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Abstract

Let llull (p^l) denote the Holder norm [ XJ |u. | p ] p of
p k=l

the vector u = (u.,...,u ) in the real n-dimensional space ft ,

and let C be a dif ferentiable curve in ftn with the parametric

representation u = u(t) , t^ <̂  t <^ t2, which passes through each

of the coordinate planes in ft . If

LP ( O =

the exact lower bounds of L (C) are determined in the following

two cases:

(a) C does not pass through the origin;

(b) C is restricted to the unit sphere j|u|| = 1. In the

euclidean case (p=2) , both of these bounds are known to have the

value ^[1,2,4,8].

In addition to their geometric interest, these results have

various applications in the theory of differential equations.
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Let Pk = (Pkl^P^2^
# • # ' ^ W ' k = l^.-.^n be n points

in the real n-dimensional space ft which are subject to the

restriction p., = 0, k = l,...,n (i.e., geometrically speak-

ing, let there be such a point on each of the coordinate planes),

and let C be a differentiable curve which passes through all

these points but not through the origin. If u = u(t) is a

parametric representation of C and if ||v|| denotes the

Euclidean norm of the vector v, then

(1)

"c

where the constant ~ is the best possible. Ihis inequality

first appeared in connection with problems concerning the dif-

ferential equation uT = Au (where A is a continuous nxn-

matrix) [2,4] (for related results in . infinite-dimensional spaces

see [3,6]). A purely geometric proof was subsequently given by

B. Schwarz [8], and the argument has been further simplified in

a recent paper by L. M. Kelly and J. Zaks [1]. Actually, in the

two latter papers, the result is formulated for curves C on

the unit sphere ||u|l = 1 , in which case (1) reduces to
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(2) J

It is not difficult to show that, in spite of the seemingly

greater generality of (1), the estimates (1) and (2) are equiva-

lent, indeed, if we set ||u|| = p and v is the unit vector

defined by u = pu, we have

= ||dv + ^ ^

(where we have made use of the fact that 2(v,dv) = d(||v|| ) = 0) ,

and this shows that (2) implies (1).

In the present paper we shall consider the analogous length

problems which are obtained if the Euclidean norm \\u\\ is re-

placed by the H&lder norms \\u\\ = [jj=11 u^ l P ] 1 / / p (p^l) of the

vector u = ( u , , . . . , u ). We shall establish the following three

resul ts .

THEOREM I. Let C be a differentiable curve in ft which has

a point

contain

(3)

where

(4)

i n

t h e

common with each of

origin. Then

r IMIp
J C H1 P

.00 ds

^ L i

the coordinate planes but does not

P

1 + 1 1
1 p Q

The constant c is the best possible,p



THEOREM II. Let C be a. dif ferentiable curve on the nunit

sphere" Hull = 1 which has a point in common with each of
1 • <• X) — — _ _ — _ — — . — — — — — — — — — — — — — — — — — — •

the coordinate planes in ft . Then

<5> JcMP *. V
where

/ /- \ 1 f r 1""P /n \ 1 ~ P I P J

(6) Yn = n [ S ( 1 " S ) ] d s -
P P * o

The constant y is the best possible,p

THEOREM I I I . If C has the properties stated in Theorem I I ,

except that i t is restr icted to the surface llull = 1 ratherc n nq

than to IML = 1 (p" +<3~ =1) f and i f 1 <L p £. 2, then

(?) 1 !ldullP ^
 5

P'
where

- r
°

Again, the constant 6 is the best possible.— p

If p = q = 2, the assertions of Theorems II and III reduce

to (2) 5 while the assertion of Theorem I reduces to (1).

A result essentially equivalent to Theorem I can be found

in [5]. However, the rather elaborate proof of this result in

[5] makes extensive use of the properties of the differential

equation x! = Ax, and it would appear desirable to have a proof

which is relatively short and, at the same time, does not obscure

the essentially geometric character of the result.



The proofs of Theorems I - II are based on the following

lemma which shows that, in all cases, it is sufficient to con-

2
sider the space ft .

LEMMA JE. Let C he_ a_ dif ferentiable arc in ton which has ja

point in common with each of the coordinate planes , and denote

by C the smallest subarc of C which has these properties.

If u = u (t) , te [t.. , tp] , i^ «a parametric representation of C,

then there exists a_ continuous, piecewise dif ferentiable arc CT

2
in ft with a parametric representation v = v(t) = [vn (t) ,vo (t) ] ,

t e [t-, to] such that v- (t.) = vo(to) = 0 and
X Z X i. Z Z

llv(t) Up = ||u(t) l|p, ||V (t) ||p 1 ||u« (t) Up,

wherever vT (t) exists. If 1 <̂  p <̂  2, there also exists a.
2

piecewise dif ferentiable arc C" In ft with â  representation

v = v(t) = [v1(t) ,v2(t) ] , t e t [ t 1 , t 2 ] for which v1(t]_) = v2(t2) = 0

and

(10) ||v(t) l|g = Hu(t) | | q , ||vt (t) | | p < ||u» (t) | | p ,

-1 -1
(P + q = 1)^ wherever v!(t) exists.

