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PROVABILITY IN ELEMENTARY TYPE THEORY

by

Peter B. Andrews

Abstract

Results are obtained about special cases of the decision

problem for provability in type theory with A-conversion,

minus axioms of extensionality, descriptions, choice, and

infinity.

|- &£ . . . agn [A=g] iff there is a substitution 0 such that

9 * A = 0 * B. Hence f- A = g iff A conv Jg. This shows the

independence of the axioms of extensionality. If £ is

quantifier-free, f- Vjc . . . Vx Q iff r}C is tautologous. Inhere

is no decision procedure for the class of wffs of the form

3z [A=B] , or the class of wffs of the form 3g£* where C is

quantifier-free. Hence the only solvable classes of wffs in

prenex normal form defined solely by the structure of the pre-

fix are those in which no existential quantifiers occur.
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§1 introduction

In this paper we assume familiarity with, and use the

notation of, [1]. Hie system 2> of [1] is the system of

type theory with A-conversion introduced by Church [5],

minus axioms of extensionality, descriptions, choice, and

infinity. We shall refer to 3 as elementary type theory,

since 3 simply embodies the logic of propositional connec-

tives, quantifiers, and A-conversion in the context of type

theory. In spite of the fact that 3 is analogous to first

order logic in certain respects, it is a considerably more

complex language, and special cases of the decision problem

for provability in 3 seem rather intractable for the most

part. We shall use the methods of [1] to obtain information

about some very special cases of this decision problem.

We show that a wff of the form 3x ...3xn[A=B] is a

theorem of Z iff there is a substitution 6 such that

0A conv 8B. In particular, f- A = B iff A conv B, so we

have a solution to the decision problem for wffs of the form

[A=B]. Naturally, the circumstance that only trivial equality

Ihis research was partially supported by NSF Grant GJ-28457X.



formulas are provable in 3 changes drastically when axioms

of extensionality are added to 3, and this fact provides a

proof of the independence of the axioms of extensionality.

We see that k 3xD[A=B] iff there is a wff EQ such that

I- [AxQ.A = B]EO, but the decision problem for the class of
-p — - -p

wffs of the form 3x [A=B] is unsolvable.

We solve the decision problem for wffs of the form

Yx ...Vxnq, where C is quantifier-free, by showing that

such a wff is provable in 3 iff rjQ is tautologous.

On the other hand, we show the unsolvability of the decision

problem for wffs of the form 3zQ, where £ is quantifier-

free. Since irrelevant or vacuous quantifiers can always be

introduced, this shows that the only solvable classes of

wffs of 3 in prenex normal form defined solely by the struc-

ture of the prefix are those in which no existential quantifiers

occur.

§2 Preliminary Results

We shall often omit type symbols from variables, constants,

and wffs once it is clear from the context what the types must

be.

To facilitate our discussion of 3, we next present a

refutation system B such that any finite set of wffs can

be refuted in Ji if and only if it can be refuted in 3.

(The system ft of [1] is actually stronger than 3, since

the negation of the Axiom of Choice can be refuted in ft,



but not in 3 (as can be seen from [2]). Of course, any

finite set of sentences refutable in R, is refutable in

the system 3C obtained by adding the Axiom Schema of

Choice to 3>.)

Definition, Let § be any finite set of wffs of U.

A fi-derivation of E from § is a finite sequence

D , ...,pn of wffs such that pn is E^ and each p1 is a

member of % or is obtained from preceding members of the

sequence by one of the following rules of inference;

((Bl) Conve r s ion- I-11. Apply 2.6.1 (Alphabetic change of

bound variables) or 2.6.2 (A-contraction) of [1].

(B2) Disjunction rules. Apply 4.2.2.2 of [1].

(B3) Simplification. From M V A V A to infer M V A.

(B4) Negation elimination. From M V ~~ A to infer M V A.

((65) Conjunction elimination. From M V ~[AVBj to infer

M V ~ A and M V ~ B.

(R6) Existential instantiation. From M V ^ II , N A to_ o(oa)~ooc

to infer M V ~ A d , where d is any parameter which

does not occur in any member of S or any preceding

wff of the derivation.

