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ABSTRACT

If adjacent fertility rates in the Leslie population model

are not assumed to be strictly positive, population distributions

need not converge to the so-called stable age distribution.

Instead the asymptotic behavior of a distribution may be

periodic, taking a form which Bernardelli [1] called "population

waves".

Here we state and interpret the main theorems describing

this phenomenon and discuss objections which stand in the way

of applying it to population studies. This is a continuation

of our work done in [2].

In an appendix we prove, after normalization and under

reasonable conditions, that asymptotically the period of a

population distribution is the same as the period of the total

population.

"^Department of Mathematics, Oregon State University

•**Department of Mathematics, Carnegie-Mellon University



§1. INTRODUCTION,

When the Leslie model of population growth was first intro-

duced (see Bernardelli [ 1], Lewis [ 5 ] , Leslie [ 4]), attention

was given to the possibility that a population distribution might

not converge to the stable age distribution but instead might

tend to a periodic limit. Leslie proved the so-called Strong

Ergodic Theorem: convergence to the stable age distribution

must occur for "a species breeding continuously over a large

proportion of its total life span". He also discussed a hypotheti-

cal example due to Bernardelli of a beetle population with only

one non-vanishing fertility rate. The distribution of the beetles

oscillated periodically and did not converge to the fixed distri-

bution predicted by Leslie1s theorem.

Bernardelli had been very impressed by this periodicity

and cited many examples of cyclic phenomena which might be sus-

ceptible to an analysis in terms of it. He was particularly

hopeful that it might be useful in relating the very brief

fertility span of some insects to the violent oscillations in

population size that they exhibit.

Lewis likewise noted the periodic case and suggested that

it might have importance "for some lower animals with few age

groups".

The periodic case has received little attention since these

early papers. A number of authors (for example, Lopez [6 ],

Sykes [10], Demetrius [3 ]) have stated precise mathematical con-

ditions for Leslie's Theorem to hold, and the failure of these





whose first subdiagonal consists of survival rates pi* • • • *pn_i>

and whose remaining entries are zero. We assume that the survival

rates are strictly positive and that the fertility rates are non-

negative. In addition, we make the comparatively weak assumption

that at least one fertility rate is positive.

As in [2] we define constants c1,...,cn and polynomials

g1(A),.•.,gn(A),p(A) as follows:

1 if i = 1 n

PlP2'-'Pi-l Xt Z ^ X ± n 3 1

1 < i 1 n

= det(Al - L) = An - g.

p(A) is up to sign the characteristic polynomial of L. Its

roots are the eigenvalues of L. p(X) has one positive root,

which we call A . An is a simple root and dominates all other

roots in absolute value.

An elementary estimate for AQ may be derived directly

from the definition of

1/i 1/i
max (c.F.) £ L < max (nc.F.)

l l i ^ n ° l < i < n

The n in the right-hand parentheses may be replaced by the number

of non-vanishing fertility rates. If this number is one, A is

completely determined.



We define the index of L to be the greatest common integral

divisor of the set of indices i such that Fi > 0. Denoting this

index hereafter by k, we observe that 1 <C k <̂  n.

Lemma 1: L has a one-dimensional column eigenspace corres-

ponding to the eigenvalue A . This space is spanned by the vector

U = n + . . .+U, where
AQ 1 K

n c
U. = L -4- E. 1 < j < k.

i=j,,mod k

The vectors TJ^, . . . ,XJ^ are mutually orthogonal and L U. = ^ o
u^ + 1 mod k

for 1 ̂  j <̂  k.

Lemma 2: L has a one-dimensional row eigenspace corresponding

to the eigenvalue A . This space is spanned by the vector

V:* = V:* +. . .+ V£ where
AQ 1 K

i n

c

P'(A ) i=l
 ci

i j m o d k

The vectors V-. , . . . ̂ V, are mutually orthogonal and

for 1 < i < k.

In Lemma 2 p1 (AQ) is the first derivative of p(A) evaluated

at Ao.



Lemma 3: V. • U. = V*U. = ~ 6. . for 1 < i, j < k.
] 1 ] 1 K 1J

. =
1 K

Let U = span{U1,...,Uk) and V = spanfv^...,Vk). By the

preceding lemmas U^,...,Uk and V-^...,Vk are orthogonal bases

for the subspaces U and V respectively.

