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ABSTRACT. If H denotes the classical Hilbert transform and
Hu(x) = v(x) then the functions u(x) and v(x) are the val ues
on the real axis of a pair of conjugate functions, harnonic in
the upper half-plane. This note gives a generalization of the

above concepts in which the Laplace equation AU =0 is replaced
2

by the Yukawa equation AU = jl u and in which the Cauchy-

Ri emann equati ons have a correspondi ng generalization. This
| eads to a generalized Hil bert transfornul%g The kerne
function of this new transformis expressable in terns of the

. o : :
Bessel function K . The transformis of convol ution type.

This study partially supported by G ant DA- AROD-31-124-71-Gl7,
Arny Research Ofice (Durham



Introduction and Formulation of Two Theorems

Boudjelkha and Diaz begin a paper [l] with a caution to
prospective readers that the mathematical results to follow
stem from a rather naive method. Hadamard characterized this
method by the phrase, "He who can do more can do less". The
same caution may be appropriate here.

Of concern are solutions u(x,y) of the Yukawa equation

2 2
e e (1)
ox dy

Here Y 1is a positive constant. 1In a previous paper [3] a
function u(x,y) satisfying this equation in a region was termed

panharmonic. Moreover an ordered pair [u,v] of panharmonic

functions was termed a (right) conjugate pair if they satisfy

the following analog of the Cauchy-Riemann equations

&y g—‘;; = —uv, (2a)
g—;’; - g-% = - u. (2b)

Here we wish to study conjugate pairs which are panharmonic in
the upper half-plane. Thus let u(x) and v(x) be boundary values

of such a conjugate pair, u(x,y) and v(x,y). Thus

u(x) = lim u(x,y) and v(x) = lim v(X,y) (3)

as y—0+. Under suitable restrictions we show that



t hese boundary val ues satisfy the follow ng convol ution transforns

V() = f o h(x-X' )u(xe)dx (4a)
- 00
r!m .
u(x) = | h_(x-x» )v(x')dx". (4b)
-00

Here the kernel functions h are given by
h (x) = (fifir) [K (u) +Ki(jux)] (4c)
-+ o -t
wher e Ko(x) Is the nodified Bessel function of the second kind
and Ki(x) = -dKqox)/dx.
In the limt jit = 0 the equations (2) beconme the cl assical
Cauchy- R emann equations for conjugate harnonic functions. More-
over the standard series expansion of the Bessel function Ko

shows t hat

h, (x)—=+ 1/W as |i—*0.

Hence relations (4a) and (4b) becone the classical Hilbert
t ransf orns.

The first result to be proved is

Theorem 1. The generalized Hilbert transform (4) “is__a unitary

transformation of the space Lg(-GO, OO). _Mreover an arbitrary

transformpair [u(x),v(x)] _in_the _space L, are boundary val ues

(in nean) of ja conjugate pair [u(X,y) ,Vv(X,y) ] do? panharnonic

functions in the open hal f-space y > O.

In the converse direction the following result is proved.



Theorem 2. Let [u(x,y),v(x,y)] be a conjugate pair which is

panharmonic and uniformly bounded in the closed half-space y > O.

Then the boundary values [u(x),v(x)] are a transform pair of

the generalized Hilbert transform.




Application of Fourier Analysis

The Fourier transform formulae are

u(x) = (2m) J e ¥ (%) dx, (5a)
-0
p0O C——
w(x) = (27}‘)—1/2] e” ¥y (x) dx. (5b)
- 00
It is convenient to abbreviate these relations as u(x) = TW(E)
and w(x) = T*u(x). To insure the simultaneous validity of (5a)

and (5b) attention is confined (at first) to functions of the
space L2(—aa,oo). Then the integrals (5a) and (5b) are known
to converge in mean. Moreover according to Parseval's theorem
u and w have the same norm so

@

(e 0]
J 7wl tax = [ Jux | 2ax. (6)
- -

A unitary transformation is defined to be a transformation which
has an inverse and which preserves the norm. Thus the Fourier
transform T is a unitary transformation.

Let a transformation v = H“u be defined as

v(x) = T[(k = i%)p T u(x) ], (7a)
where p = (“2 +'§2)l/2. The inverse transformation H;l is
u(x) = T(# + i%)p T v(x) 1. (7b)

To prove this note that |(u—£§)p_ll = 1 so multiplication by

(Lx—i;Z)p_l does not change the norm. Thus v is expressed as



a product of three norm preserving transformations applied to
u, hence v and u have the same norm. It is apparent that
(7a) substituted in (7b) yields the identity transformation.
This proves that H“ is a unitary transformation. (It will
result that H# can be represented in the form (4a).)