(B7) Universal instantiation. From M V II , XA to infer~ o(oot)"~oa

M V A B , where B is any wff .

(S8) Cut. From M V A and N V ^ A_ to infer M V N.

It is understood that M and N^ may be null above, in

accordance with 4.1.2 of [1]. The crucial differences between



B and the system ft if [1] are that existential instantiation

is more restrictive for B, and substitution is combined with

universal instantiation in ft. In a given derivation, we

refer to a parameter d introduced by (B6) as an existential

parameter.

We write § k E to indicate that there is a B-derivation

of E from S, and say that S is refutable in B iff

s hBD.

Theorem 1. Let S be any finite set of wffs • Then

s kD iff s L D .B

Proof: For any finite set S of wffs , we let T

mean not S k CD . It is readily verified that T is an

abstract consistency property (see 3.1 of [1]). The details

are generally similar to those in 5.3.2 of [1] , so we remark

only that in adapting 5.3.2.4 to the present situation, one

may assume that the existential parameters in C ,. . . , C11 do

not occur in A, and the existential parameters in E ,...jE™

do not occur in B or in C ,...,£; also, r)D 9 T)A, and r)E

may be replaced by D1,^, and E1, respectively. To adapt

5.3.2.7, note that if there is a B-refutation of § U {-A x },
""*OOL»""~(X

where x is a variable which is not free in A or any wff
~a -~oa

of S, one can replace all free occurrences of x in the
GL

given refutation by occurrences of a new parameter d , and

thus by (B6) obtain a B-refutation of S U [~ II . ,A ).
O \OQC/ OQC

ITIUS i f ? [ • [ ] , then S i s i n c o n s i s t e n t , so by Theorem 3.5

of [ 1 ] , not T(g) , i . e . , g



Suppose § haD 9 a n d l e t a pa r t i cu la r R-refutation D , . . . ,p

of g be given. Let M1 V ~ A1 d1 (for 1 <L i <L k) be the wffs
~o a i"" a i

inferred by ((B6) in th i s refuta t ion, in the order in which they

occur. Note that §? cannot occur in any wff of S, or in A if

i < j . Let E1 be the wff [A^ 1 => II , xA1] for l ^ i ^ k .

Let &° = 0 and S1 = {E 1 , . . . ,E 1 } for l ^ i ^ k , Since the

rules of inference of B other than (B6) are a l l derived rules

of inference of 3>, i t i s easy to see by induction on j that

S U £k k 2 j for 1 £ j £ n, so g U 6k L D •

We prove that S U & ^ hr ̂  f o r ° i K k bY induction

on j . For the induction step we prove % U £ f-n-LJ from

3

he induction step

(a) g U 61" U {E1] \-~ D (the inductive hypothesis).

By the deduction theorem ([5],p.62) and propositional calculus

we obtain

(b) ft U & 1" 1 k ~ rL/^xA 1 (where a is a.) and
1 o O \OCL) 1

(c) ft u a1""1 h3 A V .

Since d1 does not occur in A1 or any wff of ft U C1" , we

may replace d1 by a new variable y throughout the proof

of (c) to obtain

(d) ft U 6 1 " 1 |-jy A 1 ^ .
(e) ft U 6 1 " 1 k n , vA1 by Generalization,

o O (OOL)"^*

(f) g U S 1 " 1 k • from (b) and (c) .

Thus when j = k (or i f k = 0) we have S k EH , so the

proof i s complete.

Recall that a wff i s in A-normal form iff i t has no wf

par t s of the form [[Ax B ]A ] .



Lemma .1. Every wff C in A-normal form is of the form

k 1
[Ax B ] (provided that Y = (ap) ) or p . , p. ...p§ ,

where p . *. is a variable or constant and k ^ 0. (If

k = 0, C Y is py.)

Proof: If C is not of the form [^2?QB ] , it must be a

variable or constant or of the form [A ,D ] . A , cannot have

the form [Ax JB ] , so it is a variable or constant or of the

2 2 2
form [A c c Dc ] . The same considerations apply to A ,, <• ,

and by continuing in this way one sees that C must have

the indicated form.

