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by
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Abstract

4 4Let f : 1R —> TR be a bijection such that whenever

p and q lie on a common light ray, fp and fq lie on a

common light ray. Then f is in the group generated by the

Poincare group and dilatations.

The proof of this fact is based on Zeeman1s theorem that

causality implies the Lorentz group.
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§1 introduction; A point p in IR is represented here in the

form p = (t ,x ) where t is in IR and x is in E . For
p p p p

elements x and y in IR , let x-y denote their Euclidean

scalar product and let \\x\\ = / x-x. We define the Minkowski

metric G : HP x 3R —»IR by 6(p,q) = tt - (x -x ), and
A A 2 2

we define G : IR —> 3R by G(p) = G(p,p) = t - II x I . A
P P

bijection is a one-to-one, onto map.

4 4THEOREM JL: Let f : IR —> IR be a bijection which satisfies

for each p and q in. IR :

G(p-q) = 0 > G(fp-fq) = 0.

Then f is in the group generated by the Poincare group and

dilatations.

This theorem appears to be new or at least widely unknown.

An ambiguous footnote in Einstein's original paper [3], p.46,

states that "the equations of the Lorentz transformation may be

more simply deduced from the condition that in virtue of these

2 2 2 2 2equations the relation x + y + z = c t shall have as its

2 2 2 2 2consequence the second relation § +rj +£ = c r . M
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A theorem with the same conclusions as Theorem 1 but slightly

stronger hypotheses -- namely, that G(p-q) = O$=£G(fp-fq) = 0 —

has been proved by Barucchi [1] and apparently much earlier by

Aleksandrov. For references to Aleksandrov1s work see Pimenov!s

book [5], p.21. Ihe author discovered this theorem as well as

Theorem 1 independently.

Zeeman!s theorem that causality implies the Lorentz group

plays an important role in the proof of Theorem 1. We reprove

this theorem here in a manner suggested by [6]. For other

proofs see Rothaus [6] and Zeeman [7]. Lemma 3 of Zeeman1s

paper has been clarified by Barucchi and Teppati [2].

In the following three sections we develop parts of the

proof of Theorem 1 in the form of Theorems 2, 3, and 4. In §5

we assemble these parts and complete the proof. All of our

results generalize from four dimensions to n dimensions (n]>3) ,

and the notation of the paper should allow one to follow the

argument with the generalization in mind. If n = 2, Theorems 2

and 3 are false but Theorem 4 remains valid.

§2.: Our definitions are taken from Zeeman [8] . For p in TR ,

we define:

the space cone through p = Ck = [q : q = p or G(q-p) < 0} ;

Tthe time cone through p = C = {q : q = p or G(q-p) > 0} ;

the light cone through p = C = [q : G(q-p) = o].

A line through p is called a space line, a time axis, or a

light ray accordingly as it lies in the space cone, the time cone,

or the light cone through p. A plane through p is called a



space-time plane if and only if it contains a time axis through p.

Each of these characterizations is independent of the choice of

p in the line or plane. A space-time plane can be characterized

alternatively as the plane defined by two distinct, intersecting

light rays.

If p and q are distinct points and G(q-p) = 0, then

C 0 C is the light ray through p and q, and we denote this

light ray by L(p,q) .

We introduce two relations from [7], which we define as

follows:

p < q if and only if G(q-p) > 0 and t < t 7

p <£ q if and only if G(q-p) = 0 and t < t .

< is a partial ordering, but < is not since it is not transitive.

Both relations are preserved by translations and positive dilata-

tions (Zeeman!s theorem discovers all transformations which pre-

serve these relations)9 and both relations are reversed by negative

dilatations.

4 4
Let f : IR —* IR . We consider the following conditions

which might be imposed on f:

4
(2.1) for each p and q in IR G(p-q) = Os^G(fp-fq) = 0;

(2.2) for each p and q in IR G(p-q) = 0<=*G(fp-fq) = 0;

4
(2.3) for each p and q in HR p <£ q ^ f p <; fq;

4
(2.4) for each p and q in IR p < q <=> fp < fq.



4 4
LEMMA 2 ,1 ; Let f : 3R —* IR be a bi ject ion. Then

(2.4)4=* (2.3) =>(2.2) .

Proof: Since G(p-q) =0 if and only if p = q, p <^ q, or q <; p

and since f is injective (one-to-one), (2.3) =*(2.2).

To prove (2.4)^=3 (2.3), we note that f is surjective (onto).

