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ABSTRACT

The equations studied have the form

ft
u = -mg(u(t)) - a(t-T)g(u(T))dT + £(t,u(t)), m 2 O

O

on a Hilbert space W. g can be nonlinear and unbounded. The

case m = O was studied earlier by the author (Rep. 70-10 and

71-24). a is to be a strongly positive kernel in the terminology

of the earlier reports. It is shown that if g is a nonlinear

elliptic operator of a special type and f = ft + f + p(t) ,

p (t) -* 0 as t-*oo , the equation has a generalized solution

and that this solution has a finite limit as t-x©. It is

shown that the provisional asymptotic stability results of the

earlier reports can be extended to a larger class of perturba-

tions f when m > 0 and the results are compared to the

differential equation

u = -mg(u(t)) + f (t,u(t)) .

Implications in the theory of approach to steady state are

discussed.

This work was supported by the NSF Grant GP 28118.
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1. Introduction.

This paper concerns functional differential equations of

the form,

(1.1) u(t) = -Tm(g(u)) (t) + f(t,u(t)), t > 0, m > 0,

on a Hilbert space Jt. Here g: S -* W may be unbounded and

nonlinear, f is a map from [0, OD) X & into H and T denotes

the linear Volterra operator,

(1.2) Tm^)(t) =mC(t) + 1 a(t-T)C(T)dT,
m * Q

on R . This study is intended as a contribution to the investi-

gation of systems which possess a "memory11 and hence depend on

their past history.

The special case, W = R , m = 0, of this equation has been

studied in great detail by Levin and Nohel [6], Hannsgen [5] and

many others. The object has been to determine conditions on a,

g and f which guarantee asymptotic stability of solutions.

The physical interpetation of this is that one is looking for

systems which possess an internal damping mechanism.

The author and James Wong [8] have obtained some rather

natural extensions of the results of [6], that is m = 0, to

Hilbert spaces W, with unbounded gfs. The goal was to be able



[2]

to treat g1s which are partial differential operators thus

allowing one to consider, for example, the mechanics of continuous

media. Unfortunately the results of [8] are of a conditional

nature. They state that _if g(u(t)) is weakly bounded and

weakly uniformly continuous then g(u(t)) tends weakly to zero

as t approaches infinity. We call this provisional asymptotic

stability. For partial differential operators it proved possible

to verify the boundedness and continuity hypotheses only for

linear equations.

In [7] the author pursued the asymptotic stability question,

for m = 0, when f has the special form

(1.3) f(t) = fxt + f Q + p ( t ) , p-*0 as t->a>.

•The object was the study of approach to steady state of solutions

of the second order equations,

(1.4) u(t) = ~ TQ(g(u)) (t) + f± + /Lt(t) y->0 as t-*oo .

The result, under essentially the same conditions as in [8] ,

was that if a(t) -* a (a> ) > 0 as t -* <x> , then (provisionally)

g(u(t) ) -~* a(aD)-1f1 weakly.

The preceding result indicates that the integral term does

indeed provide a damping mechanism to systems governed by equations

of the form (1.4) provided that a has a non-zero limit at

infinity. The implications in the study of elastic materials

with memory are discussed in [7]. Interest in the result is



enhanced by the fact, [7], that the steady state limit, when

a (CD) > O , is the same as that obtained by quasi-static theory in

which one merely drops the "acceleration" u in (1.4). This

is a common approximation in engineering since it results in

simpler problems.

When m = O and g is unbounded, equation (1.1) possesses

a second defect in addition to the provisional nature of the

stability results. This is that existence of solutions is very

hard to establish. See [4] for a linear case.

Equation (1.1) with m > 0 represents an attempt to create

a model for systems with memory which retains the damping properties

described above but for which the two defects are partially

remedied. In section 4 we consider (1.1), with m > 0, when g

is a non-linear elliptic operator, on a region Q, of the same

type as that used in the "monotone operator theory" [2] of the

parabolic differential equation,

(1.5) u = -mg(u(t)) + f.

(The conditions on g are very natural ones in the context of

elasticity or heat flow). We show that (1.1) then possesses a

(generalized) solution, under essentially the same conditions on a

as in [8], provided that f has the form (1.3). We show, more-

over, that this solution is unique, provided that m JLS, sufficiently

large. In section 5 we show that if m is large enough for

uniqueness then solutions satisfy,,

d-6) lim u(.,t) = g""1(a(0D)""1f1) in Lo(G).
t->QD L l



Condition (1.6) is weaker than the steady state result when

m = 0 but is, of course,, consistent with it. It is, moreover,

again the quasi-static limit obtained by dropping u and u in

the differentiated version of (1.1). We emphasize that the

result here is no longer provisional.

The question of whether the requirement of sufficiently

large ra is really necessary is most intriguing and remains open.

The monotone operator methods of [2] can be applied here,

with only minor modifications, provided one first uses the techni-

cal device of inverting the equation (1.1) to solve for g(u(t)).

The interesting feature is that the necessary requirements on

the resolvent kernel in this inversion follow automatically

from the conditions perviously imposed on a. These considera-

tions are discussed in section 3.

It is not at all surprising that if we make m > 0 in (1.1)

we obtain considerable improvement in the provisional asymptotic

stability results over the case m = 0 of [8]. This means that

the class of allowable perturbations f, for which one can obtain

provisional asymptotic stability, is larger when m > 0 than

when m = 0. When m > 0 this class is essentially the same

as that for (1.5), again not a surprising result. We discuss

these questions in section 3. We show there that making m > 0

enlarges the class f in two ways, by allowing autonomous pertur-

bations (f = f(u)), which are not permitted when m = 0, and

by allowing perturbations which depend on derivatives of u

when g is a partial differential operator. Both of these



improvements are shared by (1.5). On the other hand the special

properties of approach to steady state which are produced by the

assumption a (OD) > 0 hold for all m >_ 0 and are not shared by

(1.6) for any m.

The equation of nonlinear heat flow is a special case of

(1.6). Similarly equations of the form (1.1) can be viewed as

a highly specialized case of the equation of heat flow in a

rigid heat conductor exhibiting memory [1]. We have indicated

that one case of (1.4) yields a model in elastic materials

with memory. The differentiated version of (1.1) yields

another model for the same subject. Although the general dynamic

characteristics of the two elasticity models are very different

the results here show that any experiment which is based on

approach to steady state will not be able to distinguish between

them.

