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ABSTRACT

The equations studied have the form

u = -mg(u(t)) -thoa(t-T)g(u(T))dT+£(t,u(t)), m2 O

on a Hilbert space W g can be nonlinear and unbounded. The
case m= O was studied earlier by the author (Rep. 70-10 and
71-24). a is to be a strongly positive kernel in the term nol ogy
of the earlier reports. It is shown that if g 1is a nonlinear
elliptic operator of a special type and f = fb + f 1t p(t) ,

p(t) -*0 as t-*oo, the equation has a generalized solution

and that this solution has a finite limt as t-x®. It is

shown that the provisional asynptotic stability results of the
earlier reports can be extended to a larger class of perturba-
tions f when m> 0 and the results are conpared to the

differential equation

U=-mg(u(t)) +f(t,u(t)) .

Inmplications in the theory of approach to steady state are

di scussed.

*This work was supported by the NSF Gant GP 28118.
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1. | nt roducti on.

Thi s paper concerns functional differential equations of

the form
(1.1) u(t) =-Tu(g(u)) (t) + f(t,u(t)), t >0, m>0,

on a Hilbert space JX. Here g: Sg-* W may be unbounded and
nonlinear, f is a mp from [0, QD) X§L into H and 'En denot es

the linear Volterra operator,

(1.2) Tm)(t) =mC(t) + 1 a(t-T)C(7)dT,
m *Q
on Rl. This study is intended as a contribution to the investi-

gation of systens which possess a "nenory'! and hence depend on
their past history.

The special case, W= R;, m= 0, of this equation has been
studied in great detail by Levin and Nohel [6], Hannsgen [5 and
many others. The object has been to determine conditions on a,
g and f which guarantee asynptotic stability of solutions.

The physical interpetation of this is that one is |ooking for
systens whi ch possess an internal danpi ng nechani sm

The aut hor and Janes Wong [8] have .obtai ned sone rather

natural extensions of the results of [6], that is m=0, to

Hi | bert spaces W with unbounded g's. The goal was to be able




[2]

to treat g's which are partial differential operators thus
all om ng one to consider, for exanple, the nechanics of continuous
media. Unfortunately the results of [8 are of a conditiona
nature. They state that _if g(u(t)) is weakly bounded and

weakly uniformy continuous then g(u(t)) tends weakly to zero

as t approaches infinity. W call this provisional asynptotic

stability. For partial differential operators it proved possible
to verify the boundedness and continuity hypotheses only for
| i near equati ons.

In [7] the author pursued the asynptotic stability question,

for m= 0, when f has the special form

(1.3) f(t) = fxt + fo+tp(t), p-*0 as t->a>.

*The obj ect was the study of approach to steady state of solutions

of the second order equati ons,

(1. 4) u(t) = STdg(u)) (1) + fo + /L) y->0 as t-*00 .

The result, under essentially the sanme conditions as in [§] ,
was that if a(t) -*a(a&) >0 as t -* <, then (provisionally)

g(u(t) ) -~ a(ab) ', weakly

The preceding result indicates that the integral termdoes
i ndeed provide a danping nechanismto systens governed by equations
of the form (1.4) provided that a has a non-zero limt at
infinity. The inplications in the study of elastic materials

with nmenory are discussed in [7]. Interest in the result is



enhanced by the fact, [7], that the steady state limit, when

a(mwm) >0, is the same as that obtained by guasi-static theory in

which one merely drops the "acceleration® 1 in (1.4). This
is a common approximation in engineering since it results in
simpler problems.

When m =0 and g 1is unbounded, equation (l.1l) possesses
a second defect in addition to the provisional nature of the
stability results. This is that existence of solutions is very
hard to establish. See [4] for a linear case.

Equation (1.1) with m > O represents an attempt to create
a model for systems with memory which retains the damping properties
described above but for which the two defects are partially
remedied. In section 4 we consider (l1.1), with m > O, when g
is a non-linear elliptic operator, on a region (I, of the same
type as that used in the "monotone operator theory" [2] of the

parabolic differential equation,
(1.5) u = -mg(u(t)) + f.

