A DERIVATION OF THE POINCARE GROUP

by

Andrew Vogt*

Report 72-17

August 1972

* This work was partially supported by NSF Science Development Grant GU-2056.

SEP 2.7 .72

A DERIVATION OF THE POINCARE GROUP

by

Andrew Vogt

Abstract

Let $f : \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ be a bijection such that whenever p and q lie on a common light ray, fp and fq lie on a common light ray. Then f is in the group generated by the Poincare group and dilatations.

The proof of this fact is based on Zeeman's theorem that causality implies the Lorentz group.

A DERIVATION OF THE POINCARE GROUP

by

Andrew Vogt

Department of Mathematics Carnegie-Mellon University

§1 <u>introduction</u>; A point p in IR^4 is represented here in the form $p = (t_p, x_p)$ where t is in IR and x is in E^3 . For elements x and y in IR^6 , let x-y denote their Euclidean scalar product and let |x|| = /x-x. We define the Minkowski metric G^6 : HP x $3R^6 - *IR$ by $6(p,q) = tp q^{-1}(x_p-x_q)$, and we define G : $IR^{4} - 3R$ by $G(p) = G(p,p) = t \frac{2}{p} II_1 x_p T_1^{2}$. A bijection is a one-to-one, onto map.

<u>THEOREM</u> JL: Let $f : IR^4 \rightarrow IR^4$ be a bijection which satisfies for each p and q in. IR ⁴:

$$G(p-q) = 0 \implies G(fp-fq) = 0.$$

Then f is in the group generated by the Poincare group and dilatations.

This theorem appears to be new or at least widely unknown. An ambiguous footnote in Einstein's original paper [3], p.46, states that "the equations of the Lorentz transformation may be more simply deduced from the condition that in virtue of these equations the relation $x^2 + y^2 + z^2 = c^2t^2$ shall have as its consequence the second relation $g^2 + r_J^2 + f^2 = c^2r_{\pm}^2 M$

This work was partially supported by NSF Science Development Grant GU-2056.

A theorem with the same conclusions as Theorem 1 but slightly stronger hypotheses -- namely, that $G(p-q) = 0 \iff G(fp-fq) = 0$ -has been proved by Barucchi [1] and apparently much earlier by Aleksandrov. For references to Aleksandrov's work see Pimenov's book [5], p.21. The author discovered this theorem as well as Theorem 1 independently.

Zeeman's theorem that causality implies the Lorentz group plays an important role in the proof of Theorem 1. We reprove this theorem here in a manner suggested by [6]. For other proofs see Rothaus [6] and Zeeman [7]. Lemma 3 of Zeeman's paper has been clarified by Barucchi and Teppati [2].

In the following three sections we develop parts of the proof of Theorem 1 in the form of Theorems 2, 3, and 4. In §5 we assemble these parts and complete the proof. All of our results generalize from four dimensions to n dimensions $(n\geq 3)$, and the notation of the paper should allow one to follow the argument with the generalization in mind. If n = 2, Theorems 2 and 3 are false but Theorem 4 remains valid.

§2: Our definitions are taken from Zeeman [8]. For p in \mathbb{R}^4 , we define:

the <u>space cone</u> through $p = C_p^S = \{q : q = p \text{ or } G(q-p) < 0\};$ the <u>time cone</u> through $p = C_p^T = \{q : q = p \text{ or } G(q-p) > 0\};$ the <u>light cone</u> through $p = C_p^L = \{q : G(q-p) = 0\}.$

A line through p is called a <u>space line</u>, a <u>time axis</u>, or a <u>light ray</u> accordingly as it lies in the space cone, the time cone, or the light cone through p. A plane through p is called a

2

<u>space-time plane</u> if and only if it contains a time axis through p. Each of these characterizations is independent of the choice of p in the line or plane. A space-time plane can be characterized alternatively as the plane defined by two distinct, intersecting light rays.

If p and q are distinct points and G(q-p) = 0, then $C_p^L \cap C_q^L$ is the light ray through p and q, and we denote this light ray by L(p,q).

