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Abstract

et £ : 324——QIR4 be a bijection such that whenever

p and g 1lie on a common light ray, fp and fgq 1lie on a
common light ray. Then f is in the group generated by the
Poincare group and dilatations.

The proof of this fact is based on Zeeman's theorem that

causality implies the Lorentz group.
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81 introduction; A point p in IR4 Is represented here in the

form p = (t_,x_ ) where t isin IR and x_ is in E3. For
PP p Y

3
elements x and y in IR , let x-y denote their Euclidean

scalar product and let \\x\\ =/ x-x. W define the Munkowski.

A 4 4
metrec G: HP x 3R —»IR by 6(p,q) =t g- (XpXg, and

we define G: IR*>3R by G(p) :G(Ap,p) =t ]i ||,.X-|$1\2- A

bijection is a one-to-one, onto map.
THEOREMJL  Let f : IR = IR

for each p and q in. IR%:

be a bijection which satisfies

Gp-q) =0 == ([fp-fq) = 0.

Then f is in the group generated by the Poi ncar é group and
di | atations.

This theorem appears to be new or at |east w dely unknown.
An anmbi guous footnote in Einstein's original paper [3], p.46,
states that "the equations of the Lorentz transformation may be
nore sinply deduced fromthe condition that in virtue of these

2 2

equations the relation x° + y2 + z :c2t 2 shall have as its

consequence the second relation § +r]2 +£2 :czr 2 M

This work was partially supported by NSF Science Devel opnent
G ant GU- 2056.



A theorem with the same conclusions as Theorem 1 but slightly
stronger hypotheses -- namely, that G(p-q) = 0&G(fp-fq) = 0 --
has been proved by Barucchi [1] and apparently much earlier by
Aleksandrov. For references to Aleksandrov's work see Pimenov's
book [5], p.21l. The author discovered this theorem as well as
Theorem 1 independently.

Zeeman's theorem that causality implies the Lorentz group
plays an important role in the proof of Theorem 1. We reprove
this theorem here in a manner suggested by [6]. For other
proofs see Rothaus [6] and Zeeman [7]. Lemma 3 of Zeeman's
paper has been clarified by Barucchi and Teppati [2].

In the following three sections we develop parts of the
proof of Theorem 1 in the form of Theorems 2, 3, and 4. 1In §5
we assemble these parts and complete the proof. All of our
results generalize from four dimensions to n dimensions (n>3),
and the notation of the paper should allow one to follow the
argument with the generalization in mind. If n = 2, Theorems 2

and 3 are false but Theorem 4 remains valid.

§2: oOur definitions are taken from Zeeman [8]. For p in IR ,

we define:

the space cone through p = CS ={g: g=p or G(g-p) < O};:
the time cone through p = Cg ={g: gq=p or G(g-p) > 0O};
the light cone through p = Cg = {g : G(g-p) = O].

A line through p 1is called a space line, a time axis, or a

light ray accordingly as it lies in the space cone, the time cone,

or the light cone through p. A plane through p is called a



space-time plane if and only if it contains a time axis through p.

Each of these characterizations is independent of the choice of
P in the line or plane. A space-time plane can be characterized
alternatively as the plane defined by two distinct, intersecting
light rays.

If p and q are distinct points and G(g-p) = O, then
C; n Cg is the light ray through p and g, and we denote this
light ray by L(p,q) .

We introduce two relations from [7], which we define as

follows:

p< q if and only if G(g-p) > O and tp < tq;

p< g if and only if G(g-p) = O and tp < tq'

< is a partial ordering, but < 1is not since it is not transitive.
Both relations are preserved by translations and positive dilata-
tions (Zeeman's theorem discovers all transformations which pre-
serve these relations), and both relations are reversed by negative
dilatations.

et £ : nl4——9IR4. We consider the following conditions

which might be imposed on f£:

(2.1) for each p and g in 324 G(p-q) = 0 =3G(fp-£fq) = O;
(2.2) for each p and g in 1R4 G(p-q) = 0& G(fp-£fq) = O;
(2.3) for each p and g in IR4 P< a&dfp < fq:

4

(2.4) for each p and g in IR p< a&fp < fq.



pal 4
+HHA9A 24; Let f @ 3R — IR be a bijection. Then

(2.4)4=* (2.3) =>(2.2) .

Proof: Since @Ep-q) =0 if and only if p=q, p<t g, or g<;p
and since f is injective (one-to-one), (2.3) =*(2.2).

