A DERIVATION OF THE POINCARE GROUP
 by
 Andrew Vogt*

Report 72-17

August 1972

* This work was partially supported by NSF Science Development Grant GU- 2056.
A DERIVATION OF THE POINCARF GROUP
by
Andrew Vogt

Abstract

Let $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be a bijection such that whenever p and q lie on a common light ray, $f p$ and $f q$ lie on a common light ray. Then f is in the group generated by the Poincaré group and dilatations.

The proof of this fact is based on Zeeman's theorem that causality implies the Lorentz group.
by
Andrew Vogt
Department of Mathematics Carnegie-Mellon University
§1 introduction; A point p in IR^{4} is represented here in the form $p=\left(t_{p}, x_{p}\right)$ where t_{p} is in $I R$ and x_{p} is in E^{3}. For elements x and y in $I R^{3}$, let $x-y$ denote their elan scalar product and let $||x| \backslash=\overline{/ x-x}$. We define the Minkowski. $\hat{G}: H P^{4} \times 3 R^{4}->I R$ by $6(p, q)=t_{p} q^{-}\left(x p^{-x} q\right)$, and
 bijection is a one-to-one, onto map.

THEOREM J. Let $\mathrm{f}: \mathrm{IR}^{4} \rightarrow I R^{4}$ be a bijection which satisfies for each p and q in. $I R^{4}$:

$$
G(p-q)=0 \Longrightarrow G(f p-f q)=0
$$

Then f is in the group generated by the Poincare group and dilatations.

This theorem appears to be new or at least widely unknown. An ambiguous footnote in Einstein's original paper [3], p.46, states that "the equations of the Lorentz transformation may be more simply deduced from the condition that in virtue of these equations the relation $x^{2}+y^{2}+z^{2}=c^{2} t^{2}$ shall have as its consequence the second relation $\S^{2}+r{ }^{2}+£^{2}=c^{2} r^{2} \cdot \mathrm{~m}$

This work was partially supported by NSF Science Development Grant GU-2056.

A theorem with the same conclusions as Theorem 1 but slightly stronger hypotheses -- namely, that $G(p-q)=0 \Leftrightarrow G(f p-f q)=0--$ has been proved by Barucchi [1] and apparently much earlier by Aleksandrov. For references to Aleksandrov's work see Pimenov's book [5], p.21. The author discovered this theorem as well as Theorem 1 independently.

Zeeman's theorem that causality implies the Lorentz group plays an important role in the proof of Theorem 1. We reprove this theorem here in a manner suggested by [6]. For other proofs see Rothaus [6] and Zeeman [7]. Lemma 3 of Zeeman's paper has been clarified by Barucchi and Teppati [2].

In the following three sections we develop parts of the proof of Theorem 1 in the form of Theorems 2, 3, and 4. In §5 we assemble these parts and complete the proof. All of our results generalize from four dimensions to n dimensions ($n>3$), and the notation of the paper should allow one to follow the argument with the generalization in mind. If $n=2$, Theorems 2 and 3 are false but Theorem 4 remains valid.
§2: Our definitions are taken from Zeeman [8]. For p in \mathbb{R}^{4}, we define:
the space cone through $p=C_{p}^{S}=\{q: q=p$ or $G(q-p)<0\}$; the time cone through $p=C_{p}^{T}=\{q: q=p$ or $G(q-p)>0\}$; the light cone through $p=C_{p}^{L}=\{q: G(q-p)=0\}$.
A line through p is called a space line, a time axis, or a light ray accordingly as it lies in the space cone, the time cone, or the light cone through p. A plane through p is called a
space-time plane if and only if it contains a time axis through p. Each of these characterizations is independent of the choice of p in the line or plane. A space-time plane can be characterized alternatively as the plane defined by two distinct, intersecting light rays.

If p and q are distinct points and $G(q-p)=0$, then $C_{p}^{L} \cap C_{q}^{L}$ is the light ray through p and q, and we denote this light ray by $L(p, q)$.

We introduce two relations from [7], which we define as follows:

$$
\begin{aligned}
& p<q \text { if and only if } G(q-p)>0 \text { and } t_{p}<t_{q} ; \\
& p<q \text { if and only if } G(q-p)=0 \text { and } t_{p}<t_{q}
\end{aligned}
$$

$<$ is a partial ordering, but $<$ is not since it is not transitive. Both relations are preserved by translations and positive dilatations (Zeeman's theorem discovers all transformations which preserve these relations), and both relations are reversed by negative dilatations.