We introduce two relations from [7], which we define as follows:

< is a partial ordering, but < is not since it is not transitive. Both relations are preserved by translations and positive dilatations (Zeeman's theorem discovers <u>all</u> transformations which preserve these relations), and both relations are reversed by negative dilatations.

Let $f : \mathbb{R}^4 \longrightarrow \mathbb{R}^4$. We consider the following conditions which might be imposed on f:

(2.1) for each p and q in \mathbb{R}^4 $G(p-q) = 0 \Rightarrow G(fp-fq) = 0;$ (2.2) for each p and q in \mathbb{R}^4 $G(p-q) = 0 \Leftrightarrow G(fp-fq) = 0;$ (2.3) for each p and q in \mathbb{R}^4 $p \leq q \Leftrightarrow fp \leq fq;$ (2.4) for each p and q in \mathbb{R}^4 $p < q \Leftrightarrow fp < fq.$ 4 4 HMMA-2,-1; Let f: 3R —* IR be a bijection. Then (2.4)4=* (2.3) =>(2.2).

<u>Proof</u>: Since G(p-q) = 0 if and only if p = q, $p <^{q}$, or $q <_{i}^{p}$ and since f is injective (one-to-one), (2.3) =*(2.2).

To prove $(2.4)^{=3}$ (2.3), we note that f is surjective (onto). Then $(2.4) =^{(2.3)}$ is a consequence of the fact that p < f q if and only if p < q is false and for each r q < r implies p < r. Likewise, $(2.3) =^{(2.4)}$ is a consequence of the fact that p < q if and only if p < q is false and there exists an r such that p < r and r < q.

<u>LEMMA</u> 2.2; Let $f : IR^4 - IR^4$ be a bijection satisfying (2.2). Then $f(cf) = C_1^{3^*}$, $f(cfncf) = C_p^* 0 C_q^*$ and $f(L(p,q)) = L(f_p, f_q)$.

<u>Proof</u>: $qe cL_p = *G(q-p) = of = *G(fq-fp) = 0^f qe C_{fp}^{1^n}$. Thus $f(C_p^L) = C_{fp}^n$ il range $f = C_p^n$ since f is surjective. $f(C_p^Lnc_q^L) = f(C_p^L)$ n $f(C_q^L) = C_p^n$ n C_q^n since f is bijective. Finally, if G(q-p) = 0, then $f(L(p,q)) = f(C_p^Lnc_p^L) = C_p^n 0^n = L(f_p,f_q)$ $p q rp rq rq r^n q$

IEMMA 2-3:- Let u > c and v > 0. Then $6(u,v) \land 0$ and $\dot{G}(u,v) = 0$ if and only if u and v are dependent.

2

2

Proof; Since $\mathbf{u} > \mathbb{C}$, $\mathbf{t}_{\mathbf{u}} = ||*_{u}||$ and $\mathbf{t}^{\mathbf{u}} > 0$. Thus $\mathbf{t}^{\mathbf{u}} = ||x^{\mathbf{u}}|| \neq 0$. Likewise, since $\mathbf{v} \Rightarrow 0$, $\mathbf{t}^{\mathbf{v}} = ||\mathbf{x}^{\mathbf{v}}|| \wedge 0$. Then $G(\mathbf{u},\mathbf{v}) = \mathbf{t}^{\mathbf{u}}\mathbf{t}^{\mathbf{v}} - (\mathbf{x}^{\mathbf{u}}.\mathbf{x}^{\mathbf{v}})$ $> t_{\mathbf{u}}t_{\mathbf{v}} - ||x_{u}|| ||x^{\mathbf{v}}|| = 0$. Equality holds if and only if $\mathbf{x}_{\mathbf{u}}-\mathbf{x}_{\mathbf{v}} = \mathbf{H}_{\mathbf{U}}^{\mathbf{v}}\mathbf{H}\mathbf{H}_{\mathbf{v}}^{\mathbf{u}}\mathbf{H}$. In this case $\mathbf{x}_{\mathbf{u}} = \mathbf{A}\mathbf{x}_{\mathbf{v}}$ for some $\mathbf{A} > \mathbf{e} > \mathbf{fc}_{\mathbf{u}} = ||_{\mathbf{u}}^{\mathbf{x}}||_{\mathbf{u}} = \lambda \mathbf{t}_{\mathbf{v}}$, and $\mathbf{u} = \lambda \mathbf{v}$. <u>THEOREM 2</u> (Zeeman's Theorem): Let $f : \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ be a bijection satisfying (2.4). Then f is affine-linear.

