s F

ocT12 72

PROVABILITY IN
ELEMENTARY TYPE THEORY

by

Peter B. Andrews

Report 72-19

September 1972

This research was partially supported by NSF Grant GJ-28457X.

HEAT LIBRARY
CARNECIT-MELLON UNIVERSITY




PROVABI LI TY | N ELEMENTARY TYPE THEORY

by
Peter B. Andrews

Abstract

Resul ts are obtai ned about special cases of the decision
problem for provability in type theory with A-conversion
m nus axi ons of extensionality, descriptions, choice, and
infinity.

|- & ... ag"[A=g] iff there is a substitution 0 such that
9* A=0* B Hence f-_A=g iff Aconv J This shows the
i ndependence of the axions of extensionality. If £ 1is
quantifier-free, f- q% L W% Q iff r}C is tautol ogous. Inhere
is no decision procedure for the class of wifs of the form
3z [A=B] , or the class of wifs of the form 3gf£* where C is
quantifier-free. Hence the only solvable classes of wifs in
prenex normal form defined solely by the structure of the pre-

fix are those in which no existential quantifiers occur.
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§1 Introduction

In this paper we assume familiarity with, and use the
notation of, [1]. The system 3 of [1l] is the system of
type theory with A-conversion introduced by Church [5],
minus axioms of extensionality, descriptions, choice, and

infinity. We shall refer to J as elementary type theory,

since J simply embodies the logic of propositional connec-
tives, quantifiers, and A-conversion in the context of type
theory. 1In spite of the fact that J is analogous to first
order logic in certain respects, it is a considerably more
complex language, and special cases of the decision problem
for provability in 3 seem rather intractable for the most
part. We shall use the methods of [l1] to obtain information
about some very special cases of this decision problem.

l...Hgn[§=§] is a

We show that a wff of the form dx
theorem of J iff there is a substitution 6 such that
A conv 6B. In particular, F A =B iff A conv B, so we

have a solution to the decision problem for wffs of the form

[A=B]. Naturally, the circumstance that only trivial equality

*This research was partially supported by NSF Grant GJ-28457X.




formulas are provable in 3 changes drastically when axi ons
of extensionality are added to 3, and this fact provides a
proof of the independence of the axions of extensionality.
W see that Kk 3xp[A=B] iff there is awf Eg such that

|- [AXg A = B] Eo, but the decision problemfor the class of
-p— - -p

wffs of the form 3)7[:&=E'3'] i s unsol vabl e.

7 W solve the decision problem for wifs of the form
Yx ...V;<”q, where C is quantifier-free, by show ng that
such a wif is provable in 3 iff rQ is tautol ogous.
On the other hand, we show the unsol vébility of the deci sion
problem for wifs of the form SEQ, where £ 1is quantifier-
free. Since irrelevant or vacuous quantifiers can always be
i ntroduced, this shows that the only solvable classes of
wifs of 3 in prenex normal formdefined solely by the struc-

ture of the prefix are those in which no existential quantifiers

occur.

82 Prelimnary Results

W shall often omt type synbols fromvariabl es, constants,
and wffs once it is clear fromthe context what the types nust
be.

To facilitate our discussion of 3, we next present a
refutation system B such that any finite set of vvffso can
be refuted in Ji if and only if it can be refuted in 3.

(The system ft of [1] is actually stronger than 3, since

the negation of the Axi om of Choice can be refuted inft,




but not in 3 (as can be seen from [2]). O course, any
finite set of sentences refutable in R is refutable in
the system 3C obtained by adding the Axi om Schema of
Choice to 3)

Definition, Let 8§ be any finite set of Wffso of U

Afi-derivationof E from § is a finite sequence

_Dl, ..., p" of Wffso such that p" is E*» and each pi is a
menber of % or is obtained from preceding nenbers of the

sequence by one of the following rules of inference;

((B) Conversion-1-11. Apply 2.6.1 (Al phabetic change of

bound variables) or 2.6.2 (A-contraction) of [1].

(B2) Disjunction rules. Apply 4.2.2.2 of [1].