Given an arbitrary function u(x) of L2 let v(x) be

defined by (7a). Then define

v(x,y) = Tle YP(u-ix%) p T u(x) ], (8a)

a(x,y) = Tle YP(u+ix) o 1T v (x) ]. (8b)

For y > O it is apparent that the factor e YP in the integrand
decays exponentially at +oo. Thereby it is seen that for y > O
the functions u(x,y) and v(x,y) defined by (8a) and (8b)

have partial derivatives of all orders. Moreover (7b) gives
(u + iX)p Tt v(x) = T u(x) = w(Xx)

so we may write (8b) in the form

u(x,y) = Tle YPw(x) 1. (8¢c)
Thus
8v+8u_T—yp.— —2 2, -1 ,— . _
x T3y = Tle "7(ipx + x7 - p7)p "w(x)] = -uv(x,y)
ov.  du _ -yp - ==
Sy~ Sx © T [e (-4 + ix - ix)w(x)] = -pu(x,y).

This shows that wu(x,y) and v(x,y) defined by (8) are a conjugate

pair of panharmonic functions in the half-plane y > O.



Now apply the Parseval relation (6) to the Fourier transforms

(7) and (8) to obtain

Q0 QO
§veaveey e = [T e VP v | 2,
-Q0 -00

o' @
I |u(x)—u(x,y)|2dx j (l—e—ypfhw(E)Izdx.
-00 -

Hence as y—»0+ the function v(x,y) converges in mean to
v(x) and wu(x,y) converges in mean to u(x). Thus v(x) and

u(x) are boundary values. Q.E.D.



Application of the Convolution Theorem

It is an easy deduction fromthe Parseval relation (6) that

i f uo(x) and u(x) both belong to L* then

T[(Tuo)(Tu)] = (2r) 773 Uo( X-X")u(x")dx". (9
- 0D

This is known as the convol uti on theorem

To apply the convolution theoremwe need the follow ng

speci al Fourier transform (proved in the Appendi x)

TLe™P(/i TixXjp 'l = (2T)"5 UK(M) Ka(, ur)x/r] (10)

where r = (x2+ y2)1'/2. Termthe right side of (10) U, and

apply the convolution theoremto the relations (8). Thus if

X = x-x' and R = [(x-x»)?% + y2]'"Y'2 then

[8 8]

v(X,y) = bi/w) | [Ko(IR) + Ki(LtR)X/RJu(x)c3x' (I1a)
-0
rOO

u(x,y) = (MA)J [KQLIR) - Ki(/LIR)X/R]v(x')dx' . (lib)
-00

Next let y--~0+ in (11). Then
HMK(JUR) + K(M)XR = K{jiX) £ Kk"ILX

because Ko(x) is an even function of x and K.L(x) is an odd
function of x. Fromthe series expansion of KO it is seen

that the principal singularity of the limting kernel is a term
1/7TX. It then follows by t he same argunents used t o anal yze t he

classical Hilbert transform [8 that for alnost all x



QO

v(x) = (w/m) ] Ko (HX) + Ky (W) Ju(xt)dxt (12a)
-0
e o)

u(x) = (y/v)J [Ko(gx) - Kl(yx)]v(x')dx'. (12b)
-00

The integrals are to be interpreted as Cauchy principal values.

This completes the proof of Theorem 1.



Application of a Cauchy Integral Formula

Let u(x,y) and v(x,y) be a conjugate pair of real pan-

harmonic functions and define

f=u+ iv .

We term f a right reqular function. It is convenient to write

f = £(z) where z = x + 1iy. Of course this is not meant to
imply that £ 1is a holomorphic function of the complex variable
z. Thus suppose f(z) is a right regular function in a compact
region bounded by a simple closed contour I. Under these
conditions it was shown in [3] that the following direct analog

of the Cauchy integral formula holds

. .
2rif(z) = fl‘% HRK, (4R)dz' - [Jrf(Z')Ko(#R)dz' 1" (13)
Here =z = x + iy 1is a point interior to I. R = |z'-z| and *

denotes the complex conjugate. But if 2z is exterior to T
then the right side of (13) vanishes.