Then (2.4) =^(2.3) is a consequence of the fact that p <£ q if

and only if p < q is false and for each r q < r implies

p < r. Likewise, (2.3) =^(2.4) is a consequence of the fact that

p < q if and only if p < q is false and there exists an r such

that p < r and r < q.

LEMMA 2.2; Let f : IR4—^IR4 be a bijection satisfying (2.2).

Then f(c£) = C3^, f(c£nc£) = C^p 0 C^ , and f(L(p,q)) = L(fp,fq).

Proof: qe cJ>=*G(q--p) = o£=*G( f q-fp) = O^fqeC 1^ . Thus
P £p

L) = C^ il range f = C^ since f is surjective. f(CLncL) =p rp tp p q

f(CL) n f(CL) = C^ n C^ since f is bijective. Finally, if

G(q-p) = 0, then f(L(p,q)) = f(CLncL) = C^ 0 ^ = L(fp,fq)
p q rp rq JT ^

since G(fq-fp) = 0.

LEMMA 2-3.- L e t u > c a n d v > ©. Then 6(u,v) ^_ 0 and

G(u,v) =0 if and only if u and v are dependent.

2 2

Proof; Since u > ©, t u = \\*u\\ and t > 0. Thus t = \\x \\ / 0.

Likewise, since v ;> 0, t = \\x \\ ^ 0. Then G(u,v) = t t - (x .x )

>. t u t v - \\xu\\ \\x^\\ = 0. Equality holds if and only if xu-xv =

HX
UH I1X

VH- In t h i s c a s e x u = A x v f o r some A > °> fcu = llx
uli =

u =



4 4
THEOREM 2. (Zeeman1 s Theorem) : Let f : IR —>1R be a bijection

satisfying (2.4). Then f is af fine-linear.

Proof: By lemmas 2.1 and 2.2 f satisfies (2.2) and takes light

rays onto light rays. If f is a bijection of IRn onto IRn

^ which takes lines onto lines, then f must be affine-linear

(see [4], p.110). Hence, it suffices to show that f takes time

axes and space lines onto lines. Since each time axis or space

line is the intersection of two space-time planes (n;>3!) and f

is a bijection preserving intersection, we may further reduce the

problem to showing that f takes space-time planes onto planes.

Let P be a space-time plane. Without loss of generality

we suppose that <D is in P and P = span (u,v) for independent

vectors u > © and v > <D. In addition, we assume f (<D) = ©.

Let P! = span {fu,fv}. By lemma 2.1 f satisfies (2.3). Hence,

fu > f (©) = © and fv > f (®) = ©. Moreover, fu and fv are

independent since f maps distinct light rays onto distinct light

rays. Thus P1 is itself a space-time plane.

If w is any element of P, w lies on a light ray parallel

to v which intersects the two parallel light rays L(©,u) and

L(v,u+v). Hence,fw lies on a light ray which intersects the two

disjoint light rays L(©,fu) and L(fv,f(u+v) ) . If these light

rays are in P!, so is fw. But L(©,fu) is in P! and fv is

in P!* Hence, f(P) c P1 provided f(u+v) is in P!.

For A real f(Au) is in L(©,fu). Moreover, if A-, < A2,

f(7s u) < f(7\2u). Thus, there exists an increasing bijection



p : IR—yiR such that f(Au) = p 1(A)f(u) . Likewise, there

ex i s t s an increasing b i j ec t ion p~ : 3R—*IR such tha t

f(Au+v) - f v = p2(A) (f (u+v)-fv) . So, 6(f (u+v) - fv , f (Au+v) -fv) =

p2 (A) G(f (u+v) -fv) = 0 since G(u+v-v) = G(u) = 0. Applying

lemma 2.3 and the inequalities f (u+v) - fv ;> <D, f(Au+v) - f(Au) > ©,

we obtain:

0 ^ £(f (u+v)-fv, f(Au+v) - f(Au))

= 6(f(u+v)-fv, f(Au+v) - fv + fv - px(A)fu)

(u+v)-fv,fv) - P l (A)6(f (u+v)-fv,fu) .

As A tends to +oo , p. (A) tends to +oo also. For the inequality

to hold, we must have &(f(u+v)-fv,fu) <^ 0. However, f (u+v) - f v > <D

and fu > (D. By lemma 2.3 G(f (u+v) - fv, fu) = 0 and so (f(u+v)-fv)

and fu are dependent vectors. It follows that f(u+v) is in

span {fu,fv} = P!.

Tiius f takes space-time planes into space-time planes.

Since f~ fulfills the hypotheses of Theorem 2, f" does the

same and we conclude that f maps space-time planes onto

(space-time) planes, completing the proof.