<u>Proof</u>: By lemmas 2.1 and 2.2 f satisfies (2.2) and takes light rays onto light rays. If f is a bijection of \mathbb{R}^n onto \mathbb{R}^n $(n\geq 2)$ which takes lines onto lines, then f must be affine-linear (see [4], p.110). Hence, it suffices to show that f takes time axes and space lines onto lines. Since each time axis or space line is the intersection of two space-time planes $(n\geq 3!)$ and f is a bijection preserving intersection, we may further reduce the problem to showing that f takes space-time planes onto planes.

Let \mathcal{P} be a space-time plane. Without loss of generality we suppose that \mathbb{O} is in \mathcal{P} and \mathcal{P} = span {u,v} for independent vectors $u \ge 0$ and $v \ge 0$. In addition, we assume $f(\mathbf{0}) = \mathbf{0}$. Let \mathcal{P}' = span {fu,fv}. By lemma 2.1 f satisfies (2.3). Hence, fu $\ge f(\mathbf{0}) = \mathbf{0}$ and fv $\ge f(\mathbf{0}) = \mathbf{0}$. Moreover, fu and fv are independent since f maps distinct light rays onto distinct light rays. Thus \mathcal{P}' is itself a space-time plane.

If w is any element of \mathcal{P} , w lies on a light ray parallel to v which intersects the two parallel light rays $L(\mathbf{0},u)$ and L(v,u+v). Hence, fw lies on a light ray which intersects the two disjoint light rays $L(\mathbf{0},fu)$ and L(fv,f(u+v)). If these light rays are in \mathcal{P}' , so is fw. But $L(\mathbf{0},fu)$ is in \mathcal{P}' and fv is in \mathcal{P}' . Hence, $f(\mathcal{P}) \subseteq \mathcal{P}'$ provided f(u+v) is in \mathcal{P}' .

For λ real f(λu) is in L(Φ ,fu). Moreover, if $\lambda_1 < \lambda_2$, f($\lambda_1 u$) \leq f($\lambda_2 u$). Thus, there exists an increasing bijection

5

 p_1 : IR—yiR such that $f(Au) = p_1(A)f(u)$. Likewise, there exists an increasing bijection p_2 : 3R—*IR such that $f(Au+v) - f v = p_2(A)$ (f (u+v)-fv). So, 6(f (u+v) -fv, f (Au+v) -fv) = $p_2(A) G(f (u+v) - fv) = 0$ since G(u+v-v) = G(u) = 0. Applying lemma 2.3 and the inequalities $f (u+v) - fv \ge D$, $f(Au+v) - f(Au) \ge 0$, we obtain:

$$0 \wedge \pounds(f(u+v)-fv, f(Au+v) - f(Au))$$

= 6(f(u+v)-fv, f(Au+v) - fv + fv - p_x(A)fu)
= $\pounds(f(u+v)-fv, fv) - P_1(A)\delta(f(u+v)-fv, fu)$.

As A tends to +oo, $p_{1}(A)$ tends to +oo also. For the inequality to hold, we must have &(f(u+v)-fv,fu) < 0. However, f(u+v) - fv > <Dand fu > (D. By lemma 2.3 G(f(u+v) - fv, fu) = 0 and so (f(u+v)-fv)and fu are dependent vectors. It follows that f(u+v) is in span $\{fu, fv\} = P^{!}$.

Titus f takes space-time planes into space-time planes. Since f^{1} fulfills the hypotheses of Theorem 2, f^{1} does the same and we conclude that f maps space-time planes <u>onto</u> (space-time) planes, completing the proof.

