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ABSTRACT

In this paper an infinite player game is treated by an

infinite linear program and its dual. When the value of one

of the programs is finite, then the result is a class of

games called asymptotically balanced games. An equivalent

characterization of these games is proved. Some necessary

and sufficient conditions for non-emptiness of the core are

proved along with some results on the relationship between

the set of undominated payoffs and the core.
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by

C. Bird, M. J. Eisner, and K. O. Kortanek

1. Introduction.

Finite minimal balanced collections have played an important

role in combinatorial analysis and in n-person game theory, see

Shapley [15]. They are intimately related to various solution

concepts such as the core and the nucleolus, as developed in

Schmeidler [14], Charnes-Kortanek [5], Kohlberg [11], and Billera [4]

In the finite context, the set of integers N = fl,2,...,n}

is given and one considers positive weightings of the characteris-

tic functions of subsets of N which sum to the characteristic

function of the set N itself. Thus, when a payoff function

N

v : 2 —^R is imposed, one may then relate such possible weight-

ing schemes, called "balanced collections" to solution concepts

in n-person game theory.

In this paper, we explore the analogous situation when the

number of players N becomes the set of positive integers

1,2,... . Thus, as in the finite case, let the characteristic

function e , for any S c N, be given by

1 if k e S
(e s) k = i (1)

0 if k/s, where the notation ( ), means
K.

the k component in the vector within the parentheses. We

shall also denote the payoff value on S c N by v , which we

shall take as given.



In the case of finite N, attention is focused on a con-

straining set of equations and inequalities which define bal-

anced and minimal balanced collections:

£ t]qe = e and 71 ;> 0 for all S c N (2)

SCN S S N S

Now when N is infinite, (2) can be investigated in terms

of various locally convex topologies which are related to perhaps

game theoretic interpretations. In this paper we view the pos-

sibilities of coalition formation by any finite subset of players

in N. Thus, within a total finite communication time members

of any finite set of players may communicate to each other and

thus decide to form or not to form. However, there are infinitely

many players from which coalitions may form.

2. The Structure of the Infinite Programs for the Infinite

Player Set.

In accordance with the above interpretation, we assume,

v = 0 if S ̂  N and S contains infinitely many
S (3)

players, and v ^ 0 for all S c N.

s

This leads to the following underlying topological spaces for

relations (2). Let

E = E e v
 (4)

SOS b

|sT<oo

the direct sum of copies of the real field endowed with the

convex core topology.



Let

F = II R. (5)

ieN x

the direct product of copies of the real field. In this setting

the game v = (v(S) : S cz N, | s| < oo ] is actually a member of
# 1

the conjugate dual of E denoted by E ,

E* = n R c (6)
SCN S

|s]"<oo

endowed with the topology of pointwise convergence. Analogously

the conjugate dual of F is given by

F * = £ R±. (7)
IGN

JL
Thus, for example, the pairing between E and E is defined by

(T),Y) = £ TJqyq (8)
SCN S S

|s"T<oo
JL

for any 77 e E and y e E . See Ben-Israel-Charnes-Kortanek [1].

Thus, the spaces E and F are finite sequence spaces

and with them we obtain the special dual infinite linear programs

studied recently in Duffin [9], Needed also are the designations

of polar cones and a linear transformation which we now develop.

Introduce closed convex cones as follows:

C = {77 e E : TJQ ̂  0}, (9)

Since E has the convex core topology all linear functionals

on E are continuous and Ew coincides with the algebraic dual.



so that C* = {y e E* : y g ̂ 0 for all S c N, |s| < oo }. De-

fine a continuous linear transformation A on E by:

A(T)) = A(L r?s) = S t ? s
e

s
€ F.

T # #
I t then follows that A : F—» E is given by:

ATx = { (x,e_) : S c N, | S| < oo } e E*.

(10)

(11)

Therefore, the formal infinite linear programs:

( I )

sup(Vj

subject to

n)

A(1J)

r?

_ e

.̂ o

(II)

inf(x,e )

T #
subject to A x - v e C

(12)

become

PROGRAM I

subiect to

sup S r\ v
S S

T?c 1 0

(13)

and

PROGRAM II

inf(x,e )

xeF*

subiect to. (x,e ) ̂ v , for all S c N, | s| < oo.