§2:

LEMMA 3 ^ : Let G(u) > 0 and G(v) =0 with v ^ <D. Then

G(u,v) ^ 0. In fact, if u > <D and v ̂ > d), G(u,v) > 0.

Proof; G(u) > 0 implies t > \\x \\ , and G (v) =0 with v ^ <D

implies | t v | = ||xv|| ^ 0. If 0 = 6(u,v) = t u t v - ( x
u

# x
v ) ' Lt

fol lows t h a t It t I = |x -x I < IIx II llx II < It I It I for a
1 U V ' ' U V ' "^ li U11 n V11 ' U 1 ' V 1



contradiction. If u > (D and v > <r>, then t^ > ||xu|| and

t v = ||xv|| ft O. Hence, &(u,v) = t ^ - ( x ^ x ^ ;> t ^ - \\KJ\\XJ

LEMMA 3^.2; Let G(u) < O. Ihen there e x i s t s w such tha t

w fi <D and O = G(w) = G(u,w) .

Proof; Since G(u) < O, t < ||x || . Choose x in IR such

tha t llx II = 1 and x *x = t . I h i s i s poss ib le since x i s
11 w11 u w u ^ w

in a space of more than one dimension and -| |x || < t < |(x \\. Let

w = ( l , x w ) .

LEMMA 3_..3.: L e t u > 0 and v > <D. Then there e x i s t s w such

tha t w > (D, G(w-u) < 0, and G(w~v) < 0.

Proof; Let & = fq • t > 0, G(q-u) < 0, G(q-v) < o j . & i s an

4
open subset of 3R in the Euclidean topology. Choose w.. ;> (D

then G(Aw-j-u) = -2AG(u,w..) f G(u) and G(Aw-.-v) = -2AG(v^w1) + G (v)

By lemma 3.1 G(u5w ) and Gfv^wJ are both positive. Hence for

A sufficiently positive, G(Aw..-u) < 0 and G(Aw..-v) < 0, and

T T1

Aw is in &. But Aw, is in C = the boundary of C . Hence,
Tsince & is a neighborhood of Aw., , there exists w in & H C .

w has all the properties required by the lemma.

For p and q such that G(p-q) ^ 0, we define a set

C = (u ; ue C , and u = p or L(p,u) n CL ̂  0}.

C is another "cone" through p. If u is in C and

u ^ p, then L(p,u) n CL c cL n CL. -The set CL 0 C L is a
q ~ p q P q



8

section of CL forming an ellipsoid or a hyperboloid with two
P

T Sbranches accordingly as q is in C or C . This observation

makes the following two lemmas geometrically obvious.

T L
LEMMA 3.4: If q is in C , then C = C .

P P P*4

Proof: If u is in C and u / p, consider for A real the

expression G (p+7\ (u-p) -q) = G(p-q) + 2AG(p-q,u-p) . Since

G(p-q) > 0 = G(u-p), lemma 3.1 guarantees that G(p-q,u-p) ^ 0.

Tiius A can be found so that 0 = G(p+A (u-p) -q) . Set u* = p+A(u-p)

Ihen u* is in L(p,u) 0 C , and u is in C
q P*q

LEMMA 3.5: If q is in CS, then CL => C but CL ^ C
P p - p.q p p.q

Proof: By lemma 3.2 we can select w ^ <J) such that 0 = G (w) =

G(p-q,w). Then (p+w) is in C , but G(p+Aw-q) = G(p-q) < 0 for

all A. TTius L(p,p+w) n C = 0 and (p+w) is not in C

4 4
LEMMA 3.6: Let f : IR — > TR be a bijection satisfying (2.2).

TThen if p < q, fq is in Cf .

T L
in Cf . By lemma 2.2 we may rule out fq being in Cf . Thus

Proof: Suppose there exist p and q with p < q and fq not

Tin Cf .
g

fq is in Ĉ . .fp

Lemma 3.5 now tells us that we may choose w. in c^ such

that w is not in Cf f . Since f is bijective, w = fu for

some u in C . Hence by lemma 3.4 u is in C . Since

u ^ p, there exists u* in L(p,u) fl C . Thus fu* is in

f(L(p,u)nCg) = f(L(p,u)) n f(c^) = L(fp,fu) n c^q = L(fp,w) n c^q ^ 0.

Thus w is in C^ ^ contrary to hypothesis. We have no choice
r P 9 tc3[

but to affirm the lemma.



4 4
LEMMA 3.7: Let f : 3R —» IR be a bijection satisfying (2,2).