2. Positive Kernels and Inversion.

We want to discuss here properties of the kernels a in the

operator T ,

(2.1) T
m(C)(t) = mC(t) + J a(t-r)C(T)dr.

0

For T > 0 and £ e C[O,T] we set,

;T] = j C ( t ) J(2-2) Q [C;T] = 1 C (t) I a(t-T)C(T)dT.
o o

Definition 2 .1 . a is a positive kernel if Q [£;T] >, 0 for a l l T.



Definition 2.2. a is a strongly positive kernel if there exist

constants e > 0, a > 0 such that a(t) - ee a is a positive

kernel.

The concept of strong positivity was introduced in [8J.

Both definitions can be extended to Hilbert spaces, with a

replaced by a family A(t) of bounded linear operators and

e"a replaced by a contractive semi-group. This general theory

of [8] could be carried through here also but, for brevity,

we consider only the case where A(t) = a(t)I, I the identity.

Then for a positive we have, on any Hilbert space W,

(2.3) Qa[C;T] = J (C(t),J a(t-T)C(r)dr)dt > 0 for all £eC [0, T;

with a similar result for strong positivity.

We introduce another concept from [8].

Definition 2.3. Let it be a Hilbert space. Then UGC ([0, QD) ; Jt)

is called weakly stable if for every r/eii the function (u(t),rj)

is uniformly bounded and uniformly continuous on [O,OD).

The basic result from [8] which connects these concepts

with asymptotic stability is the following.

Theorem 2.1. Let li be â  Hilbert space and a be strongly

positive. Suppose u(t) is weakly stable. If Q [u;T] is
— — — — — • •—~~ a

bounded independently of T then u(t) must tend weakly to

zero as t tends to infinity.



It is shown in [8] that positivity is closely connected

to the Laplace transform of a. We impose on a the following

conditions:

(2.4) a(t) = a(oo) + b(t), a (OD) > 0,

(2.5) aeC(2)
 [O,OD), a ( k ) el>± (0, OD) k = 1,2.

It follows from these that a has a Laplace transform a satis-

fying,

(2.6) a(s) = - 4 — l + b(s), b continuous in Re s > 0 and

analytic in Re s > 0,

(2.7) a(s) = a(O)s"1 + a(O)s"2 + o(s~2) as s CD in Re s > 0,

The following results are proved in [8]*.

Lemma 2.1. (i) a _is positive if Re a(s) > 0 in Re s > 0.

(ii) a is strongly positive if a (0) < 0 and Re a(s) > 0

in Re s > 0. (iii) a _is strongly positive if a ̂  0 and

(-l)kak(t) > 0 k = 0,1,2.

Our main concern in this section is with the inverse T~1

m

of the operator Tm when m > 0. It is a standard result that

T m exists if m > 0 and has the form:

(2.8) T^1(h)(t) =^h(t) +Jk(t-T)h(T)dT.

The condition in ( i i i ) implies those in (i) and (ii) but the
converse does not hold, [8] .
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We strengthen (2.5) to,

(2.5)' aeC3[O,c3D) a ( k ) el^ (0, OD) k = 1,2,3,

and we require,

(2.9) (-l)ka(k) (0) > 0 k = 0,1,2.

We set d(s) equal to the transform of a that is sa (s) - a (0) .

Theorem 2.2. Suppose (2.4), (2.5)T and (2.9) hold and that,

(2.10) Re a(s) > 0, Re d(s) < 0 in Re s > 0.

Then k jjs _a strongly positive kernel and

(2.11) k(0) = -a(0)/m2.

Remark 2.1. It follows from Lemma 2.1, and its footnote, that

k Ck)
the hypotheses of Theorem 2.2 will be satisfied if (-1) av ' (t) >0,

k = 0,1,2,3. It is interesting to note that this was the hypothesis

used in [6] . It was only later that it was shown in [5] that

these could be weakened to k = 0,1,2.

Proof; We solve T(£) = h by Laplace transforms. The result

is,

(2.12) £ = (m+a)"1!! = m" 1h + kh, k = (m+a) - m"1.



It is readily checked that k exists in Re s > O and is analytic

in Re s > 0. (It has a removable singularity at s = 0 if

a(oo) ̂  0. (2.6) yields,

(2.13) k(s) = -a^- ~ + °("S") as s -» OD .
m s

k may be recovered by the complex invers ion formula and (2.11)

fol lows.

Condition (2 .5 ) ! y i e l d s , in analogy to (2 .7 ) ,

(2.14) a(s) = a(0) s""1 + a ( 0 ) s " 2 + a(0) s"3 + o(s"3) as s -* OD .

From t h i s we obta in ,

(2.15) d(s) = sk(s) + a ^ = " ( a ^ ^ + ^ 3 ^ ^ " 2 + °^2^

m m m s s
as s -* OD ,

where r=nf 3(a(O) + a (0)3 - 2a(0)a(0)). Condition (2.9) implies

r is positive and therefore there exists a > 0 and e > 0 such

that

(2.16) Re(d(s) - —f— ) > 0, on s = it} for |r/| sufficiently

large.

If we can show that Re djirj) > 0 for r\ in a compact set \r\\ <. M

then it will follow from (2.16) that we can choose a and e

so that (2.16) holds for all 77. Then the maximum principle

implies that (2.16) holds for Re s >, 0. This shows that

• -at . ...
k - ee is positive.
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We have, by (2.12)9

sk(s) - k(0) = sk(s) + a'2' = _sa(s; + ^Q
m m(m+a) m

sa (s) (m-f-a(s) a(0)
~ 2 2 rs 2 *

m(m +)a] +2m. Re a(s) m

Hence,

(2.17) Re(sk(s) - k(0)) =
m m +|a| + 2m Re a(s)

Now Re a(s) < 0 implies Re sa(s) < a (0) , hence^ with Re a(s) >

we have,,

Re sa(s) , Re sa(s) , a (0)

m +|5|2+ 2m Re a(s) m2 m2

and the right side of (2.17) is positive. This completes

the proof of Theorem 2.2.

When we study approach to steady state we will need another

result.

Theorem 2.3. Let a satisfy (2.4) and (2.5), with a(<x>) > 0 ,,

and also the condition,

(2-18) J b(T)dr € L2(O,OD) .

Let b be positive. Suppose h has the form h = f11 + f. + p
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where peL2 (O^OD) . Then, for m > 0, T (h) (t) = a(ao)~ f- + r

where reL2(OJ,Go).