(The conditions on g are very hatural ones in the context of
elasticity or heat flow). We show that (1.1) then possesses a
(generalized) solution, under essentially the same conditions on a
as in [8], provided that £ has the form (1.3). We show, more-

over, that this solution is unique, provided that m is sufficiently

large. 1In section 5 we show that if m is large enough for

uniqueness then solutions satisfy,

(1.6) lim u(-,t) = g‘l(a(co)‘lfl) in L, (Q).

t=m



Condition (1.6) 1is weaker than the steady state result when

m = O but is, of course, consistent with it. It is, moreover,
again the quasi-static limit obtained by dropping # and u in
the differentiated version of (1.1). We emphasize that the
result here is no longer provisional.

The question of whether the requirement of sufficiently
large m is really necessary is most intriguing and remains open.

The monotone operator methods of [2] can be applied here,
with only minor modifications, provided one first uses the techni-
cal device of inverting the equation (1.1) to solve for g(u(t)).
The interesting feature is that the necessary requirements on
the resolvent kernel in this inversion follow automatically
from the conditions perviously imposed on a. These considera-
tions are discussed in section 3.

It is not at all surprising that if we make m > O in (1l.1)
we obtain considerable improvement in the provisional asymptotic
stability results over the case m =0 of [8]. This means that
the class of allowable perturbations £, for which one can obtain
provisional asymptotic stability, is larger when m > O than
when m = O. When m > O this class is essentially the same
as that for (1.5), again not a surprising result. We discuss
these questions in section 3. We show there that making m > O

enlarges the class f in two ways, by allowing autonomous pertur-

bations (f = f(u)), which are not permitted when m = O, and
by allowing perturbations which depend on derivatives of u

when g 1is a partial differential operator. Both of these



improvements are shared by (1.5). On the other hand the special
properties of approach to steady state which are produced by the
assumption a (@) >0 hold for all m > O and are not shared by

(1.6) for any m.

The equation of nonlinear heat flow is a special case of
(1.6). Similarly equations of the form (1.1) can be viewed as
a highly specialized case of the equation of heat flow in a
rigid heat conductor exhibiting memory [l]. We have indicated
that one case of (1.4) yields a model in elastic materials
with memory. The differentiated version of (1.1) yields
another model for the same subject. Although the general dynamic
characteristics of the two elasticity models are very different
the results here show that any experiment which is based on
approach to steady state will not be able to distinguish between

them.

2. Positive Kernels and Inversion.

We want to discuss here properties of the kernels a in the

operator Tm,

t
(2.1) T (C)(6) = mg(t) + | a(t-m)g(mar.
(6]

For T >0 and ({ € C[O,T] we set,

rT rt
(2.2) Q [c:T] = Jog(t)J a(t-7)g(m)ar.
(6]

Definition 2.1. a is a positive kernel if Q_ [C:T] > 0 for all T.




Definition 2.2. a 1is a strongly positive kernel if there exist

constants € > 0, a > O such that a(t) - ce™ ™t s a positive

kernel.

The concept of strong positivity was introduced in [8].
Both definitions can be extended to Hilbert spaces, with a
replaced by a family A(t) of bounded linear operators and
e—O(t replaced by a contractive semi-group. This general theory
of [8] could be carried through here also but, for brevity,

we consider only the case where A(t) = a(t)I, I the identity.

Then for a positive we have, on any Hilbert space H,

T t
(2.3) o [¢:T] = | (¢(8),] ate-mc(manat > 0  for all cec(o,:¥],
0 0]

with a similar result for strong positivity.

We introduce another concept from [8].

Defih&tion 2.3. Let ¥ Dbe a Hilbert space. Then ucC([O,o):H)

is called weakly stable if for every mne¥# the function (u(t),n)

is uniformly bounded and uniformly continuous on [O,® ).

The basic result from [8] which connects these concepts

with asymptotic stability is the following.

Theorem 2.1. Let ¥ be a Hilbert space and a be strongly

positive. Suppose u(t) is weakly stable. If Qa[u;T] is

bounded independently of T then wu(t) must tend weakly to

zero as t tends to infinity.