Let $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$. We consider the following conditions which might be imposed on f :
(2.1) for each p and q in $\mathbb{R}^{4} \quad G(p-q)=0 \Rightarrow G(f p-f q)=0$;
(2.2) for each p and q in $\mathbb{R}^{4} \quad G(p-q)=0 \Leftrightarrow G(f p-f q)=0$;
(2.3) for each p and q in $\mathbb{R}^{4} p<q \Leftrightarrow f p<f_{q}$;
(2.4) for each p and q in $\mathbb{R}^{4} \quad p<q \Leftrightarrow f p<f_{q}$.
\#NA $-2,-1$; Let $f: 3 R^{4} \quad{ }^{4}$ (R \quad be a bijection. Then (2.4)4 =* (2.3) =>(2.2).

Proof: Since $G(p-q)=0$ if and only if $p=q, p<^{\wedge} q$, or $q<i p$ and since f is injective (one-to-one), (2.3) =*(2.2).

To prove (2.4)^=3 (2.3), we note that f is surjective (onto).
Then (2.4) $=^{\wedge}(2.3)$ is a consequence of the fact that $p<£ q$ if and only if $p<q$ is false and for each $r \quad q<r$ implies $\mathrm{p}<\mathrm{r}$. Likewise, (2.3) $=^{\wedge}(2.4)$ is a consequence of the fact that $p<q$ if and only if $p<q$ is false and there exists an r such that $p<r$ and $r<q$.

LEMMA 2.2; Let $f: I R^{4}-\wedge I R^{4}$ be a bijection satisfying (2.2). Then $f(c £)=C^{3 \wedge}, f(C £ n C £)=C^{\wedge}{ }_{p} 0 C^{\wedge}{ }_{d}$ and $f(L(p, q))=L\left(f_{p}, f_{q}\right)$.

 $f\left(C_{p}^{L}\right) \cap f\left(C_{q}^{L}\right)=C_{p}^{\wedge} n C_{q}^{\wedge}$ since f is bijective. Finally, if $G(q-p)=0$, then $f(L(p, q))=\underset{p}{f\left(C^{L} n c^{L}\right)}=\underset{\mathrm{p}}{\mathrm{C}} \underset{\mathrm{rp}}{\wedge} \underset{\mathrm{rq}}{0} \underset{\mathrm{r}}{\wedge}=\underset{\sim}{\mathrm{L}}\left(\mathrm{f}_{\mathrm{p}}, \mathrm{f}_{\mathrm{q}}\right)$ since $\quad G\left(f_{q}-f p\right)=0$.

LHMA 2-3:- Let $u \gg^{c}$ and $v>$ 。©. Then $6(u, v) \wedge_{-} 0$ and $\hat{G}(u, v)=0 \quad$ if and only if u and v are dependent.

22

 Likewise, since $v ;>0, \mathbf{t}^{v}=\backslash x^{v} \backslash \backslash \wedge 0$. Then $G(u, v)=\mathbf{t}^{\mathbf{v}} \mathrm{t}^{\mathrm{v}}-\left(\mathrm{x}^{\mathrm{u}} \cdot \mathrm{x}^{\mathrm{v}}\right)$ $>$. $\mathrm{t}_{\mathrm{u}} \mathrm{t}_{\mathrm{v}}-\backslash x_{u} \backslash \backslash \backslash x^{\wedge} \backslash \backslash=0$. Equality holds if and only if $\mathrm{x}_{\mathrm{u}}-\mathrm{x}_{\mathrm{v}}=$
 $\lambda\left\|x_{v}\right\|=\lambda t_{v}$, and $u=\lambda v$.

THEOREM $\underline{2}$ (Zeeman's Theorem) : Let $f: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{4}$ be a bijection satisfying (2.4). Then f is affine-linear.