Lemma 4: IRn = U © \sx. That is, for any X in 3R , there

exist unique scalars >V • • • * Tv a n d a u n i <3 u e vector W in \s
k

such that X = Ey.U. + W. In fact, y. = k(X-V.) for l<.j.<k.
j=l J 3 J J

Let P: 2R n—>U be the canonical projection from 3R into U
k

guaranteed by Lemma 4. Thus, P(X) = L k (X - V.)U. . Let

I. : U~*U be the identity map of U. Let T: U—*U be the unique

linear map of U into U which permutes the basis elements of U

cyclically according to the formula FU. = U. , , k for l^.j^,k.

Lemma 5: i) r(U. ) = U. ;
A Ao

2 ^"*1] = (x 0 0

for each vector X in U;

iii) P3 = 1^ if and only if j is a multiple of k.

§3. THEOREMS AND INTERPRETATIONS;

Let X be a population vector at time 0 (the initial

population vector). Then, in accordance with the Leslie model,



Lfc(X) is the population vector at time t = 0,1,2... . To obtain

information on 1^ (X) for t large, we examine L or, more

precisely, the normalized matrix (L/A ) . The following theorem

generalizes Leslie1s theorem.

Theorem 1; Let index L = K. Then

lim \l'L/'Xrs\
t - P(t)"l = 0

k

where P(t) = k E U.Vf . -, n is a matrix-valued function
• = -i j j-t,mod k

of the integer variable t.

The limit in Theorem 1 is relative to any of the (equivalent)

norms on the set of n by n matrices. If k = 1, P(t) has the

constant value U. V* : this is Leslie's Theorem. In general, the

situation is described by Theorem 2.

Theorem 2; P(t) has the following properties:

i) period (P(t)) = k;

ii) i [ E P(t)l = U. V* ;
K Lt=l J A0 A0

iii) as an operator, P(t) = I P : 3R —> U.

P(t) is a periodic function with period k and its average

value over one period is the matrix tL V:* . Acting on a vector X,
A0 0

P(t) projects it into the subspace U and then "rotates" it

in U by a power of the transformation T. P(t) suppresses

all information except the projection of a vector in the k-dimen-

sional subspace U. Hence, an (n-k)-dimensional family of



vectors X gives rise to the same vector-valued function P(t)X

of the variable t. If the projections of X and Y in U differ

by a power of the transforination T, then the functions P(t)X

and P(t)Y are the same except for a change of phase.

Theorem 3: If X is in IR , then

k
P(t)x = E yx(j-t)u.

j=l x 3

where y x ^ = k(X . V. . , ) is a scalar-valued function of

the integer variable t.

Theorem 4: y has the following properties:

i) period (yv(t)) = period(P(t)X) = period of the

distribution of P(t)X, and each is an integral

divisor of period (P(t)) = k;

= X . V-* .

Theorems 3 and 4 show that the vector-valued function

P(t)X is completely determined by the scalar-valued function

yx(t) . In particular, the period of 7x(t) is the same as that

of P(t)X, which is the same as that of the distribution of P(t)X.

Note that this period need not be equal to k. For example, if

X = U. , we have yv(t) = 1 and P(t)X = U. .
A0 X A0
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Theorem 5; For a population vector X the following state-

ments are equivalent:

i) l^X converges to a time-independent distribution;

ii) period (yv(t)) = period (P(t)X) = 1;

iii) X is in spanfu. ) © lrx;
0

iv) lim ^V^ = (X • V. )IL •
t * A^ A0 A0

The only subtlety in Theorem 5 arises from the possibility

that P(t)X = 0 for some time t. In this case X is in lrx

and so X • V-v = 0 . If X is a population vector,, we can conclude

as in [2] that X has its population concentrated in the ages

beyond fertility. Hence, L X = 0 for t large.

When k = 1, span{U. } © Vx = U © Vx = HRn and Theorem 5
0

reduces to Leslie1s theorem.

The direction of U. in ]Rn is the stable age distribution.
A0

Let p = period (P(t)X). Then, using Theorem 2 and the fact that

p is a divisor of k, we obtain:

i ( E P(t)x)= i ( £ P(t)x) = U V* X = (X.V )U .
P \ t=l ' K * t=l / 0 0 0 0

Thus the stable age distribution arises in the periodic case as

an average value (in a suitable sense) of the asymptotic distri-

butions over one period.

Let Pop: ]Rn—* IR denote the total population function.
n

If X is in IRn, Pop(X) = E x . .