-




It is shown in [8] that positivity is closely connected

to the Laplace transform of a. We impose on a the following

conditions:
(2.4) a(t) = a(wm) + b(t), a(mw)> O, beLl(O,an ,
(2.5) aec(z)[o,an, a(k)eLl(O,an k =1,2.

It follows from these that a has a Laplace transform & satis-

fying,

(2.6) a(s) = Eégﬂ + b(s), b continuous in Re s > O and
analytic in Re s > O,

(2.7) d(s) = a(o)s_l + é(O)S—Z + 0(5—2) as s o in Re s > O.

The following results are proved in [8]*.

Lemma 2.1. (i) a is positive if Re a(s) > O in Re s > O.

(ii) a is strongly positive if a(0) < 0 and Re a(s) > O
in Re s > 0. (iii) a is strongly positive if a # O and
1055w > o k = 0,1,2.

Our main concern in this section is with the inverse T%l

of the operator Tm when m > O. It is a standard result that

Tml exists if m > O and has the form:

-1 1 ¢
(2.8) T ) (0 = Enw) + [ xe-nnmar.
0

*The condition in (iii) implies those in (i) and (ii) but
converse does not hold, [8].




W strengthen (2.5) to,

(2.5)" aeC[Q c3D al®) el ~ (0, OD) k = 1,23,

and we require,

(2.9) (-1)ka'™® (0) >0 k = 0,1, 2.

W set d(s) equal to the transformof a’that is sa(s) - a(0) .

Theorem 2. 2. Suppose . (2.4), (2.5)7 _and (2.9) _hold and that,

(2.10) Re d(s) > 0, Re d(s) <O in Re s > 0.

Then k Jjjs. _a_strongly positive kernel and

(2.11) k(0) = -a(0)/nt.

Remark 2.1. It follows fromLemma 2.1, and its footnote, that

t he hypot heses of Theorem 2.2 wll be satisfied if (-2 kavck)(t) >0,
k =0,1,2,3. It is interesting to note that this was the hypothesis
used in [6] . It was only later that it was shown in [5] that

t hese could be weakened to k = 0,1, 2.

Proof; W solve T(£) = h by Laplace transfornms. The result

is,

(2.12) £ = (m&)" M1 = ntth + Kh, K= (ma) - nt




It is readily checked that k exists in Re s > O and is analytic
in Re s > 0. (It has a removable singularity at s = 0 1if

a(wm) # 0. (2.6) yields,

(2.13) k(s) = —%9-2- -é + O(-l-z-) as s -yw.
m s

k may be recovered by the complex inversion formula and (2.11)

follows.

Condition (2.5)' vyields, in analogy to (2.7),
~ “l hd -2 .. "'3 "3
(2.14) a(s) = a(0)s + a(0)s + a(0)s + o(s 7) as s-=» ®.

From this we obtain,

) . 2
(2.15)  &(s) = sk(s) + 200 - (20 , 200 )1 Lt ods
m m m S S

as s-=®,

where T'= m73(é(0) + a(o)3 - 2a(o)é(0)). Condition (2.9) implies
I’ is positive and therefore there exists o > 0O and € > O such

that

(2.16) Re(&(s) - E%E) >0, on s=in for |n| sufficiently

large.

If we can show that Re &(in) > 0 for 7n in a compact set |n| < M
then it will follow from (2.16) that we can choose o and ¢

so that (2.16) holds for all 1. Then the maximum principle
implies that (2.16) holds for Re s > O. This shows that

k - e s positive.




10

We have, by (2.12),

sk(s) - k(0) = sk(s) +2u8. = gafsr 4 A'g_
m n{ m-a) m
sd(s) (mfTa(s) L a(0)
~2 . a2 rs ) 2
mm+)a] +2m Re a(s) m
Hence,
(2.17) Re(sk(s) - k(0)) = 2{Q) _ Re séf .
m m+|a] + 2m Re a(s)

Now Re d(s) <0 inplies Re sals) < a(0), hence® with Re &(s) > o,

we have, ,
Re séi(s) ,QRe sals) x a (0)
n12+| 5| >+ 2m Re A(s) nf nf

and the right side of (2.17) is positive. This conpletes

t he proof of Theorem 2. 2.
When we study approach to steady state we will need another

result.