(14)

Thus, the equations and inequalities of (2) become part of a pair

of infinite linear programs in duality.



In Duff in [8] , it was shown that a "perfect duality" can

be insured between infinite linear programs such as Programs I

and II, if the constraints of I are relaxed to accomodate in-

consistent but asymptotically consistent solutions. The relevant

topology for Program I is the pointwise convergence topology.

This means that a sequence,

^ in E (15)

is consistent for Program I if lim Si] (k)e = e pointwise,
k->coS S S N

i . e . , for each i e N ,

lim St|s(k) (e s) i = (e N) i. (16)

value associated to a consistent solution (15) is

SrjQ(k)v , (17)

which may be finite or infinite. With these definitions, then,

Duffin's Theorem 1 [9] states that one of the programs (I) or

(II) is consistent and has finite value if and only if the other

is consistent and has finite value, in which case the values are

the same. Note that for problem II, we are using the ordinary
it

notion of consistency, i.e., there exists x e F such that

(x,e ) ;> v for all S c N, | s| < oo . Duffin [8] has called

the sequences in (15) consistent solutions to a subordinary

form of Program I.

We shall also denote the value of Program I by M(e ), which

is defined to be the supremum of all the values stemming from

consistent solutions, (15). We simply denote the value of



Program II by i(II). The value of Programs I or II are not

necessarily finite.

3. Asymptotically Balanced Collections,

When N is finite, consistent solutions to (2) are called

balanced collections and extreme points of the closed convex set

determined by (2) are called minimal balanced collections.

When N is infinite however, the relations (2) , or as they

appear in Program I in (13) , do not admit consistent solutions

because (a) | s| < oo and (b) only finitely many rjc > 0. Our

objective is to use the perfect duality of infinite linear pro-

gramming to introduce asymptotically balanced collections.

DEFINITION. The game [v : S c N} is said to be asymptotically

balanced, AB, if a subordinary form of Program I is consistent

and M(e
N) < °° . This simply means that Program I is subconsis-

tent, Duffin [8],and its subvalue is finite. The possibility

of M(e ) = -oo is excluded because of assumption (1), i.e.

vc .̂ ° f o r a 1 1 S c N.

Henceforth, the word "consistent" when applied to Program I

shall be taken to mean "subconsistent", as in (15), since from

programming theory we shall be dealing only with the perfect

duality between Programs I and II .

DEFINITION. A finite coalition T c N is said to be a carrier

of the game v if:

S c N, v(S) > 0 implies S 0 T £ 0. (17)



We now show that any consistent solution, x, to Program II

determines a carrier

T x = [ i e N : x , > 0 ] ,,. . (18)

In fact, carriers yield the following characterization of AB.

THEOREM JL. v is AB if and only if there exist carrier coal-

itions, and for each carrier T, sup(v : i e S] < GO for all

i € T.

Proof, Assume v is AB. By perfect duality this means that

Program II has a consistent solution, say x. Set T = T .
x

Let S c N with v > 0. If to the contrary S fl T = 0, then

0 = (x,e ) ̂_ v > 0, which is a contradiction. Hence S H T ̂  0.

Furthermore (x,eT) ̂  (x^eTflS
) = ( x' eS^ ^ V S ' s i n c e xi 1 ° f o r

all i. since (x,e ) is independent of S, this shows that

sup{v : v > 0, S c N] < oo and hence sup{v : i e S} < cx> .

Assume the conditions of the theorem hold. Let T be

any carrier and define

i e S}, i e T
. (19)

i/T

It follows that x is consistent for Program II. For if

v g > 0, then there exists i e T H S since T is a carrier.

Hence x. ^ v and again
1 o

(x,es) = (x,eTns) ^ .v s . (20)
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If v = 0 , then (x,e ) ̂  0 = v , and x is consistent. Since
S kD O

x ^ 0 for any consistent solution and (eN) ̂ = 1 for all i € N,

it follows that Program II has finite value. Hence by perfect

duality Program I also has finite value and therefore by defini-

tion, v is AB. Q.E.D.

4. The M (majorant) Operator.

For |s| ]>. 2 consider the following dual programs.

PROGRAM Ic

sup L T?QvQ

subject to L T?ne = e (21)
Q Q Q s

VQ ;> °> where Q c s,

and |Q| < oo , and y\ is in the associated finite sequence space..