Theorem 6 : Let X be in 3Rn . If A > maxfP^ . . . 3 Pn_ ̂ } 3

then period (P(t)X) = period(Pop(P(t)X)).

A more general statement of Theorem 6 together with a

proof may be found in the Appendix.

Theorem 6 facilitates the search for the periodic case.

Supposing that the Leslie model with index greater than one

describes a species in nature, we need not tabulate the population

vectors of the species to observe periodicity. It suffices to

tabulate the total population function Pop(L X), normalize it

by an exponential multiplier of the form c A~ , and read off the

period.

The hypothesis A > maxfP.,, . . . 3 P _-} follows from the

stronger hypothesis A >̂ 1 > max{P.., . . ., P n). If the survival

rates are strictly less than one in each age group and if the

population does not vanish asymptotically (A_ > 1), the latter

hypothesis holds.

We close this section with one final theorem.

i r t
 T -n

Theorem 7: lim -r £ (T~) J = U. V*
t^oo t L j = 1 AQ J AQ AQ

Theorem 7 is an ergodic theorem and demonstrates that

Leslie matrices can be analyzed by ergodic methods. Indeed, the

matrix (L/A ) is similar to a stochastic matrix and consequently

Leslie1s Theorem as well as our theorems fall within the ergodic

theory of stochastic matrices.
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§4. THE APPLICABILITY OF THE PERIODIC LIMIT.

Despite the attractive mathematical theory of the previous

sections, there are both empirical and theoretical reasons for

questioning whether the Leslie model with index greater than one

is an appropriate descriptive tool for real populations.

Empirically it has been found that Leslie matrices used

in studying human populations have adjacent fertility rates

positive. If F. and F. , are two such rates, then index
3° 3° t

L = g.c.d.fj: F_. > 0} = g. c. d. {jQ, jQ+l} = 1. (V\j) converges

to the constant matrix U. V* and periodicity does not occur.
0 0

Theoretical reasons suggest that this same reduction may

hold generally.

To see this we examine the Leslie model in greater detail.

Let n be a positive integer _> 2 representing an age nobody

lives to. With i = 1, . . .,n and t >; 0, we define:

x.(t) = number of females whose ages are in the interval
[i-l,i) at time t;

x, (t) = number of females whose ages are in the interval [0,1)
at time t and whose mothers had ages in the interval
[i-l,i) at time t-1;

6(t) = number of females whose ages are in the interval [0,1)
at time t and whose mothers were not yet born at
time t-1.

"Itfe consider only females for traditional reasons. Such a distinc-
tion may be unnecessary and/or impractical for lower animals and
insects.
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n i
It follows from these definitions that x. (t) = 6(t) + £ x (t) .

1 i=l x

In addition, we hypothesize that there exist constants P,, . . •, P _-.

and F,,...,F such that:

I. xi+1(t+l) = Pixi(t) i=l,...,n-l t > 0;

II. xj(t+l) = Fixi(t) i=l,...,n t > 0;

III. 6(t+l) = 0 t > 0.

In the interest of simplicity (and ignoring the question

of whether the data we discuss is in fact accessible), we interpret

Equations I and II as defining equations for the survival and

fertility rates and also as axioms asserting their constancy.

Thus, to compute these rates we solve Equations I and II

using experimental values of x. (0), . . . ,x (0),x, (1) , . . . ,x (1) ,

X-(1),... ,x..(1). This method will give unique solutions if

x,(0),...,x (0) > 0. These solutions will be consistent with

the earlier theory (i.e., positive survival rates and at least

one positive fertility rate) provided x.,(l),...,x (1) > 0 and

6(1) = 0.

Our model is then as strong as the axioms of constancy and

Equation III. These can be checked individually at different

times. If they are confirmed, we put credence in the theorems

deduced from the model. If they are not confirmed, the theorems

still tell us what would have happened if fertility and mortality
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schedules had remained constant—hypothetical information which

sometimes has a preventive use.

Incidentally, the time t need not vary over a continuum.

If fertility and mortality vary seasonally, t should be restricted

to integers and the unit of time chosen so that the passage of one

unit brings us back to the same season. Hie requirements that

6(t) = o and that some females survive to age )> n-1 also

influence the choice of a unit of time.

We return now to the subject of periodicity. Suppose that

females may give birth at any age in the interval (a,3) where a

and 3 are real numbers and l < . a < 3 < . n . (1 ̂  a to conform

with 6(t) =0.) If females may give birth at any age in this

interval, then presumably females of age in (a,3) at time t

(if there are any) make a positive contribution to x.(t+1).

