boudjelkha and Diaz begin a paper [1] with a caution to

prospective readers that the mathematical results to follow

stem from a rather naive method. Hadamard characterized this

method by the phrase, "He who can do more can do less". The

same caution may be appropriate here.

Of concern are solutions u(x,y) of the Yukawa equation

Here JJL is a positive constant. In a previous paper [3] a

function u(x,y) satisfying this equation in a region was termed

panharmonic. Moreover an ordered pair [u,v] of panharmonic

functions was termed a (right) conjugate pair if they satisfy

the following analog of the Cauchy-Riemann equations

§7 -
Here we wish to study conjugate pairs which are panharmonic in

the upper half-plane. Thus let u(x) and v(x) be boundary values

of such a conjugate pair, u(x,y) and v(x,y). Thus

u(x) = lim u(x,y) and v(x) = lim v(x,y) (3)

as y —-*0+. Under suitable restrictions we show that



these boundary values satisfy the following convolution transforms

v(x) = f h.(x-x' )u(x« )dx' , (4a)
-OO

r,oo
u(x) = j h_(x-x» )v(x! )dxf . (4b)

-oo

Here the k e r n e l funct ions h a re given by

h (x) = (fi/ir) [K (jux) +K1(jux)] (4c)
+ o -" l

where K (x) is the modified Bessel function of the second kind

and Kx(x) = -dKQ(x)/dx.

In the limit jLt = 0 the equations (2) become the classical

Cauchy-Riemann equations for conjugate harmonic functions. More-

over the standard series expansion of the Bessel function K

shows that

h,(x)—*+ 1/Vx as ji—*0.

Hence relations (4a) and (4b) become the classical Hilbert

transforms.

The first result to be proved is

Theorem 1. The generalized Hilbert transform (4) îs _a unitary

transformation of the space L9(-GO , O O ) . Moreover an arbitrary

transform pair [u(x),v(x)] _in the space L2 are boundary values

(in mean) of ja conjugate pair [u(x,y) ,v(x,y) ] of? panharmonic

functions in the open half-space y > 0.

In the converse direction the following result is proved.



Theorem 2. Let [u(x,y) ,v(x,y) ] b_e â  conjugate pair which is

panharmonic and uniformly bounded in the closed half-space y ̂  0.

Then the boundary values [u(x),v(x)] are _a transform pair of

the qeneralized Hilbert transform.



Application of Fourier Analysis

The Fourier transform formulae are

U(x) = (2TT)"1/2J elxxw(x)dx, (5a)
-oo

w(x) = (2TT)"1/2J e"lxxu(x)dx. (5b)
-oo

It is convenient to abbreviate these relations as u(x) = Tw(x)

and w(x) = T u(x) . To insure the simultaneous validity of (5a)

and (5b) attention is confined (at first) to functions of the

space L-f-CDjOo). Then the integrals (5a) and (5b) are known

to converge in mean. Moreover according to Parseval1s theorem

u and w have the same norm so

| |w(x)Tdx = I
-OO -00

J |w(x)| d x = J |u(x)| dx. (6)

A unitary transformation is defined to be a transformation which

has an inverse and which preserves the norm. Thus the Fourier

transform T is a unitary transformation.

Let a transformation v = H u be defined as

v(x) = T[(/i - ix)p'Vu(x)], (7a)

2 —2 1/2 -1
where p = (ji +. x ) ' . The inverse transformation H is

u(x) = T[(jJL + ix)p"1T^v(x) ]. (7b)

To prove this note that | (u-ix)p~ | = 1 so multiplication by

(u-ix)p does not change the norm. Thus v is expressed as



a product of three norm preserving transformations applied to

u, hence v and u have the same norm. It is apparent that

(7a) substituted in (7b) yields the identity transformation.

This proves that H is a unitary transformation. (It will

result that H can be represented in the form (4a).)