Proof; We l e t 77 = £ - a(ao)~ f-. and write the equation

T (£) = h in the form,,

f t
( 2 .19 ) mrj(t) + J a ( t - r ) r ? ( T ) d r = c + y ( t ) ,

o

where ,

mfn fn ÔD
c = f - -

= P ( t ) + l

The hypotheses show that yeL2 (0, OD) . Multiply (2.19) by rj(t)

and integrate from 0 to T. Since b is positive we obtain then,,

( 2 .

a n d

21)

we

r""I

deduce

772(t)dt i

\

that,,

jV(t)
0

a (OP)

i " 2

. c
- 2a(a>)

d t < M

(J%(t

m rT

+ 2 j o

rn m m

(J rj(t)dt)2 + cj T?(t)dt + J r(t)T/(t)dt

0

for a l l T.

This proves the theorem.
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Corollary 2.1. JEf the hypotheses of Theorem 2.3 hold the

function k j-n, (2.8) belongs to L2(O^CE>).

Proof; The hypotheses (2.4) and (2.5) imply that

beL2(O,0D). It is known that k itself satisfies the equation

T £ = a(t), hence the result follows immediately from Theorem 2.3.

This theorem indicates the central role played throughout the

study of steady state by the condition a (QD) > 0. If a(ao) = 0

it is easy to see that the result is not true. Notice that the

limit of T (h) is independent of m in m > 0.

3. Provisional Asymptotic Stability.

We consider functional differential equations of the form,

(Em) u(t) =-mg(u(t)) - J a (t-T) g (u (r) ) dr + f(t,u(t)), t>0,m>0,

on a Hilbert space it. Here g is a transformation (possibly

nonlinear) with domain S c & and f is a mapping from

[O,OD) x fig into Jt. We want to consider simultaneously the

differential equation,

(ftm) u(t) = -mg(u(t)) + f(t,u(t)), t>0, m > 0 .

Definition 3.1. We say that (E ) or (£ ) are provisionally

asymptotically stable if any solution which is weakly stable
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(Definition 2.3) satisfies,

(3.1) weak lim g(u(t)) = 0.
t -*OD

Our object here is to compare the provisional asymptotic

stability of (E ) for m > 0 and m = 0 and both of these

with (& ) . The results were discussed qualitatively in the

introduction. We list various conditions on f which guarantee

provisional asymptotic stability in the various cases. We will

state the theorems first and give proofs at the end of the section.

These proofs are essentially the same as those in [7] and [8]

hence we devote most of the section to an analysis of the meaning

of the conditions on f. These conditions are stated in a rather

tedious manner. The reason for this is that our major interest

is the application to partial differential operators; in this

context the conditions on f become inequalities between differen-

tial operators and these are extremely delicate.

We first list the technical hypotheses on a and g which

will be used. It is assumed throughout that a is strongly

positive. In addition to this four other hypotheses will some-

times be used; all assume that (2.4) holds:

(Ax) a (CD) > 0

(A2) a(QD) = 0

(AO b is strongly positive,

JOD b(T)dT €• L 1(O,QD) .
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Concerning g we assume throughout that there exists a functional

G(u),, defined on & , such that for all U€CV '(O,,aD;J0 with

u(t) e & for t > 0,

(3.2) |

We will impose one of the following two conditions on G:

(G,) inf G(v) > -OD
x ve&

g

(G^) G(u) > cp(||u||)||u|| where cp(£) -» OD as 4-» OD

The p e r t u r b a t i o n s f we cons ide r have the form,

(3.3) f ( t , u ) = f 2 t + fQ + h ( t , u ) .

Here f, and f are fixed elements of U and h will always

be subject to a condition of the form:

(Hm,) (h(t,u),g(u)) £ p(t) (1 + G(u)) + m'||g(u)|l2,

peL, (0,00) , 0 £_ m1 _< m.

f and f. will sometimes be required to satisfy the conditions;

<F0) (fQ,g) < k(l+G(u)) for some k, |(fQ,h)| < q(t)(1+G(u)),

qeL1(O,a>),

(P1) (fx,g) <k(l+G(u)) for some k, | (f^h) | < q(t) (1+G(u) ) ,

qeL1(O,ao) .
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We are now ready to state the results. Throughout this

statement we use the notation g(u(t)) —^y to mean that jLf

g(u(t)) is weakly stable then g(u(t)) approaches y weakly.

Theorem 3.1. For equation (6 ) we have;
_ _ _ • • m •

(i) fx = fQ = 0, (G±) , (Hm, ) for m1 < m imply g(u(t))-*O

(ii) ^ = 0, (G^), (HQ) , (FQ) , imply g (u (t) ) _* m" 1f±.

Theorem 3.2. For equation (E ) we have;

(i) fx = fQ = 0, (G1), (Hm) imply g(u(t))-*0.

(ii) f1 = O,(G1), (A2) , (A3), (HJ imply g(u(t))-*0

(for any fQ)

(iii) fx = 0, (G£), (A]_), (A4), (HQ), (FQ) , imply

g(u(t))-» (m + J b(r)dT) 1f Q!o

(iv) (Ĝ _), (A2), (A4), (HQ), (F1) , imply g(u(t) ) -* a (OD)'

Remark 3.1. It is easy to see, by looking at linear cases on R ,

that if f, ̂  0 in (6 ) , or in (E ) when a(ao) ̂ 0, then

solutions will, in general, grow linearly.

Remark 3.2. Case (iii) of Theorem (3.2) holds for m = 0
(.CD *

also provided we assume b(T)dr = b(0) > 0. Notice that this

would follow from (ii) of Lemma 3.1.
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Remark 3.3. The theorems show that when a (<x>) = 0 equations

(E ) and (£ ) have essentially the same class of allowable

perturbations. Notice,, however, that we can take m = 0 in

(E ) and still have a class of allowable perturbations while

(£ ) degenerates so as to have none. On the other hand if

a (GO) > 0 and either f or f.. is non-zero then the provi-

sional asymptotic stability properties of (E ) are clearly

much stronger than those of (6 ). Notice that in case (i)

for (£ ) and cases (i) and (ii) for (Em) the class of

allowable perturbations increases with m. In the remaining

cases, however, the result is, at least qualitatively, indepen-

dent of m.