In fact, females of age in (a-1,3) at time t (if there are any)

make a positive contribution to x..(t+l) since their ages will

fall in (a,3) at some time in the interval (t,t+l).

Let j be the least integer such that a-1 < j < 3. The

intervals Hrf^'lo) a n d ^<v^o+1^ each overlap with (a-1,3) .

We can expect that at some time t x. (t) is positive and some

of the female population counted in x. (t) have their ages at

time t in the overlap of [jQ-1,j ) and (a-1,3). Hence they

contribute to making x, (t+1) positive. Since x °(t+l) =F. x. (t) ,

we conclude that F. > 0. Similarly, we can expect that at some
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time t x. (t) is positive and some of the female population

counted in x. +1(t) have their ages in the overlap of [JQ'JQ*1)

and (cc-1,/3) . TTiey thereby contribute to making Xl (t+1)

j 0 + 1

positive. Since x1 (t+1) = F. ,x. n (t) , F. , > 0. Thus,

two adjacent fertility rates F. and F. n are positive and

the index of L is one.

This reasoning can be modified to apply to versions of the

Leslie model which compute the fertility rates more indirectly

(i.e., from life tables). In fact, the plausible ideas in the

argument are similar to those used by demographers in practical

work. One consequence of this is that demographic calculations

from the beginning force adjacent fertility rates to be positive,

leaving no room for the periodic case. Leslie himself appears

to have been partially aware of this difficulty since he expressed

reservations about the conceptual significance of the "fertility

rates" in Bernardelli1s oscillating beetle population.

Still, Leslie granted that "the ... matrix with only a single

element in the first row does correspond to the reproductive biology

of certain species" and in this spirit we suggest some directions

for future research on the periodic case.

Suppose that we are given a population which does exhibit

periodic behavior. Without worrying about the interpretation

of the matrix entries, we might try to fit the data for this

population to a Leslie matrix. In effect, this means replacing

WNT LIBRARY
GAMEHE-HELLON UNIVERSITf
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Equations II and III by:

n
II' x,(t+1) = £ P.x.(t) t > O.

The constants Fi'---' F
n
 a r e labelled fertility parameters

rather than fertility rates. A priori some of these parameters

may even be negative (violating the hypotheses of our theorems).

To compute the survival rates and fertility parameters, we solve

Equations I and II! using experimental values of X- (t),... ,x (t)

for t = 0,1,...,n. (If some of the fertility parameters are

expected to vanish, t may take on fewer values.)

If the resultant matrix is a Leslie matrix with index

greater than one and if the model so constructed has predictive

value, we will be forced to seek a theoretical justification of

the fertility parameters.

One possible explanation goes back to our earlier argument.

If a = 0 = an integer, the argument breaks down irretrievably.

To exploit this fact we would need a species whose females give

birth only at discrete times j-,,-..j where each j. is an

integral multiple of the unit of time and g.c.d.{j,,...,j ) = k > l .

Such a quantized process might be more suitable for describing

non-organic growth than biological reproduction.

Another possibility is that members of the species pass

through some kind of filter. At each integer time t females

whose ages are outside the interval ^rT^^c? a r e temporarily
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sterilized: they are rendered incapable of maternity for one

time unit. At time t 4-1 the sterilization is repeated. This

leads to F. as the only non-zero fertility rate and a Leslie

matrix with index equal to j Q .

Both of these possibilities make delicate use of the unit

of time. For this reason, among others,, we emphasize the need

for empirical research to determine whether the periodic limit

has applications. If a Leslie matrix with periodic limit does

describe some species, subtle, and possibly radical, refinements

will be needed in our understanding of fertility--at least in

the relevant species.
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APPENDIX

This appendix is devoted to a proof of the theorem stated

below, which generalizes Theorem 6 of the text. All notation

is the same as that in the text. At the end of the appendix

we state a significant corollary of the theorem. We also list

examples of Leslie matrices which violate both the premises and

the conclusion of the theorem.

Theorem; If either of the following two conditions hold:

i) AQ > max{P1,...,Pn-1) and g.c.d.({j: AQ > P.} U {k} U {n}) = 1;

or ii) A. <; min{P,, . . ., P ,} and g.c.d. ({j: :< P _. } U {k} U {n}) = 1;

then period (P(t)X) = period(Pop(P(t)X)) for any vector X in 3Rn.

We preface the proof of the theorem with several lemmas of

some interest in themselves.