Proof: By lemmas 2.1 and 2.2 f satisfies (2.2) and takes light rays onto light rays. If f is a bijection of \mathbb{R}^{n} onto \mathbb{R}^{n} ($n \geq 2$) which takes lines onto lines, then f must be affine-linear (see [4], p.110). Hence, it suffices to show that f takes time axes and space lines onto lines. Since each time axis or space line is the intersection of two space-time planes ($n \geq 3$!) and f is a bijection preserving intersection, we may further reduce the problem to showing that f takes space-time planes onto planes. Let p be a space-time plane. Without loss of generality we suppose that D is in P and $P=\operatorname{span}\{u, v\}$ for independent vectors $u \geqslant \mathbb{D}$ and $v \geqslant \mathbb{\infty}$. In addition, we assume $f(\mathbb{D})=\mathbb{\oplus}$. Let $P l^{\prime}=\operatorname{span}\{f u, f v\} . ~ B y ~ l e m m a ~ 2.1 ~ f ~ s a t i s f i e s ~(2.3) . ~ H e n c e, ~$ $f u \geqslant f(\mathbb{D})=\mathbb{D}$ and $f v>f(\mathbb{D})=\mathbb{D}$. Moreover, fu and $f v$ are independent since f maps distinct light rays onto distinct light rays. Thus $p \mathrm{is}$ itself a space-time plane.

If w is any element of p, w lies on a light ray parallel to v which intersects the two parallel light rays $L(\mathbb{C}, u)$ and $\mathrm{L}(\mathrm{v}, \mathrm{u}+\mathrm{v})$. Hence, fw lies on a light ray which intersects the two disjoint light rays $L(\mathbb{O}, f u)$ and $L(f v, f(u+v))$. If these light rays are in pl^{\prime}, so is fw. But $\mathrm{L}(\mathbb{O}, f u)$ is in pl and fv is in PI. Hence, $f(P) \subseteq p l$ provided $f(u+v)$ is in $p 1$.

For λ real $f(\lambda u)$ is in $L(\mathbb{D}, f u)$. Moreover, if $\lambda_{1}<\lambda_{2}$, $f\left(\lambda_{1} u\right) \leqslant f\left(\lambda_{2} u\right)$. Thus, there exists an increasing bijection
$\mathrm{p}_{1}: I R-y i R$ such that $\mathrm{f}(\mathrm{Au})=\mathrm{p}_{1}(\mathrm{~A}) \mathrm{f}(\mathrm{u})$. Likewise, there
 $\mathrm{f}(\mathrm{Au}+\mathrm{v})-\mathrm{f} v=\mathrm{p}_{2}(\mathrm{~A})(\mathrm{f}(\mathrm{u}+\mathrm{v})-\mathrm{fv})$. So, $6(\mathrm{f}(\mathrm{u}+\mathrm{v})-\mathrm{fv}, \mathrm{f}(\mathrm{Au}+\mathrm{v})-\mathrm{fv})=$ $p_{2}(A) G(f(u+v)-f v)=0$ since $G(u+v-v)=G(u)=0$. Applying
 we obtain:

$$
\begin{aligned}
0 & \wedge £(f(u+v)-f v, f(A u+v)-f(A u)) \\
& =6\left(f(u+v)-f v, f(A u+v)-f v+f v-p_{x}(A) f u\right) \\
& =\hat{G}(f(u+v)-f v, f v)-P_{1}(A) 6(f(u+v)-f v, f u)
\end{aligned}
$$

As A tends to $+\infty, p_{1}$ (A) tends to $+\infty 0$ also. For the inequality to hold, we must have \& (f $(u+v)-f v, f u)<\hat{\sim}$. . However, $f(u+v)-f v><D$ and $\mathrm{fu}>$. (D. By lemma 2.3 $\mathrm{G}^{\wedge}(\mathrm{f}(\mathrm{u}+\mathrm{v})-\mathrm{fv}, \mathrm{fu})=0$ and $\mathrm{so}(\mathrm{f}(\mathrm{u}+\mathrm{v})-\mathrm{fv})$ and $f u$ are dependent vectors. It follows that $f(u+v)$ is in $\operatorname{span}\{f u, f v\}=P^{!}$.

Tiius f takes space-time planes into spacetime planes. Since fa fulfills the hypotheses of Theorem 2, fl^{1} does the same and we conclude that f maps space-time planes onto (space-time) planes, completing the proof.

§2:

LEMMA 3^{\wedge} : Let $G(u)>0$ and $G(v)=0$ with $v^{\wedge} \circlearrowright$. Then $\hat{G}(u, v) \wedge 0$. In fact, if $u><D$ and $v \wedge>d), \hat{G}(u, v)>0$.