A substitution is a particular type of mapping from wffs

to wffs which is determined on all wffs by its behavior on

variables. (We shall consider only substitutions which map

each variable to a wff of the same type.) Given a set \s of

variables, we say that 9 is a substitution for the variables

in v iff 9 is a substitution such that 9y = y for each

variable y which is not in V. If x ,...,x are distinct

variables and A is a wff of the same type as x for

x 1 x n

1 < i < n, we denote by S n the substitution of A1

A 7\
£x • • . ̂ Zj,

for all free occurrences of x for 1 <£_ i <^ n. As in [4] ,

for each substitution 9 and wff B, we let 9*B denote

T) [ [̂?? • • • ̂ 2 B] (9x ) . . . (9x ) ] , where x ,. . . ,x are the free

variables of B,. (rjA is a particular A-normal form of A;

see 2.7.5 of [1].) Thus 9*B is obtained by making the sub-

stitution 9 for the free variables of B (after making any



necessary alphabetic changes of bound variables in J*) , and

putting the resulting wff into A-normal form. When 9 is

the identity substitution or B is closed, 9*B = t]B.

§3 Equality and Universal Formulas

Theorem 2_. Let A and B be wffs of 3 and n ;> 0.

Then |-_ 3xJ . . . 3x*J [A = B ] iff there is a substitution
J -p^ Pn —a ""a

9 for the variables x 1 , ...,x** such that 9* A = 9*B .
~"l ~"" ~ a

Proof: We may assume x ,...,x n are distinct, for

otherwise vacuous quantifiers may be deleted.

Suppose there is such a substitution 9. Since some

x may occur in some 9x^, let y ,...,y be variables
~ p l - p n

distinct from one another, x ,...,x n, and the variables in

A ,B , and 9x ,...,9xn.

(1) f-̂  9̂ -A = 9̂ -B equality theorem

(2) \-z [ [Ax
1. . .AxnA] (9X1) . .. (9xn) ] = [ [Ax1. . . AxnB] (9X1) . . . (9xn) ]

A-conversion

(3) \ z ay1. . .ay11. [[Ax1. . .Ax^Jy1 . . .yn] = [ [Ax1. . . Axng] £ . . .y11]

exis tent ia l generalization

(4) \ z ax1. ..ax11. [[Ax1.. .Ax31^]?1...?11] = [[Xx1...AxI1B]x1...xn]

alphabetic change of bound variable

(5) |-v- 3x ...3x .A = B̂  A-conversion

In the proof of the converse implication, we shall assume

that n = 2 for the sake of notational simplicity; it will be

obvious how to adapt the proof to other values of n.
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Suppose that )-_ 3x 3y [A = B ] . Hence

Yx Yy ~ [ [AxoAy A ] x v = [AxoAy B ] x v ] |-_ •
-p ~Y "3 ~Y~Ot ~PXY ~P ~Y~<x ~P~Y 3

so by Theorem 1 and the d e f i n i t i o n s of Y and = there i s a

B-refutat ion of

where ^ is distinct from x ,y , and the free variables of
OOL *** p —'Y

A and B .

By appropriate alphabetic changes of bound variables, we

may assume that y and f are not free in the wffs CR

and D introduced below. We assert that in any IB-refutation
- Y

of (6) , each line must be obtainable by (JJ1) from some line of

the following refutation (for appropriate choices of C ,D ,

and d o a ) :
(7) [AX.II.AY.- II.Af..~ f[ [AxAyA] xy] V f [ [AxA^B] xy_] ] C

for some wff C o B7: 6

(8) n.Ay.~ n.Af.~ f [ [AxAyA] Cy] V f [ [AxAyB] CyJ Bl: 7

(9) [Ay.~ n.Af . - f [ [AxAyA] CyJ V f [ [AxAyB] Cy] ]D B7 : 8

(10) - II.Af.~ f [ [AxAyA]CD] V f[[AxAyB]CD] Bl: 9

(11) ~[Af.M: [[AxAyA]CD] V f [ [AxAyB] CD] ] dQa

for some parameter d which does not occur

in A,B,C, or D. B6: 1O

(12) ~ . ~ d[ [AXAYA]CDJ V d [ [AxA^B] CD] !B1: 11



(13) ~ d[[AxAyB]CD] B5 : 12

(14) ~~d[[AxAyA]CD] B5 : 12

(15) d[ [AxA;£A]CD] B4 : 14

(16) D Bl,68: 13,15 (or 14)

To verify the assertion above, note that if Q is any of

lines (6)-(16), and J is obtained from G by (Bl) , and

K is obtained from J by any rule of B, then K is ob-

tainable by (Bl) from some wff JJ which is one of lines

(6) -(16) and is obtained from G by a rule of B.

