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ABSTRACT

If adjacent fertility rates in the Leslie population model
are not assumed to be strictly positive, population distributions
need not converge to the so-called stable age distribution.
Instead the asymptotic behavior of a distribution may be
periodic, taking a form which Bernardelli [1l] called "population
waveas".

Here we state and interpret the main theorems describing
this phenomenon and discuss objections which stand in the way
of applying it to population studies. This is a continuation
of our work done in [2].

In an appendix we prove, after normalization and under
reasonable conditions, that asymptotically the period of a
population distribution is the same as the period of the total

population.
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81. 1 NTRODUCTI ON

When the Leslie nodel of population growth was first intro-
duced (see Bernardelli [ 1], Lewis [ 5], Leslie [ 4]), attention
was given to the possibility that a population distribution m ght
not converge to the stable age distribution but instead m ght
tend to a periodic limt. Leslie proved the so-called Strong
Ergodi c Theorem convergence to the stable age distribution
must occur for "a species breeding continuously over a |arge
proportion of its total life span". He also discussed a hypotheti -
cal exanple due to Bernardelli of a beetle population with only
one non-vanishing fertility rate. The distribution of the beetles
oscillated periodically and did not converge to the fixed distri-
bution predicted by Leslie's theorem

Bernardelli had been very inpressed by this periodicity
and cited many exanples of cyclic phenonena whi ch m ght be sus-
ceptible to an analysis in terns of it. He was particularly
hopeful that it m ght be useful in relating the very brief
fertility span of some insects to the violent oscillations in
popul ation size that they exhibit.

Lewis |ikewi se noted the periodic case and suggested that

it mght have inportance "for sone lower animals with few age
groups”.

The periodic case has received little attention since these
early papers. A nunber of authors (for exanple, Lopez [6 ],
Sykes [10], Denetrius [3]) have stated preci se mat hemati cal con-

ditions for Leslie's Theoremto hold, and the failure of these



conditions sets the stage for periodicity. However, since these
conditions are apparently fulfilled in human populations and
populations of higher animals, the incentive to study the periodic
case has not been strong.

Most recently [ 2] we have stated and proved theorems con-
cerning the periodic case which generalize Leslie's Theorem.

Our present purpose is to restate these theorems and additional
theorems in a formalism similar to that of Parlett [9 ] and to
discuss some of the difficulties which the periodic case faces in
applications. Even if the periodic case turns out to have no
applications, we still hope to have confronted some of the issues
that it raises and to have clarified the mathematical context of

Leslie's Theorem.

§2. DEFINITIONS AND LEMMAS.

We take the elements of IRn(n_>_2) to be n by 1 column

vectors. El"“’En are the standard basis of column vectors

for R'. A population vector X is a column vector X = '%lijj
j=

where SRR N > 0. The population distribution of a population

vector X is the direction of X in TR". If X is a column

vector in Bfl, X* denotes its transpose, a row vector. The

dot product of two column vectors X and Y in R is

X o« ¥ =X*Y,

Recall that the Leslie population matrix L is an n by n

matrix whose first row consists of fertility rates F ., F

1t



whose first subdiagonal consists of survival rates Pl""’Pn—l’

and whose remaining entries are zero. We assume that the survival
rates are strictly positive and that the fertility rates are non-
negative. 1In addition, we make the comparatively weak assumption
that at least one fertility rate is positive.

As in [2] we define constants Cysee+5Cp and polynomials

gl(K),...,gn(%),p(%) as follows:

(1 if i=1 .
ey = ;g () = z'chjxn'J ;
lPlPZ"'Pi~l if 2< 1< n j=1i
1<{i<n
p(A) = det(AI-1L) = A" - g, (\) .

p(A) 1is up to sign the characteristic polynomial of L. Its
roots are the eigenvalues of L. p(A) has one positive root,
which we call %0. AO is a simple root and dominates all other

roots in absolute value.

An elementary estimate for A may be derived directly

(0]
from the definition of p(A).
1/i 1/i
max (c.F.) < An L max (nc.F.)
1<i<n *1 O~ 1<i<n 1

The n in the right-hand parentheses may be replaced by the number

of non-vanishing fertility rates. If this number is one, %O is

completely determined.



We define the index of L to be the greatest common integral

divisor of the set of indices i such that F. > 0. Denoting this

index hereafter by k, we observe that 1 { k < n.