Proof; $G(u)>0$ implies $t \stackrel{2}{2}>\backslash x \backslash_{u}{ }^{2}$, and $G(v)=0$ with $v^{\wedge}<D$ implies $\quad\left|t_{v}\right|=\left\|x_{v}\right\| \wedge 0$. If $0=6(u, v)=t_{u} t_{v}-\left(\dot{x}_{u}{ }^{\# X_{v}}\right)^{\prime}{ }^{L t}$

contradiction. If $u>\infty$ and $v>\infty$, then $t_{u}>\left\|x_{u}\right\|$ and $t_{v}=\left\|x_{v}\right\| \neq 0$. Hence, $G(u, v)=t_{u} t_{v}-\left(x_{u} \cdot x_{v}\right) \geq t_{u} t_{v}-\left\|x_{u}\right\|\left\|x_{v}\right\|=$ $\left(t_{u}-\left\|x_{u}\right\|\right) t_{v}>0$.

LEMMA 3.2: Let $G(u)<0$. Then there exists w such that $w \neq \infty$ and $O=G(w)=G(u, w)$.

Proof: Since $G(u)<0, t_{u}^{2}<\left\|x_{u}\right\|^{2}$. Choose x_{w} in \mathbb{R}^{3} such that $\left\|x_{w}\right\|=1$ and $x_{u} \cdot x_{w}=t_{u}$. This is possible since x_{w} is in a space of more than one dimension and $-\left\|x_{u}\right\|<t_{u}<\left\|x_{u}\right\|$. Let $\mathrm{w}=\left(1, \mathrm{x}_{\mathrm{w}}\right)$.

LEMMA 3.3: Let $u>\oplus$ and $v>\oplus$. Then there exists w such that $w>\oplus, G(w-u)<0$, and $G(w-v)<0$.

Proof: Let $\theta=\left\{q: t_{q}>0, G(q-u)<0, G(q-v)<0\right\}$. θ is an open subset of \mathbb{R}^{4} in the Euclidean topology. Choose $w_{1}>\infty$ then $G\left(\lambda w_{1}-u\right)=-2 \lambda G\left(u, w_{1}\right)+G(u)$ and $G\left(\lambda w_{1}-v\right)=-2 \lambda G\left(v, w_{1}\right)+G(v)$. By lemma 3.1 $\hat{G}\left(u, w_{1}\right)$ and $\hat{G}\left(v, w_{1}\right)$ are both positive. Hence for λ sufficiently positive, $G\left(\lambda w_{1}-u\right)<0$ and $G\left(\lambda w_{1}-v\right)<0$, and λw_{1} is in θ. But λw_{1} is in $C_{\oplus}^{L}=$ the boundary of C_{\oplus}^{T}. Hence, since θ is a neighborhood of λw_{1}, there exists w in $\theta \cap C_{\oplus}^{T}$. w has all the properties required by the lemma.

For p and q such that $G(p-q) \neq 0$, we define a set

$$
c_{p, q}=\left\{u: u \in C_{p}^{L}, \text { and } u=p \text { or } L(p, u) \cap C_{q}^{L} \neq \varnothing\right\}
$$

$C_{p, q}$ is another "cone" through p. If u is in $C_{p, q}$ and $u \neq p$, then $L(p, u) \cap C_{q}^{L} \subseteq C_{p}^{L} \cap C_{q}^{L}$. The set $C_{p}^{L} \cap C_{q}^{L}$ is a
section of C_{p}^{L} forming an ellipsoid or a hyperboloid with two branches accordingly as q is in C_{p}^{T} or C_{p}^{S}. This observation makes the following two lemmas geometrically obvious.

LEMMA 3.4: If q is in C_{p}^{T}, then $C_{p}^{L}=C_{p, q}$. Proof: If u is in C_{p}^{L} and $u \neq p$, consider for λ real the expression $G(p+\lambda(u-p)-q)=G(p-q)+2 \lambda \hat{G}(p-q, u-p)$. Since $\mathrm{G}(\mathrm{p}-\mathrm{q})>\mathrm{O}=\mathrm{G}(\mathrm{u}-\mathrm{p})$, lemma 3.1 guarantees that $\mathrm{G}(\mathrm{p}-\mathrm{q}, \mathrm{u}-\mathrm{p}) \neq 0$. Thus λ can be found so that $0=G(p+\lambda(u-p)-q)$. Set $u^{*}=p+\lambda(u-p)$. Then u^{*} is in $L(p, u) \cap C_{q}^{L}$, and u is in $c_{p, q}$.
LEMMA 3.5: If q is in c_{p}^{S}, then $c_{p}^{L} \supseteq c_{p, q}$ but $c_{p}^{L} \neq c_{p, q}$. Proof: By lemma 3.2 we can select $w \neq \Phi$ such that $O=G(w)=$ $G(p-q, w)$. Then $(p+w)$ is in C_{p}^{L}, but $G(p+\lambda w-q)=G(p-q)<0$ for all λ. Thus $L(p, p+w) \cap C_{q}^{L}=\varnothing$ and $(p+w)$ is not in $C_{p, q}$.

