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Abstract
n L
Let |lull. (p>1) denote the HSlder norm [ T luklp]P of
P k=1
the vector u = (ul,...,un) in the real n-dimensional space Rn,

and let C be a differentiable curve in R" with the parametric
representation u = u(t), t; < t <t which passes through each

n

of the coordinate planes in R . If

Lp(C) _ j || aul|

k]
C u P

the exact lower boundsrof Lp(C) are determined in the following
two cases:

(a) C does not pass through the origin;

(b) C is restricted to the unit sphere Hunp = 1, 1In the
euclidean case (p=2), both of these bounds are known to have the
value %[1,2,4,8].

In addition to their geometric interest, these results have

various applications in the theory of differential equations.
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Let Pk = (pkl’pkz""’pkn)’ k=1,...,n be n points

in the real n-dimensional space " which are subject to the
restriction Pyy = O k =1,...,n (i.e., geometrically speak-
ing, let there be such a point on each of the coordinate planes),
and let C be a differentiable curve which passes through all
these points but not through the origin. If u = u(t) is a

parametric representation of C and if |v|| denotes the

Fuclidean norm of the vector v, then

(1) fc k> I

~
L
2

first appeared in connection with problems concerning the dif-

where the constant is the best possible. This inequality
ferential equation u' = Au (where A 1is a continuous nXn-
matrix) [2,4] (for related results in infinite-dimensional spaces
see [3,6]). A purely geometric proof was subsequently given by
B. Schwarz [8], and the argument has been further simplified in
a recent paper by L. M. Kelly and J. %Zaks [l]. Actually, in the
two latter papers, the result is formulated for curves C on

the unit sphere |lul| = 1, in which case (1) reduces to

*
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( 2) J Clldull > 5, (lull=1) .

It is not difficult to show that, in spite of the seemngly
greater generality of (1), the estimates (1) and (2) are equiva--
lent, indeed, if we set |||l =p and v 1is the unit vector

defined by u = pu, we have

(ﬂﬂ%lﬂu)z =trave 2 o auy? 4 (M) 2y flav))?

(where we have mede use of the fact that 2(v,dv) = d(|lvl| 9 = 0,
and this shows that (2) implies (1).

In the present paper we shall consider the analogous length
problems which are obtained if the Euclidean nom \Wu\\ is re-

placed by the H&lder norms \\u\\p = [jj=22u~IP1*'P (p~D) of the

vector u = (li ,,,,,, un). We shall establish the following three
results.
THEFEM |. Let C _be_a differentiable curve in ff which has

a point in ammon with each of the coordinate planes but does not

contain the origin. Then

IMip |
> JoHT =%

3

where

TOO ds
(4) _ 7\ = = )

i
(l+sp)!;(l+sq) a

T |
41+
QO =
I
H=

The constant cp is the best possible,




THEOREM II. Let C be a differentiable curve on the "unit

sphere" nqu = 1 which has a point in common with each of

the coordinate planes in R™. Then

(5) J ol > v
where
1 1
1 1-p l-p,p
(6) Yp =5 jo[s + (1-s) ]¥ds.

The constant Yp is the best possible.

THEOREM III. If C has the properties stated in Theorem II,

except that it i

restricted to the surface Hunq = 1 rather

than to Hqu =1 (p—l+q_l=l), and if 1 < p < 2, then

M J laully > 5
where
2,1
o I (3)
(8) 5 =j ds___ . q
P Yo £ al (%)
(1+s% 2 a

Again, the constant 6p is the best possible.

If p =g = 2, the assertions of Theorems II and III reduce
to (2), while the assertion of Theorem I reduces to (1).

A result essentially equivalent to Theorem I can be found
in [5]. However, the rather elaborate proof of this result in
[5] makes extensive use of the properties of the differential
equation x' = Ax, and it would appear desirable to have a proof
which is relatively short and, at the same time, does not obscure

the essentially geometric character of the result.



The proofs of Theorems I - II are based on the following
lemma which shows that, in all cases, it is sufficient to con-

sider the space Rz.

LEMMA I. Let C, be a differentiable arc in ®" _which has a

point in common with each of the coordinate planes, and denote

by C the smallest subarc of Co which has these properties.

f u=u(t), te [tl’tZ]’ is a parametric representation of C,

then there exists a continuous, piecewise differentiable arc C'

in R2 with a parametric representation v = v(t) = [vl(t),vz(t)],

te [tl’tz] such that vl(tl) = v2(t2) = 0 and

) (el = e g, v @l < flar ©l,

wherever v'(t) exists. If 1 < p £ 2, there also exists a

piecewise differentiable arc C" in Rz with a representation

v = v(t) = [vl(t),vz(t)], te t[tl’tZ] for which Vl(tl) = V2(t2) =0

and
(10) lveerlly = lae g v iy < lur ey,
(p'l + q_l = 1), wherever v!'(t) exists.