Theorem2.3. Let a satisfy (2.4 and _(2.5), with a(<) >0,,

and also the condition,

(2-18) J Db(yp)dr € L,(0 0D)
t

Let b be positive. Suppose h has the form h = f;1+f. +p
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where pelL, ©oDp). Then, for m > O, Tm(h) () = a(ao)-~1 f1+ r

where relL,(0O;G0).

Proof; We let 77 = £ - a(ao)-l I— and write the equation

Tm (£) = h in the form,

t
(2.19) mrj(t) + 3 a(t-r)r?(T)dr = ¢ + y(t),
0)

where,

mf1 fn oD

Ty J . Plmar;

(2.20) c=f° (@) - a(®) o

fl @
Y — pO+ 1T _[t b(r)dr.

The hypot heses show that yel, (0, OD) . Multiply (2.19) by rj(t)

and integrate from 0 to T. Since b is positive we obtain then,,
' : m

(2. 21) "Ir'|772(t)dt i, &R (Phdo)® + ¢ Tawd + I .(OT/(D)dt
0 O 0

c mr'

T
. . mr 2 2 2
S 2a) +2j oY M9ty .[0 n(t)dt,

and we deduce that,,

JV(t) dt<M for all T.
0

This proves the theorem.




12

Corollary 2.1. If the hypotheses of Theorem 2.3 hold the

function k in (2.8) belongs to L2(O,an.

Proof: The hypotheses (2.4) and (2.5) imply that
beLz(O,an. It is known that k itself satisfies the equation

ng = a(t), hence the result follows immediately from Theorem 2.3.

This theorem indicates the central role played throughout the
study of steady state by the condition a(m) > 0. If a(®m) =0
it is easy to see that the result is not true. Notice that the

limit of Tm(h) is independent of m in m > O.

3. Provisional Asymptotic Stability.

We consider functional differential equations of the form,

.t
(E)) a(t) = -mg(u(t)) - | a(t-r)g(u(r))dr + £(t,u(t)), t>0,m>0,
0]
on a Hilbert space ¥#. Here g is a transformation (possibly
nonlinear) with domain Sg CH and f is a mapping from
[O,) X 8g into ¥H. We want to consider simultaneously the

differential equation,

) u(t) = -mg(u(t)) + £(t,u(t)), t>0, m>o0.

Definition 3.1. We say that (Em) ox (Sm) are provisionally

asymptotically stable if any solution which is weakly stable
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(Definition 2.3) satisfies,

(3.1) weak lim g(u(t)) = O.
t

Our object here is to compare the provisional asymptotic
stability of (Em) for m >0 and m = 0 and both of these
with (Em). The results were discussed qualitatively in the
introduction. We list various conditions on £ which guarantee
provisional asymptotic stability in the various cases. We will
state the theorems first and give proofs at the end of the section.
These proofs are essentially the same as those in [7] and [8]
hence we devote most of the section to an analysis of the meaning
of the conditions on £. These conditions are stated in a rather
tedious manner. The reason for this is that our major interest
is the application to partial differential operators; in this
context the conditions on £ become inequalities between differen-
tial operators and these are extremely delicate.

We first list the technical hypotheses on a and g which
will be used. It is assumed throughout that a is strongly
positive. 1In addition to this four other hypotheses will some-

times be used:; all assume that (2.4) holds:

&) a(m) >0
(A2) a(a) =0
(A3) b 1is strongly positive,
@
(3,) B(t) = ft b(r)dr ¢ L, (0,®).

HENT Ligpagy
CARNEGIE-MeLLgy UNIYeRsiTy
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Concerning g we assume throughout that there exists a functional
G(u), defined on Sg, such that for all ueC(l)(OﬂD7§) with

u(t) e Sg for t > O,

(3.2) S-Glu(t)) = -(g(u(t)),a(t).

We will impose one of the following two conditions on G:

(Gl) inf G(v) > -®
ved
g9
(G}) G(u) > oyl |lull where o@(£)-» ® as (- ©.
The perturbations f we consider have the form,
(3.3) f(t,u) = flt + fO + h(t,u).