Lemma l: IL has a one-dimensional column eigenspace corres-

ponding to the eigenvalue %O. This space‘is spanned by the vector
U% = Ul+"'+Uk where
(o)
n cy
U. = L — E. 1 <3< k.
I =1 Ar -

i=j,mod k ©

The vectors Ul""’Uk are mutually orthogonal and LUj = AOIH+1,modk

for 1< 3j < k.

Iemma 2: L has a one-dimensional row eigenspace corresponding

to the eigenvalue ko. This space is spanned by the vector
* = * *
V% Vl +...+ Vk where
(0]
i-1
n g. (M)A t
V, = —=— I L0 0 g 1<j<k.
J p' () i=1 i
i=j,mod k
The vectors Vl""’vk are mutually orthogonal and
* = * 1
VjL %O Vj—l,mod X for 1 < j < k.

In Lemma 2 p'(%o) is the first derivative of p(A) evaluated

at %0.




Lemma 3: V. « U =WU. ::%6._, for 1<i,j £k

_— 1 1 1 1 K

Let U= span{U,...,W) and V = spanfv”®...,V). By the
preceding lemmas U*, ..., and V-2 Ve are ort hogonal bases

for the subspaces U and V respectively.

Lemma 4: IR = U©\s*. That is, for any X in 3R%, there

: . - . i
exi st unique scalars >Ve e« *Ty andauni<gue yvactor W in \s

k
such that X = Ey.JU.3 +W In fact, y- :k(X-y._) for 1< j.<k.

j=l

Let P. 2R"—U be the canoni cal Eroj ection from 3R' into U

guaranteed by Lemma 4. Thus, P(X) = Lk(X- V.J) U.J. Let
j=1
I.u: U*U be the identity map of U Let T. U=*xU be the unique

linear map of U into U which pernmutes the basis elenents of U

cyclically according to the formla FU.j = U'j+l,mod k for I~ )7 k.,
Lemma 5: i) r(U ) =U ;
AO A
l[ ; 2 1
ii) S |I, + T+ T2 +..n0 % X— -V, JU
k LTu ] _()( N N

for each vector X in U

i) I53:1{‘_ if and only if j is amultiple of k.

§3. _THECRENG AND | NTERPRETATI ONS;

Let X be a population vector at time 0 (the initial

popul ation vector). Then, in accordance with the Leslie nodel,




L'®(X) is the popul ation vector at time t =0,1,2... . To obtain
information on 17(X) for t |arge, we exam ne Lt or, nore
precisely, the normalized matri x (L/AC) . The follow ng theorem

general i zes Leslie!s theorem
Theorem 1l; Let index L = K  Then
Hm\ L X\ - P(t)'l = 0

k

where P(t) =k EUW . -, n Is a matrix-val ued function
SSijoj-t,modk
of the integer variable t.

The limt in Theorem1l is relative to any of the (equivalent)
norns on the set of n by n matrices. If k=1, P(t) has the
const ant val ue U.A \/*7\ : this is Leslie's Theorem |In general, the

0’0
situation is described by Theorem 2.

Theorem 2; P(t) has the follow ng properties:

i) period (P(t)) = k;
.. . k
i) LK[t:ElP(t)JI =U W

A0 #0
_ tp.
Iii) as an operator, P(t) = I"P: 3R > U.
P(t) is a periodic function with period k and its average
val ue over one period is the matrix tLA\A’;\ . Acting on a vector X
0 "0

P(t) projects it into the subspace U and then "rotates" it
in U by a power of the transformation T. P(t) suppresses
all information except the projection of a vector in the k-dinen-

sional subspace U  Hence, an (n-k)-dinmensional famly of



vectors X gives rise to the same vector-valued function P(t)X
of the variable t. 1If the projections of X and Y in u differ
by a power of the transformation I, then the functions P(t)X

and P(t)Y are the same except for a change of phase.

Theorem 3: If X is in If], then

k
P(t)X = Z

1
where yx(t) = k(X 'Vt,mod k) is a scalar-valued function of

the integer variable t.