PROGRAM IIO

inf(x,e )
(22)

Subject to (x,e ) ^ v / for all Q c. S, \Q\ < oo.

Let M(S) denote the value of Program I , finite or not. M(-) is

an extension of the IfM-operator" introduced in Charnes-Kortanek [5]

and also studied in a different infinite setting by Charnes-

Eisner-Kortanek [7].

LEMMA jL. Let S c N, | s| ^.2. Then Program I has (asymptotic)
s

consistent solutions.



Proof, Since all Q c S, |Q| < oo are present in the sum-

mation of (21), e r - ) ' i € S, appears in the summation. If S

is a finite coalition, then simply set e,.-, = 1 for ie s.

If S is infinite, then proceed through the singletons of

ie S, i.e., (1,0,...,0...) = e^ , (1,1,0...) = e( ,...,

(1,1,. . . ,1,0,-. .) = e^ so that

lim(e ( K )). = (ec) . for all i e S. (23)
K X S X

Remark. Lemma 1 shows that Program I is always (asymptotic)

consistent. This fact is analogous to the status of relations

(2) when N is finite, namely they have consistent solutions

also.

LEMMA 2. If v is AB, then for S c N, |s| ^ . 2 , it follows

that M(S) < oo.

Proof. By Lemma 1, Program I is consistent. Assume to the

contrary that M(S) = +00. Therefore there exists a sequence

{•qn(k) ]°° , Q c S, |Q| < 00, such that
u k=l

lim Li7n(k)v = +00... . (24)
k->co Q g g

Now form another sequence if necessary, (TJ_, (k) }°° con-
Q k=l

verging pointwise to eN i.e.

lim (2 17QI (k)e , ) i = ( e N _ s ) ± for all ieN-S, (25)

where Q» c N-S, |Q'| < 00. Therefore since S and N-S are
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disjoint, the sequences in (24) and (25) may be combined to

form a consistent solution to Program I in (21) which is also

unbounded. This contradicts the fact that v is AB. Hence

M(S) < oo for all S c N, |s| < oo, | s| ^ 2 . Q.E.D.

Analogous to the case of finite N, the M-operator can be

used to characterize redundant inequalities in Program II, and

also to make contact with the cover of the game v, i.e. the

smallest propergame covering v following Lloyd ghapley's idea

around 1968 or so,

5• Domination and the Core of ji Game,

The game value v is zero for all infinite player coal-

itions except possibly v , and in fact, generally v > 0. Using

the definition of F in (7) , let

X = [xe F* : (x,eN) = vN, x ^ 0} (26)

called the set of payoff vectors. A member y e X dominates

x e X through a coalition S, written y > x if

(y^ s) > (x,eg) (27a)

and

(y,eQ) 1 v_. (27b)

Let

U = [x e X : x cannot be dominated by some y e X
(28)

through some S c N}.

U is called the set of undominated payoff vectors in X.
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The core of the game v is defined as

C(v) s c = {x e X : (x,e_) > v_ for all S c N}. (29)

When N is finite, it is known that the core C(v) is

empty if and only if

M(eN) > v N. (30)

See for example, Charnes-Kortanek [1], Proposition 4. When N

is infinite, (30) no longer characterizes core emptiness because

in this case C(v) may be empty even when M(e ) = v . We pre-

sent an example later to illustrate.

We do, however, obtain the following elementary result.

THEOREM _2. Assume the game v is AB. Then

(a) M( e
N) <

 V
N implies C(v) not empty and

(b) C(v) not empty implies M(eN) <̂  v .

Proof. (a) Assume M(e ) < v . By the perfect duality of Pro-

grams I and II and a property of an infimum, there exists x

consistent for Program II such that

I (II) = M(eN) £ (x,eN) . (31)

Construct a member xf e C as follows:

x . + (v_ - (x,e_.J ) / T I , i f ieT
(32)

O , o t h e r w i s e ,

where T is the carrier (18) of x.
X
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Hence

(i) (x!,es) ^ (x,es) for all S and

(ii) (x!,eN) = (x,eN) + v N - (x,eN) = v N, proving xeC

and hence part (a) .

