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Abstract

A method is described for obtaining criteria confirming

the optimality of solutions found either by integrating the

Euler-Lagrange equations, or by applying the Pontryagin

necessary condition. The method is based on convexity

considerations, and its success in a given problem depends

on the judicious choice of certain arbitrary auxiliary func-

tions.
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1. In the classical calculus of variations, a number of

procedures are available which make it possible, at least

in principle, to confirm the extremal character of a solution

found by integrating the Euler-Lagrange equations. However,

the practical usefulness of these procedures is rather limited,

since they depend on auxiliary information -- such as the

existence of a field of extremals, or the knowledge of a

general integral of the associated Hamilton-Jacobi equation --

which often is not easy to come by. In the theory of optimal

control, the situation is even less satisfactory, and verifi-

cation of the optimality of the solutions provided by the

Pontryagin principle is possible only in relatively simple

cases.

We shall describe here a method which yields sufficient

conditions for optimality and which does not require the know-

ledge of quantities which, in practice, are difficult to

obtain. Instead, the success of the method depends on the

judicious choice of certain arbitrary auxiliary functions.
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2. We begin by illustrating our procedure in the case of

the variational problem

r'2 no
(1) #(x) = F(t,x,x',...,xv ' ) dt = min.,

Jt,

with the end conditions

(2) x ( r ) (tx) = A r , x
( r ) (t2) = B r, r = O,l,...,k-1,

k (r)

where x e C is a vector (x..,..,,x ), x denotes the r-th

derivative of x, and A ,B are given constant vectors. Ihe

function F is defined and has continuous derivatives of order

up to 2k for te [t,,t~] and all real values of its remaining

(scalar) variables. We assume that this variational problem

has a solution x, and we simplify the writing by using over-

head bars to indicate quantities which are to be evaluated along
_ — — — —(k) —

the extremal xj thus, we write F for F (t,x,x! ,. . . ,x ) , F
—(k)

for the gradient F—(x,xf,...,x ), etc. With the abbreviation
j\

]̂
(3) L(F) = F - F - LF , . ( x ( r ) - x ( r ) ) ,

r=0 x v 'it follows from (1) that

(4) p(x) - P(5c) = I L(F)dt + T(x) - T(x),

where

t 2 k
(x) = f [ Z F / r x x ( r ) ]dt .

J t r 0 x ( r )t1 r=0 x
( r )

2k
If x € C 3 and if it is observed that both x and x satisfy



the end conditions (2) 9 a number of integrations by parts

leads to the identity

fc2
T(x) - T(x) = J j|>(x) (x-x)dt,

where

Hence, if x is a solution of the Euler-Lagrange equation

= 0 we have T(x) = T(x), and (4) reduces to

(5) P(x) - $(x) = J L(F)dt.

Since the expression (3) will be nonnegative if, for every

fixed te [t,,t_], F is a convex function of the set of

(r)variables xv ' (r = 0,...,k; s = l,...,n), (5) shows that
s

in this case a solution of the Euler-Lagrange equation which

satisfies the end conditions indeed solves our minimum problem.

In order to make this convexity argument applicable to a

wider class of integrands F, we employ the time-honored

artifice -- first used by Legendre and much later made the

basis of Caratheodory1s treatment of the calculus of variations

[1] -- of replacing F by suitable "equivalent" integrands.

If G(t,x,x!,...,x( ') is a function of class C in all its

variables and otherwise arbitrary, and if it is observed that
(k)dG/dt = G x1 +...+ G ',, nx x

v + G. , a computation shows that

(6) L(ff) = £



where L is the operation defined in (3). Since, by (2),

i -A. L(G)dt = [L(G)].2 = 0,
J t 1

C l t tl

we find that (5) may be replaced by

P(x) - 0(x) = j L[F - f^ldt.
tl

Ihis leads to the following sufficiency criterion.

Let x b£ a. solution of the Euler-Lagrange ecruation

associated with the problem (1) which satisfies the end conditions

(k-1)(2) . JEf there exists a_ function G = G(t,x,x*,...,xy ) such

that, for all fixed te [t_ ,to] , F - G x
f -. . .- G , -n*(k) - G,

1 Z X X

is a convex function of the variables x (r = 0,...,k;
_ _ _ _ g

s = 1,. . . ,n) , then x _is _a solution of the minimum problem (1) .

We illustrate the use of this condition in the case k = 1.