There are two difficulties in the application of the pre-

ceding results. The first is that (3.2) represents a severe

restriction on the admissable g1s. For scalar equations we

can simply take G(u) = I g(£)d£ but in more than one dimension

0

(3.2) is a real limitation. (See Remark (5.1)). The second

difficulty arises from the restrictions (H , ) , (FQ), (F,).

Let us illustrate with two simple examples.

Example 3.1. it = R , g (u) = u.

2
We take G(u) = -j- which satisfies (G^) . Then (Hm)

becomes,

2
(3.3) h(t,u)u < a(t) (1 +§-) + mu2 .
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If h(t,u) = jJ.u then (3.3) will be satisfied if jit < m provided

m > O but can never be satisfied if m = O.

Example 3.2. M = Lo(O,1), & = {w: w € L9 (0,1) , w(O) = w(l) =0},z g xx z

g(u) = -u . Then, for ue& ,xx y

o
ut uxx d x = lo

uxtuxdx = 1 ft Io
uxdx = ft G(u)•

Let h(t,u) = u(cp(t)u + ?|)(t)u ). Then (H ) becomes,

P 2 ^
(3.4) ( f , g (u ) ) = -jncp(t) J ujdx + /i0(t) I u u dx

O O

< a(t) (1 + "I J u^dx) + mj u^dx , aeL1(O,OD)
O O

For weiS we have the i n e q u a l i t y ,

f1 2 P1 2
(3.5) u dx <£ c I u dx for some c > 0.

O x ^O X X

If m > 0 it follows that (3.4) is satisfied if, for instance

cpeL-,, and ju||i/)|| <. m. For m = O however (3.4) can be satis-

fied only if \j) = O and cpeL-. .

These two examples illustrate that conditions (H ) gives

qualitatively stronger results when m > 0 than when m = 0.

There are two major improvements when m > 0:
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(1) Autonomous perturbations h(t,u) = H(u) are allowed.

(2) For partial differential operators f can depend on

higher order derivatives.

An important special case of (H ) for m > 0 is,

(H*) ||h(t,u)|| < m1llg(u)j! + & (t) , m1 < m, /3eLo(0,aD)

(H*) clearly illustrates improvement (1) above. We

consider next an example which extends Example 3.2 and which

illustrates improvement (2).

Example 2.3.(Linear partial differential functional equations).

Let 0 be a bounded domain in R and H = L 2(0)• We

introduce the spaces H, (Q) consisting of functions with strong

L 9 derivatives up to order k in Q and set,

(3.6) \\u\\l = £ [ (D°u)2dx.
K |cc|^k Q

(Here a = (an 3 ...,a ), OL non-negative integersl n K.

D ~~ ^T^ ' • • • ^TZ ' > a - S a. ) .

denotes the closure of C^(Q) in

and

We let g be a linear elliptic operator of order 2M of

the form,



19

with smooth coefficients aQ0. For & we take H 2 M D HM . This

means we are imposing Dirichlet boundary conditions of the form,,

(3.8) Dau = 0 on an |a| < M-l.

We assume that the coefficient of |lu||0
 in Garding1s inequality

is zero, that is, if

(3.8) B(u,v) = ( E J DQu
<M Qa

then

(3.9) B(u,u) > c||u||̂ , c > 0 for all ueH° .

(Condition (3.9) guarantees that the problem g(u) = f has a

unique solution ue& for all feL2(Q), see [3]).

This situation was discussed in [8] where it was pointed

out that a suitable G(u) is,

(3.10) G(u) = ~ B(u,u) .

(3,9) shows that (Gi) is satisfied. We consider perturbations

of the form,

(3.11) f(t,u) = fx(x)t + fQ(x) + h(t,x,D^u), |y| < 2M.

Suppose that h is sublinear in the variables D^u that is satisfies,

2M
(3.12) |h(t,x,£y) | 1 ju L E \i7\ + J(t)

j=0 |y|=j
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where J(t) e L 2 (0, OD; L 2 (0) ) . Then the following result from

the theory of partial differential equations [3] shows that

(H*) will be satisfied if a is sufficiently small.
m

Lemma 3.1. jCf g satisfies (3.9) there exists a. constant

c1 > 0 such that,

(3.13) l!g(u)6 c'||u||5M.

When m = 0 we cannot use this idea and must work directly

with (HQ). This requires that

(3.14) (h,g) S J D0Ch(t,x,Dau)DCXudx
a <JA
£ <M

be estimated by B(u,u). However (3.9) shows that B(u,u)

is 0(||u ||) hence (3.14) shows that we cannot allow h to

depend on D^u for y £ 0, It is clear that (H ) will be

satisfied if, for instance, h = h(t,u) with

(3.15) |hu(t,£) | £ cp(t), CPGL1(O,OD) for all £.

These considerations show that the result of Example 3.2 is

quite general.

Let us consider the meaning of conditions (F ) and (F-)

in the present example. We have,
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(3.16) (fo,g) =

<M

hence by 3.9, the first of conditions (F ) is satisfied if

fQ € H m(Q); similarly for the first of (F±). Note that (FQ)

and (p.) are to be applied only in the case when h satisfies

(H ). Hence we assume as above that h = h(t,x,u). Then the

second of conditions /0 satisfied if,

(3.17) |h(t,x,u) (1+ |u

and f e L2(0). Similarly for (F.). Thus the results of

Theorems 3.1 (ii) and 3.2 (iii) and (iv) are applicable

if h satisfies (3.15) and (3.17) and f (or Hm(fi).

Remark 3.4. It is shown in [8] that, in this case, weak

convergence of g(u(t)) to y in

gence of g(u(t)) to y in H (Q) .

(Q) implies strong conver-

Example 3.4. (A nonlinear partial differential functional equation)

Let Jt = Lo(0,1) and take g(v) = -|-a (v ), with^ ox x

v(0) = v(l) = 0 . It is shown in [8] that an appropriate G

in this case is,

(3.18)
r 1 r

G(u) = J j
j
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We impose the condition a' (£) >, € > 0. Then (3.18) yields,

(3.19) G(u) >L I u2 dx > c J u2dx, for u(0)=u(l)=0.
Z 0 0

Hence (Gl) is satisfied. The condition o1 > e also yields,

(3.20) ||g(u)||2 = j^ a' (ux)
2u2

x dx > e J^u
2
x dx e'N|2.