To prove (2.4)"=3 (2.3), we note that f 1is surjective (onto).
Then (2.4) =(2.3) is a consequence of the fact that p <€ q if
and only if p<q is false and for each r g<r inplies
p<r. Likewise, (2.3) =2(2.4) is a consequence of the fact that
p<gq if and only if p < q is false and there exists an r such

that p<r and r < q.

LEMVA 2.2; Let f : IR*~2IR* be a bijection satisfying (2.2).
Then f(c£) :C?j"‘, f(cEncE) :C"pOC"ci and f(L(p,q)) =L(fp fq).

Proof: qe CJB:*G(q--p) = of=*Q f g-fp) = Of qeclﬁp. Thus

L _ . _ . . . . L L —
f(Cp) = C%’E) il range f = ?r’)\ since f is surjective. f(Cpnc(? =

f(CH) n f(CH) = C» N C~ since f is bijective. Finally, if
( 1:? ( q) b a J y

G(g-p) = O, then f(L(p,q)) = f(C'nc") = C» 0~ = L(fp,fq)

P q o rq J
since G(fg-fp) = O.
lBviviA 2-3:-- -t Y>¢ and vy > © Then 6(uv) ~_0 and
(%(u,v) = if and only if u and v are dependent.
2 2

Proof: Since u=>®, t, = W\ and t >0 Thus to= W\ / 0.

Likewise, since v > 0, t = W W\ A~ 0. Then Guv) = tt - *xY
> tyty - W\ \o>™\ = 0. Equality holds if and only if x,-%x, =

X X Inthiscase x,, =Ax,, for some A fc, = x; =

H'H 11°H- u V > °>""u 1]

Al = At,, and = AV.



THEOREM 2 (Zeeman's Theorem): Let £ : IR4——9HQ4 be a bijection

satisfying (2.4). Then f 1is affine-linear.

Proof: By lemmas 2.1 and 2.2 f satisfies (2.2) and takes light
rays onto light rays. If £ 1is a bijection of ®R" onto w"
(n>2) which takes lines onto lines, then f must be affine-linear
(see [4], p.110). Hence, it suffices to show that f takes time
axes and space lines onto lines. Since each time axis or space
line is the intersection of two space-time planes (n>3!) and £

is a bijection préserving intersection, we may further reduce the
problem to showing that £ takes space-time planes onto planes,

Let © be a space-time plane. Without loss of generality
we suppose that © is in ¢ and ¢ = span {u,v} for independent
vectors u > 0 and v > 0. 1In addition, we assume f(0®) = 0.

Let ®' = gpan {fu,fv}. By lemma 2.1 f satisfies (2.3). Hence,
fu > £(0) = © and £fv > f£(0) = 0. Moreover, fu and f£fv are
independent since f maps distinct light rays onto distinct light
rays. Thus ' 1is itself a space-time plane.

If w is any element of , w 1lies on a light ray parallel
to v which intersects the two parallel light rays L(®,u) and
L(v,u+v), Hence,fw 1lies on a light ray which intersects the two
disjoint light rays L(0,fu) and L(fv,f(u+v)). If these light
rays are in ', so is fw. But TL(0,fu) is in ' and fv is
in ®'. Hence, f(P) < ' provided f£f(u+v) is in !,

For » real f(Au) is_in L(®,fu). Moreover, if xl < %2,

f(%lu) < f(%zu). Thus, there exists an increasing bijection



Py IR—yiR such that f(Au) = pi1(A)f(u). Likewise, there

exists an increasing bijection P, - 3R—*IR such that

f(Au+v) - f v = p(A) (f (u+v)-fv) . So, 6(f (utv) -fv,f (Autv) -fv) =

p2 (A f (u+tv) -fv) =0 since Qu+v-v) = u) = 0. Applying

lemma 2.3 and the inequalities f (utv) - fv ;> <@ f(Autv) - f(Au) > G

we obt ai n:

0 N £(f (u+v)-fv, f(Aut+tv) - f(Au))
= 6(f(u+v)-fv, f(Autv) - fv + fv - pg(A)fu)

= e(f(u+v)-fv,fv) - p(A)6(f (u+v)-fv,fu) .

As A tends to +oo0, p.l(A) tends to +oo also. For the inequality
to hold, we nust have &(f(u+v)-fv,fu) <A 0. However, f (u+v) - f v > <D
and fu> (D By |lemma 2.3 Cff (utv) - fv, fu) =0 and so (f(utv)-fv)
and fu are dependent vectors. It follows that f(u+v) is in
span {fu,fv} = P'.