It is clear that in order to derive • , there must be

wffs £ and D such that O is derivable by (Bl) and

(B8) from (13) and (15), so one must have r\ [

T} [ [AxAyB] CD] . Thus, when 9 = S^ ̂  , we have 9̂ A = 9*B.

Corollary 1. L A = B iff A conv B .

Proof: When the proof of Theorem 2 is specialized to

the case n = 0, one obtains f- A = B iff t)A = rjB, which

means £ conv B.

Since it can be effectively decided whether or not

A conv g simply by comparing ?]£ with ?)g , we have a

decision procedure for the provability of equality formulas

in 3.

Note that the wff f Q = [Axo.f _xo] is not a theorem
OCp p OCp p

of U, though it is readily derived from the Axiom of Exten-

sionality (6.1.1 of [1]). Hence we have a proof of the inde-

pendence of the Axiom of Extensionality quite different from

that in [3] .
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It is not generally true that if k. 3x C, then there
o p

is a wff Eo such that hr[AxDC]j;Q, even if C is quantifier-
P «J p P

free. For with the aid of Theorems 1 and 3 (below) it is

easy to see that \-^ 3x [dQ x =>. da A dQ b ] (where a ,

b , and d are parameters) , but there is no wff E such
t o t "** t

that k.[Ax .d x z>.d a A d b ]E . (Note that this is
1 J t o t t o t t o t t ~ t

essentially an example from first order logic.) Nevertheless,

such a situation does occur whenever C is an equality formula,

as we next note.

Corollary 2. k. 3xQ[A = B ] iff there is a wff Eo
— • 6 ~ p ̂ a ~<x ~P

such that

Proof: If |- [Ax.̂ A = B]E, then |- 3x. [Ax.^ = B] x by

existential genera] ization, so f- 3x[^=Sl 1°Y A-conversion.

If |- 3x[A=g], then by Theorem 2 there is a substitution 9

for x such that 8*& = 9^B. Let Eg = 6x , so rj [ [AxA] E] =

T) [ [AxB] E] , so f-vj[AxA]E = [AxB]E. Hence |-̂  [Ax. [A^A]x =

[AJJ5]X]E and [-«[Ax.A = J3]E by \-conversion.

A wff of the form A = B is (by virtue of the definition

of = ) of the form Yj£ Q, where Q has no accessible quanti-

fiers (though quantifiers might be buried in & or B ) . We

next note that this solvable case of the decision problem can

be generalized in a rather obvious way.

We say that a wff Q of IT is tautologous iff there is

a tautology P of the propositional calculus in which the sole

connectives are negation and disjunction, such that Q is
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(the wff abbreviated by) s ^ i # # # ^ n -'
 w h e r e 9 j---*qn a r e

jB • • • J3

the propositional variables of £ and B , ...,B are wffs

of 3. (The result of the indicated substitution is only an

abbreviation for a wff of 3, since in tf [AVg] is an abbre-

viation for [[VA]B].)

A wff £ of 3 is quantifier- free iff none of the
constants 11, x occur in C.o(oa) —

Theorem 3> Let Q be a quantifier-free wff of 3, and

n ̂  0. Then [•„ Vx • • • Vjr? c i f f t?c is tautologous.

Proof: If t)£ is tautologous, then f-~ y)Q (see [5]) so

£ bY A-conversion, and \-~ Vx . . . Vx C by generalization.