Proof of (b) . First, since v is AB, it follows by perfect

duality that i(II) = M(e ) . Let X G C ( V ) . This means x is

consistent for Program II and hence

v N = (x,eN) ^ i(ll) = M(eN) (33)

proving (b) of the theorem.

We are interested in conditions under which C(v) = u.

For N finite, necessary and sufficient conditions exist which

do not extend to infinite N. These conditions however lead to

the following approach.

Define a new game v1 by

Vg = min(v g,v N) for all S c N. (34)

Then if v is AB, so is vf and also for the grand coalition

N, we have v' = v . Furthermore it follows that

M(eN) ^ M' (eN) since v^ ^ v g for all S, (35)

where M! (e ) is the value of Program I for game v1 .

THEOREM 3_- If U = C, then either

(a) v <^ v for all S c N or

(b) M' (eN) ± v N.
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Proof. Assume U = C. We consider various cases.

1. u = c ̂  0. Assume there exists S such that vg > v^.

Let x e C. Then v N = (x,eN) ^ (
x'es> ̂

 v
s >

 V
N'

 a contradiction.

Hence in this case property (a) of the theorem holds.

2. u = C = 0. By Theorem 1, it follows that M(e ) ̂  v .

We consider two situations.

i-2.-i- If v* = v* i-e., vg 1 v N for all S and M(eN) =

M! (e ) , it follows that M1 (eN) ^ v N which is (b) .

1.2.2. There exists S such that v_ > v__. Assume to the
— — — o JN

contrary of M1 (eN) _̂ vN, that Mf (eN) <
 V

N =
 v^* r][lhus *>Y (31)

and (3 2) , the game vT has a non-empty core. Observe here that

v* = v . Let x€C(v f), the core of v! . To show x e U.

Case JL. There exist subsets T satisfying v = v and

ye X satisfying (y,eT) ^ vT« Then (x5eT) ^ v̂ , = v T ^ (y,eT) so

that y cannot dominate x through such a T.

Case j2. There exist T such that v > v . and y e X such

that (y,eT) ^ v T and (y,eT) > (x,eT) . In this situation we have

(x^eT) ̂ .
 v^. = VN- But y e X and therefore (y*eN) =

 V
N* Hence

v T > v N = (y,eN) ^ (y,eT) > (x,eT) 1 v^ = v N

which is a contradiction. Hence there are no T!s in this case.

Therefore cases 1 and 2 show that xe U.

But throughout 1.2, U = 0, and xe U is a contradiction to

this. Hence also in 1.2.2 we conclude M1 (e ) ;> v , which is (b)

of the theorem. This completes the proof of Theorem 3.

HOT mm
CARNEfilE-MELLflN
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A sufficient condition for U = C is given in the next

theorem.

THEOREM ±. Assume v <^ v for all S c N. Then U = C(v) .

Proof, Case 1. C(v) ^ 0. Let xe C and assume to the con-

trary that x/U, i.e. y >s x. Hence vg ^ (Y^
e
g) > (

x*es) 1

a contradiction. Hence C(v) c U.

Let X G U and assume to the contrary that x^C(v). Ihen

there exists a coalition, S , of smallest finite cardinality

such that

iX'eso < V so ^ V N'

Since (x,eT ) = (x,eN) = vN, it follows that SQ 0 N - Tx ^ 0.

Construct y e X as follows.

x. + (v -(x,e ))/|s HT I if i€ S^ n T1 bo bo ° x ox
(VN"VS ) / | S o n ( N - T x } I i f i e S o n ( N - T x )

0 if i/S Q.

Then

(y,e ) = (x,e ) + v - (x,e ) = v (37)
fao so So So So

and

(Y,eN) = (y,e ) + (y,e N T ) = vg + vN - vg = vN

X X O O

implying y e X. Finally (y,eG ) = vc > (N,e_ ) which shows
o So So

y >s x, contradicting x e U. Hence xe C(v) and U c C(v) .
^o

Thus in this case C(v) = U.
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When N is finite we have shown elsewhere (C. Bird, for

example) that conditions (a) and (b) as stated in Theorem 3

form necessary and sufficient conditions for U = C(v) . TTie

following example shows that this is not true for N infinite.

We now present an example of a game with empty core, but

which satisfies vXT = M(eXT) and v o < vXT for all S c N. By
N N S N —

Theorem 4, it follows that the set of undominated payoffs U

is also empty.