Tiius f takes space-tinme planes into space-tine planes.

f”l does the

Si nce f~l fulfills the hypotheses of Theorem 2,
same and we conclude that f maps space-tine planes onto

(space-tinme) planes, conpleting the proof.

82:

LEMVA 37: Let Qu) >0 and Ev) =0 with v ~ <©O Then

&u,v) ~ 0. Infact, if u><D and v ~>d), &uv) >0

Proof; G(u) > O implies t §> \\x 1\1\ 2, and G(v) =0 with v ™ <D
implies |ty] = |Ixv|]| » 0. If O = 6(u,v) = t,t, - (*u#xv)' Lt

follows that It t | = |[x -x | < IIx Il lIx Il <1t It 1 for a
1UV- ' U V' o"A li Ullnvll ' Ul -Vl



contradiction. If u> ® and Vv > O, then t > qu” and
t, = HxVH # 0. Hence, E(u,v) = toty - (XX, 2t it - quHHxVH =

(t-lix D e, > o.

LEMMA 3.2: Let G(u) < 0. Then there exists w such that

w#® and 0 = G(w) = é(u,w).

Proof: Since G(u) < O, ti < quﬂz. Choose x_ in ®>  such

that wan =1 and x,°x =t . This is possible since x_ is
in a space of more than one dimension and -|x,|| < t, < llx )l rLet
w = (l,xw)

LEMMA 3.3: Let u > ® and v > ®. Then there exists w such

that w > ®, G(w-u) < 0, and G(w-v) < O.

Proof: Let 6 = {q : tq > 0, G(g-u) < 0, G(g-v) < O0}. 6 is an
open subset of 324 in the Euclidean topology. Choose Wy >0

then G(%wl—u) = -2xé(u,w + G(u) and G(le—v) = —Zké(v’w + G(v).

1)
é A
By lemma 3.1 (u,wl) and G(v,w

1)
l) are both positive. Hence for
A sufficiently positive, G(%wl~u) < O and G(%wl—v) < 0, and

%wl is in 6. But le is in Cg = the boundary of Cg. Hence,

since 6 is a neighborhood of le, there exists w in 6 N Cg.

w has all the properties required by the lemma.

For p and g such that G(p-q) # O, we define a set

Co,q = fu: ue CII;, and u =p or L(p,u) N Cé # B).

Cp q is another "cone" through p. If u is in
3
L L L

u # p, then L(p,u) N Cq

C and
Psqa

c C_ N Cc_.. The set CL nct is a
P q p

g



section of C; forming an ellipsoid or a hyperboloid with two

branches accordingly as q is in Cg or CS. This observation

p
makes the following two lemmas geometrically obvious.

. . T L
A C then C_ = C .
LEMMA 3.4: If g 1is 1in o’ o 0,d

Proof: If u 1is in C; and u # p, consider for A real the
expression G(p+A(u-p)-q) = G(p-q) + Zke(p—q,u—p). Since

G(p-q) > O = G(u-p), lemma 3.1 guarantees that G(p-g,u-p) # O.
Thus A can be found so that O = G(p+A(u-p)-q). Set u* = p+A(u-p).

. . L . .
Then u¥* 1is in L u) N C and u 1is in C .
e (p,u) < e

LEMMA 3.5: If g is in c°, then cP o c but c¥ £ c_ .

p P~ P4 p pP,q

Proof: By lemma 3.2 we can select w # ¢ such that O

i

G(w) =
G(p-g,w). Then (p+w) is in Cg, but G(p+\w-q) = G(p-q) < 0 for

all A. Thus L(p,p+w) N Cé = @ and (p+w) is not in Cp g

LEMMA 3.6: Let f : IR4'----§]R4 be a bijection satisfying (2.2).

T

Then if p < g, fg is in Cfp'

Proof: Suppose there exist p and g with p < g and fg not

Cgp. By lemma 2.2 we may rule out £fgq being in C%p.

S
fp*

Lemma 3.5 now tells us that we may choose w in C%p

that w is not in C . Since f is bijective, w = fu for
fp, fq

some u in C;. Hence by lemma 3.4 u is in C . Since
2
u # p, there exists wu* in L(p,u) N Cé. Thus fu* is in

Ly, _ L, _ L L
f(L(p,u)ﬂCq) = £(L(p,u)) N f(Cq) = L(fp,fu) N ch = L(fp,w) N ch £ 8.

contrary to hypothesis. We have no choice

in Thus
fqg 1is in C

such

Thus w 1is in cfp,fq

but to affirm the lemma.