LEMMA 3.6: Let $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be a bijection satisfying (2.2). Then if $p<q$, fa is in $C_{f p}^{T}$.

Proof: Suppose there exist p and q with $p<q$ and iq not in $C_{f p}^{T}$. By lemma 2.2 we may rule out $f q$ being in $C_{f p}^{L}$. Thus $f q$ is in $C_{f p}^{S}$.

Lemma 3.5 now tells us that we may choose w. in $C_{f p}^{L}$ such that w is not in $C_{f p, f q}$. Since f is bijective, $w=f u$ for some u in C_{p}^{L}. Hence by lemma $3.4 u$ is in $C_{p, q}$. Since $u \neq p$, there exists u^{*} in $L(p, u) \cap C_{q}^{L}$. Thus fa* is in $f\left(L(p, u) \cap c_{q}^{L}\right)=f(L(p, u)) \cap f\left(C_{q}^{\mathrm{L}}\right)=L(f p, f u) \cap C_{f q}^{\mathrm{L}}=\mathrm{L}(f p, w) \cap C_{f q}^{\mathrm{L}} \neq \varnothing$. Thus w is in $C_{f p, f q}$ contrary to hypothesis. We have no choice but to affirm the lemma.

LEMMA 3.7: Let $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be a bijection satisfying (2.2). If $p<q_{1}, p<q_{2}$, and $f p<\mathrm{fq}_{1}$, then $\mathrm{f}_{\mathrm{p}}<\mathrm{fq}_{2}$.

Proof: By lemma 3.3 choose w such that $w>\mathbb{1}, G\left(p+w-q_{1}\right)<0$, and $\mathrm{G}\left(\mathrm{p}+\mathrm{w}-\mathrm{q}_{2}\right)<\mathrm{o}$. Let $\mathrm{q}_{3}=\mathrm{p}+\mathrm{w}$. Then $\mathrm{p}<\mathrm{q}_{3}$. So by lemma $3.6 \quad \mathrm{fq}_{3}$ is in $\mathrm{C}_{\mathrm{fp}}^{\mathrm{T}}$. If $\mathrm{fq}_{3}<\mathrm{fp}_{1}$, by transitivity $\mathrm{fq}_{3}<\mathrm{fq}_{1}$. Since f^{-1} fulfills the hypotheses of lemma 3.6, q_{1} is in $\mathrm{C}_{\mathrm{q}_{3}}^{\mathrm{T}}$. But then $\mathrm{G}\left(\mathrm{q}_{3}-\mathrm{q}_{1}\right)=\mathrm{G}\left(\mathrm{p}+\mathrm{w}-\mathrm{q}_{1}\right)>0$, which is false. Since $f q_{3}$ is in $C_{f p}^{T}$ and $f q_{3} \neq f p_{1}$, we must conclude that $f_{p}<\mathrm{fq}_{3}$.

Now fq_{2} is in $\mathrm{C}_{\mathrm{fp}}^{\mathrm{T}}$. If $\mathrm{fq}_{2}<\mathrm{fp}$, then $\mathrm{fq}_{2}<\mathrm{fq}_{3}$ and q_{3} is in $C_{q_{2}}^{T}$. This contradicts $G\left(q_{3}-q_{2}\right)=G\left(p+w-q_{2}\right)<0$, and so we finally conclude that $\mathrm{fp}<\mathrm{fq}_{2}$.

THEOREM 3: Let $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be a bijection satisfying (2.2). Then f or $-f$ satisfies (2.4).