Theorem 4: Yx has the following properties:

i) period (yX(t)) = period (P(t)X) = period of the
distribution of P(t)X, and each is an integral

divisor of period (P(t)) = k;
11) l(];:y (t)) - X.v

k =1 X %O'

Theorems 3 and 4 show that the vector-valued function
P(t)X 1is completely determined by the scalar-valued function
yx(t). In particular, the period of yx(t) is the same as that
of P(t)X, which is the same as that of the distribution of P(t)X.
Note that this period need not be equal to k. For example, if

X = Uk , we have yx(t) =1 and P(t)X = UA

o) 0]



Theorem 5; For a population vector X the follow ng state-
ments are equival ent:
1) |I~X converges to a tine-independent distribution;
i) period (yu(t)) = period (P(t)X = 1,

iii) X is in spanfu., ) ©Ir%
0

I V) lim AVA = (X V )IL-
t* m A"' A0
The only subtlety in Theorem5 arises fromthe possibility
that P(t)X =0 for sone tine t. In this case X is in Ir”*
and so X VXO =0. If X is a population vector,, we can concl ude
as in [2] that X has its population concentrated in the ages

beyond fertility. Hence, LtX:O for t large.

When k = 1, span{U}.\ } ©oVi=U©O V' = H and Theorem 5
0

reduces to Lesliels theorem

The direction of U.A in ]R' is the stable age distribution.
0
Let p = period (P(t)X). Then, wusing Theorem 2 and the fact that

p is adivisor of k, we obtain:

P k
i ( EP(t)x)=1L ( £ P(t)x) = U
P\ t=l v Kx o /

VE X = (X V. )Uy .
Aoro M Mo

Thus the stable age distribution arises in the periodic case as
an average value (in a suitable sense) of the asynptotic distri-
buti ons over one period.
Let Pop: JR—= IR denote the total population function.
n

If X isin IR, Pop(X) = Ex..
j=1




n

Theorem 6: Let X be in IR . If %O > max[Pl,...,P l}’

n-_

then period (P(t)X) = period(Pop(P(t)X)).

A more general statement of Theorem 6 together with a

proof may be found in the Appendix.

Theorem 6 facilitates the search for the periodic case.
Supposing that the Leslie model with index greater than one
describes a species in nature, we need not tabulate the population
vectors of the species to observe periodicity. It suffices to
tabulate the total population function Pop(LtX), normalize it
by an exponential multiplier of the form c%ét, and read off the
period.

The hypothesis AO > max{Pl,...,Pn_l} follows from the
stronger hypothesis AO > 1> max{Pl,...,Pn_l]. If the survival
rates are strictly less than one in each age group and if the
population does not vanish asymptotically (%o > 1), the latter
hypothesis holds.

We close this section with one final theorem.

Theorem 7: lim [

L 37
() = U, V¥
t o 5 R AV

1 0° 0 O

-
™M ot

Theorem 7 1is an ergodic theorem and demonstrates that
Leslie matrices can be analyzed by ergodic methods. Indeed, the
matrix (L/%O) is similar to a stochastic matrix and consequently
Leslie's Theorem as well as our theorems fall within the ergodic

theory of stochastic matrices.
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84. THE APPLICABILITY OF THE PERODIC LIMT.

Despite the attractive mathematical theory of the previous
sections, there are both enpirical and theoretical reasons for
questioni ng whether the Leslie nodel with index greater than one
I's an appropriate descriptive tool for real popul ations.

Empirically it has been found that Leslie matrices used
I n studyi ng human popul ati ons have adjacent fertility rates

positive. |If F and F. y are two such rates, then index
30 30 t

L=g.c.d.fj: F4 >0} =g.c.d. {jo jotl} =1. (Wj) converges

to the constant matrix U, VY  and periodicity does not occur.
0 0

Theoretical reasons suggest that this same reduction may
hol d general ly.

To see this we examne the Leslie nodel in greater detail
Let n be a positive integer > 2 representing an age nobody
lives to. Wth i =1, .. .,n and t > 0, we define:

xi(t) = nunber of femal es® whose ages are in the interva

[i-1,1) at time t;

xi(t) = nunber of femal es whose ages are in the interval [0,%
at time t and whose nothers had ages in the interva
[1-1,1) at tine t-1

6(t) = nunmber of fenul es whose ages are in the interval [O0,1)
at time t and whose nothers were not yet born at
time t-1.