§2:

<u>LEMMA</u> 3[^]: Let G(u) > 0 and G(v) = 0 with $v \land d$. Then $\widehat{G}(u,v) \land 0$. In fact, if u > d and $v \land d$, $\widehat{G}(u,v) > 0$.

Proof: G(u) > 0 implies $t \stackrel{2}{u} > ||x|||^2$, and G(v) = 0 with $v \wedge <D$ implies $|t_v| = ||x_v|| \wedge 0$. If $0 = 6(u,v) = t_u t_v - (\stackrel{x}{u} \stackrel{\#x}{u})'^{-Lt}$ follows that It $t \stackrel{I}{I} = |x - x \stackrel{I}{I} < Ix \stackrel{II}{II} Ix \stackrel{II}{II} < It \stackrel{I}{I} It \stackrel{I}{I}$ for a contradiction. If u > 0 and $v \ge 0$, then $t_u > ||x_u||$ and $t_v = ||x_v|| \neq 0$. Hence, $\hat{G}(u,v) = t_u t_v - (x_u \cdot x_v) \ge t_u t_v - ||x_u|| ||x_v|| = (t_u - ||x_u||) t_v > 0$.

<u>LEMMA</u> 3.2: Let G(u) < 0. Then there exists w such that $w \neq \mathbf{0}$ and $0 = G(w) = \hat{G}(u,w)$.

<u>Proof</u>: Since G(u) < 0, $t_u^2 < \|x_u\|^2$. Choose x_w in \mathbb{R}^3 such that $\|x_w\| = 1$ and $x_u \cdot x_w = t_u$. This is possible since x_w is in a space of more than one dimension and $-\|x_u\| < t_u < \|x_u\|$. Let $w = (1, x_w)$.

<u>LEMMA</u> 3.3: Let $u > \Phi$ and $v > \Phi$. Then there exists w such that $w > \Phi$, G(w-u) < O, and G(w-v) < O.

<u>Proof</u>: Let $\emptyset = \{q : t_q > 0, G(q-u) < 0, G(q-v) < 0\}$. \emptyset is an open subset of \mathbb{R}^4 in the Euclidean topology. Choose $w_1 \ge \Phi$ then $G(\lambda w_1 - u) = -2\lambda \hat{G}(u, w_1) + G(u)$ and $G(\lambda w_1 - v) = -2\lambda \hat{G}(v, w_1) + G(v)$. By lemma 3.1 $\hat{G}(u, w_1)$ and $\hat{G}(v, w_1)$ are both positive. Hence for λ sufficiently positive, $G(\lambda w_1 - u) < 0$ and $G(\lambda w_1 - v) < 0$, and λw_1 is in \emptyset . But λw_1 is in C_{Φ}^{L} = the boundary of C_{Φ}^{T} . Hence, since \emptyset is a neighborhood of λw_1 , there exists w in $\emptyset \cap C_{\Phi}^{T}$. w has all the properties required by the lemma.

For p and q such that $G(p-q) \neq 0$, we define a set

$$C_{p,q} = \{u : u \in C_p^L, and u = p \text{ or } L(p,u) \cap C_q^L \neq \emptyset\}.$$

section of C_p^L forming an <u>ellipsoid</u> or a <u>hyperboloid</u> with two branches accordingly as q is in C_p^T or C_p^S . This observation makes the following two lemmas geometrically obvious.

LEMMA 3.4: If q is in
$$C_p^T$$
, then $C_p^L = C_{p,q}$.

<u>Proof</u>: If u is in C_p^L and $u \neq p$, consider for λ real the expression $G(p+\lambda(u-p)-q) = G(p-q) + 2\lambda \dot{G}(p-q,u-p)$. Since G(p-q) > 0 = G(u-p), lemma 3.1 guarantees that $G(p-q,u-p) \neq 0$. Thus λ can be found so that $0 = G(p+\lambda(u-p)-q)$. Set $u^* = p+\lambda(u-p)$. Then u^* is in $L(p,u) \cap C_q^L$, and u is in $C_{p,q}$.

<u>LEMMA</u> 3.5: If q is in C_p^S , then $C_p^L \supseteq C_{p,q}$ but $C_p^L \neq C_{p,q}$.