Proof: Suppose that there exists no pair p_{1} and q_{1} such that $p_{1}<q_{1}$ and $f p_{1}<f q_{1}$. Then $p<q \Rightarrow f p>f q$ by lemma 3.6. Applying the same lemma to f^{-1}, we find that $f p<f q \Rightarrow q$ is in C_{p}^{T} and because of our supposition $q<p$. Thus $\mathrm{p}<\mathrm{q} \Leftrightarrow-\mathrm{fp}<-\mathrm{fq}$, and -f satisfies (2.4).

Alternatively suppose there exists a pair p_{1} and q_{1} such that $p_{1}<q_{1}$ and $f p_{1}<f q_{1}$. Let $p_{2}<q_{2}$. Choose p_{0} such that $p_{1}<p_{0}$ and $p_{2}<\mathrm{p}_{\mathrm{o}}$. By lemma $3.7 \mathrm{fp}_{1}<\mathrm{fp}_{0}$. Now consider the map $g=-1 \cdot f 0-1$ where $-1(p)=-p$ for each p in \mathbb{R}^{4}. g is a bijection satisfying (2.2). Thus we can apply lemma 3.7 to the inequalities $-p_{0}<-p_{1},-p_{0}<-p_{2}$, and
$g\left(-p_{0}\right)<g\left(-p_{1}\right)$ to conclude $g\left(-p_{0}\right)<g\left(-p_{2}\right)$. In other words, $\mathrm{fp}_{2}<\mathrm{fp} \mathrm{o}_{\mathrm{o}}$. Then $\mathrm{p}_{2}<\mathrm{p}_{\mathrm{o}}, \mathrm{p}_{2}<\mathrm{q}_{2}$, and $\mathrm{fp}_{2}<\mathrm{fp} \mathrm{o}_{\mathrm{o}}$ imply $\mathrm{fp}_{2}<\mathrm{fq}_{2}$.

We have succeeded in proving that $p<q \Rightarrow f p<f q$. Since we have a pair satisfying $p_{1}<q_{1}$ and $f p_{1}<\mathrm{fq}_{1}$, we can apply the same argument to f^{-1}, obtaining $f p<f q \Rightarrow p<q$. Thus f satisfies (2.4).
§ $4=$
LEMMA 4.1: Let $f: \mathbb{R}^{4} \longrightarrow \mathbb{R}^{4}$ be injective and satisfy (2.1). Then $f\left(C_{p}^{L}\right) \subseteq C_{f p}^{L}, f\left(C_{p}^{L} \cap c_{q}^{L}\right) \subseteq C_{f p}^{L} \cap C_{f q}^{L}$, and $f(L(p, q)) \subseteq L(f p, f q)$. Proof: Compare with lemma 2.2.

LEMMA 4.2: If r is in C_{p}^{T} and q is not in C_{p}^{L}, then $C_{r}^{L} \cap C_{p, q}$ contains at least two points.

Proof: If q is in C_{p}^{T}, then by lemma $3.4 C_{p, q}=C_{p}^{L}$. Thus $C_{r}^{L} \cap C_{p, q}=C_{r}^{L} \cap C_{p}^{L}=$ an ellipsoid, which of course contains two points.

If q is in C_{p}^{S}, choose u in $C_{r}^{L} \cap C_{p}^{L}$ but not in $C_{p, q}$. As in the proofs of lemmas 3.4 and 3.5 , we must have $G(p-q, u-p)=0$, and so u is in the set $p+[\operatorname{span}\{p-q\}]^{\perp}$. The latter set is a hyperplane passing through p. It meets the ellipsoid $C_{r}^{L} \cap C_{p}^{L}$ in a closed subset of $C_{r}^{L} \cap C_{p}^{L}$. The complement in $C_{r}^{L} \cap C_{p}^{L}$ of this closed subset is the open subset $C_{r}^{L} \cap C_{p, q}$. If $C_{r}^{L} \cap C_{p, q}$ is nonempty, it contains two points.
 is a subset of the hyperplane. But since p is on' the hyperplane, all light rays joining \mathbf{L}^{p} to the ellipsoid are in the hyperplane. Such rays form $C^{\mathbf{P}}$, and the only space containing $\mathrm{C}_{\mathrm{P}}^{\frac{1}{1}}$ is $] \mathrm{R}^{4}$ itself. We thus have a contradiction.
THEOREM 4; Let $\mathrm{f}: \mathrm{IR}^{4} \rightarrow \mathrm{JR}^{4}$ be injective and suppose that $f\left(H R{ }^{4}\right)$ is not a subset of a light ray. Then if f satisfies (2.1) , f satisfies (2.2).