PROOF OF LEMMA I. By assumption, each of the components

uk(t) (k=1,...,n) of u(t) vanishes at some point of [tl’t2]’ Two

of the components vanish at t and t

1 X respectively. By suit-
able re-numbering, we may assume that ul(tl) = u2(t2) = 0. We
now show that there exists a continuous, piecewise differentiable

vector function which, in addition to (9), has the following prop-

m

erties: vl(tl) = v2(t2) = 0, v3(t) o, vk(t) = uk(t) for

X = 3,...,n. To construct v(t) we observe that, by assumption,




there exists a tx¢ [tl,t2] such that u3(t*) = 0. Accordingly,

the functions vl(t),vz(t) defined by

1
1 uy t e [tl,t*], v, = (\ul|p+|u3|p)p sgn ul(t*), te [t*,tz]

<
Il

(11)

<
I

1
(I}12|p+lu3lp)p sgn u, (t¥), te [ty,tx], v, = u,, te [tx,t,]

(where sgn ul(t*) can be taken to be either 1 or -1 if

ul(t*) = 0) is continuous and piecewise differentiable on [tl’t2]’
and the vector v = (vl,vz,o,uB,...,un) clearly satisfies

HVHP = Hunp for all te [t;,t ]. To show that v'(t) is subject

to the inequality (9), it is sufficient to verify that

(12) R o e R N R L R b
wherever vi and v; exist. By (11), this will follow from
(13) v < fugl® o+ JujlP, te [t*,t,],
and
1
(14) vyl P < luylP o+ Juyl P, te [ty,t*].

Since, by (11),
-1 -1 -1
(15) vl Iv P70 < TuylTug BT+ ol [ug P77, te ex,t,]

and

! -1 -1 ! -1
(16) Vo Iv, P ull u [P7h o ful ) ug |P7h, te e, 0],




it follows from the H81lder inequality (and the fact that

(p-1)g = p 1if p_l + q—l = 1) that

i) 1 1
il v 1T < tuy P+ [uglPIPug [P+ [ugl P19, te eyt

and
P i 1
vl 1vol T < P+ (w3 IPIPuy 1P+ Jug P19, te [ex,¢,].
Since we have |vl|p = |ul|p + [u3|p and |v2|p = ]u2|p + |u3|p

in [t*,t2] and [tl,t*], respectively, this proves (13) and (14).
As pointed out above, this implies (12) and thus establishes

the inequality (9), where v(t) is a vector such that v3(t) =0
throughout [tl’tz]'

The process just described "removed" the component u3(t)
of the original vector u(t). If we apply this procedure succes-
sively to u4(t),...,un(t), we ultimately obtain a two-dimensional
vector function v(t) = [vl(t),v2(t),o,...,0] = [vl(t),vz(t)]
which satisfies all the conditions imposed on the parametric
representation of the arc C' 1in the statement of Lemma I.

To prove the existence of the arc (", we again apply
the BOlder inequality to (15) and (16) (reversing, however, the

roles of p and ¢g). This leads to

2 1
1vi[|v1|p‘l < [Iui‘q + |u;'q]q[|ul|(P-l)p + |U3|(p_1)p]p,
te [t*,tz]
and
L 1

|v'2||v2|p'1 < fuyl?+ |u;|q]q[|u2|(p—l)p 4 |u3|(p-l)p]p.

te [ty,tx],




respectively. Applying the inequality a~+ p 7> (atp)”
(a, p~> 0, s* 1) to the cases a:|u.-jjp, p=usg® s=p-1
and a = I%1" P=1U3IP s = p - 1, respectively, and using

(11), we obtain the inequalities

[ vjj % Turl* + W\*, te [t*, t,],
and

| vAL9E [ un] 9 + |u!‘_,|q, te [t,t*],

anallogous to (13) and (14), which are valid for p~™ 2 (or,

equi valently, for 1<t q<M2). The rest of the argunent is now

the sane as before except that, at the end, the roles of p and
g have to be reversed. This establishes (10) and thus concl udes

the proof of Lemma I.

W now turn to the proof of Theorem |. W& may assune that
two of the endpoints of C coincide with points at which two of
t he conmponents vani sh, since, if necessary, we can replace C by
a subarc C.l for which this is true; evidently, (3) is true for
C if it holds for G,. Applying now Lemma |, we find that (3)
w ||l be a consequence of the inequality
roljdv]|
. VIlf> v

where v(t) = [vi(t),vy(t)] is continuous and piecew se differen-

(17)

tiable on an interval [t4t 2 and such that v. t-§ =v2(ty = 0.
W note that vi and v2 cannot vanish at the sanme point t

since, as is apparent fromthe proof of Lemma |, this would inply




that C passes through the origin. W also nay assune that

v, and vz do not vanish on (t,,tz), since otherw se we

m ght again replace C by a subarc. Accordingly, the continuous
function R(t) = |vi(t)] [|_v2(t)|]'1 will take the value 0 at
ti and tend to oo as t—»t,. At a point at which both v'l
and v_, exist, we have

1R1] _ ||V2||Virz'|V1||V2|l d |V2||V:’L| ; Ivlllvé’
V2 \irz
vrllivlig e
CTTg T TR
Since
vl ivl o S
——e 0= (|RRF( R
v, |
this implies
iR | v
I IS
(1 +RP)P(1 +RY) @
If t wvaries from ty to t.i, R varies from © to oo0. | hus,

an integration leads to (17), where cp is the constant (4).
This proves the inequality (3).