<u>Proof</u>: By lemma 3.2 we can select $w \neq \Phi$ such that O = G(w) = G(p-q,w). Then (p+w) is in C_p^L , but $G(p+\lambda w-q) = G(p-q) < O$ for all λ . Thus $L(p,p+w) \cap C_q^L = \emptyset$ and (p+w) is not in $C_{p,q}$. <u>LEMMA</u> 3.6: Let $f : \mathbb{R}^4 \longrightarrow \mathbb{R}^4$ be a bijection satisfying (2.2). Then if p < q, fq is in C_{fp}^T .

<u>Proof</u>: Suppose there exist p and q with p < q and fq not in C_{fp}^{T} . By lemma 2.2 we may rule out fq being in C_{fp}^{L} . Thus fq is in C_{fp}^{S} .

Lemma 3.5 now tells us that we may choose w in C_{fp}^{L} such that w is not in $C_{fp,fq}$. Since f is bijective, w = fu for some u in C_{p}^{L} . Hence by lemma 3.4 u is in $C_{p,q}$. Since $u \neq p$, there exists u* in $L(p,u) \cap C_{q}^{L}$. Thus fu* is in $f(L(p,u) \cap C_{q}^{L}) = f(L(p,u)) \cap f(C_{q}^{L}) = L(fp,fu) \cap C_{fq}^{L} = L(fp,w) \cap C_{fq}^{L} \neq \emptyset$. Thus w is in $C_{fp,fq}$ contrary to hypothesis. We have no choice but to affirm the lemma. <u>LEMMA</u> 3.7: Let $f : \mathbb{R}^4 \rightarrow \mathbb{R}^4$ be a bijection satisfying (2.2). If $p < q_1$, $p < q_2$, and $fp < fq_1$, then $f_p < fq_2$.

<u>Proof</u>: By lemma 3.3 choose w such that $w > \Phi$, $G(p+w-q_1) < 0$, and $G(p+w-q_2) < 0$. Let $q_3 = p + w$. Then $p < q_3$. So by lemma 3.6 fq₃ is in C_{fp}^T . If fq₃ < fp₁, by transitivity fq₃ < fq₁. Since f⁻¹ fulfills the hypotheses of lemma 3.6, q_1 is in $C_{q_3}^T$. But then $G(q_3-q_1) = G(p+w-q_1) > 0$, which is false. Since fq₃ is in C_{fp}^T and fq₃ \neq fp₁, we must conclude that $f_p < fq_3$.

Now fq₂ is in C_{fp}^{T} . If fq₂ < fp, then fq₂ < fq₃ and q₃ is in $C_{q_2}^{T}$. This contradicts $G(q_3-q_2) = G(p+w-q_2) < 0$, and so we finally conclude that fp < fq₂.

<u>THEOREM</u> 3: Let $f : \mathbb{R}^4 \rightarrow \mathbb{R}^4$ be a bijection satisfying (2.2). Then f or -f satisfies (2.4).

<u>Proof</u>: Suppose that there exists no pair p_1 and q_1 such that $p_1 < q_1$ and $fp_1 < fq_1$. Then $p < q \Rightarrow fp > fq$ by lemma 3.6. Applying the same lemma to f^{-1} , we find that $fp < fq \Rightarrow q$ is in c_p^T and because of our supposition q < p. Thus $p < q \Leftrightarrow -fp < -fq$, and -f satisfies (2.4).

Alternatively suppose there exists a pair p_1 and q_1 such that $p_1 < q_1$ and $fp_1 < fq_1$. Let $p_2 < q_2$. Choose p_0 such that $p_1 < p_0$ and $p_2 < p_0$. By lemma 3.7 $fp_1 < fp_0$. Now consider the map $g = -1 \cdot f \cdot -1$ where -1(p) = -p for each p in \mathbb{IR}^4 . g is a bijection satisfying (2.2). Thus we can apply lemma 3.7 to the inequalities $-p_0 < -p_1$, $-p_0 < -p_2$, and

 $g(-p_0) < g(-p_1)$ to conclude $g(-p_0) < g(-p_2)$. In other words, fp₂ < fp₀. Then $p_2 < p_0$, $p_2 < q_2$, and fp₂ < fp₀ imply fp₂ < fq₂.