(B3) Sinplification. From MVAVA toinfer MVA

(B4) Negation el im_nation. From MV ~~ A to infer MV A

((65 _Conjunction elimnation. From MV ~[AVB to infer

MV ~A and MV ~ B

(R6) Existential instantiation. From l\ﬂv A Io(’oa)l-\JdAc‘)c to
to infer MV ~A d, where d is any paraneter which
does not occur in any nmenber of S or any preceding

wff of the derivation.

(B7) Universal instantiation. From MV Il

o(mt)x‘bioa to infer
MVA B, where B is any wf

(S8) . From MVA and NV /™A toinfer MV N

It is understood that M and N' may be null above, in

accordance with 4.1.2 of [1]. The crucial. differences between




8 and the system R if [1l] are that existential instantiation
is more restrictive for ®, and substitution is combined with

universal instantiation in ®. In a given derivation, we

refer to a parameter d introduced by (86) as an existential
parameter.
We write § FB E to indicate that there is a B-derivation

-

of E from 8, and say that 8 1is refutable in ® iff

s g 0.

Theorem 1. Let § Dbe any finite sSet of wffso. Then

s b0 i s 0.

Proof: For any finite set 8 of wffso, we let T (8)
mean not 8 Lﬁ[] . It is readily verified that T is an
abstract consistency property (see 3.1 of [1l]). The details
are generally similar to those in 5.3.2 of [1l], so we remark
only that in adapting 5.3.2.4 to the present situation, one

may assume that the existential parameters in gl,...,gP do

not occur in A, and the existential parameters in gl,...,Q?

do not occur in B or in g},...,g?; also, an, naA, and ngl

may be replaced by Ql,é, and gl, respectively. To adapt

5.3.2.7, note that if there is a B-refutation of S U {egoaga},

where Xy is a variable which is not free in Al or any wff

o

of 8, one can replace all free occurrences of X in the

given refutation by occurrences of a new parameter Qa’ and

Thus if & Fstj , then 8 is inconsistent, so by Theorem 3.5

thus by (86) obtain a 8-refutation of § U (~ no(oa)Aoa

of [1], not T(8), i.e., S Fﬁ[:].




Suppose § Fﬁ[] , and let a particular @®-refutation pl,...,p
of § Dbe given. Let M* v ~ A" gl (for 1 < i < k) be the wffs
= ~oa "oy

inferred by (86) in this refutation, in the order in which they
occur. Note that gj cannot occur in any wff of §, or in gl if

i< j. Let E- be the wif [a'd* o1 a'l for 1< i < k.

. .~ oloay)
Let €% =g ana &' = (g},...,E') for 1< i< k. Since the
rules of inference of ® other than (86) are all derived rules
of inference of J, it is easy to see by induction on Jj that
g uek L3 Qj for 1< j < n, so 8 U ek FS a.

We prove that 8 U gk-3 F3[] for 0< j < k by induction
on Jj. For the induction step we prove $ U Bi-l FKEJ from
(a) s U Gi_l U {Eij FSE] (the inductive hypothesis).
By the deduction theorem ([5],p.62) and propositional calculus

we obtain

0 suet |~ Ty (o)A~ (where a is a;) and
(0 suet | a'ah

Since gl does not occur in Al or any wff of 8 U 81-1, we

may replace gl by a new variable Yq throughout the proof
of (c¢) to obtain

i-1
(@ s uUe by B7Y,

i-1 i
(e) s UE Fo Ty (00) 2

by Generalization,

&) suet O from (b) and (c).

Thus when j =k (or if k = O) we have thr[], so the
proof is complete.

Recall that a wff is in A-normal form iff it has no wf

parts of the form [[Agags]ga].

n




Lemma 1. Every wff QY in A-normal form is of the form

k 1
A ided that = o Dy ...D
[\xgB,] (provided that y = (@g)) or Py g D5 ---Dp >
where p is a variable or constant and k > O. (If
~y51.. 6k
k =0, C is

TN EY)

Proof: If gY is not of the form [kgsga], it must be a
variable or constant or of the form [éYégY]. AYé cannot have
the form [XgégY], so it is a variable or constant or of the

2 2 . . 2
form [gYéézpéz]. The same considerations apply to éYééZ’

and by continuing in this way one sees that QY must have
the indicated form.