Mﬁe consider only fenales for traditional reasons. Such a distinc-
tion may be unnecessary and/or inpractical for |[ower aninals and
i nsect s.
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n .
It follows from these definitions that xl(t) = 6(t) + Z xi(t).

i=1
In addition, we hypothesize that there exist constants Pl""’Pn-l
and F.,,...,F such that:
1 n
I. Xi+l(t+l) = Pixi(t) i=1, ,n-1 t > 0O;
i — 1 =3 .
II. xl(t+l) = Fixi(t) i=1,...,n t > 0;
III. 6(t+l) =0 S t>0

In the interest of simplicity (and ignoring the question
of whether the data we discuss is in fact accessible), we interpret

Equations I and II as defining equations for the survival and

fertility rates and also as axioms asserting their constancy.

Thus, to compute these rates we solve Equations I and II

using experimental values of xl(O),...,xn(o),xl(l),...,xn(l),
xi(l),...,xg(l). This method will give unique solutions if
xl(O),...,xn(O) > 0. These solutions will be consistent with

the earlier theory (i.e., positive survival rates and at least
one positive fertility rate) provided xl(l),...,xn(l) > 0 and
6(1) = o.

Our model is then as strong as the axioms of constancy and
Equation III. These can be checked individually at different
times. If they are confirmed, we put credence in the theorems
deduced from the model. If they are not confirmed, the theorems

still tell us what would have happened if fertility and mortality
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schedules had remained constant--hypothetical information which
sometimes has a preventive use.

Incidentally, the time t need not vary over a continuum.

If fertility and mortality vary seasonally, t should be restricted
to integers and the unit of time chosen so that the passage of one
unit brings us back to the same season. The requirements that

6(t) = 0 and that some females survive to age > n-1 also
influence the choice of a unit of time.

We return now to the subject of periodicity. Suppose that
females may give birth at any age in the interval (a,B) where «
and B are real numbers and 1 { a< B < n. (1 a to conform
with 6(t) = 0.) If females may give birth at any age in this
interval, then presumably females of age in (a,B) at time t
(1f there are any) make a positive contribution to xl(t+l).

In fact, females of age in (o-1,B) at time t (if there are any)
make a positive contribution to xl(t+l) since their ages will
fall in (a,B) at some time in the interval (t,t+l).

Let be the least integer such that o-1 < jO < B. The

Jo
intervals [jo—l,jo) and [jo,jo+l) each overlap with (a-1,8).

We can expect that at some time t xj (t) 1is positive and some

(0]
of the female population counted in xj (t) have their ages at
0]
time t in the overlap of [jo—l,jo) and (o-1,B). Hence they
5o
contribute to making xlo(t+l) positive. Since xlo(t+l)==Fj Xj (t),
O -0

we conclude that F. > 0. Similarly, we can expect that at some
0]




13

time t x. _.(t) is positive and sone of the fenal e popul ation

counted in x. .i(t) have their ages in the overlap of [JQUQ"

and (cc-1,/3) . Tliey thereby contribute to making (t+1)

o
positive. Since xfo (t+1) =F. .x._n(t), F._ e 0. Thus,
two adjacent fertility rates F. and F. 4 are positive and

the index of L is one.

This reasoning can be nodified to apply to versions of the
Leslie nodel which conpute the fertility rates nore indirectly
(i.e., fromlife tables). |In fact, the plausible ideas in the
argunment are simlar to those used by denographers in practical
wor k. One consequence of this is that denographic cal cul ations

from the beginning force adjacent fertility rates to be positive,

| eaving no room for the periodic case. Leslie hinself appears

to have been partially aware of this difficulty since he expressed
reservations about the conceptual significance of the "fertility
rates" in Bernardelli's oscillating beetle population.

Still, Leslie granted that "the ... matrix with only a single
elenment in the first row does correspond to the reproductive biol ogy
of certain species" and in this spirit we suggest sone directions
for future research on the periodic case.

Suppose that we are given a popul ati on whi ch does exhi bit
periodi c behavior. Wthout worrying about the interpretation
of the matrix entries, we mght try to fit the data for this

popul ation to a Leslie matrix. 1In effect, this neans replacing

WNT LIBRARY
GAMEHE-HELLON  UNIVERSITS
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Equations II and III Dby:

n
1 —
11 x)(e41) = 3 F.x, (t) t>0
i=1
The constants Fl""’Fn are labelled fertility parameters

rather than fertility rates. A priori some of these parameters
may even be negative (violating the hypotheses of our theorems).
To compute the survival rates and fertility parameters, we solve
Equations I and II' wusing experimental values of){l(t),...,xn(t)
for t =0,1,...,n. (If some of the fertility parameters are
expected to vanish, t may take on fewer values.)