We have succeeded in proving that $p < q \Rightarrow fp < fq$. Since we have a pair satisfying $p_1 < q_1$ and $fp_1 < fq_1$, we can apply the same argument to f^{-1} , obtaining $fp < fq \Rightarrow p < q$. Thus f satisfies (2.4).

<u>§4</u>:

<u>LEMMA</u> <u>4.1</u>: Let $f : \mathbb{R}^4 \to \mathbb{R}^4$ be injective and satisfy (2.1). Then $f(c_p^L) \subseteq c_{fp}^L$, $f(c_p^L \cap c_q^L) \subseteq c_{fp}^L \cap c_{fq}^L$, and $f(L(p,q)) \subseteq L(fp,fq)$. <u>Proof</u>: Compare with lemma 2.2.

<u>LEMMA</u> <u>4.2</u>: If r is in C_p^T and q is not in C_p^L , then $C_r^L \cap C_{p,q}$ contains at least two points.

<u>Proof</u>: If q is in C_p^T , then by lemma 3.4 $C_{p,q} = C_p^L$. Thus $C_r^L \cap C_{p,q} = C_r^L \cap C_p^L$ = an ellipsoid, which of course contains two points.

If q is in C_p^S , choose u in $C_r^L \cap C_p^L$ but not in $C_{p,q}$. As in the proofs of lemmas 3.4 and 3.5, we must have $\hat{G}(p-q,u-p) = 0$, and so u is in the set $p + [span\{p-q\}]^{\perp}$. The latter set is a hyperplane passing through p. It meets the ellipsoid $C_r^L \cap C_p^L$ in a closed subset of $C_r^L \cap C_p^L$. The complement in $C_r^L \cap C_p^L$ of this closed subset is the open subset $C_r^L \cap C_{p,q}^L$. If $C_r^L \cap C_{p,q}$ is non-empty, it contains two points. Assume $C^{L} \cap C_{\mathbf{r} \mathbf{p}}$ is empty. Then the ellipsoid $C^{L}_{\mathbf{r}} \cap C^{L}_{\mathbf{p}}$ is a subset of the hyperplane. But since p is on'the hyperplane, all light rays joining p to the ellipsoid are in the hyperplane. Such rays form $C^{\mathbf{p}}$, and the only space containing $C^{L}_{\mathbf{p}}$ is $]R^{4}$ itself. We thus have a contradiction. P <u>THEOREM 4</u>; Let $f : IR^{4} \rightarrow]R^{4}$ be injective and suppose that

 $f(\mathrm{HR}^4)$ is not a subset of a light ray. Then if f satisfies (2.1), f satisfies (2.2).

<u>Proof</u>; Assume (2.2) fails. Then there exist p and q such that $G(p-q) \uparrow 0 = G(fp-fq)$. Hence, $f(C_p^L n c_p^L) c_p \uparrow q = C_p \circ q = L(fp, fq) = L$ where we adopt the abbreviation L for the light ray L(fp, fq).

Let u be in C _ If u / p, choose u* in L(p,u) fl C^L. PJSL q Then fu is in $f(L(p,u)) = f(L(p,u^*))$ CL(fp,fu*). But fu* is in $f(C^{\mathbf{P}}OC^{\mathbf{g}})$ CL. Hence, L(fp,fu*) = L and fu is in L. Thus $f(C_{p*q})$ CL.

Let r be in $C_{\mathbf{p}}^{\mathrm{T}} \cdot By$ lemma 4.2 choose v and w distinct in C^ 0 C_{pg}. Then ffv,fw} <u>c</u> f(C^nC_{pg}) <u>c</u> f(C^) n f(C_{p,q}) <u>c</u> C^r \cap L. But C_{fr}^{\mathrm{L}} n L is a singleton unless the light ray L contains fr. So fr is in L, and f(C_p^T) <u>c</u> L.