To show that the constant cp in (3) .is the best possible,
we consider a two-dimensional vector u = [u. ﬁt) ,u_z(t) ] whose

components are obtained from the system of differential equations

_ g- 1
uj = pu,

= -1
= -Pulq




with the boundary conditions ul(tl) = u2(t2) = 0, where p is

an arbitrary positive continuous function. From (18), we have

a- lu'

g-1
1 1 u

2 2 =0

u + u

and thus
a a _ ,4d
(19) uy + u; = A7,

where A 1is a positive constant (it is clear from (18) and

the boundary conditions that both vy and v, are positive

in (tl’tz))‘ Again from (18),
1 1
(|ui|p+|ué|p)p = p(ug+ug)p
and thus by (19),
q

(20) lhatll, = &

On the other hand, setting R = ul(uz)_l we have

1_ 1 q,..d
o - u,uq -ugu, _ p(ul+u2) _ pAq
B u2 B u2 B u2 .
2 2 2

Hence, by (20),

Hu'Hp R'ugAp R'ug R'u> R!

— = = 2 = °
Tl ™ Ny, ~ Aol ~ TG = 1

Since R(t = 0, R(t2) = oo, this leads to

1)
laul|

X Hu” = Cuo
C p p
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where cp is the constant (4), and confirms that inequality (3)
is sharp. This completes the proof of Theorem I.

Turning now to Theorem II, we note that, because of Lemma I,
it is again sufficient to consider the two-dimensional case (it
may be observed that, in accordance with (9), a vector u such
that Huup = 1 is transformed into a two-dimensional vector v

such that HVHP = 1). Our problem thus reduces to finding the

minimum of
t 1
2 ot (P '\ PP
(21) [ 709l + vy 1P1P| at
t
1

under the side conditions v

(kie]

p _ .
+ vy = 1 (vl,v2 may obviously
be taken nonnegative without loss of generality) and

— - ot P _
Vl(tl) = v2(t2) = 0, If we eliminate v, and set vi = s, the

integral (21) transforms into

1

l =
LY [sl—p + (l~s)1-p]p|ds
PY0

Evidently, this expression attains its minimum if s grows
monotonically from O to 1, and the value of the minimum is
the constant (6). This proves Theorem II. It is clear from our

argument that, e.g., there will be equality in (5) for the vector
2 2

(sinpt, cospt,O,.o.,O) and the interval [O,% .

Turning now to Theorem III, we note that, by Lemma I, it is
sufficient to consider the arc C" described in the statement
of the Lemma. As in the proof of Theorem I, we introduce the

function R(t) = |vl(t)|[|v2(t)|]—l (where v = v(t) = [vl(t),vz(t)]




11

is the parametric representation of C"). Since, by (10), the

assumption Hunq = 1 implies Hvﬂq = 1, we have

v | vl v v ! oll )2
IRRLAI AT g N M T KTV RS

Vo Vs Va

and thus, because of

v :

_ ayq
-'T’;?-— (1+R?)

___l_B_'__l_ < Hvlnp.

2
(1+r9) 9
Integrating, and noting that R(tl) = 0, R(t2) = oo, we obtain (7),
with the value (8) of the constant Bp.

The fact that this constant is the best possible can again
be shown by means of the vector function u = [ul(t),uz(t)] whose
components are determined from the differential equations (18)

with the boundary conditions ul(t = u2(t2) = 0, Elementary

1)
considerations show that, for q # 2, multiplication of the func-
tion P by a suitable positive constant will give to the constant
A in (19) the value 1, and we will thus have Hqu =1, as
required. Using (20) and the ensuing computation, we obtain

R'u2
ol = R1wG = =2 - —E
P (flull ) p
< (1+r%) <

where R = ul(uz)_l. Since R(t o, R(t2) = 00., we thus have

1)

J Jlauly = o
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where 5p is the constant (8). This completes the proof of
Theorem III.

We conclude with an example illustrating the application
of geometric results of the type considered in this paper to
problems in the theory of differential equations.

The differential equation
(22) x!' = Ax,

where X 1s an n-vector and A a continuous nxn matrix, is
said to be nonoscillatory on an interval I if every nontrivial
solution vector x has at least one component which does not
vanish on I. In order to obtain a condition which guarantees
nonoscillation on I, we suppose that, on the contrary, there.
exists a nontrivial solution vector x such that each of its
components vanishes at some point of 1I. 1In this case, the
curve C = {x = x(t), te I} will satisfy the hypotheses of

Theorem I, and we thus have

[ HX'(t)H
Wr———wrp— dt > c_,
JI x(t) p P
where cp is the constant (4). Since, by (22),

Il <l el

where HAHP is the matrix norm induced by the vector norm “x“p,
it follows that the existence of an oscillatory solution implies

the inequality
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o
\I\,Anpat > ey

o

This leads to the following nonoscillation criterion (cf. [5]

and, for the case p = oo, [7]).

wher e

If
JANpdt < c, p "1,

Cp *s the constant (4), then the equation (22) is non-

oscillatory on |I.
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