A substitution is a particular type of mapping from wffs

to wffs which is determined on all wffs by its behavior on
variables. (We shall consider only substitutions which map
each variable to a wff of the same type.) Given a set V| of
variables, we say that 6 is a substitution for the variables

in yv 1ff 6 1is a substitution such that 8y =y for each

variable y which is not in Vy. If xl,...,gn are distinct

variables and él is a wff of the same type as 31 for
i n

o o o

1 i n, we denote by § 1 n the substitution of .Al
A ...A

~

for all free occurrences of xi for 1< i< n., As in [4],
for each substitution 6 and wff B, we let 6*B denote
n[[xgl...kzng](651)...(9§n)], where §1,...,5n are the free
variables of B. (mA 1is a particular A-normal form of A;

see 2.7.5 of [1].) Thus 6%B is obtained by making the sub-

stitution 6 for the free variables of B (after making any




necessary alphabetic changes of bound variables in B), and
putting the resulting wff into A-normal form. When 6 is

the identity substitution or B 1is closed, 6%¥B = 7B.

§3 Equality and Universal Formulas

Theorem 2. Let éa and By be wffs of 3§ and n > O.

Then FK Hgé ...Hgg A = Ba] iff there is a substitution
1 n

n
* = *
,an such that 6 a, ) By-

8 for the variables gé seee
1

1 n . .
Proof: We may assume X ,...,X are distinct, for

otherwise vacuous quantifiers may be deleted.
Suppose there is such a substitution 8. Since some
i . j 1 n .
X may occur in some 6x-, let yB TEEE) £ be variables
Pl “*n

1 n

distainct from one another, x7,...,x , and the variables in
éa’ga’ and e_}_sl, e o0 9 e}_sno
(1) Fg B*A = 6*B equality theorem

(2) by [Dxt..ax™a) (gD ... (8™ 1 = [Dx ... ax™B] (8xh) ... (8x™) ]

A-conversion

n o n 1 n,

(3) by gyt = (gt xRyt .y

existential generalization

@) by axtooax™ (Dxtoox"alxt 1P = (gt el L xR

]
alphabetic change of bound variable
(5) FS 8x7...3x .A =B A-conversion
In the proof of the converse implication, we shall assume
that n = 2 for the sake of notational simplicity; it will be

obvious how to adapt the proof to other values of n.



Suppose that ix_ 8y [A_ = B_]. Hence
3 B YY -a “a

VgBVYY ~ [[%genyQa]gsyY = [Ax %y Fg OJ

so by Theorem 1 and the definitions of ¥V and = there is a

-refutation of

(6) [[Ax %y A lx

no(os)')\l{a'no(oy)'xyy o(o(oa))'xfoa'N goa = ~a ~BX ]

foo ! [XKB%ngalggBy_Y] s

where joa is distinct from gs,yY, and the free variables of
A and B .
~Q ~Q

By appropriate alphabetic changes of bound variables, we

may assume that vy and f are not free in the wffs (

Y ~0o0, =8

and DY introduced below. We assert that in any B8-refutation

of (6), each line must be obtainable by (8l1) from some line of

the following refutation (for appropriate choices of QB,QY,
and Qoa) :
(7) A TL.AYy.~ LA~ f[[%g%y@]gz] \Y; g[[%g%zg]gx]]gs
for some wff QB B7: 6
(8) TH.Ay.~ HI.Af.~ f[[AxAyA]lCy] V f[[AxAyB]Cy] B8l: 7
(9) [Ay.~ T .AE.~ f[[?\xkyA]Cy] \Y, f[[%x?\y ](_:y]] v B7: 8
(1) ~ HM.Af.~ f[[%x%yA]CD] v £[ [AxA\yB]CD] B8l: 9
(11)  ~[NE~£[[A\xA\yAICD] Vv £[[A\xAyBICD]ld
for some parameter goa which does not occur
in A,B,C, or D. B86: 1O

(12) ~.~ @[ [AxAYAICD] V &[[Ax\yB]CD] gl: 11



(13) ~ d[[rx\yB]CD] B5: 12
(14)  ~~d[[A\x\yAlCD] B5: 12
(15)  d[[rxAyAlcD] B4: 14
(1) [ 81,88: 13,15 (or 14)