If p < q1, p < q2, and fp < fq^ then fp < fq2.

Proof; By lemma 3.3 choose w such that w > <J), G(p+w-q.j) < 0,

and G(p+w-q2) < 0. Let q3 = p + w. Then p < q3- So by

Tlemma 3.6 fq3 is in Cf . If fq3 < fp-,, by transitivity

fQo < f(3]* Since f~ fulfills the hypotheses of lemma 3.6,

Tq1 is in C But then G(q3-q..) = G(p+w-q,) > 0, which is

Tfalse. Since fq3 is in Cf and fq3 / fp-,* we must conclude

that fp < fq3.

T
Now fq2 is in Cf . If fq2 < fp, then fq2 < fq3 and

Tq~ is in C This contradicts G(q^-q0) = G(p+w-q9) < 0, andJ q2 J z z

so we finally conclude that fp < fq2*

4 4
THEOREM 3; Let f : IR —> 3R be a bijection satisfying (2.2).

Then f or -f satisfies (2.4).

Proof; Suppose that there exists no pair p̂ , and q̂, such that

pl ^ gl a n d fpl ^ f<3i# Î hen p < q => fp > fq by lemma 3.6.

Applying the same lemma to f , we find that fp < fq =^q is

Tm C and because of our supposition q < p. Thus

p < q£=£-fp < -fq, and - f satisfies (2.4).

Alternatively suppose there exists a pair p., and q. such

that p.. < q.. and fp^ < fq-. Let P2 < ^o* Ch° o s e P such

that p- < p and P2 < P . By lemma 3.7 fp- < fp . Now

consider the map g = -I*f>-1 where -l(p) = -p for each p
4

in IR . g is a bijection satisfying (2.2). Thus we can apply

lemma 3.7 to the inequalities -p < -P-,* -p < ~P2*
 a n d
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g(-p ) < <?(-PT) to conclude g(-p ) < g(-P2).
 I n other words,

fp2 < fpQ. -Then p 2 < p Q, p 2 < q2, and fp2 < fpQ imply

fp2 < fq2-

We have succeeded in proving that p < q=^fp < fq. Since

we have a pair satisfying p 1 < q.. and fp., < fq, * we can apply

the same argument to f" 9 obtaining fp < fqs^p < q. Thus f

satisfies (2.4).

§4:
A A

LEMMA 4.1: Let f : ]R — * IR be injective and satisfy (2.1).

Then f(CL) c cj . f(C^ncb c C* 0 cjL, and f(L(p,q)) c L(fp,fq)
P rP p q rP rq

Proof: Compare with lemma 2.2.

T L
LEMMA 4.. 2^ If r is in C and q is not in C , t;hen

C 0 C contains at least two points,r p,q

rn x

Proof: If q is in C , then by lemma 3.4 C = C . Thus
^ P J p,q P

C (1 C = C 0 C = an ellipsoid, which of course contains two
r p*q r p

points.
S L L

If q is in C , choose u in C 0 C but not in C
H P' r p p,q

As in the proofs of lemmas 3.4 and 3.5, we must have
G(p-q,u-p) = 0, and so u is in the set p + [span{p-q] ] x. The

latter set is a hyperplane passing through p. It meets the

2 in a closed subset of C 0 C
P r p

ellipsoid C 0 C in a closed subset of C 0 C . The comple-

ment in C H C of this closed subset is the open subset

C O c . If C PI C is non-empty, it contains two points,
r P*q *• P*q
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Assume CL 0 C is empty. Then the ellipsoid C n C
T p) q P

is a subset of the hyperplane. But since p is on' the hyper-

plane, all light rays joining p to the ellipsoid are in the

hyperplane. Such rays form C , and the only space containing
L 4C is ]R itself. We thus have a contradiction.
P

4 4
THEOREM 4; Let f : IR —> ]R be injective and suppose that

4
f(HR ) is not a subset of a light ray. Then if f satisfies

(2.1) , f satisfies (2. 2) .

Proof; Assume (2.2) fails. Then there exist p and q such

that G(p-q) ^ 0 = G(fp-fq). Hence, f(CLncL) c C^ 0 C^ =

L(fp,fq) = L where we adopt the abbreviation L for the light

ray L (fp, f q) .

Let u be in C . If u / p, choose u* in L(p,u) fl C .
PJSL q

Then fu is in f(L(p,u)) = f(L(p,u*)) CL(fp,fu*). But fu*

is in f(CLOCL) c L. Hence, L(fp,fu*) = L and fu is in L.
Thus f(C ) c L.