PROOF OF LEMMA JI. By assumption, each of the components

uk(t) (k=l,...,n) of u(t) vanishes at some point of [t^t^]. Two

of the components vanish at t. and t«, respectively. By suit-

able re-numbering, we may assume that u.. (t..) = u2(t^) = 0. We

now show that there exists a continuous, piecewise differentiable

vector function which, in addition to (9), has the following prop-

erties: v1(t1) = v2(t2) = 0, v3(t) s 0, vk(t) = uk(t) for

k = 3,...,n. To construct v(t) we observe that, by assumption,



there exists a t* e [t^t ] such that u3(t*) = O. Accordingly,

the functions v^(t),v2(t) defined by

= u , te = (|u1|
p+|u3|

p)p sgn u , t e [t*,t2]

(11)

V2 = s g n ") > te v
2
 = U2> te

(where sgn u. (t^) can be taken to be either 1 or -1 if

u (t*) = 0) is continuous and piecewise differentiable on [

and the vector v = (v.,v ,0,u3,...,u ) clearly satisfies

for all te [t-.,t ]. To show that v! (t) is subject

to the inequality (9), it is sufficient to verify that

v = u
I U p II ! !p

(12)

wherever v' and v exist . By (11) , this wil l follow from

(13) u | | P t e [ t * , t 2 ] ,

a n d

(14) ,' IP te [t^t*].

Since, by (11)

(15) iv u ' | | u j p , t e

a n d

(16) v.
p - 1 , t e [ t l f t * ] ,



i t follows from the Holder inequality (and the fact that

(p-l)q = p if p " 1 + q"1 = 1) that

| v' | | v 1 | q <^ [|u^|P + I u3 | P]P [| u^jP + I u3 | p ] q , t e [ t* , t 2 ] ,

and

E
Iv,' ' ' , t € [ t * , t 2 ] .

USince we have |v-|p = Î -Ĵ * + I u3 I
 P a n d I V 2 ^ = IU2^ + ' U3

in [t*,tp] and [t.,t*], respectively, this proves (13) and (14).

As pointed out above, this implies (12) and thus establishes

the inequality (9), where v(t) is a vector such that v3(t)
 s 0

throughout [t-,t2].

The process just described "removed" the component u3(t)

of the original vector u(t). If we apply this procedure succes-

sively to u.(t),...,u (t), we ultimately obtain a two-dimensional

vector function v(t) = [v^ (t) ,v2 (t) ,0,. . . ,0] = [v^ (t) ,v2 (t) ]

which satisfies all the conditions imposed on the parametric

representation of the arc CT in the statement of Lemma I.

To prove the existence of the arc C", we again apply

the Holder inequality to (15) and (16) (reversing, however, the

roles of p and q)• This leads to

te [t*,t2]

and

t e [t1,t*],



respectively. Applying the inequality a + p ;>. (a+p)

(a, p ^> 0, s^ 1) to the cases a = |u.jjp, p = |u3|
P, s = p - 1

and a = IU
2I

P' P = lu3lP> s = p - 1, respectively, and using

(11), we obtain the inequalities

|vjjq£ lu^l* + W2\*, te [t*,t2],

and

|v^| q£ |u^|q + |u!,|q, te [t rt*],

analogous to (13) and (14), which are valid for p ^ 2 (or,

equivalently, for 1 <^ q <^ 2) . The rest of the argument is now

the same as before except that, at the end, the roles of p and

q have to be reversed. This establishes (10) and thus concludes

the proof of Lemma I.

We now turn to the proof of Theorem I. We may assume that

two of the endpoints of C coincide with points at which two of

the components vanish, since, if necessary, we can replace C by

a subarc C. for which this is true; evidently, (3) is true for

C if it holds for C-,. Applying now Lemma I, we find that (3)

will be a consequence of the inequality

r l|dv||

ic Vilf > v
where v(t) = [v1(t),v2(t)] is continuous and piecewise differen-

tiable on an interval [t_,t ] and such that v.(t-) = v (t?) = 0.

We note that v- and v cannot vanish at the same point t

since, as is apparent from the proof of Lemma I, this would imply



8

that C passes through the origin. We also may assume that

v. and v2 do not vanish on (t,,t2), since otherwise we

might again replace C by a subarc. Accordingly, the continuous

-1function R(t) = |v1(t)| [|v2(t)|] will take the value 0 at

t, and tend to oo as t —» t2. At a point at which both v'

and v_ exist, we have

R1 =
| v 2 | | v i r - | v 1 | | v 2 | '

<L
r2
2

v v
'p J1 UP n nQx

Since

o p £ q af- = (l+RP)P(l+Rq)q,

this implies

R' V

(l + R P ) P ( l + R q ) q

If t varies from » to t_, R varies from to oo . Ihus,

an integration leads to (17), where c is the constant (4).