To verify the assertion above, note that if G is any of
lines (6)-(16), and J 1is obtained from G by (81), and
K 1is obtained from J by any rule of 8, then K is ob-
tainable by (81) from some wff H which is one of lines
(6)-(16) and is obtained from G by a rule of 8.
It is clear that in order to derive [ ] , there must be

wffs QB and D, such that [] is derivable by (81) and
(88) from (13) and (15), so one must have n[[%z%yﬁ]gg] =

[ [AxA\yB]CD]. Thus, wvhen 0 = SKY, we have 6*¥A = 6%B.
n YBIED °CD a 3

Corollary l. |y 3, = B, iff A, conv B,-

Proof: When the proof of Theorem 2 is specialized to
the case n = 0, one obtains } A =B iff mA = nB, which

means A conv B.

Since it can be effectively decided whether or not
Aa conv Ba simply by comparing néa with nga, we have a
decision procedure for the provability of equality formulas
in J.
Note that the wff £ = [Ax_.f _x
ap = Mg fop*s

of 3, though it is readily derived from the Axiom of Exten-

] is not a theorem

sionality (6.1.1 of [1l]). Hence we have a proof of the inde-
pendence of the Axiom of Extensionality quite different from

that in [3].
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It is not generally true that if k. 3x.C, then there
is awff E, such that hr[AxpClj;o. eve% ifp C is quantifier-
P «J o] P
free. For with the aid of Theorens 1 and 3 (below it is
easy to see that \-7* 3%k [dyo kX = 9%a* Adob Y (wrere at,

b, and d are paraneters) , but there is nowff E such

t o t Bl |

that k[JAXx d x zd a A d b ]JE . (Note that this is
1J t ot t ot t ot t ~t

essentially an exanple fromfirst order logic.) Nevertheless,
such a situation does occur whenever C is an equality fornula,

as we next note.

Corollary 2. k. 3xdA =B ] iff there is awf E
- — 6 ~p.ta_ ~<X ~P
such that Fg[A%g-2; = Byl = Eg.

Proof: If |- [A"A=DB]JE then |- 3x. [AX.® =B X by
exi stential genera] ization, so f- 3x[~7Sl 1°Y A-conversion.
If |- 3x[A=g], then by Theorem 2 there is a substitution 9
for x such that 8*& = 9"B__ Let Eg__l: 6Xx tho ri [ [AA E] =
T [ [ABLE , so f-viIAAE = [ABLE Hence |[A. [AAx =

[AJJ5]X]E and [-£<[A_<..A_= J3]E by \-conversion.

Awlf of the form A =B is (by virtue of the definition

of = ) of the form Y£ Q where Q has no accessible quanti -

fiers (though quantifiers mght be buried in & or B) . W
next note that this solvable case of the decision problem can
be generalized in a rather obvious way.

V¢ say that a.vvffoQ of IT is tautologous iff there is

a tautology P of the propositional calculus in which the sole

connectives are negation and di sjunction, such that Q is
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e i1

1
(the wff abbreviated by) Sni###n B where g7j.__xgn are

j“Booo\]é 1 n
the propositional variables of £ and B, -I?; are wifs®
of 3. (The result of the indicated substitution is only an

abbreviation for a wif of 3, since in tf [Z\Vg] is an abbre-

viation for [[VAIB.)

Awtf £ of 3 is quantifier-free iff none of the
constants l%(oai( occur in C

Theorem 3> Let Q be a quantifier-free Wffoof 3, and

n~0. Then [, W e« \r2°¢ i’ t2° i tautol ogous.
n

- N

Proof: If t)E is tautol ogous, then f-~,dy)Q (see [5]) so
!‘:y £ °Y A-conversion, and \-~_de__.*. . W' C by generalization.