Finally, let u be in IR^{4} . choose a light ray I through u which meets $C_{\mathbf{p}}^{\mathrm{T}}$ in two points v and w. Then fu is in $f(1) = f(L(v,w)) _c L(fv,fw) = L$ since fv and fw are in T 4 $f(\mathbf{p}) _c L$. Thus $f(IR) _c L$ contrary to hypothesis, and we must accept the validity of (2.2). <u>LEMMA</u> 5.1: Let G(u) > 0 and v be arbitrary. Then $(\hat{G}(u,v))^2 \ge G(u)G(v)$.

§5:

 $\begin{array}{l} \underline{\text{Proof}} \colon \text{ If } \quad \mathsf{G}(v) \leq \mathsf{O}, \text{ the proof is trivial. So assume } \quad \mathsf{G}(v) > \mathsf{O}. \\ \text{Then } \left(\overset{\mathsf{A}}{\mathsf{G}}(u,v)\right)^2 - \mathsf{G}(u) \, \mathsf{G}(v) \; = \; \left(\mathsf{t}_u \mathsf{t}_v - \mathsf{x}_u \cdot \mathsf{x}_v \right)^2 \; - \; \left(\mathsf{t}_u^2 - \|\mathsf{x}_u\|^2 \right) \left(\mathsf{t}_v^2 - \|\mathsf{x}_v\|^2 \right) \\ = \; -2\mathsf{t}_u \mathsf{t}_v \left(\mathsf{x}_u \cdot \mathsf{x}_v \right) \; + \; \left(\mathsf{x}_u \cdot \mathsf{x}_v \right)^2 \; + \; \mathsf{t}_v^2 \|\mathsf{x}_u\|^2 \; + \; \mathsf{t}_u^2 \|\mathsf{x}_v\|^2 \; - \; \|\mathsf{x}_u\|^2 \|\mathsf{x}_v\|^2 \\ \geq \; -2|\mathsf{t}_u| \, |\mathsf{t}_v| \, |\mathsf{x}_u \cdot \mathsf{x}_v| \; + \; |\mathsf{x}_u \cdot \mathsf{x}_v|^2 \; + \; |\mathsf{t}_v|^2 \|\mathsf{x}_u\|^2 \; + \; |\mathsf{t}_u|^2 \|\mathsf{x}_v\|^2 \; - \; \|\mathsf{x}_u\|^2 \|\mathsf{x}_v\|^2 \\ = \; \left(|\mathsf{t}_v| \, \|\mathsf{x}_u\| - |\mathsf{t}_u| \, \|\mathsf{x}_v\| \right)^2 \; + \; \left(2|\mathsf{t}_u| \, |\mathsf{t}_v| - \|\mathsf{x}_u\| \|\mathsf{x}_v\| - |\mathsf{x}_u \cdot \mathsf{x}_v| \right) \left(\|\mathsf{x}_u\| \|\mathsf{x}_v\| \\ - \; |\mathsf{x}_u \cdot \mathsf{x}_v| \right) \; \geq \; \mathsf{O} \; \; \mathsf{since} \; \; |\mathsf{t}_u| \, |\mathsf{t}_v| \; > \; \|\mathsf{x}_u\| \|\mathsf{x}_v\| \; \geq \; |\mathsf{x}_u \cdot \mathsf{x}_v| \; . \end{array}$

We are now prepared to prove Theorem 1 of the first section. We note first that the <u>Poincare</u> group is the group generated by the (homogeneous) Lorentz transformations and translations. A (<u>homogeneous</u>) <u>Lorentz transformation</u> is a linear map $L : \mathbb{R}^4 \rightarrow \mathbb{R}^4$ which satisfies for each p in \mathbb{R}^4 G(p) = G(Lp). One may easily verify from this definition that such a map L satisfies $\hat{G}(p,q) = \hat{G}(Lp,Lq)$ for all p and q in \mathbb{R}^4 , that L is a bijection, and that L^{-1} is also a Lorentz transformation.