Example. C(v) = U = 0.

Let V., = v« = 1/2 and for all integers n,K satisfying

n .̂ K ^ ^ define

r>\ = i + S (T) J" X (38)
...,n) z z

set v = 0. Since Program II has consistent solutions (v, = v^ = 1

for example), it follows from perfect duality that v is AB.

We shall define v a little later.

For each integer k > 3 we construct a II consistent

solution, x(k) as follows:

x i r
= X2 = (i)k~2 + 1

X3 = (i ) 2 • (i ) k" 2 and for u k - i,

Xj " ( 2 ) ' Xk ~ (2 )

LEMMA 4_. x(k) defined in (34) is consistent for Program II for

for the game in (36) .
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Proof. Let S = {1,K,K+1,. . . ,n} where n ̂  K ̂  3, where we

have {x,,..,,x, on hand, k > 3.

L̂. Clearly x., >̂ v.., x ;> v .

2- K = 3.

.2.1.- n < k. In this case,

Xl + XK +# - #+ Xn = "2 + ('2) 2 +# • #+ (2" ) n~ 1 = v

..2_. n ̂ _ k. Here

+ + x 1 > \• • ' ^n "" "*" y 2 ' 2̂"̂  +• • •+ ("2") — v .

2. K > 3.

2-1. K < k.

.̂jL.JL. n - k. In this case,

3..JL.2.. n ̂  k. Here

xx + xR +...+ xn = (|)k~2 + \ + ( j ) ^ 1 +...+ (f)k~2 + (f)k"2 >

^ + (i)*-1 +...+ (-|)k-2 + [(j)1""1 +...+ (̂ )n] since

(~)k"2 > (-j)1^1 +...+ (f)n for all n ̂  k - 1.

±. K = k, n ;> k. Here

since (f)K~2 > (^)K"1 +...+ (f)11"1. Q.E.D.

We now show that there is no consistent solution x e E

satisfying (x,eN) = 1-j. It suffices to show that if x is

consistent for Program II, then x2 > ~ and
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£ x. ^ 1, (40)

since then (x,e ) > 1—.

Now if to the contrary, there were a solution x satisfying

1 1 1 K
X2 ^ 2*' S e t K = Itiax^i : i 6 T

x^*
 r^hen V2 K + 1 = 2* + ^ #

But (x,e(2 K+1\ )
 = X2 ^ 2" w k i c h is a contradiction. Hence any

consistent solution x satisfies x2 > -j. Assume to the con-

trary of (38), that S x. < 1 for some consistent x. But

there is a coalition S containing 1 but not 2 such that

£ x. < v < 1, since the v values grow (but are less than) 1.
1

•Therefore v > (x,e ) ^_ v which is a contradiction. Therefore

(38) is proven.

On the other hand (x(k) ,eN) = (-j)k"2 + \ + 1 = l| + (f) k" 2

and hence lim (x(k),e ) = 1-=-, i.e., i(II) = 1-̂ . By perfect
•> JN Z Z

1

duality, it follows that M(e ) = 1~ also. Hence setting

v = 1-r, the game has no core and satisfies M(e ) = v andvc < VT,T
 f o r a 1 1 S c N.

6. Stronger Condition^ for c(v) ^ 0.

In Theorem 2 we proved that v > M(e ) implies a non-empty

core and that if C(v) ^ 0 then M(e ) <^ v . This still leaves

unresolved the case of v._ = M(e.J . Example 1 shows that there
N N

are games where M(eN) = vN that do not have cores. Obviously,
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there are many games when M(eN) = v which have cores. In

this section we will prove some stronger theorems.

THEOREM Let T be a carrier of v which has a finite number

of elements. Let Q. = sup v where F. = [S I ieS) , If for
1 seF±

 S 1

each ieT there is a sequence of coalitions {S.} such that
1 K=l

K K
lim v c K = Q. and S. H S. = 0 for all i, j € T, then v has

K-*oo Si 1 1 3

a non-empty core.

Proof. First we will show that £ Qi £ M(eN) . Since SK 0 S K =

then S v £ M(evr) f o r K = 1*2,.../' . However for each ie T
ieT s*

lim v K = Q, thus 2 Q. ̂  M(e ) . Now let

Qi

0

i e T

i j^T.