This proves the inequality (3).

To show that the constant c in (3) is the best possible,

we consider a two-dimensional vector u = [u.. (t) ,u_ (t) ] whose

components are obtained from the system of differential equations

u! = q-1

(18)



with the boundary conditions u.. (t..) = u (t ) = 0, where p is

an arbitrary positive continuous function. From (18), we have

and thus

(19) u^ + uS[ =

where A is a positive constant (it is clear from (18) and

the boundary conditions that both v- and v 2 are positive

in (t-,t2)). Again from (18),

1 1

(|u;|P-f|u^|P)P = p(uq+uq)P

and thus by (19) ,

3.

(20) ||u'||p =
 P

On the other hand, setting R = u1(u2)~ we have

_ "2
uruiu2

R " 2 2 '

Hence, by (20) ,

3.
|u'|| R'u2A

P R'u2 R'u2 RI

(l+RP)P(l+Rq)q

Since R(t-) = 0 , R(t?) = co, this leads to

c"M7 = Cp'
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where c is the constant (4) , and confirms that inequality (3)

is sharp. This completes the proof of Theorem I.

Turning now to Theorem II, we note that, because of Lemma I,

it is again sufficient to consider the two-dimensional case (it

may be observed that, in accordance with (9), a vector u such

that ||u|| = 1 is transformed into a two-dimensional vector v

such that ||v|| = 1) . Our problem thus reduces to finding the

minimum of

t

J 2

under the side conditions vp + v p = 1 (v. ,v may obviously

be taken nonnegative without loss of generality) and

v (t-) = v (t0) = Oo If we eliminate v and set vp = s, the

integral (21) transforms into

If1 1-P ! l - P P d
p' o

Evidently, this expression attains its minimum if s grows

monotonically from 0 to 1, and the value of the minimum is

the constant (6). This proves Theorem II. It is clear from our

argument that, e.g., there will be equality in (5) for the vector

1 1
(sinPt, cosPt,0,. o . ,0) and the interval [0,-j] .

Turning now to Theorem III, we note that, by Lemma I, it is

sufficient to consider the arc c" described in the statement

of the Lemma. As in the proof of Theorem I, we introduce the

function R(t) = | v± (t) | [ | v 2 (t) | ] ~ -
1 (where v = v(t) = [v^t) ,v2(t) ]



1 1

is the parametric representation of C"). Since, by (10), the

assumption ||u|| = 1 implies j|v|| = 1, we have

, ^MvlHvi lKl ||vllpHn lMlD(IHIa>
2

2 -^ 2 "" 2
V2 V 2 V 2

and t h u s , because of

(1+Rq)q

Integrating, and noting that R(t.) = 0, R(t2) = oo, we obtain (7),

with the value (8) of the constant 6 .

Ihe fact that this constant is the best possible can again

be shown by means of the vector function u = [u.. (t) ,u2 (t) ] whose

components are determined from the differential equations (18)

with the boundary conditions u,(t,) = u^(t^) = 0. Elementary

considerations show that, for q ̂  2, multiplication of the func-

tion p by a suitable positive constant will give to the constant

A in (19) the value 1, and we will thus have ||u|| = 1, as
si

required. Using (20) and the ensuing computation, we obtain

R'u2

HuML = R'u? = — 2 Rl

H U 2 ' f
(1+R q ) q

where R = u , ( t O " . Since R ( t , ) = 0, R ( t 2 ) = °°•> w e t l l u s have

J n*»ilp
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where 6 is the constant (8) . This completes the proof of
P

Theorem III.

We conclude with an example illustrating the application

of geometric results of the type considered in this paper to

problems in the theory of differential equations.

The differential equation

(22) x' = Ax,

where x is an n-vector and A a continuous nxn matrix, is

said to be nonoscillatory on an interval I if every nontrivial

solution vector x has at least one component which does not

vanish on I. In order to obtain a condition which guarantees

nonoscillation on I, we suppose that, on the contrary, there

exists a nontrivial solution vector x such that each of its

components vanishes at some point of I. In this case, the

curve C = [x = x(t), te I) will satisfy the hypotheses of

Theorem I, and we thus have

where c is the constant (4) . Since, by (22) ,

I M I P £ IIA||PHX||P,

where ||A|| is the matrix norm induced by the vector norm \\x\\ ,

it follows that the existence of an oscillatory solution implies

the inequality
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This leads to the following nonoscillation cri terion (cf. [5]

and, for the case p = oo , [7]).

If

J^Npdt < cp, p ^ 1,

where cp ±s the constant (4), then the equation (22) is non-

oscillatory on I.
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