Next suppose |-; Y)_(_l. . . W"C. Then \.d-:_C so ~C"J]
¢~ C kD by Theorem 1. Let Dle be a
(B-refutation of ~jQ Since ~ £ ~° quantifier-free, rules
(B6) and ((B) cannot be used in this refutation, so it is clear
t hat r)__Dl, . .J‘}D Is a Rrefutation of ~ rfC inwhich only
rules (R)-(fl15) and (BS) are used. (O course, r[D° = nD' if
Q-:r’ was obtai ned from D}. by (ftl) ) . These are essentially
rules of propositional calculus, so if we regard r}O as a
propositional constant denoting falsehood, it is easy to estab-

[ish by induction on | that [~r\Q"rfpb] i s tautol ogous for

1<Lj_<Lk. Since _I].'S is @ , riC is tautol ogous.
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84 Undecidability of the 3gQ Case

Huet [6] and Lucchesi [7] have independently shown that
there is no decision procedure for determning, of two arbi-
trary wifs Aa and E"a’ whet her there is a substitution 6
such that 9*'50. = O*B_a. Thus the decision problem for the
entire class of wWifs dealt with in Theorem 2 is unsol vabl e,

t hough we have a decision procedure for the subcl ass obtained
by setting n = 0. By appropriately nodi fying Huet's ideas

in [6], we obtain the follow ng results:

Theorem £. There are no decision procedures for prov-
ability in U for the classes of wifs of the follow ng
forms:

() Sz«[Aa = Ba] .
(1) 7"3<& where C is quantifier-free.

Proof: W let £=(a ,b }, the al phabet whose letters
11 tt

are the paraneters a and b of 3. Awrd over £ is
it 11
a finite sequence of letters from £ An instance of the Post

Correspondence Problemover £ is determned by an integer
n

L al i
n>1] and tw sequences X, ... ,X and Y,...,Y of
length n of words over L. A finite sequence ks ..,i™ of

integers such that m~ 1 and 1 <*ieJ<€ n for 1 <j € mis
@ sofutiton to this instance of the Post Correspondence Probl em

i a | i1 i
iff X ... X"=Y <. . Y™ It is known (see [8]) that the

probl em of determ ning whether an arbitrary instance of the

Post Correspondence Problemhas a solution is unsolvable.
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Iet  Dbe an arbitrary instance of the Post Correspon-

dence Problem, determined by sequences Xl,...,Xn and

Yl,...,Yn of words over %. Let K Dbe the type symbol

((t1)(14)...(tt)), in which (t1t) occurs n + 1 times. We

1 n
..5u , and

shall subsequently use the variables ¢t , utt,. . ‘1

1

Zys and the parameters att’btt’ct’dot(tt)(tt)K’ and
eat(tt)(tt) of 3, which we henceforth write without type
symbols. For any word W over I, say W = wl...wk (where

wles for 1< 3<%k, let W, be e wl... 5E]... 111,
which is a wffH of J.

be [Az.z[Att]...[Att]], let BHK be

be [Az.zX...¥%], and let

Let AttK

[Az.z[Atc]... [Atc]], let XtK

Y be [Az.z¥'...¥%]. We shall show that the following

1K
conditions are equivalent:

(1) Fﬁ Gz.e [Az] [Bz] [Xz] = e[Att] [Atc] [YZ]
(ii) Fg dz.~ dz [Az] [Bz] [Xz] V dz [\tt] [Atc] [Yz]

(iii) There is a wff ZK such that (a) AZ conv [Att],

(b) BZ conv [Atc], and (c) XZ conv YZ.
(iv) ® has a solution.

This will prove our theorem, since a decision procedure for
all wffs of the form H;K[Aa = ga], or for all wffs of the
form &z,.C, where ¢ is quantifier-free, would provide a
decision procedure for the Post Correspondence Problem.

If (iii) holds, then

ly el[AZ] [BZ] [XZ] = e[Att] [Atc] [YZ] and

s ~ dz[az] [BZ] [XZ] Vv dz[Att] [Atc] [YZ], so (i) and (ii) follow

by existential generalization.

HUNT LISRARY
CARNEGIE-MELLON UNIVERSITY
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[f (i) holds, then by Theorem 2 there is a substitution
6 for z such that 9*e[Az] [Bz] [Xz] = 8*e[Att] [Ate] [Yz] .
Let Zx be 9z, and (iii) quickly follows.