LEMMA 3.7: Let f : ﬂ24-—9IR4 be a bijection satisfying (2.2).

If p< gy, P< q,, and fp < fq;, then fp < fq,.

Proof: By lemma 3.3 choose w such that w > 0, G(p+w—q1) < 0,
and G(p+w—q2) < 0. Let g3 =p + w. Then p < as. So by
. . T c ot

lemma 3.6 fq3 is in Cfp' If fq3 < fpl, by transitivity

fqy < fq;. Since £l fulfills the hypotheses of lemma 3.6,

g, is in C. . But then G(gy-q;) = G(p+w-q;) > O, which is

d3
false. Since fq3 is in Cgp and fq3 # fpl, we must conclude

that fp < fq3.

. . T
Now fq2 is in Cfp‘ If fq2 < fp, then fq2 < fq3 and
d3 is in CT . This contradicts G(q3—q2) = G(p+w-q2) < 0, and
92

so we finally conclude that fp < fqz.

THEOREM 3: Let £ : IR4-—91R4 be a bijection satisfying (2.2).

Then f or -f satisfies (2.4).

Proof: Suppose that there exists no pair Py and qq such that

P, < dqq and fp] < fql. Then p < g=2fp > fq by lemma 3.6.
Applying the same lemma to f~1, we find that fp < fg=)qg 1is
in Cg and because of our supposition g < p. Thus

Pp< a¢&-fp < -fqgq, and -f satisfies (2.4).

Alternatively suppose there exists a pair Py and q, such
that Py < 44 and fpl < fql. Let P, < qs- Choose Py such
that Py < Po and P, < Pg- By lemma 3.7 fpl < fpo. Now
consider the map g = -lefe-1 where -1(p) = -p for each p
in IR4. g is a bijection satisfying (2.2). Thus we can apply

lemma 3.7 to the inequalities -p, < ~P1s ~Pg < =Py and
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g(-po) < g(-pl) to conclude g(—po) < g(—pz). In other words,
fp2 < fpo. Then P, < Pys P, < dys and fp2 < fpo imply
fp, < fq,.

We have succeeded in proving that p < g=»fp < fg. Since
we have a pair satisfying Py < dq and fpl < fql, we can apply

-1

the same argument to f =, obtaining fp < fgq=p < q. Thus £

satisfies (2.4).

84 :
LEMMA 4.1: Let £ : I{Q——?]R4 be injective and satisfy (2.1).
L L L~ .L L L
Then f(Cp) c Cfp’ f(CpﬂCq) c Cfp n qu, and f(L(p,q)) < L(fp,£fq).
Proof: Compare with lemma 2.2.

LEMMA 4.2: If r is in Cg and g is not in C;, then

CL nc contains at least two points.
r p,q
Proof: If g is in CT, then by lemma 3.4 C = c¥. Thus
- p pP,q P
CL n c == CL N CL = an ellipsoid, which of course contains two
r p,q r p
points.
. . S . L L .
If g is in C_, choose u in C_ N C_ but not in C .
p r 1% P,qd
As in the proofs of lemmas 3.4 and 3.5, we must have
e(p—q,u—p) = 0, and so0 u 1is in the set p + [span{p-q}]L. The

latter set is a hyperplane passing through p. It meets the

el’ipsoid Cg N Cg in a closed subset of Cg

ment in CL n CL
r P

n C;. The comple-

of this closed subset is the open subset

L

L . .
c_Nec If C_ N C is non-empt it contains two ints.
r 0, q - p,q s pty, c ains points
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Assume C- 0 C _ is enpty. Then the ellipsoid Ci'nC_T'_'
T p) d

gv)

is a subset of the hyperplane. But since p is on' the hyper-

pl ane, all light rays joining P to the ellipsoid are in the

tnger pl ane. Such rays form CP, and the onl y space contai ni ng
is ]R itself. W thus have a contradiction.

P

THEOREM 4; Let f : | Ffl —] R4 be injective and suppose that

4
f(HR ) is not a subset of a light ray. Then if f satisfies
(2.1) , f satisfies (2. 2) .

Proof; Assume (2.2) fails. Then there exist p and q such

t hat -q) ~0=¢Gfp-fq). H , f(Cnct cc.oC . =
at Ep-q) G fp-fq) ence, f(Gncy) ¢ Cy q

L(fp,fq) = L where we adopt the abbreviation L for the I|ight

ray L(fp, fa).
Let u bein C , If u/ p, choose u* in L(p,u) fl ct.

a

PJSL q
Then fu is in f(L(p,u)) = f(L(p,u*)) EL(fp,fu*). But fu*
Is in f(CPOCg) C L. Hence, L(fp,fu*) =L and fu is in L.
Thus f(CP*q) (_:L.