Proof; Assume (2.2) fails. Then there exist p and q such
 $L(f p, f q)=L$ where we adopt the abbreviation L for the light ray $L(f p, f q)$.

Then $f u$ is in $f(L(p, u))=f\left(L\left(p, u^{*}\right)\right) \overrightarrow{C L}(f p, f u *)$. But tu* is in $f\left(C^{p} O C\right) \quad-\bar{c}$. Hence, $L\left(f p, f u^{*}\right)=L$ and $f u$ is in L. Thus $f\left(C_{P * q}\right) \underset{\sim}{c}$.

Let r be in C_{p}^{T}. By lemma 4.2 choose v and w distinct
 But $C_{f r}^{L} n L$ is a singleton unless the light ray L contains fr. So $f r$ is in L, and $f\left(C_{p}^{T}\right) \subset \frac{L}{4}$.

Finally, let u be in $I R^{4}$. choose a light ray I through u which meets C_{p}^{T} in two points v and w. Then $f u$ is in $f(\mathrm{l})=\mathrm{f}(\mathrm{L}(\mathrm{v}, \mathrm{w})) \mathrm{C}_{\mathrm{C}} \mathrm{L}(\mathrm{fv}, \mathrm{fw})=\mathrm{L}$ since fv and $\mathrm{f} w$ are in
$\mathrm{T} \quad 4$
$f(\mathbb{P})-C$ L. Thus $f(\operatorname{IR})$ C L contrary to hypothesis, and we must accept the validity of (2.2).
§ㄷ:
LEMMA 5.1: Let $G(u)>0$ and v be arbitrary. Then $(G(u, v))^{2} \geq G(u) G(v)$.

Proof: If $G(v) \leq 0$, the proof is trivial. So assume $G(v)>0$. Then $(G(u, v))^{2}-G(u) G(v)=\left(t_{u} t_{v}-x_{u} \cdot x_{v}\right)^{2}-\left(t_{u}^{2}-\left\|x_{u}\right\|^{2}\right)\left(t_{v}^{2}-\left\|x_{v}\right\|^{2}\right)$
$=-2 t_{u} t_{v}\left(x_{u} \cdot x_{v}\right)+\left(x_{u} \cdot x_{v}\right)^{2}+t_{v}^{2}\left\|x_{u}\right\|^{2}+t_{u}^{2}\left\|x_{v}\right\|^{2}-\left\|x_{u}\right\|^{2}\left\|x_{v}\right\|^{2}$
$2-2\left|t_{u}\right|\left|t_{v}\right|\left|x_{u} \cdot x_{v}\right|+\left|x_{u} \cdot x_{v}\right|^{2}+\left|t_{v}\right|^{2}\left\|x_{u}\right\|^{2}+\left|t_{u}\right|^{2}\left\|x_{v}\right\|^{2}-\left\|x_{u}\right\|^{2}\left\|x_{v}\right\|^{2}$
$=\left(\left|t_{v}\right|\left\|x_{u}\right\|-\left|t_{u}\right|\left\|x_{v}\right\|\right)^{2}+\left(2\left|t_{u}\right|\left|t_{v}\right|-\left\|x_{u}\right\|\left\|x_{v}\right\|-\left|x_{u} \cdot x_{v}\right|\right)\left(\left\|x_{u}\right\|\left\|x_{v}\right\|\right.$

- $\left.\left|x_{u} \cdot x_{v}\right|\right) \geq 0$ since $\left|t_{u}\right|\left|t_{v}\right|>\left\|x_{u}\right\|\left\|x_{v}\right\| \geq\left|x_{u} \cdot x_{v}\right|$.

We are now prepared to prove Theorem 1 of the first section. We note first that the poincare group is the group generated by the (homogeneous) Lorentz transformations and translations. A (homogeneous) Lorentz transformation is a linear map $L: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ which satisfies for each p in $\mathbb{R}^{4} G(p)=G(L p)$. one may easily verify from this definition that such a map L satisfies $\hat{G}(p, q)=\hat{G}(L p, L q)$ for all p and q in \mathbb{R}^{4}, that L is a bijection, and that L^{-1} is also a Lorentz transformation. Proof of Theorem $1:$ Let $f: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be a bijection satisfying (2.1). By Theorem 4 f satisfies (2.2). By Theorem 3 $\pm f$ satisfies (2.4), and by Theorem $2 \pm f$ is affine-linear. Thus, f itself is affine-linear.