Next we show that (ii) inplies (iii). If (ii) holds,

then there is a refutation in 33 and hence in ft, of

(1) n, ,*[Az.~. ~dz[Az] [Bz] [Xz] Vdz[Att] [Ate] [Yz] ] .
o (oft]

As in the proof of Theorem 2, it is clear that in any
ft-refutation of (1) each line must be obtainable by
(ftl) from some line of the following refutation (for
some choice of g™ :

(2] [Az.-.- dz[AZ] [Bz] [XZ] V dz[Att] [Ate] [YZz]]Z4k

for some wff Zy ft7: 1
(3 ~.~ dz[AZ] [BZ] [XZ] V dZ[Att] [Ate] [Y£] ftl: 2
@ - dZ[Att] [Ate] [YZ] «5: 3
(G — dZ[AZ] [BZ] [XZ] ftS: 3
6 dZAL [BL] [XZ] B4 5
(7) . B1,B8: 4,6 (or 5)

Thus it is clear that (7) nust be obtainable from (4 and (6)
by (B) and (R8) , so the same wWff Z (up to equival ence by
A-conversion) nust occur in (4 and in (6), and rj(4 nust be
—17(6) . Hence (iii) must hold.

Thus (i),(ii), and (iii) are equivalent. W conplete

the proof by showing that (iii) and (iv) are equivalent.

Suppose i1""’im is asolutionto P (so m” 1). Let
i i
Z, be [AU'. . AUAt.U'[. .. [u™]...]]. Qearly AZconv [At]
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i1 im il im
and BZ conv [Atc]. Also, since X ",..X =Y "...Y ,

i i 1l ~im
Xz conv [¥ “[...[X ®c]...]] conv [¥ “[...[¥ "c]...]] conv YZ,

so (iii) holds.

Next suppose (iii) holds; we shall prove (iv). We may

assume that Z has the form [XQ%t...Xun

" G 1, where Qttls in

S11T 1
A-normal form and the gtt are distinct. For if not, let gk be

[%g&...%un .n[gg%t...gn 11, where ul e e n

are distinct
-1 11 “11

1
variables which do not occur free in Z. Then 2z, also

satisfies (a),(b), and (c).

Now G must satisfy Lemma 1.

Case 1. G has the form p ...Qé
v k 1

k
*ttél...ék~é

, where

k > 0 and p 1is a constant or variable.
If p 1is distinct from each of the gtt, then (a) is contra-

dicted. Hence there exists i (1 i ¢ n) such that p is

=

i
u

t1? so k =0 and Z

is [%g} cooaut ot

‘ 'tt*tt]' Thus by (c),

K

¥'c conv gﬁl...ﬁnc conv XZ conv YZ conv 2¥t. .. conv ¥c,
~l1 ol i i . ‘o

so nX’c=7n¥c, so X =Y and 1 is a (rather trivial)

solution to ®.

Case 2. gtt has the form [A;tﬂt].

Since gtt is in A-normal form, H, must be also, and so by

k 1
Lemma 1 has the form D ...Diy , where kX > O and
Bro,...6,20, 5,
P is a variable or constant. Thus 2Z has the form
1 n k 1
[Aa, . ... u, AL, .p Dy ...D 1.
11 11 =1 —151...5k 6k él
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If p is Et (so k =0), (b) is contradicted. 1If

p is distinct from St and each of the H:t’ (a) is contra-

dicted. Hence p must be some Btt (so k = 1). Thus for

-
i i

"oty Tl w ™D,

1
some m > 1, z has the form [Au’ ...Au At .u ° L=

where Kt is in A-normal form, and by choosing m large enough

it may be assured that K, does not have the form gthl.

1 k
Dy ...D¢ ,

..51 64 o

Thus by Lemma 1, K must have the form g
-1 zék. X

where kX > O and g 1is a constant or variable distinct from

each of the ggt. If q is not ¢t (a) is contradicted, so

1"

q 1is Et and k = 0 and Z is
Dt . ow® atw Y @™ ]...1]. Thus by (<)
=11 11 ='=11"° et R A R ?
i i i i
nIX “... X Mcl...] = nixXz] = ni¥Z] = nl¥ ~...[¥ "cl...], so
il im il im
X 7...X =Y "...Y and il,...,im is a solution to #.

This completes the proof.
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