If the resultant matrix is a Leslie matrix with index
greater than one and if the model so constructed has predictive
value, we will be forced to seek a theoretical justification of
the fertility parameters.

One possible explanation goes back to our earlier argument.
If o =B = an integer, the argument breaks down irretrievably.
To exploit this fact we would need a species whose females give
birth only at discrete times jl,...jm where each ji is an
integral multiple of the unit of time and g.c.d.{jl,...,jm]==kj>l.
Such a quantized process might be more suitable for describing
non-organic growth than biological reproduction.

Another possibility is that members of the species pass
through some kind of filter. At each integer time t females

whose ages are outside the interval [jo—l,jo) are temporarily
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sterilized: they are rendered incapable of maternity for one
time unit. At time t 41 the sterilization is repeated. This
leads to F. as the only non-zero fertility rate and a Leslie
matrix with index equal to | o.

Both of these possibilities make delicate use of the unit
of time. For this reason, anong others,, we enphasi ze the need
for enpirical research to determ ne whether the periodic limt
has applications. |If a Leslie matrix with periodic limt does
descri be sone species, subtle, and possibly radical, refinements
wi Il be needed in our understanding of fertility--at least in

the rel evant species.
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APPENDIX

This appendix is devoted to a proof of the theorem stated
below, which generalizes Theorem 6 of the text. All notation
is the same as that in the text. At the end of the appendix
we state a significant corollary of the theorem. We also list
examples of Leslie matrices which violate both the premises and

the conclusion of the theorem.
Theorem: If either of the following two conditions hold:

i) AO 2'max{Pl”"’Pn—l} and g.c.d.({j: XO > Pj}lJ{k} Ui{n}) =1;
or ii) xo'g min{Pl,...,Pn_l} and g.c.d. ({j: Ao < Pj]LJ{k}LJ{n}) =1;

then period (P(t)X) = period(Pop(P(t)X)) for any vector X in r".

We preface the proof of the theorem with several lemmas of
some interest in themselves.
Let O EREREE N be real numbers and let C(al,...,ak) denote

the matrix

21 a2 a ]
%k %1 %%-1
_?2 ag. al_—
obtained by permuting the elements I ERERL " cyclically from

one row to the next. Such a matrix is called a circulant matrix

and has been extensively studied in classical matrix theory.
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th .th

| f a';.j Is the entry in the i row and | col um of
X — N
C(ay,...,ax), then a. = a ‘i+1,mod k°
Lerma 1: C(a”™. . .za¢ 1isnon-singular if and only if the
polynomials ayx+a”. . .+az*"* and z*- 1 have no root in
conmon.

*Shis lemma was first proved by W Spottiswoode. A proof

may be found in [7], pp. 407-408.

Lemma 2; Let g(z) = Bj® +Byz +. . .+Bk|§'1 wher e

B% >0. Then if ~ is aroot of g(z),

(i) |£ 17 = max({B;/B,, By/B3,...,B /B };

and (ii) |£] <y provided g.c.d. ({j: Bj <yBj+1)U{k}) = 1.

Lemma 2 is due to Enestrom Kakeya, and Ostrowski. For

a proof see [8], pp. 105-106.

Lenma 3: C(a,,...,, a,) 1is non-singular provided a, +. . .+a,/ 0,

aklag.11... lay, and g.c.d. ({j: a"’;n‘fa"} U{k}) = 1.

Proof; By Lenma 1 it suffices to prove that the pol ynom al
. k-1 K
f(z) “% +2%9% +---+CUK"" has no root in common with z -1.

Choose a>a”“ and let g(z) = (a- a;) + (a-az)z+...+(a- a") zk'l.

g(z) satisfies the hypotheses of Lemma 2 wth

M a) auakl

V=max{_ = -~}g_1
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and
g.c.d. ({j: a- a.j < a- aj+1) U(k)) =g.c.d ({j: aj+1<aj} U(k)) =1.
k_
Thus any root £ ° <2(¥) "3 \£\ < 1le Since g(z) = af *Z—-)L f(z),
« z+"1
we conclude that f (z) has no root in conmon with z -1 except

possibly z = 1. However,, f(l) = a,-f...+ax " O.