If v = S Q_- then x€ C(v) . For any S if S n T = 0 then
iN i € T x

vs = 0 and trivially (x,eg) _̂ vg holds. If S n T ̂  0 then

for any i e T n S

since SeF.. Itius xeC(v). If v̂ T> £ Q. then trivially there
1 N ieT x

is an element in its core also. Note that this proof also shows

that L = M(eN).
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Definition. The family of coalitions carried only by S c T is

G_ = (R | S C R R 0 (T-S) = 0 } .

Note that any non-zero-valued coalition belongs to one such G .

Let P = sup v .
S **s R

1
Definition. The set of players in a family of coalitions, H,

not carried by coalition C at a level greater than b is

^ b C = f n I SS€ H, vg > b, n e S , C n S = 0).

We know that setting x. = Q. for i e T will yield a

consistent solution to Program II so that if v ^ S Q, then
w ieT 1

C (v) ^ 0. We can prove a stronger result along the same lines.

Let Program II1 be

min S x- such that for each S c T (x,e ) ̂  P .
ieT 1 s s

Thus we have the following result.

THEOREM (3. Any consistent solution of II1 satisfies the con-

straints of Program II and the minimum of II! <̂  SQ.. As a

result if v ^ min II1 then C(v) j4 0.

Proof. Let x be consistent for IIf. Then if R is any coal-

ition such that v > 0 there is only one S c Tf with R in

Gg. Now, (x,eg) ̂  P s so that (x,eR) ̂  (
x>es) ^L Pg ^

 V
R since

R e G . Therefore x is consistent for Program II. Because II!

is a finite linear program the minimum is attained. To see that



20

min II1 <̂  S Q- a H that is necessary is to show that
ieT

x. = Q. for i e T is a consistent solution to II1.
1 1

Let S c T, for each i in S Q. ^ Pc since G c F. .
1 o o 1

Therefore S Q . = (x,e ) ̂  P « Ihis proves the theorem.
ieS 1 S S

In Theorem 5 we proved that v ^ M( e
N) ^

s equivalent to

C(v) ^ 0 when the supremum for each family of coalitions whose

intersection with similar coalition in other families was empty.

In the next theorem the same equivalence is shown under an ex-

tremely different condition.

THEOREM 7_. If for each S c T, for every £ > 0 and each finite

coalition C with C n T = 0, K p _ c r ^ & then v ;> M(e.)

is equivalent to C(v) / 0.

Proof. We will show that x is a consistent solution of II1

iff x is a consistent solution of II. By Theorem 6 one direc-

tion has been shown. Let x be a consistent solution to II.

Then for any S c T and for each R in Gc, (x,e ) ̂_ v . Let
o K. JR.

C = T - T. For any £ > 0 K ^ 0; therefore there is
X GS'PS~ L 'C

an R in Gg such that vR > Pg - £ with C n R = 0. This

implies that (x>eg) = (x,eR) ^ v R ^ Pg - ^ . since this holds

for arbitrary £ > 0, (x,e ) ^ P . Thus Programs II and II1 are

equivalent. Because II1 is a finite linear program there is an

x1 with (xT,e ) = M(e ) which satisfies the constraints of Pro-

gram II. Therefore the theorem is proved.
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The intuitive meaning of the previous theorem is that there

are an infinite number of players who can join S and have the

value of their coalitions approach Pc. If, instead, there were

only a finite number of players who had to belong to a coalition

which contained S in order for P to be approached then one

could formulate a new linear program using T (J C instead of T.

As example 1 shows it is possible to have a series of finite

linear programs, each of which has a smaller minimum and includes

more players than the previous one. Thus the infimum need not

be attained.

7. Some Interpretations and Justification of the Model.

One of the characteristics of our model is that it makes

relatively few assumptions, and as a result, it should be rather

general. Nevertheless, some of the consequences tend to reduce

the generality of the model. In this section we will present

some justifications for making the few restrictions which were

made, support some of the conclusions which we reached and present

some situations which are modeled rather well by this game.