<u>Proof of Theorem 1</u>: Let $f : \mathbb{IR}^4 \to \mathbb{IR}^4$ be a bijection satisfying (2.1). By Theorem 4 f satisfies (2.2). By Theorem 3 <u>+</u>f satisfies (2.4), and by Theorem 2 <u>+</u>f is affine-linear. Thus, f itself is affine-linear.

To establish that f is in the group generated by the Poincare group and dilatations, it suffices to show that f differs from a Lorentz transformation by no more than a translation and/or a dilatation. Since f is affine-linear, f - f(0) = F is a linear map. Moreover, since f has the property (2.2), F does also -i.e., G(p) = 0 <= G(Fp) = 0.

Choose u_1 in $3R^{4}$ with $i^{\circ} \otimes$. By Theorem 3 $G(Fu_1) > 0$. Let $A = / G(Fu_1^{/}/Gfu^{\circ}, and let L = -F_{\Lambda}$. Then L : $TR_{---}*TR$ is a linear map such that $G(p) = 0^{\circ}=4 G(Lp) = 0$ and $G(u_1) = G(Lu_1)$.

Let v be any element of $3R^4$ such that G(v) = 0 and $v \wedge 0$. Then $G(u_1 \sim Av) = G(u_1) - 2AG(u_1, v)$. Since $G(u_{1L}, v) \wedge 0$ by lemma 3.1, A may be chosen so that $G(u_{.L} - Av) = 0$. In this case let $w = u_1 - Av$. Then A is non-zero and $G(u_{.L}, v) = \&(Av + w, v) = \pounds(w, v) = \frac{1}{2\lambda} \sim G(Av + w) = \frac{1}{2\lambda} - G(u_1) = \frac{1}{2\lambda} GtLu^{-1} = -\frac{1}{2\lambda} - G(ALv + Lw) = \mathring{G}(Lw, Lv) = \mathring{G}(ALv + Lw, Lv) = \mathring{G}(Lu_1, Lv)$. Thus $\mathring{G}(u_{L}, h) = \mathring{G}(u_{L} - u_{L}) = \mathring{G}(u_{L} - u_{L})$.

Now let p be an arbitrary element of TR^4 . Consider $GCp-Au^{1} = G(p) - 2A Gfu^{p} + A^2G(u_1)$. As a polynomial in A this expression has discriminant equal to $4(G(u_{1},p))^2 - 4G(u_{1})G(p)$. By lemma 5.1 this is non-negative. Hence, $G(p-Au_1) = 0$ for a suitable choice of A. Let v = p - k i for such a A. Then $G(p) = G(Au_{1L}+v) = 2A \leq (u_1,v) = A^2G(u_x) + 2A \leq (u_{1L},v) = A^2G(Lu_1) + 2A \leq (Lu_1,Lv) = G(Lp)$. Thus L is a Lorentz transformation.

Hence, f = f(D) + AL is in the group generated by translations (f((D)), dilatations (A), and Lorentz transformations (L).

HINT LIBRARY CARNE6IE-MELLSN UNIVERSITY

References

- [1] Barucchi, G., "The group of timelike permutations", Nuovo Cimento 55A(1968), 385-395.
- [2] Barucchi, G., and G. Teppati, "On lemma 3 of Zeeman", Nuovo Cimento <u>51A</u>(1967), 529-532.
- [3] Einstein, A., "On the electrodynamics of moving bodies", translation in <u>The Principle of Relativity</u>, A. Sommerfeld, ed., Dover, New York, 1923.
- [4] Gans, D., <u>Transformations</u> and <u>Geometries</u>, Appleton-Century-Crofts, New York, 1969.
- [5] Pimenov, R. I., <u>Kinematic Spaces</u>, (translation from Russian), Consultants Bureau, New York, 1970.
- [6] Rothaus, O. S., "Order isomorphisms of cones", Proceedings AMS <u>17</u> (part <u>2</u>) (1966), 1284-1288.
- [7] Zeeman, E. C., "Causality implies the Lorentz group", J. Math. Phys. <u>5</u>(1964), 490-493.
- [8] _____, "The topology of Minkowski space", Topology <u>6</u> (1967), 161-170.