We consider perturbations of the form,

f(t,u) = fx(x)t + fQ(x)

Suppose in analogy to (3.12),

(3.2D h(t,K,io,iri2) i M(k ol
4

«1 p
J dx G L o (<

Jo 2

A few calculations based on (3.20),will show one that estimates

of the form (H*) or (H ) are not possible unless a is

actually sublinear in u (a1(£) must be bounded). Hence if
x

one wants to apply the results of Theorems 3.1 and (3.2)

for a genuinely non-linear a one must be content with the

case h = 0. The question is whether (FQ) and (F.,) can

ever be satisfied with non-linear g's. We have,

(3.22) (fo,g) =
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Suppose o satisfies a condition of the form | a (£) | (K1 (1 + | £ | )

1 < r < 2. Then by Holder ! s inequality,

(3.23) (f g) < K' (Ilfj-L + (j |-r̂ -|
o

r1 b fo q
Hence (F^) is satisfied if I-—| dx is bounded.

O ^ Q ox

Remark 3.5. This example, and Theorem (3.2), show that for this

special g the equation (Em) for m > 0 provides no change in

the results for m = 0. The latter was discussed in [7] together

with an application to elasticity. The equation for m > 0 yields

a new model for the elasticity problem but this new model yields

the same results on approach to steady state. The importance of

the case m > 0 is that in the next two sections we will demon-

strate that the conditional results of this example can then be

made rigorous.

Remark 3.6. Equations (3.13) and (3.20) illustrate an essential

limitation to our methods. They represent a priori bounds for

differential operators. The best one can ever expect in this

direction, for an operator of order 2m is j|g(u)|| j> c||u|L .

This fact will always limit the theory to linear perturbations h.

Proofs of Theorems 3.1 and 3.2.

(3.1)(i) Multiply the equation by g(u(t)) and integrate

from 0 to T. (3.2) and (Hm,) yield,
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(3 .23 ) G(u(T) ) + (m-m') f ||g (u ( t ) ) | | " 2 d t < | p ( t ) (1+G(u( t ) ) d t + G(u(O) ) .
J0 0

It follows that G(u(T)) is bounded for all T and ||g (u(t) J| e L2 (0, OD)

Thus for any v€# (g(u(t),v) e L 2(O,OD) and, if this quantity

is uniformly continuous, it must tend to zero. (Note that, here

strong uniform continuity of g(u(t)) implies strong convergence

to zero.

(3.2)(i),(ii). The proofs of these are essentially the same

as in [8]. Again one multiplies by g(u(t)) and integrates

from 0 to T. In case (i)(3.2) and H m imply that G(u(T))

and Q [g(u);T] are uniformly bounded the result then followsa

from Theorem 2.1. In case (ii) one obtains, by (3.2) and (H ),

,T
1
0

m

G(u(T) ) + Q b [ g ( n ) ; T ] < - ^ ^ - | | fQ||2 + J b ( t ) (1 + G (u ( t ) ) d t + G (u (0) ) .

Hence G(u(T)) and Qb[g(u);T] are bounded and the result follows

from Theorem 2.1.

The remaining cases can be reduced to ones already treated.

It is here that condition (Gi) enters. We have the obvious result:

(3.24) If (G^) is satisfied and G(u) = G(u) - (/3,u) then

(1 + G(u)) < K(l + S(u)) for some constant K.

(3.1)(ii) Write the equation as,

(3.25) u = -mg(u(t)) + h(t,u), g(u) = g(u) - ^ .
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Then we have G(u) = g(u) - (—,u) . By (G^) , G satisfies (G1)

From (HQ), (3.24) and (FQ) we have,

(3.26) (h,g) = (h,g) -^(h,fQ) < p(t) (1 + G(u)) + ^ q(t) (1 + G(u)

< K(p(t) + q(t)) (1

Hence the result follows from 3.1(i).

(3.2) (iii). Let T= (m + J b(r)dr)~ fQ and write the
0

equation as,

rt
(3.27) u = -mg(u(t)) - J a (t-T) g (u (T) ) dT + h + IP(t),

0

(u) = g(u) -

We have, by (HQ) , (PQ) , (A4) , (GJ_) and (3.24),

(3.28) (h + D3(t ) ,g) = (h,g) + O( t )T .g ) - (h ,D - /3(t) | |r| |2

nOD i

< p( t ) (1+ G(u)) + /3(t) (m + J ]
0

(m + J b(T)dT)"1) (h,f
00

^ p(t) (1 + G(u)) + j8(t)K' (1 + G(u)) + KMq(t) (1 + G(u))

^ r(t) (1 + S(u))
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Then the result follows from (3.2) (i).

(3.2.(iv) Write the equation as,

(3.29) u(t) = -mg(u(t)) - J a (t-T)g (U(T) )dT + fQ
0

where g(u) = g (u) - ̂ ^ , fQ = fQ - - ^ ^ J b(T)dT,

Then one checks^ by calculations like those above, that the

hypothesis of case 3.2(iii) are satisfied. Hence the result

follows from that case.

4. Existence Theory.

We consider equations of the form,

(4.1) ut(x,t) = Tm(g(u) (x,-)) (t) + f(x,t)

with the initial condition,

(4.2) u(x,O) = 0.

Here x lies in a bounded domain of Rn and g is a non-linear

partial differential operator of the form,

(4.3) g(u)(x,t) = 2 (-1) |alDaA (x,D^u(x,t)), |y| < m.
|a)<m
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u is to satisfy the Dirichlet boundary conditions*,

(4.4) D au = 0 on ad, |a]<;m-l.

We assume that the hypotheses of Theorem (2.1) are in effect.

Then we may invert equation (4.1) and if we integrate by parts

in the resulting equation we obtain,

(4.5) ^ u, (x,t) + L(x,u) (x,t) + k(t-T)u(x,T)dT = cp(x,t),m -c ^ 0

where,

(4.6) Lu = g(u) - M; cp(x,t) = T^1 (f (x, •) ) (t) ,

k (0) '

with 3 = j / > 0 and k strongly positive.
m

Our main object is to establish the existence of a generalized

solution of (4.6) under certain conditions on g. We will see,

(Remark 4.4) that this solution can also be considered giving a

generalized solution of (4.1). The solutions are to reflect the

boundary conditions (4.4) while allowing for algebraic non-

linearities in g. Appropriate for this are the Sobolev spaces

w (Q) consisting of functions w with generalized derivatives

D w up to order m belonging to L . We set

Inhomogeneities in either (4.2) or (4.4) can also be treated
in a standard way.
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(4.7) J \D^

l consists of the completion of C?*(fi) in the norms (4.7).