If we write P,Q,R,cp for the symmetric nxn matrices F ,

xx

2^Fxx' »+F
X'x' '

 Fx'x" Gxx5 respectively, the convexity of

F - G x1 - G. is equivalent to the positive-semidefiniteness
X u

of the quadratic form aRa + 2a(Q-cp)p + p (P-d<p/dt) p (where a,p

are n-vectors). Since this quadratic form will have the property

in question if R is positive-definite and the matrix

P - (Q-cp) R~ (Q-<p) - dp/dt is positive-semidefinite, we have the

following result.
P = Fxx' Q = 2tFxx"+Fx'x]' R = Fx'x"

the integrand of the variational problem (1) (with k = 1) . If 9

for all fixed t e [t.. ,t ] and all x5x
f e E , the matrix R is



positive-definite, and if there exists a, matrix <p = <p(x,t)

such that P - (Q-cp) R~ (Q-cp) - ckp/dt is_ positive-semidef inite,

then a_ solution x o_f the Euler-Lag range equation associated

with (1) which satisfies the prescribed end conditions is ci

solution of the minimum problem (1) .

It is easy to modify this statement so as to make it ap-

plicable to cases in which x and xT are restricted to sub-

sets X,Xf of En. If the conditions of the statement are

satisfied for xe X, x! e X1 and if the convex hull of the

Cartesian products x x xf and x" x x! is contained in

X x X? , the same argument as before shows that #(x) ^

In particular, if we restrict ourselves to the immediate neigh-

— — — — -1

borhood of x x xT and we set <p = Q + RU!U 9 we obtain the

classical result that x provides a weak local minimum for

(1) if R is positive-definite and the Jacobi equation

(RUT ) ! + (Q-P)U = 0 has a matrix solution which is non-singular

on [t1,t2].

3. We now consider the fixed-time optimal control problem

(7) ^(x) = J fQ(x,u,t)dt = min. , u e U, x(t1) = A, x(t2) = B,
t

" 2

where x,u are vectors of dimension n and m, respectively,

x e C j U e D j U is a closed convex set in Em and x is

subject to the side conditions

(8) ff = f(x,u,t).



scalar function f and the vector function f are
o

required to have two continuous derivatives with respect to

the components of u. We assume that an optimal trajectory x --

associated with an optimal control u e D -- exists and, as

before, we will denote quantities associated with x,\T by

overhead bars.

Introducing an arbitrary vector A = A(t) = (A..,...,A ),

A e C , we have, by (7) and (8) ,

5(x) = I [f - A(x-f)]dt = ! [f + Af + Ax]dt - [Ax],/

H fci 1

(x = dx/dt) ,

and thus, using the end conditions and the abbreviation

O = f + Af + Ax,

$(x) - p(x) = (cp-"cp )dt.

Defining the operator L by

(9) L(cp) = <p - <p - cp (x-x) - o (u-u) ,
5C U.

we may r e p l a c e t h i s by

P(x) - ^(x) = i L ( p ) d t + i [ip (x-x) + <p ( u - u ) ] d t .
" t 1

 J f c i X U

If we choose A so that <p = 0, i.e., if A = -H, where
x

H = H(x,u,t) = f + Af is the Hamiltonian of the problem, and

observe that because of cp = H + Ax, L(cp) = L(H) and cp = H ,

we obtain



(10) P(x) - P(x) = J L(H)dt + J Hu(u-u)dt.

By Pontryagin*s necessary condition [5] , H(x,u,t) <̂  H(x,v,t)

for any v e U and a l l t e [ t . j t . ] . Since U i s convex, we

may take v = (1- £)u"+ £ u = u + f (u-u) , where £ e [0,1] and

i s otherwise a rb i t r a ry . By Taylor 's theorem,

0 1 H(x,v,t) - H(x,u,t) = £Hu[x,u+ L* (u-u) , t ] (u-u) ,

where 0 <̂_ £, <̂  £ . Letting £ —> 0, we obtain H (u-u) ̂ 0,

and (10) leads to the inequality

(11) £(x) - £(x) ̂  f L(H)dt.
J tl

Accordingly, x will be optimal if the Hamiltonian is, for u e U

and all fixed te [t^t^], a convex function of (x, ,...,x ,u^,...,u )

(For other sufficient conditions depending on convexity properties

of the Hamiltonian, see [2,3,4].)

iTiis is of course a very special situation. To make this

convexity argument applicable to more general cases, we again

modify the integrand by means of a suitable arbitrary function

G(x,t). A computation -- using (8) and the definition (9) of L --

shows that L [ (G -G )f + G ] = -~r L(G) . Since both x and x
X X L. Q.TI

are subject to the same end conditions, we have

r"2 d fc
2

J -^7- L(G)dt = [(L(G)]fc = 0

and (11) may therefore be replaced by



8

"2

(12) £(x) " P(x) 1 J L[H-(Gx-Gx)f - Gfc]dt.

This establishes the following result.

Let H = H(x,u,t) b§_ the Hamiltonian of the optimal control

problem (7) - (8) , and let 3c satisfy Pontryagin' s necessary

condition for this problem. If there exists a_ function

G = G (x, t) such that, for u e U and every fixed t e [t.,t_] ,
— — — — — — — — — — j_ £

the function H - (G -G ) f - G. is. convex in (xn ,. . . ,x ,u- , • . • ,u ) ,
—~——•" x x u x n x TO
then x is an optimal trajectory.
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