To establish that f is in the group generated by the Poincaré group and dilatations, it suffices to show that f differs from a Lorentz transformation by no more than a translation and/or a dilatation.

Since f is affine-linear, $f-f(0)=F$ is a linear map. Moreover, since f has the property (2.2), F does also --
i.e., $G(p)=0<=\wedge G(F p)=0$.

Choose u_{1} in $3 R^{\mathbf{n}^{4}}$ with $i^{\wedge}>$ ©. By Theorem $3 G\left(F u_{1}\right)>0$.
Let $A=/ G\left(F u_{\perp} / G f u \wedge\right.$, and let $L=-\underset{\lambda}{ }$. Then $L: T R _{ }^{*} T R$ is a linear map such that $G(p)=0^{\wedge}=4 G(L p)=0$ and $G\left(u_{1}\right)=$ $G\left(L u_{1}\right)$.

Let v be any element of $3 R^{4}$ such that $G(v)=0$ and $v^{\wedge} \Phi$. Then $G\left(u_{1} \sim A v\right)=G\left(u_{1}\right)-2 A \hat{G}\left(u_{1}, v\right)$. Since $\hat{G}\left(u_{1 L}, v\right) \wedge 0$ by lemma 3.1, A may be chosen so that $G(u .-A v)=0$. In this case let $w=u_{1}-A v$. Then A is non-zero and $\left.\hat{G(u .}{ }_{1}, v\right)=$ $\&(A v+w, v)=£(w, v)=\frac{1}{2 \lambda} \sim G(A v+w)=\frac{1}{2 \lambda}-G\left(u_{1}\right)=\frac{1}{2 \lambda} G t L u \wedge=$
 $\left.\hat{G} C u_{\mathbf{L}^{\prime}}{ }^{\wedge}\right)={ }^{\prime}(\wedge(\mathrm{Lu} \wedge \mathrm{Lv})$ for any v such that $G(\mathrm{v})=0$.

Now let p be an arbitrary element of $T R^{4}$. Consider $\left.\left.G C p-A u_{f}\right)=G(p)-2 A \hat{G f u} \wedge^{\prime} p\right)+A^{2} G\left(u_{\perp}.\right)$. As a polynomial in A this expression has discriminant equal to $\left.4\left(G \hat{\left(u-{ }_{\perp}\right.}{ }^{\prime} p\right)\right)^{2}-4 G\left(u r_{\perp}\right) G(p)$. By lemma 5.1 this is non-negative. Hence, $G\left(p-A u_{\mathbf{1}}\right)=0$ for a suitable choice of A. Let $v=p-\sim k \backslash i$ for such a A. Then $G(p)=G\left(A u_{1 L}+v\right)=2 A<§\left(u_{1}, v\right)=A^{2} G\left(u_{x}\right)+2 A \&\left(u_{i L}, v\right)=A^{2} G\left(L u_{1}\right)+$ $\left.2 A \hat{G}\left(L u_{\underline{1}}, L v\right)=G C A L u_{-}^{\wedge} L v\right)=G(L p)$. Thus L is a Lorentz transformation. Hence, $f=f(\mathbb{D})+A L$ is in the group generated by translations (f((D)), dilatation (A), and Lorentz transformations (L) .

References

[1] Barucchi, G., "The group of timelike permutations", Nuovo Cimento 55A(1968), 385-395.
[2] Barucchi, G., and G. Teppati, "On lemma 3 of zeeman", Nuovo Cimento 51A(1967): 529-532.
[3] Einstein, A., "On the electrodynamics of moving bodies", translation in The Principle of Relativity, A. Sommerfeld, ed., Dover, New York, 1923.
[4] Gans, D., Transformations and Geometries, Appleton-CenturyCrofts, New York, 1969.
[5] Pimenov, R. I., Kinematic Spaces, (translation from Russian), Consultants Bureau, New York, 1970.
[6] Rothaus, O. S., "Order isomorphisms ot cones", Proceedings AMS 17 (part 2) (1966), 1284-1288.
[7] Zeeman, E. C., "Causality implies the Lorentz group", J. Math. Phys. 5(1964), 490-493.
[8] $(1967), 161-170$. "The topology of Minkowski space", Topology 6