W~m consists of the dual of v/11. We will use also the space
P P

L [0,T; W111] T > 0, of functions u: [0,T] -» Ŵ  which are

measurable with j|u|| m( t ) e L [0,T], and also L [0,T; W~m] .

In order to avoid certain technical complications we will

assume throughout that p ̂  2. We impose on the A the growth

conditions,

Ki ( E k^l1^1-*-1) f o r s o m e constant k v

|y|<m 7

Observe that p ̂> 2 implies that the A ' s are of at least

linear growth. We set,

£(u,v) = E f Aa(Dyu)Dav dx

(4.8) -
L(u,v) = L(u,v) - 3j uvdx

n

It follows from (I) and Holder1s inequality that £ satisfies,

(4.9) ]L(u,v) I < cJlu

0 m

This means that £ takes ueL [O.T; w ] into an element of

L [0,T; W~ ] (as a functional of v) . We write,



29

(4.10) £[u,v] = J £(u,v)dt, u,v e Lp[0,T;

Now we consider the expression I(u,v) defined by,

(4.11) I(u,v) = J k(t-r) J v(x,t)u(x,T)dx dr.
00 0

We have, by Holder's inequality,

(4.12) |l(u,v) | 1 C2l|vU (t) (jVilp m (T) ) V p q

0

Thus I acts as a mapping from the function space L [0,T; W™]

into L [0,T; W~m]. (Notice that I i s not a map from Ŵ

into W as i s <£. We write,
P

pT o

(4.13) I[u,v] = I(u,v)dt; u,v € L [0,T; Ŵ ] .
J0 P P

We are now ready to define our generalized solutions.

0-m *Definition 4.1. Let cp e L [0,T; W ] . Then a generalized

solution of (4.5), (4.4), (4.2) is a function u e L [0,T; W™

such that,

(i) u has a derivative u e L (0,T; w"m]

(ii) [ufc,v] + L[u,v] + I[u,v] = [cp,v] for all veL [0,T; ..
P P

r 2
(iii) lim u (x,t)dx = 0.

This wil l be true^ in the present case,, if f in (3.1) € L2((Oj,T);

L^tn))^ fo r th i s property is preserved under T~ . Hence

cp e L?((O,T); L2(Q)) but then I cp v dx e W [0,T; W ) since q < 2.
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Orn O — flft

Remarks 4.1. (a) For ^eL [0,T; w 1 and X e L [o,T; W I
———————— P P 4 P
[y ;0] denotes <^,^>dt. We indicate in the outline of the

J0

proof the sense in which (i) and (ii) are to be interpreted,

(b) (iii) may, of course, require redefining u on a set of

measure zero.

We obtain an existence theorem if we impose conditions

on g which make L monotone and positive. These conditions

are:

(II) X(u,u) > ao||u||^p for all u e S j , aQ > 0;

(III) £(u,u-v) - £(u,u-v) > a1ll
u-v||^ pj a1 > 0,

for all u,v e w .

Remark 4.2. In usual terminology £ would be called monotone

if the right side of III were replaced by zero. This is not

enough for us because of the presence of the term 3juvdx in L

a

(see Lemma 4.1 below). We need the stronger condition III.

Notice that if Aa(0) = 0 then (III) implies (II). It is

shown in [2] (lemma 1) that in any case (III) implies

(II*) £(u,u) > ao||u||P - k for some k

It will be clear from the calculations following that (II*)

suffices for our purposes hence it is enough to require (III).
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Remark 4.3. Conditions (II) and (III) are very restrictive.

We discuss equations for which they hold at the end of this section.

They are the conditions given in [21 under the name ellipticity

and strong ellipticity. They can, presumably, be weakened in the

same way as in [2].

Theorem 4.1. Suppose (II) and (III) hold. Then (4.5)

has a. generalized solution. This solution is unique if m is

sufficiently large.

Outline of Proof; The proof involves only minor variations

of the proof of Theorem 9 (or Theorem 13) of [2] hence we present

only an outline. We begin with a lemma which establishes certain

positivity and monotonicity requirements.

Lemma 4.1. Let L satisfy (II) and (III). Set W(u,v) = L (u, v) + I (u, v)

and W[u,v] = L[u,v] + I[u,v] . Then we have,

, , , r , rT,i ,,p

( I I 1 ) W[u,u] > a^ j ||u|j d t - K ,
0 '"

pT

( I I I 1 ) W[u,u-v] - W[v,u-v] > a' llullj d t - Ko ,
1 JQ m,p I

for constants a' > 0, a' > 0, K, and K2, for a l l u,v e L [O^T;^ ] .

If m JLS suff icient ly large we can take K, and K? = 0.

Proof; Consider f i r s t the expression l [ u , u ] . We have,

m x.

(4.14) I[u,u] = J J u(x,t) J k(t-T)u(x,T)dT dt dx > 0
Q
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since k is positive and W[u,u-v] - W[v,u-v]= W[u-v,u-v] ;> 0.

Hence it suffices to consider L[u,v]. We have,

T
(4.15) L[u,u] = £[u,u] - £ J ||u||^2dt.

The problem is that J3 is positive. If ra is so large that

£ < min (aQ, ^±) we see that (II1) and (III1) hold from (

and (III). Otherwise we have, by Young1s inequality,

(4.16) Wu\\0,2 £
 e

for any e and any s > 2, where K is a constant depending

on s and on the domain Q. It follows from the embedding

theorems for Sobolev spaces, [3], that,

if

if - - - > 0 and for all s if - < - < 0. Since p > 2 and
p n — p n -*• —

•̂  > p we see that we can always choose an s, 2 < s, such

P " n

t h a t Hullos ^ CHuILp- J t f o l l o w s

for some K3. Then (II1) follows from (II) with K-, = K3T<

(III1) is obtained from (III) in an analogous manner.
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We proceed by Galerkin1s method. Let v
1^

v
2^•••

 be a

complete system in vT' which, for convenience,, we assume to be
k

orthonormal in L2(0)• We define approximate solutions u ,

k k k
uK(x,t) = E c*(t)v.(x),

3 3

where the c. are determined by the equations,

(4.19) J u^(x,t)v. (x)dx + W(uk(-,t),Vj) = <h;v_.>

n

for j = 1,...,k. Equations (4.19) are of the form,

(4.20) c(t) =- k(t-T)c(T)dT + f(t,c(t)),

on the finite dimensional space R with k(t) a (strongly)