Let a, , . . . ,a~ be real numbers and let C(a.. , . . . ,a, ) denote

the matrix

obtained by permuting the elements a,,...,a, cyclically from

one row to the next. Such a matrix is called a circulant matrix

and has been extensively studied in classical matrix theory.
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If a. . is the entry in the i row and j column of

C(a1,...,ak), then a ± j = a^.

Lemma 1: C (a^ . . . 3 afc) is non- singular if and only if the

kpolynomials ax + a^. . .+akz
k*" X and zk - 1 have no root in

common.

•Shis lemma was first proved by W. Spottiswoode. A proof

may be found in [7], pp. 407-408.

k- 1
Lemma 2 ; Let g(z) = B-ĵ  + B2z + . . .+Bkz where

B.., ...,B, > 0. Then if ^ is a root of g(z),

(i) |£| 1 7 =

and (ii) |£| < y provided g.c.d.({j: B. < yB.+1)U{k}) = 1.

Lemma 2 is due to Enestrom, Kakeya, and Ostrowski. For

a proof see [8], pp. 105-106.

Lemma 3 : C (a-,,...,, a,) is non-singular provided a., + . . .+av / 0,

ak 1 ak-1 1 ... 1 ax, and g.c.d. ({j: a^^n < a^ } U {k}) = 1.

Proof; By Lemma 1 it suffices to prove that the polynomial

k-1 k
f(z) = ai + a 9 z +---+CUZ "" has no root in common with z -1.

k- 1
Choose a > â ^ and let g(z) = (a - a1) + (a - a2) z + . . . + (a - a^) z

g(z) satisfies the hypotheses of Lemma 2 with

- a! a " a k l
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and

g.c.d. ({j: a- a.. < a- aj+1) U (k)) = g.c.d. ({j: a j + 1 < a j } U (k)) = 1.

zk-l
Thus any root £ of <?(z) h a s \£\ < !• Since g(z) = ot( ~ ) - f(z),

« Z ~" 1

we conclude that f (z) has no root in common with z -1 except

possibly z = 1. However,, f(l) = a.,-f...+a, ^ 0.

The following variations on Lemma 3 will be useful later.

Lemma 4: C(a-,...,aO is non-singular provided a.. + ...+a,

and one of the following conditions holds:

(4a) ax £ a2 £ . • .£ afc and g.c.d. ({j: a^ < aj+1} U {k}) = 1;

or

(4b) there is an index j <C k-1 such that

ai + 1 < • • -1 a < a <. . .£ a . and

g.c.d. ({j: aj < aj+1) U {jQ} U {k}) = 1.

Proof: To prove the (4a) version let c. = a.. n . for
D K+i-3

1 1 j 1 k. Then det C(a1^...,ak) = det C(ck,...,c1) =

+; det C(c,,...jC, ) since the third matrix can be obtained from

the second by reversing the columns and permuting the rows

appropriately afterwards. Thus we need only confirm that

Cl'###J>Ck f u l f i H the hypotheses of Lemma 3. Clearly,

cfc <C ck__1 <C ... £ c^ and c1+. . -+ck ̂  0. Moreover, g.c.d.

( { j < c j } U { k } ) = g-c.d. ({j : a k - j < a k + 1 - j} U {k}) = g.c.d

({k-j: a k - j < ak_j+1} U {k}) = g.c.d. ({j: aj < aj+1} U {k})=l,

which completes the proof.
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If (4b) holds, let c. = aj
for 1 < j < k.

Then det C(a1,...,a.) = det C(c. , . . . , ^ , 0 ^ . . . ,c .
1 K JQ J O

+ det C(c,, . . . ,c, ) , and again we confirm that c,, ...,c.

fulfill the hypotheses of Lemma 3. Two of the hypotheses are

obviously fulfilled. For the third, note that c.. + 1 =
 a^ < ai = cj

Thus

g.c.d. ({j: c.+1 < c.. } U {k})

= g.c.d. ({j:

= g.c.d.({j: aj < aj+1) U {jQ} U

and we are done.

U U (k})

= 1,

Proof of the theorem: Let p = period(Pop(P(t)X)). Then p

is a divisor of period(P(t)X). Hence we need only verify that

P(t)X = P(t+p)X for all t or, equivalently, that 7x(t) = yx(t+p)

for all t.