The restriction that v = 0 when S contains an infinite

number of players seems rather reasonable, since some people have

questioned the idea of an infinite number of players uniting to

block an outcome. We made (I) AB since to do otherwise would

have meant that the value of the game was infinite, which we do

not see as a very useful situation. The restriction of making

v non-negative was for mathematical purposes; however, we do

not see that any real advantage is gained by dropping this re-

striction.
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The two consequences which may need justification are the

result of the characterization via Theorem 1. The result that only a

finite set of players get non-zero payoffs even if they play

by themselves seems reasonable as there is only a finite quan-

tity of material being payed out, so that not everyone will get

some if he goes it alone. In fact, this model seems to depict

quite accurately the situation where a small group of players

relative to the entire set of players hold the power and the

rest of the players must choose up sides.

For example, consider a dictatorship where the dictator,

the head of the army and the head of the secret police are Tf

and all other individuals can ally themselves with one of the

leaders. Or consider a union leader, the head of management

and a government negotiator as T. Other individuals such as

union members and non-union members would play a role in the

negotiation, depending on the level at which they were willing

to settle. For example, the more disaffection there is from

a union, the less power the union has at the bargaining table.

In general one might consider the individuals in T1 as leaders

with the amount of power coming from the kind and number of fol-

lowers that they have.

The second result which may need some defending is that

S Pi Tf = 0 implies that v = 0. In other words, a leaderless

group has no power. This seems to be a philosophical question

rather than mathematical, for many people will agree or disagree

depending on their outlook on life. Whether or not there are

leaderless groups with power, there certainly are enough of these

groups without power so that our model has wide application.



23

References

[1] Ben-Israel, A., A. Charnes and K. Kortanek, "Duality and
Asymptotic Solvability over Cones", Bull. Amer. Math. Soc.
25 (1969) , 318-324.

[2] , "Erratum to
Duality and Asymptotic Solvability over Cones", Bull.
Amer. Math. Soc. 7j3(1970) , 426.

[3] , "Asymptotic
Duality in Semi-infinite Programming and the Convex Core
Topology", Rendiconti di Matematica, forthcoming.

[4] Billera, L. J. , "Some Recent Results in n-person Game
Theory" , Mathematical Programming _1(1971) , 58-67.

[5] Charnes, A. and K. Kortanek, "On Balanced Sets, Cores and
Linear Programming", Cahiers du Centre d!Etudes de Recherche
Operationnelle 9J 1 9 6 7)1, 32-43.

[6] , "On Classes of Convex Preemp-
tive Nuclei for n-person Games", Proceedings of the Princeton
Symposium on Mathematical Programming9 edited by Harold
Kuhn, Princeton University Press, 1970, 377-390.

[7] Charnes, A., M. Eisner and K. Kortanek, "On Weakly Balanced
Games and Duality Theory", Cahiers du Centre dTEtudes de
Recherche Operationnelle 12(1970)1.

[8] Duffin, R. J., "infinite Programs", in Linear Inequalities
and Related Systems, edited by H. W. Kuhn and A. W. Tucker,
Ann. of Math. Studies No.38, Princeton University Press,
Princeton, New Jersey, 1956, 157-170.

[9] , "Convex Analysis Treated by Linear Program-
ming, Department of Mathematics Report 7 2-12, Carnegie-
Mellon University, April, 1972.

[10] Keane, M. A., "Some Topics in n-person Game Theory", Ph.D.
Thesis, Field of Mathematics, Northwestern University,
Evanston, Illinois, June, 1969.

[11] Kohlberg, E., "On the Nucleolus of a Characteristic Function
Game", SIAM J. Appl. Math. 20(1970), 62-66.

[12] , "The Nucleolus as a Solution of a Minimization
Problem", SIAM J. Appl. Math., forthcoming.

[13] Lucas, W. F., "Some Recent Developments in n-person Game
Theory", SIAM Review 13_( 1971) , 491-523.



24

[14] Schmeidler, D., "Ihe Nucleolus of a Characteristic Func-
tion Game" , SIAM J. Appl. Math. 17J1969) , 1163-1170.

[15] Shapley, L. S., M0n Balanced Sets and Cores", Naval
Research Logistics Quarterly JL£(1967) , 453-460.

Department of Mathematics
Carnegie-MelIon University
Pittsburgh, Pennsylvania 15 213

Department of Operations Research
Cornell University
Ithaca, New York 14850

Department of Urban and Industrial Administration
and Operations Research
Carnegie-Melion University
Pittsburgh, Pennsylvania 15213