P*q -
TLet r be in C • By lemma 4.2 choose v and w distinct

in C^ 0 C p g . Then ffv,fw} c f(C^nCpg) c f(C^) n f(C ) c C^r

But C f r n L is a singleton unless the light ray L contains fr.

TSo fr is in L, and f(C ) c L.
4

Finally, let u be in IR . choose a light ray I through

T
u which meets C in two points v and w. Then fu is in

f(l) = f(L(v,w)) c L(fv,fw) = L since fv and fw are in

T 4
f (C ) c L. Thus f (IR ) c L contrary to hypothesis, and we must
accept the validity of (2.2).
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§5:

LEMMA 5_.JL: Let G(u) > O and v be a rb i t ra ry . Then

, v ) ) 2 ^ G(u)G(v).

Proof; If G(v) <^ 0, the proof i s t r i v i a l . So assume G(v) > 0.

Then (&(u,v))2-G(u)G(v) = ( t ^ - x ^ x ^ 2 - (t2- \\xj2) (t2-||xvlj2)

= -2 t u t v (x u .x v ) + (x u .x v) 2
 + t2l|xul|2 + t2 | lxv | |2 - ||xu||2||xv!|2

^ - 2 | t u | | t v | | x u . x v | + | x u . x v | 2
 + | t v | 2 | | x u l | 2

 + | t u | 2 | | x v | | 2 - ||xul|2||xv||2

= ( | t v | | |x uH-| t u ! | |x v | | ) 2
 + (2|tuMtv |-! |xu | | | |xvli- |xu-xv |)( | |xu | l | |xv!|

- IV3S^I) ^ ° s i n c e ISil^v' > K ^ M ^ lxu*xvl-
We are now prepared to prove Theorem 1 of the first section.

We note first that the Poincare group is the group generated by

the (homogeneous) Lorentz transformations and translations. A

4 4
(homogeneous) Lorentz transformation is a linear map L : IR — * 3R

4
which satisfies for each p in IR G(p) = G(Lp). One may easily

verify from this definition that such a map L satisfies

G(p,q) = G(Lp,Lq) for all p and q in IR , that L is a

bijection, and that L~ is also a Lorentz transformation.

4 4Proof of Theorem 1̂  Let f : IR —* 3R be a bijection satisfying

(2.1). By Theorem 4 f satisfies (2.2). By Theorem 3 +f

satisfies (2.4), and by Theorem 2 +f is affine-linear. Thus,

f itself is affine-linear.

To establish that f is in the group generated by the

Poincare group and dilatations, it suffices to show that f

differs from a Lorentz transformation by no more than a trans-

lation and/or a dilatation.
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Since f is affine-linear, f - f(0) = F is a linear map.

Moreover, since f has the property (2.2), F does also --

i.e., G(p) = 0<=^G(Fp) = 0.

Choose u1 in 3R" with i^ > ©. By Theorem 3 G(Fu1) > 0.

Let A = / G(FuJ/Gfu^ , and let L = -F. Then L : TR *TR

is a linear map such that G(p) = 0^=4 G(Lp) = 0 and G(u1) =

4
Let v be any element of 3R such that G(v) =0 and

v ^ <D. Then G(u1~Av) = G(u ) - 2AG(u1,v). Since G(u]L,v) ^ 0

by lemma 3.1, A may be chosen so that G(u.-Av) = 0. In this

case let w = u - Av. Then A is non-zero and G(u..,v) =

&(Av+w,v) = £(w,v) = -~ G(Av+w) = ~- G(u1) = ~- GtLu^ =

-TJ-̂ - G(ALv+Lw) = G(Lw,Lv) = G(ALv+Lw,Lv) = G(Lu1,Lv). Thus

GCu,^) = (^(Lu^Lv) for any v such that G(v) = 0.
4

Now let p be an arbitrary element of TR . Consider

GCp-Au^.) = G(p) - 2A Gfu^p) + A G(u..). As a polynomial in A

this expression has discriminant equal to 4(G(u-.,p)) - 4G(u,)G(p).

By lemma 5.1 this is non-negative. Hence, G(p-Au,) = 0 for a

suitable choice of A. Let v = p - ~k\i for such a A. Then

G(p) = G(Au]L+v) = 2A<§(u1,v) = A
2G(ux) + 2A&(u;L,v) = A

2G(Lu1) +

2AG(Lu1,Lv) = GCALu^Lv) = G(Lp). Thus L is a Lorentz transformation.

Hence, f = f (<D) + AL is in the group generated by trans-

lations (f((D)), dilatations (A), and Lorentz transformations (L) .
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