The followi ng variations on Lemma 3 w | be useful |ater.
Lenma_4: C(al,...,ag) I s non-singul ar provi ded a.J_+...+a,K;éo

and one of the follow ng conditions hol ds:
(42) ax £ a £ .+ .£a and g.c.d. ({j: a*<aj«} U{k}) = 1;

or
(4b) there is an index | o<C k-1 such that

aj +1<**-la<a-<...£fa. and

g.c.d. ({j: a <a+1) Ufjg U{k) = 1.

Proof: To prove the (4a) version let c¢. =a. , . for
D K+i -3
11j 1k. Then det C(a;™...,ax) = det C(cg,...,C1) =
4, det C(c,,...jG ) since the third matrix can be obtained from

the second by reversing the colums and pernuting the rows
appropriately afterwards. Thus we need only confirmthat

Cl » ###83>C Tu T H the hypotheses of Lemma 3. dearly,

Cic <CCk_1-<C ... £c and c;+. . -+c¢» 0. Moreover, g.c.d.
(2 €50<cj Y VD = gcd ({j: ak.; <aka;} ULk} =g.c.d
({k-j: ak-j <ak_j+«1} U{k}) =g.c.d ({j: o <aj+} U{k})=l,
whi ch conpl etes the proof.
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If (4b) holds, let cj = ajo+k+l—j,mod X for 1< j < k.

Then det C(al,...,ak) = det C(cj »eee3CysCyseeesC )=

0]

+ det C(cl,...,ck), and again we confirm that SIERE

jo+l
5 Cp

fulfill the hypotheses of Lemma 3. Two of the hypotheses are

obviously fulfilled. For the third, note that c. =a, <a,=c. .
jo+l k 1 Jo

Thus

g.c.d. ({j: 41 < Cj} U (x})

g-¢.d- (135 3y 435 ,mod k < ¥j +k-3+1,mod ) U o) U kD)

= g.c.d. ({j: a,

j <agpl U Gd U k) =1,

and we are done.

Proof of the theorem: Let p = period(Pop(P(t)X)). Then p

is a divisor of period(P(t)X). Hence we need only verify that
P(t)X = P(t+p)X for all t or, equivalently, that yx(t) = yx(t+p)

for all t.

Pop: RS> R is a linear function. So Pop(P(t)X) =
k k
Pop( % 7X(3 t)U ) = T yx(j t)PoptH . Expressing this relation
j=1 J=1

in matrix form for different values of t and using the fact

‘that all periods are divisors of k = period (P(t)), we obtain:

Yx (1) Pop(P(k)X) Pop (P (k-p) X)
C(POp U, ...,Pop U, ) : - '
(k) Pop (P (1) X) Pop (P (1-p) X)
Yx (l+p)
= C(Popthj , Pop U )

7 (k+p)
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Thus yx(t) = 7X(t+p) for all t and the theorem is proved
provided we can establish that C(PoptH}...,PopUk) is non-
singular.

Suppose hypothesis (i) of the theorem is fulfilled.
Without loss of generality we may suppose that %O = 1. (This
is equivalent to replacing each survival rate P by Pi/KO.)

Then 1 > max{Pl,...,Pn_l} and for 1< j < k-1 cj+l==chj§;cj.

Hence, PopU. = L c, > Z c. = Z c., =PopU, ..
’ ] i=5,mod k ¥ T i=j,mod k Y"1 i=j+l,moa kx * J+1

In addition if n = + ak for 1< jO < k-1, then

Jo

PopU. +

Jo Jo Jo

1l
Q
+
+
9!

+ C .
n>c

+...
jo+l

C.
30+1+(a-1)k

It
)
O

o]

c

Thus we have

g.c.d. ({3: PopUj+l< PopUj) u {x})

I
1]

g.c.d.({j: there is an i j,mod k with ¢, 4 < ci}
U {3} U (k}) = g.c.d. ({i: ¢; ;<e;} U (n} U (k])

g.c.d. ({3: Py < 1} U {x} U (n}) = 1.