Given an arbitrary function u(x) of L~ let v(x) be

defined by (7a). Then define

v(x,y) = T[e~yPdJL-ix) p~ T*u(x)], (8a)

u(x,y) = T[e"YP(/i+ix)p"1T^v(x) ] . (8b)

For y > 0 it is apparent that the factor e~YP in the integrand

decays exponentially at jhoo . Thereby it is seen that for y > 0

the functions u(x,y) and v(x,y) defined by (8a) and (8b)

have partial derivatives of all orders. Moreover (7b) gives

(/I + ix) p~ T v(x) = T u(x) = w(x)

so we may write (8b) in the form

u(x,y) = T[e~Ypw(x) ]. (8c)

Thus

| iptx + x 2 - P2)p"1w(x)] =

M = Tre"YP(-M + " " ix)w(x) ] = -jLUi(x,y)

This shows that u(x^y) and v(x,y) defined by (8) are a conjugate

pair of panharmonic functions in the half-plane y > 0.



Now apply the Parseval relation (6) to the Fourier transforms

(7) and (8) to obtain

j | v(x)-v(x,y) | dx = J (l-e~YP) |w(x) |
-oo -oo

r
-oo -oo

I u(x)-u(x,y) | dx = j (l-e~YP) | w(x) | dx.

Hence as y—*0+ the function v(x,y) converges in mean to

v(x) and u(x,y) converges in mean to u(x). Thus v(x) and

u(x) are boundary values. Q.E.D.



Application of the Convolution Theorem

It is an easy deduction from the Parseval relation (6) that

if u (x) and u(x) both belong to L^ then

T[(Tu )(Tu)] = (2ir) ' J uo(x-x')u(x')dx'. (9)
-OD

This is known as the convolution theorem.

To apply the convolution theorem we need the following

special Fourier transform (proved in the Appendix)

T[e"yp(/i T ixjp"1] = (2/Tr)1/2jU[Ko(Mr) +K1(,ur)x/r] (10)

2 2 1/2
where r = (x + y ) . Term the right side of (10) u and

apply the convolution theorem to the relations (8). Thus if

X = x-x' and R = [(x-x»)2 + y 2 ] l y / 2 then

v(x,y) = bi/w) j [KQ(jlR) + K1(jLtR)X/R]u(x')c3x' , ( l la)

r00

u(x,y) = (MA)J [KQ(/LIR) - K1(/LIR)X/R]v(x')dx' . ( l ib )
-oo

Next l e t y--^0+ in (11) . Then

lim[Ko(jUR) ± K1(MR)X/R] = KQ(jiX) + K^^JLX)

because K (x) is an even function of x and K.. (x) is an odd

function of x. From the series expansion of K it is seen

that the principal singularity of the limiting kernel is a term

1/TTX. It then follows by the same arguments used to analyze the

classical Hilbert transform [8] that for almost all x



8

v(x) = ( M A ) J [KQ(/iX) +K1(/ff)]u(x')dx», (12a)

rOO

u(x) = (jLlA)j [K (MX) - K1(jitX) ]v(x«)dx» . (12b)
-OO

The integrals are to be interpreted as Cauchy principal values.

This completes the proof of Theorem 1.
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Application of ja Cauchy Integral Formula

Let u(x,y) and v(x,y) be a conjugate pair of real pan-

harmonic functions and define

f = u + iv .

We term f a right regular function. It is convenient to write

f = f(z) where z = x + iy. Of course this is not meant to

imply that f is a holomorphic function of the complex variable

z. Thus suppose f(z) is a right regular function in a compact

region bounded by a simple closed contour T. Under these

conditions it was shown in [3] that the following direct analog

of the Cauchy integral formula holds

27Tif(z) = J IfsLL JXRK (jiR)dz' - [f f(z«)K_(fJR)dz']*. (13)

Here z = x + iy is a point interior to T. R = |z'-z| and *

denotes the complex conjugate. But if z is exterior to T

then the right side of (13) vanishes.