]̂
p o s i t i v e k e r n e l o n R . W e h a v e , b y ( I I 1 ) a n d ( 4 . 1 4 ) ,

(4.21) (c ( t ) , f ( t , c (t ) ) v = - L
R

k
( S c. (t)

j = l 3

k
v . , E

11 j=l

" a 0 HSjlk + Kl

It follows from the positivity of a then, that the c1 s are

bounded independently of te[O,Tl and k. The existence of a

solution of (4.19) then follows just as in [2] (where 4.19

was an ordinary differential equation.)
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If one multiplies (4.19) by c.(t) sums over j, and

integrates from O to T (the calculation just indicated)

one finds as in [2] that,

(4.22) J (uk(x,t))2dx < Mĵ  ,

a

(4.23)

for all k. It follows that one can extract a subsequence con-

verging weakly in L [0,T; W™] to u e L [O.T; W™] . From (I)
P P P P

and (4.23) one deduces that a further subsequence can be
v kextracted so that the A (D^u ) ! s all converge weakly in

L [(OjT) x ft] to some a !s. The main problem is to show

that a = A (D^u) on which we comment later. The validity

of (ii) of Definition (4.1) then follows from (4.19) and

a passage to the limit through the subsequences (see [2]).

Equations (4.19) yields

T
(4.24) f [ u k C dxdt = -W[uk,C] + <h, £>

U ft
k

for all £f s which are of the form £ = L c. (t)v. (x) . The fact

v kthat the A (DAi ) converge weakly in L [(0,T) x Q] to a

while the u ]s converge weakly in w (hence in L2[(O^T)x

shows that
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(4 .25) lim J J u*£ clxdt = -J j aQ(x, t) Q (x, t)dx dt
°n ° n

+ /3 J J u(x,t)C(x,t)dxdt " I I C(x,t)J k(t-T)u(x,r)dT dxdt0 ° °

where the limit is through the subsequence and £ is any linear

combination of terms c.v.. The right side of (4.25) defines

a bounded linear functional of £ for all £eL [O,T;VTJ and
P P

0 _ rn

this functional is in L [0,T; W ] . We define u * by the right

side of (4.25), that is,
rn

(4.26) f <u.,C>3t = right side of (4.25) for all CeL [O,T:W*V
J0 P P

We return to (4.24). In this formula let £(x,t) =u (x,t) x[O,r)

0 < T < T. We obtain, since u, (x,0) = 0,

(4.27) J(uk(x,T))
2dx = -W[uk,Cl + ^h,C>

Q

N o t e t h a t f o r a n y C = S c . ( t ) v . ( x ) w i t h s m o o t h c . ! s s u c h t h a t
1 J 3 D

T
c. (T) = 0 , (4.24) yields, -| f uk; dx dt = -W[u\ C] + •*, C>. Here

we can let k -^ CD (through the subsequence) in the term on the

left. We compare with (4.26) and obtain, <u.,C>dt = - u V d x d t
0 °Q

This justifies the term derivative for u .
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Now from the boundedness of the Aa(D
yuk) in L [(0,T) X0] anduk) in L

(4.22) one deduces from (4.27) that,

(4.28) J uk(x,r)2dx < Nx M J|uk|Pdxdt j + N2(T)

where N O ( T ) -* 0 as r -* 0. Now we observe that the embeddingz
of L [0,T; WP] into L [0,T; WP] is compact. Hence by (4.23)

°0
there is a subsequence which converges strongly to u e L [0,T;W ]

P P

hence a fortiori in L2[(O,T)x Cl] . Still a further subsequence

must converge strongly to u in L2(Q) pointwise almost every-

where in t. If we let k tend to infinity through all these

subsequences we obtain, then from 4.28,

(4.29) J u2(x,T)dx 1 N1( J
T J|u|Pdxdt ) + N 2(T)

n ° n

Result (iii) of Definition 4.1 follows from this formula.

The verification that a = A (D^u) proceeds exactly as

in [2] and is a standard argument. It is based on the mono-

tonicity result (III1) and the fact that W[u,v] is hemi-

continuous. This means that W[U-££JG] -* 0 as £ -> 0.

The uniqueness is again standard, as in [2]. One subtracts

two solutions u and u* and uses (III1) to obtain,

m

(4.30) Jj|u-u*||^pdt 1 0,
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from which the result follows. This completes the proof of

Theorem 4.1.

Remark 4.4. We can write equations (4.19) in the form,

(4.31) J u k
 Vj dx = T^

1 {x(uk,v_.) + <<h,v..>}
0

or, on applying Tm,

.32) J uk v. dx = -m£(uk,v.) - J a (t-r)£ (uk (•, T)V.. )dT(4

,Vj > j = 1, ...,k.

We multiply by smooth functions of t and integrate from 0

to T. This yields

(4.33) J uk v dx = -m£[uk,v] - \ \ a (t- T)£ (uk (•, r), v (•, t)dr dt

J <f,v>dt,

for all v's which are linear combinations of c.(t)v.(x). Now

however we can pass to the limit through the subsequence. Since

the L [(O,T)x fi] limits a of the A (Dyuk) have already

been identified as Aa(D^u) the result will be,
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(4.34) [ u.v dx = -m£[u,v]- \ \ a (t-T)£ (u( •, T) ,V (., t)dr dt
n 0 0

T
+ f <f,v >dt.

Jo

Equation (4.34) holds first for the span of c.v. and then by

closure for all of L [0,T; W*JJ] . Thus u is a generalized

solution of (4.1) in the same sense as it is a generalized

solution of (4.5). Our first efforts on this problem were

devoted to establishing directly that the u 1s in (4.34)

converged to a solution. This failed because in this generalized

formulation there seems to be no analog of multiplying the equa-

tion by g(u) and integrating, the device we used in section 3

to establish a priori bounds. This is the reason we passed to

equation (4.5) thus having u appear only linearly in the

integral term.

Remark 4.5. It is shown in [2] (Theorem 5) that a sufficient

condition for (III), and hence, by Remark 4.2 for our result,

is that the A satisfy conditions of the form,

(III11)

<m

for all £ and 77. Conditions (I) and (III1) are very

restrictive. They state, essentially that A (Dyu) depends

only on D^u for |y| = m and that these occur to the power
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(p-1). Let us illustrate with the case discussed in Example 3.4.