The hypotheses of Lemma 3 are fulfilled, and C(Popthf... Poptﬁg
is therefore non-singular.

Suppose hypothesis (ii) of the theorem holds. Again with-
out loss of generality we take AO to be 1. Choose jO

that n = jy+ak where 1< j, < k. Since 1 S-min[Pl""’Pn-l}’

such
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we have c,-+1:c">_c.:| If jo=k, it follows that
Pop Ul <M Poply <-..< Pop U and an argunent anal ogous to that
of the last paragraph shows that the hypothesis (4a) of

Lenma 4 is fulfilled. [If jqo<Kk,

PopU.__>0,_i < ... 1 PopU, <PopUu, 1... < PopUjO
since the number of terms drops by one as we move from

PopU. to PopU. and since

+1

- ) 1
PopUk_ = Ck+o - - +Cak < C: + € gt Cqimpe Pop U, .

Furthernore, g.c.d.({j: Popt%. < PopUj:1}U{jg U{k}) =g.c.d
({j: thereisan i s j.nd k with cj+; >c: U{n} U{k}) =
g.c.d ({i: ci+1>ci} u{kl U{n})=9g.c.d ((j : 1 <P } U{k} U{n} =1,

Hence, hypothesis (4b) of Lemma 4 is fulfilled, and our proof

I's conpl ete.

Corol lary: Let hypothesis (i) or (ii) of the theorem
be fulfilled. |If the Leslie matrix of a popul ation is known

and Pop(P(t)X) is known for all t, then P(t)X can be

det er m ned.

Proof; 1f the Leslie matrix is known, C(PopU,, 4. ., Popq()

and its inverse can be explicitly conputed. Then the matrix

equation in the proof of the theoremcan be solved for kVX(t)

interns of Pop(P(1)X , .. ., Pop(P(k)X) , and P(t)X:_LlyX(j-t)U_J.
J"—'
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Examples: In each example A, = 1.

(0]
o 1
Let L = . This is the only possible 2 by 2 counter-
i 0 '
example to the theorem. P(t) = Lt in this case and period

(P(t)X) = 2 1in general while period (Pop(P(t)X)) =1 always.

Note that Ay = P, and g.c.d.({k} U {n}) = g.c.d.{2,2}=2.
(0] o 0]

et L =|1/a O 0 where 1 > a > 0. Then P(t) = Lt,
o l-a O

period (P(t)X) = 2 in general, but period (Pop(P(t)X)) =1

always. Here P1 > %0 > P2.

) L-u
(o] u (o] p
et L =11 0 0 0 with 1 > u > 0
(0] le] (0] (0]
(0] (0] 1 (0]
L p—

and c¢ > O. Period (P(t)X) = 2 in general but period
(Pop(P(t)X)) =1 always. If c < 1, %o = max{Pl,Pz,P3}
and g.c.d.({j: Pj < %O} U {k} U {n}) =2. If c>1,

Ay = min{Pl,PZ,P3} and g.c.d.({j: Pj > RO} U {k} U {n}) =2.




23

References

[1] Bernardelli, H., "Population waves", J. Burma Res. Soc. XXXI
Part I (1941), 3-18.

[2] Cull, P. and A. Vogt, "Mathematical analysis of the asymptotic
behavior of the Leslie population matrix model", to be published.

[3] Demetrius, L., "Primitivity conditions for growth matrices",
Math. Biosciences 12 (1971), 53-59.

[4] Leslie, P.H., "On the use of matrices in certain population
mathematics", Biometrika XXXIII (1945), 183-212.

[5] Lewis, E. G., "On the generation and growth of a population",
Sankhya VI (1942), 93-96.

[6] Lopez, A., Problems in Stable Population Theory, Office of
Population Research, Princeton, New Jersey, 1961.

[7] Muir, T., The Theory of Determinants Vol. II, Dover Publica-
tions, New York, 1960.

[8] Ostrowski, A.M., Solutions of Equations and Systems of
Equations, Second edition, Academic Press, New York, 1966.

[9] Parlett, B., "Ergodic properties of population I: the one
sex model", Theoretical Population Biology 1 (1970), 191-207.

[10] Sykes, Z.M., "On discrete stable population theory", Biometrics
25 (1969), 285-293.

Department of Mathematics
CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PENNSYLVANIA 15213

/elb/9/6/72