Suppose that f(z) is right regular and uniformly bounded

in the closed half-plane y ̂  0. Take T in (13) to be a semi-

circular contour in this half-plane such that the diameter is

along the x-axis. It is well known that K (x) and K-. (x)

vanish exponentially at infinity. This means that if the center

of the contour is fixed and the radius is increased then the
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contribution from the circular portion of the contour tends to

zero. Thus if y > 0

r00 ffxM r00 *
2irif(z) = ; ' JZRK, (^R)dx' - f (x')MK (/JR)dx», (14a)

ti X Z 1 v O

^J 1 J
-oo -oo

f

* 1 v
-OO X? -Z -00

0 = r f ( x'l IJRK, (juR)dx' - f f*(x')fJK (MR)dx'. (14b)
0

Adding these last two equations and separating into real and

imaginary parts one again obtains the formula (lla) for

v(x,y) and the formula (lib) for u(x,y). Then allowing y

to approach zero one obtains (12a) and (12b). But now these

relations hold for all x rather than for almost all x because

u(x) and v(x) are smooth functions. This completes the proof

of Theorem 2.
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Conjugate Harmonic Functions in Three-Space

In another paper [2] the writer studied a different but

greater generalization of the Cauchy-Riemann equations. This

is the system (in [2] y and z are interchanged)

( 1 5 a )

( 1 5 b )

for a pair of functions [U(x,y,z),V(x,y,z)] of three real

variables (x,y,z). If these functions have second derivatives

it is clear that they are harmonic. Then [U,V] is termed a

conjugate pair of harmonic functions. In general such functions

are complex valued.

In the cited paper the following integral formulae were

found to relate conjugate harmonic functions in the half-space

y 2 0 to their boundary values on the (x,z) plane.

-oo -oo L(x-x'; +y H-(z-z')

urx v Z) - i- r°° dx« f
00 r-(x-x')-i(z-z')]V(x' ,0,z')

-oo -oo [(x-xT) +y +(z-zf ) ] /

Setting y = 0 gives formulae which are a two-dimensional

generalization of the Hilbert transforms.

Now let [u(x^y)5v(x,y)] be a pair of conjugate panharmonic

functions. Define
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U(x,y,z) = e"ifizu(Xjy), V(x,y,z) = e" 1'izv(x,y) . (17)

Then it is clear that [U,V], so defined is a pair of conjugate

harmonic functions. Thus substitute these functions into the

integral formulae (14) and let z = 0 to obtain

.00 .OO r / x _ x , ).iz, l e ^ d z ,

J ! l ^ l O l ^ ' < 1 8 a >

r r
-oo -oo

The integral relations (18) are the same as the relations (11) .

To prove this one uses the formula (20) in the Appendix to

express the kernel functions of (18) in terms of the Bessel

function K . This is seen to give

r (izl
-+x)e

x'Xzdzl

r 2 , ,,2,3/2
 = ^ V ^ i K (Mr)x/r]. (18c)

-oo [r +(z! ) ] x
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Appendix - Evaluation of a. Fourier Integral

Using polar coordinates one finds that

roo .00 ei(xx+z7)e-y(x
2+72)1/2

d-d-

j J 27r(x
2
+l

2)1/2 " (x2
+y

2+z2) ̂  *

Operating on both sides with j e ^ - dz and using the
-00

Fourier integral theorem gives

foo e i x x ^ y ( x + M ) d ^ poo e-iMz d z

J "P2 2. 1/2 " J ~2 2 27I72 * ( j
-00 (x +)JL ) / -00 (x +y +z ) /

But the modified Bessel function K is given by the well-

known formula

Thus (19) and (20) give the Fourier integral

T(e"Vp/p) = (2/7r)1/2Ko(/Lir) (21)

where p = (x2 + p2) 1'2 and r = (x2 + y 2 ) 1 ^ 2 . Differentiating

(21) with respect to x gives

T(-ixe"YP/p) = (2/7r)piK1(Mr)x/r (22)

where K, is the modified Bessel function of first order.

Then adding (21) and (22) yields the Fourier integral (10).

Q.E.D.
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