Let r be in C;- By lemma 4.2 choose v and w distinct

in C0 Cpyq. Then ffv,fwp c f(C*"nCyy) c f(C') n f(Cp CI) c C' n L.
. LI _ 3 L)
But C?'r nL is asingleton unless the light ray L contains fr.

So fr isin L, and f(CI-D c L.

) : 4 .

Finally, let u be in IR . <choose alight ray | through
u which neets C; intw points v and w Then fu 1is in

f(l) = f(L(v,w) _¢c L(fv,fw) =L since fv and fw are in

T 4
f(®) Tl Thus f(IR)-—cL contrary to hypothesis, and we nust
accept the validity of (2.2).
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85:
LEMMA 5.1: Let G(u) > O and Vv be arbitrary. Then
2

@u,v)) %> Gwae(v).

Proof: If G(v) < O, the proof is trivial. So assume G(v) > O.

Then (8(u,v)) 26 G(v) = (et -x_-x)2 - (e2-]x [|%) (£2-]x |1

= 2et (xgexy) + () Do+ tolagl? o e2llx - ) Pl
R N P R T e P e P P

> -2le |ty lxg x|+ [x o

= (gl li-Teg gl 2+ 2l eyl ey 1=l - T3y, D x|

- Ix % 1) 20 since [t [t | > [x x|l > 1x %,

We are now prepared to prove Theorem 1 of the first section.

]
We note first that the Poincare group is the group generated by

the (homogeneous) Lorentz transformations and translations. A

(homogeneous) lorentz transformation is a linear map L : IR4--—§]R4

which satisfies for each p in IR4 G(p) = G(Lp). One may easily

verify from this definition that such a map I satisfies

e(p,q) = é(Lp,Lq) for all p and g 1in IR4, that L 1is a

1

bijection, and that L~ is also a Lorentz transformation.

Proof of Theorem 1l: TLet £ : IR4—% nz4 be a bijection satisfying

(2.1). By Theorem 4 f satisfies (2.2). By Theorem 3 +f
satisfies (2.4), and by Theorem 2 +f is affine-linear. Thus,
f 1itself is affine-linear.

To establish that £ is in the group generated by the
Poincaré group and dilatations, it suffices to show that £
differs from a Lorentz transformation by no more than a trans-

lation and/or a dilatation.
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Since f is affine-linear, f - f(0) = F is a |linear nap.
Moreover, since f has the property (2.2), F does also --
i.e., gp) =0<=~G(Fp) =0.

Choose wu; in 3R with ir> @ By Theorem3 G Fu;) > 0.

Let A =/ G( Fu{/ Gfur, and let L = }\: Then L : TR_*TR
is a linear map such that Ggp) = 0"=4 G Lp) =0 and Gu;) =
G(Lul) . .

Let v be any elenment of 3R such that v) =0 and
v~ <D Then G u;~Av) = G(ul) - ZA@( u, Vv). Since @(U]L, v) ~ 0
by lemma 3.1, A may be chosen so that (u.;Av) = 0. In this

case |et wW=u, - Av. Then A is non-zero and @u.l,v) =

SAHWY) = E(wv) =2~ QAW =4 Qu) =35 GLut =
E} GALv+LW) = &(Lw, Lv) = &(ALv+Lw, Lv) = O(Luy, Lv). Thus
éCui") = f"(Lt_J"LV) for any v such that v) = 0.

Now let p be an arbitrary el enent of TR4. Consi der
C{I)-AUA.L) =gp - 2A (€] u_"p) +A‘?G(u.l.). As a polynomal in A
this expression has discrimnant equal to 4(d\u-.J_, p)) 2. 4G(u,l)G(p).
By lenma 5.1 this is non-negative. Hence, G(p-Au,l) =0 for a
suitable choice of A Let v =p - ~k\ il for such a A Then
A p) = QAU +v) = 2A<8(uy, V) = A G(uy) + 2A&u., V) = A’G(Lu;) +
2A&( Lug, Lv) = GCALu”Lv) = G(Lp). Thus L is a Lorentz transformation.

Hence, f = f (<D + AL is in the group generated by trans-

lations (f((D), dilatations (A), and Lorentz transformations (L) .
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