Let n = 1, CJ = (0,1) , m = 1. Then,

(4.35) g(u) = -|^ a(x,u,ux) .

Here a = 0 or 1, $ y

(I) yields

(4.36) a(x

while (III") becomes,

= 0

(4-37)

Thus we need

would be

,

= 0 and

g(x,u,ux) = -

,£ ,

>
2

I • A n acceptable a

sign u x ) , p > 2.

5. Validity of Asymptotic Stability Results.

In this section we demonstrate the validity of the asymptotic

stability results of section 3 in a special case. We take g

as in section 4. We assume that m is so large that (II1) and

(III1) hold with Kĵ  and K2 equal to zero, see Lemma 4.1.

We consider the equation,
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(5.1) ut(x,t) = Tm(g(u) (x, •)) (t) + fx(x)t + fQ(x) + p(x,t)

u(x,0) = 0*

Here f, and f_ are in Lo (0) and p e L9 (0, OD,L~ (Q)) and the

hypotheses of Theorem 2.3 hold. The results of section 3 then

yield the provisional result,

(5.2) weak lira g(u(t)) = -7—t f-, (x)
t - C3D (aD)

provided that g is weakly stable.

Remark 5.1. The provisional result (5.1) requires the existence

of a G satisfying (3.2). In general, there will be no such G

for the operator (4.3). Thus it is remarkable that the rigorous

result of this section is obtained without this assumption.

The results of [2] show that under the conditions (II)

and (III) which we have placed on g the problem*,

(5.3) g(u(x)) = ̂ r£) fi<x)

(5.4) Dau = 0 on dft |a) < m- 1

Our result holds with minor modifications for any initial condition.



41

has a unique generalized solution U
Q (

X ) • This is a function

u Q € W™ such that,

(5.5) £(u,v) = J ^ ^ f1(x)v(x)dx for all v e

Theorem 5.1. Suppose a satisfies the conditions of Theorem 2.2

with m large enough for uniqueness. Let u be the (unique)

generalized solution of the inverted equation associated with

5.1. Then u satisfies,

(5.6) u(-,t) -*uo(.) in L2(Q) .

Before we prove this theorem we indicate its implications

in the study of approach to steady state. Consider the second

order equation,

(5.7) u = fr T (g(u)) + f, (x), u(x,O) = u (x,0) = O.

Suppose u is a classical solution. Then u will also be a

classical solution of (5.1) with f = 0. It is then a classical

solution of the inverted equation and must be the same as the

generalized solution. It follows that u satisfies (5.6).

Notice that if g(0) = 0 then u = 0 if f.. = 0, by

uniqueness. Hence if g(0) = 0 then solutions of (5.1) for

f.. = 0 must tend to zero in Lo (Q) .
i ^
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Proof of Theorem 5.1. Theorem 2.3 shows that the inversion

of (5.1) yields an equation of the form,

(5.8) ^ u t + £u + J k(t-T)u(x,r)dr = a (oo)"
 1f1(x) + r(x,t)

where reL2(O,OD; L2(fl)]^ and,, by Corollary 3.1, keL2(O,OD)

The associated generalized solution then satisfies,

T

rn

f.v dxdt + f f r(x)v dxdt.
1 V

From

(5.

We

(5,

10)

set

.11)

(5.5) we have.

v] ~ a(

w

:»)Jo

= u -

Q,

uo

v dx dt

Then if we subtract (5.10) from (5.9) we can write the

result as,

T
m J <wt'v> + L[w,v] + I[w,v]
1 0

(5 .12 )
T T

= I f r(x,t)v(x,t)dxdt - f k(t) \ un(x)v(x,t)dxdt
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where, T

(5.13) L[w,vl = X[w + uQ,v] - £[uo,v] - ^JQ J w v d x d t .

Conditions (II) and (III) for X imply that (II)

and (III) are also satisfied for £[w,v] = £[w + uQ,vI - £[uQ,v]

((II) for 1 follows from (III) for Z). Since r and k

are in L 2 ( 0 , O D ) , hence in L2(O,T), the right side of (5.12)

has the form [cp,v] where cp e L [0,T; W~mI (p > 2 means q < 2) .

Thus we conclude that we can find a generalized solution. We

assume that m is large enough so that the constants K, and K2

in Lemma (4.1) are zero. Then we have uniqueness. Moreover we

obtain, in this case, by choosing v equal w in (5.12) and

using (II1) of Lemma (4.1)*,

m m

(5.14) f||u(.,T)H 2 + aJ H ^ - ' t M l E ^ * J a(t)||u(.,t)jl dt

where a e L2 (0, ao) .

From (5.14) we deduce that ||w(-,t)||L ,^, is bounded for

all t and that |(w|| e L (O,OD) . The second statement yields

the following provisional result:

(5.15) If ||D w(«,t)|| ,QX is uniformly continuous on [O,GD)

for any a, |a| < m, and any r <, p, then ||Dawj| /o\-^ 0.

The calculation giving the first term is justified as in section 4
by passage to the limit through the subsequence.
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We prove Theorem (5.1) by using the equation to show that

||w(-,t)|L /QX is uniformly continuous. The calculation is

like that for (4.29). Given t., < t2 we

to be w(xJ,t)vr 1 and obtain,

choose w in (5.12)

(5.16)

t fco

= - 2 J J AQ(D?u)D
au dxdt + 3 J J u"dxdt

"2 »t
- J J k(t-r)J u(x,t)u(x,

J J(r(x,t) - k(t)uQ(x))v(x,t)dxdt
a

The boundedness of ||u(',t)|L (C), and the fact that r and k
2

are in L 2 on (0^a>) show that the last three terms on the

right side of (5.16) are uniformly small with t2 - t,. For

the first term we have by Holder1s inequality

(5.17)
2

J J A (Dru)DQu dxdt

dt

\I/P
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we have indicated before that u£Lp[O,T; « £ and condition I

imply that Aa(D?u) € Lq[(O,T)xQ]. But we have shown that

u £ L p [0 ,oo ; W p hence A<W«> e Lq[(0,»> X 01 • Thus both terms

on the right of (5.17) are uniformly small with t 2 - 4 . This

completes the proof that | |»( . , t) \\^ ( f l ) i s uniformly continuous

and hence the proof of Theorem 5.1.
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