Next suppose |-~ Yx . . . VxnC. Then \-~ C so ^ C ^ []

so ^ C kD by Theorem 1. Let D , . . . ,D be a

(B-refutation of ^ jQ, Since ^ £ ^s quantifier-free, rules

(B6) and ((B7) cannot be used in this refutation, so it is clear

1 kthat r)D , . . . ,r}D is a R-refutation of ^ rjC in which only

rules (R2)-(fl5) and (B8) are used. (Of course, r/D-5 = nD1 if

D-5 was obtained from D1 by (ftl) ) . These are essentially

rules of propositional calculus, so if we regard r}O as a

propositional constant denoting falsehood, it is easy to estab-

lish by induction on j that [~ r\Q ̂  rfDp] is tautologous for

1 <L j <L k. Since D is CD , rjC is tautologous.
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§4 Undecidability of the 3gQ Case

Huet [6] and Lucchesi [7] have independently shown that

there is no decision procedure for determining, of two arbi-

trary wffs A and B , whether there is a substitution 6

such that 9*A = 0*B . Thus the decision problem for the

entire class of wffs dealt with in Theorem 2 is unsolvable,

though we have a decision procedure for the subclass obtained

by setting n = 0. By appropriately modifying Huet's ideas

in [6], we obtain the following results:

Theorem £. There are no decision procedures for prov-

ability in U for the classes of wffs of the following

forms:

(I) SzK[Aa = B a ] .

(II) 3̂i<;£> where C is quantifier-free.

Proof: We let £ = (a ,b }, the alphabet whose letters
1 1 t t

are the parameters a and b of 3". A word over £ is
it 11

a finite sequence of letters from £. An instance of the Post

Correspondence Problem over £ is determined by an integer

n ;>_ ] and two sequences X , . . . ,X and Y ,. . . ,Y of

length n of words over L. A finite sequence i-5...,i of

integers such that m ̂  1 and 1 <^ i • <£_ n for 1 <^ j <£_ m is

a solution to this instance of the Post Correspondence Problem.
in i i.. i

iff X . . .X m = Y • . .Y m. It is known (see [8]) that the

problem of determining whether an arbitrary instance of the

Post Correspondence Problem has a solution is unsolvable.
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Let p be an arbitrary instance of the Post Correspon-

dence Problem, determined by sequences X ,•.•,X and

Y ,...,Y of words over £. Let K be the type symbol

( (11) (i t) . . . (11) ) , in which (t t) occurs n + 1 times. We

shall subsequently use the variables t , u , ...,u , and

2(C, and the parameters a% ̂ t ,c t ,dQl {11) (; t) K, and

e , x , \ of Z, which we henceforth write without type

1 ksymbols. For any word W over £5 say W = w . . .w (where

w^ e Z for 1 1 j £ k) , let W be [At [w1 [. . . [wkt] ...]]],

which is a wff of 3.

Let A „ be [Az. z [Att] . . . [Att] ] 9 let B ^ be

[Az.zfTvtc] . . . [>tc] ] , l e t X . be [Az. zX1. . . Xnc] , and le t

Y ^ be [Az.z?1. . .?nc] . We shall show that the following

conditions are equivalent:

(i) Ky Sz.e[Az] [Bz] [Xz] = e [Att] [Ate] [Yz]

(ii) (-̂  3z . - dz[Az] [Bz] [Xz] V dz [Att] [Ate] [Yz]

( i i i ) Ihere is a wff jg such that (a) AZ conv [Att] ,

(b) BZ conv [Ate], and (c) XZ conv YZ.

(iv) P has a solution.

This will prove our theorem, since a decision procedure for

all wffs of the form 3£ [A = B ], or for all wffs of the

form 2z^C, where C is quantifier-free, would provide a

decision procedure for the Post Correspondence Problem.

If (iii) holds, then

[ e[AZ] [BZ] [XZ] = e[Att] [Ate] [YZ] and

hjy - d.̂ [AZ] [BZ] [XZ] V dZ[Att] [Ate] [YZ] , so (i) and (ii) follow

by exis tent ia l generalization.

HINT LBRAKT
URNEEIE-HLUH UNIVERSITY
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If (i) holds, then by Theorem 2 there is a substitution

6 for z such that 9*e [Az] [Bz] [Xz] = 8*e [Att] [Ate] [Yz] .

Let ZK be 9z, and (iii) quickly follows.