Pop: IRn—>3R is a linear function. So Pop(P(t)X) =
k k

Pop( L }\,(j-t)U.) = S yY(j-t)PopU. . Expressing this relation
j=l X D j=l X D

in matrix form for different values of t and using the fact

that all periods are divisors of k = period (P(t)), we obtain:

, . ..,PopUk)

yx(D

yx(k)

= C(PopU1, . . .,PopUk)

Pop(P(k)X)

Pop(P(l)X)

yxd+p)

Pop(P(k-p)X)

Pop(P(l-p)X)
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Thus y-^t) - 7x(
t+P) f o r a 1 1 t a n d t h e theorem is proved

provided we can establish that C (Pop l̂ ,..., Pop Uk) is non-

singular.

Suppose hypothesis (i) of the theorem is fulfilled.

Without loss of generality we may suppose that A = 1. (This

is equivalent to replacing each survival rate P. by PT/^O*^

Then 1 > maxfP^ . . ->*nmml)
 a n d f o r 1 < ] <k-l c_.+1 = C..P.. < c.. .

Hence, PopU. = L c. > £ c. . = S c. = Pop U
3 i=j,mod k i^j.mod k ± x i=j+l,mod k J

In addition if n = j + ak for 1 <̂  j Q .< k-1, then

cn

Thus we have

g.c.d.({j: PopU. + 1 < Pop U . } U

= g.c.d.({j: there is an i = j,mod k with c- + 1 < c.}

U {jQ} U {k}) = g.c.d.({i: c i + 1< C i} U {n} U {k})

= g.c.d.((j: p. < 1} U {k} U {n}) = 1.

The hypotheses of Lemma 3 are fulfilled, and C(PopU,,... PopU,)
1 K.

is therefore non-singular.

Suppose hypothesis (ii) of the theorem holds. Again with-

out loss of generality we take A to be 1. Choose j such

that n = j Q+ak where 1 £ j Q £ k. Since 1 <; minfP^ . . ., P . } ,
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we have cj+1 = c^ > c.. . If jQ = k, it follows that

Pop U <^ Pop U9 <.-..<, Pop U, and an argument analogous to that

of the last paragraph shows that the hypothesis (4a) of

Lemma 4 is fulfilled. If jQ < k,

PopU. ,, < ... 1 PopU, < PopU., 1 ... < PopU.
->0 0

since the number of terms drops by one as we move from

PopU. to PopU. , and since

PoPUk = ck+...+cak < c± +

Furthermore, g.c.d.({j: Pop U. < PopUj+1}U {jQ} U {k}) = g.c.d.

({j: there is an i s j.mod k with ci+1 > c±} U {n} U {k}) =

g.c.d. ({i: ci+1 > ci} u {k} U {n}) = g.c .d. ((j : 1 < Pj } U {k} U {n} = 1,

Hence, hypothesis (4b) of Lemma 4 is fulfilled, and our proof

is complete.

Corollary: Let hypothesis (i) or (ii) of the theorem

be fulfilled. If the Leslie matrix of a population is known

and Pop(P(t)X) is known for all t, then P(t)X can be

determined.

Proof; If the Leslie matrix is known, C (Pop U,, . . . , Pop U )
-1 k

and its inverse can be explicitly computed. Then the matrix

equation in the proof of the theorem can be solved for k
in terms of Pop(P(l)X) , . . ., Pop(P(k)X) , and P(t)X = L yx(j-t)U_..
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Examples; In each example AQ - 1.

1. Let L =

0 1

1 O
This is the only possible 2 by 2 counter-

example to the theorem. P(t) = Lfc in this case and period

(P(t)X) = 2 in general while period (Pop(P(t)X)) = 1 always.

Note that AQ = P± and g.c.d.({k} U {n}) = g.c.d. {2,2} = 2.

Let L =

0 a

I/a 0

0

0 where 1 > a > 0. Then P(t) = L ,

O 1-a O

period (P(t)X) = 2 in general, but period (Pop(P(t)X)) = 1

always. Here > A o
 > P2*

Let L =

0 u 0

1 0 0

0 c 0

0 0 1

1-u
c

O

0

O

with 1 > u > 0

and c > O. Period (P(t)X) = 2 in general but period

(Pop(P(t)X)) = 1 always. If c £ 1, AQ = maxfP^ P2, P3}

and g.c.d.({j: Pj < AQ} U {k} U {n}) = 2 . If c > 1,

AQ = min{P1,P2,P3) and g.c.d.({j: Pj > AQ} U {k} U {n}) = 2
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