Suppose that £(z) is right regular and uniformly bounded
in the closed half-plane y > 0. Take I' in (13) to be a semi-
circular contour in this half-plane such that the diameter is
along the x-axis. It is well known that Ko(x) and Kl(x)
vanish exponentially at infinity. This means that if the center

of the contour is fixed and the radius 1is increased then the
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contribution from the circular portion of the contour tends to

zero. Thus if y > O

2Tif(2)

@® O
[ wm umaxe - [ o) amax - (14a)
-0

-00

0= JOO £ rr (R ax' - Ja) £ (x') pK_ (WR) dx' . (14b)
-0 x'-z -@®

Adding these last two equations and separating into real and

imaginary parts one again obtains the formula (1lla) for

v(x,y) and the formula (1llb) for wu(x,y). Then allowing vy

to approach zero one obtains (1l2a) and (12b). But now these

relations hold for all x rather than for almost all x Dbecause

u(x) and v(x) are smooth functions. This completes the proof

of Theorem 2.
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Conj ugat e Harnoni c Functions in Three-Space

In another paper [2] the witer studied a different but
greater generalization of the Cauchy-Ri emann equations. This

iIs the system (in [2] y and z are interchanged)

AV , oU _ . Qv
% + Fy = -13z (15a)
OV  dU _ . doU
FY - 3% ~1 Sz (15b)

for a pair of functions [U(Xx,Vy,z),V(X,y,z)] of three real
variables (x,y,z). |If these functions have second derivatives

it is clear that they are harnonic. Then [U V] is terned a

conjugate pair of harnonic functions. In general such functions
are conpl ex val ued.

In the cited paper the followng integral formulae were
found to relate conjugate harnmonic functions in the half-space

y 20 to their boundary values on the (x,z) plane.

o0 o0 .
V(%,y,2) = —%1—; ]' dx'_f [(xox!) -1(z-2T) JU(X',0,21) 4,1 (16a)

- .2 2 . ..2.3/2
-00 00 L(x-x"; +y H(z-Z)"]
urx vy -i- r°° dx« 9 (X=X )-i(7-7" )] V(X' ,O,Z',L.a_..(lﬁb)
-00 -00  [(x-xT) 4y #(z-2") 1/

Setting y = 0 gives fornmulae which are a two-di nensi ona
generalization of the Hilbert transforns.
Now let [u(x?y)sv(Xx,y)] be a pair of conjugate panharnonic

functions. Defi ne
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-ipz e_i“zv(x,y). (17)

U(x,y,z) = e u(x,y), V(x,y,z) =

Then it is clear that [U,V], so defined is a pair of conjugate
harmonic functions. Thus substitute these functions into the
integral formulae (14) and let 2z = O to obtain

. s -1 1

(X pO [ (x-xt)4izt Je  THE gt

vy = 2r J—co'l-oo [(x—x')2+y2+(z')2]37§ wix,0paxt, (18a)

- i“z'

1 P X [-(x-x')+iz! ]e dz!
u(x,y) = 5— v(x',0)dx'. (18b)
2T oo [(ext) 2y (2 212

The integral relations (18) are the same as the relations (11).
To prove this one uses the formula (20) in the Appendix to
express the kernel functions of (18) in terms of the Bessel

function Ko' This is seen to give

- i“zl

.rn (iz'4+x)e dz!

2 2,3/2

= 2#[KO(Hr).i Kl(ur)x/r]. (18c)
-0 [T+ (2")
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Appendix - Evaluation of a Fourier Integral

Using polar coordinates one finds that

L= = 1/2
pCO 0O el(XX+ZZ) —y(x +y ) / d%dz 1
-® - 2v(§ +z )l/2 (x2+y2+z )1/2
. . . rOO -iuz .
Operating on both sides with | e - dz and using the
‘-0
Fourier integral theorem gives
fe'o) lXX y(x +u )l/2 00 1uz
f e dx _ ' e (19)
-00 (x2+p2)l/2 -00 (x2+y +22)l/2
But the modified Bessel function K, is given by the well-
known formula
© cos uz
K_(ur) = | dz. (20)
o o (r2+zz) 1/2
Thus (19) and (20) give the Fourier integral
- 1/2
(e ¥P/p) = (2/m Y/ %k (ur) (21)

-2

where p = (x" + u )l/2

and r = (x2 + y2)l/2' Differentiating

(21) with respect to x gives

T(-ixe YP/p) = (2/m) uk, (ur)x/x (22)

where K1 is the modified Bessel function of first order.

Then adding (21) and (22) yields the Fourier integral (10).

Q.E.D.
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