Next we show that (ii) implies (iii). If (ii) holds,

then there is a refutation in 33 and hence in ft, of

(1) n , „* [Az.~.~ dz[Az] [Bz] [Xz] V dz [Att] [Ate] [Yz] ] .
o (oft]

As in the proof of Theorem 2, it is c lear tha t in any

ft-refutation of (1) each l ine must be obtainable by

(ftl) from some l ine of the following refuta t ion (for

some choice of g^) :

(2) [Az.- . - dz[Az] [Bz] [Xz] V dz [Att] [Ate] [Yz]]ZK

for some wff Z ft7: 1

(3) ~. ~ dZ[AZ] [BZ] [XZ] V dZ[Att] [Ate] [Y£] ftl: 2

(4) - dZ[Att] [Ate] [YZ] «5: 3

(5) — dZ[AZ] [BZ] [XZ] ft5: 3

(6) dZjAZ] [BZ] [XZ] B4: 5

(7) • B1,B8: 4,6 (or 5)

Thus it is clear that (7) must be obtainable from (4) and (6)

by (<B1) and (R8) , so the same wff Z (up to equivalence by

A-conversion) must occur in (4) and in (6), and rj(4) must be

— 17(6) . Hence (iii) must hold.

Thus (i),(ii), and (iii) are equivalent. We complete

the proof by showing that (iii) and (iv) are equivalent.

Suppose i,,...,i is a solution to P (so m ̂  1). Let

Z be [Au1. . .AunAt.u 1 [ . .. [u mt] ...]]. Clearly AZconv [Att]
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i l 1 1

and BZ conv [Ate]. Also, since X . • . X m = Y . . . Y m ,

XZ conv [8f 1 [. . . [X mc] . . . ] ] conv [? 1 [. . . [Y mc] . . . ] ] conv YZ,

so ( i i i ) ho lds .

Next suppose ( i i i ) holds ; we sha l l prove (iv) . We may

assume tha t z,, has the form [Au . . .Au n G ] , where G is in

A-normal form and the u 1 are d i s t i n c t . For i f not, l e t z\ be
t I K.

[Au1. . . Au*1 . rj [Zu* . .u" ] ] , where u] , . . . ,u™ are d i s t i n c t
\ \ \ it V 1 1» I V I ¥ \

variables which do not occur free in Z. Then Z^ also

satisfies (a),(b), and (c).

Now G must satisfy Lemma 1.

k 1Case 1. G has the form p . . D, ...D. , where

k ^ 0 and p is a constant or variable.

If p is distinct from each of the u 1 , then (a) is contra-

dieted. Hence there exists i (1 <L i <L n) such that p is

û " . so k = 0 and Z^ is [Au4 . . . Au u ]. Thus by (c) ,

S^c conv ̂ X ...Xnc conv XZ conv YZ conv Z? ...^c conv Y1c,

so rjX1c = r)Y1c, so X 1 = Y 1 and i is a (rather trivial)

solution to P.

Case 2_. G has the form [A£ g ].
11 t t

Since 2 ^s *-n A-normal form, jg must be also, and so by

k 1Lemma 1 has the form p « , D. .. .D, , where k > 0 and

p i s a var iab le or constant . Thus Z, has the form

[Au1 ...Au11 At .p . , D^ . . . D 1 ] .
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If p is t (so k = 0), (b) is contradicted. If

p is distinct from t and each of the u , (a) is contra-st *• t ••* 1 1

dieted. Hence p must be some u 1 (so k = 1) . Thus for

some m > 1, Z has the form [Au . . . Au11 At .u [. . . [u ™K ]...]],
*• i t 1 1 i • 1 1 x imm t

where K is in A-normal form, and by choosing m large enough

it may be assured that K does not have the form u^ M .

1 kThus by Lemma 1, K must have the form c[ , * D, . . .D. ,

where k ^ 0 and q is a constant or variable distinct from

each of the JJ . If q is not t , (a) is contradicted, so

q is t and k = 0 and Z is

1 i-, i
[Au . . . Au At.u [... [u t ]...]]. Thus by (c) ,

XX XX XX X X X

i. i i, i
n [x L... [5c c ] . . . ] = rj [xz] = rj [Yal = r) [Y x . . . [Y m c ] . . . ] , so

i^ i i - i
X . . . X = Y . . . Y and i . . , . . . , i i s a s o l u t i o n to P.

This completes the proof.
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