Here fl and fO are fixed elements of ¥ and h will always

be subject to a condition of the form:

2
(Hp ) (h(t,w),g(w) < p(e) (L+6) +m'flg@]”,
peLl(O,Gﬂ, 0 < m" < m.
fO and f1 will sometimes be required to satisfy the conditions:

(FO) (£5,9) < k(14G(u)) for some k, ](fo,h)l < q(t) (1+G(u)),

qeL, (0, @),

(Fy) (£,,9) < k(1+G(u)) for some k, ](fl,h)] < g(t) (L+G(u)),

qe—:Ll(O,co) .
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We are now ready to state the results. Throughout this
statement we use the notation g(u(t)) -—>+y to mean that if

g(u(t)) 1is weakly stable then g(u(t)) approaches vy weakly.

Theorem 3.1. For equation (8m) we have:

(i) fl = fo = 0, (Gl),(Hm,) for m' < m imply g(u(t))—0

(ii) £, =0, (6]), (Hy),(F,), imply g(u(t)) - m £ .

il

Theorem 3.2. For equation (Em) we have:

(1) £, = £, =0, (6)), (H) imply g(u(t))—=>o0.
(i) £, = 0,(G)), (B,), (&3), (H) imply g(u(t))=0
(for any fo)

(iii) £, =0, (G]), (Ay), (B,), (Hy), (Fy), imply

@ -1
gu(t)) = (m + [ b(nan e
o

(iv)  (6]), By, (&), (Hy), (F)), imply g(u(t)) —=a(w) 't

Remark 3.1. It is easy to see, by looking at linear cases on R;,
that if fl #Z 0 in (Sm), or in (Em) when a(w) # O, then

solutions will, in general, grow linearly.

Remark 3.2. Case (iii) of Theorem (3.2) holds for m =0
G) ~

also provided we assume f b(r)dr = b(0) > 0. Notice that this
0

would follow from (ii) of Lemma 3.1.
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Remark 3.3. The theorems show that when a(m®m) = O equations
(E.) and (8m) have essentially the same class of allowable
perturbations. Notice, however, that we can take m = O 1in
(Em) and still have a class of allowable perturbations while
(Sm) degenerates so as to have none. On the other hand if
a(oo) > 0 and either fO or fl is non-zero then the provi-
sional asymptotic stability properties of (Em) are clearly
much stronger than those of (Em). Notice that in case (i)
for (8m) and cases (i) and (ii) for (Em) the class of
allowable perturbations increases with m. In the remaining
cases, however, the result is, at least qualitatively, indepen-
dent of m.

There are two difficulties in the application of the pre-
ceding results. The first is that (3.2) represents a severe

restriction on the admissable g's. For scalar equations we

u
can simply take G(u) = I g(g£)d¢ but in more than one dimension
(0]

(3.2) 1is a real limitation. (See Remark (5.1)). The second
difficulty arises from the restrictions (Hm,), (FO), (Fl).

Let us illustrate with two simple examples.

1
Example 3.1. ¥ =R , g(u) = u.
2
We take G(u) = %— which satisfies (Gi). Then (Hm)

becomes,

2
(3.3) h(t,w)u < a(t) (L+5—) + ma’
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If h(t,u) =jJ.u then (3.3) wll be satisfied if jit < m provided

m> O but can never be satisfied if m= QO

Exanple 3.2. M= Lof01), & ={w W, €Ls(01), WO =wl) =0},

g(u) = Uy Then, for ue8y,

1 1 1
R G BTl o Tl B G s L P

Let h(t,u) = u(cp(t)u + A)(t)u_). Then (H_) becones,

Al
(3.4) (f,g(u)) = -jncp(t) Jpluj%x + /i0(t) I u,u, dX
"o < 0
1 1
<a(t) (1 +"lJuwdx) + mj urdx, ael,(O,0D)
o] o)
For Weng we have the inequality,
fl 2 P' 2
(3.5) Judc <€ c | u dx for some c¢ > 0.
OX /\O XX
If m>0 it follows that (3.4) is satisfied if, for instance

cpeL-l,, and Mli/)lho—<' m For m= O however (3.4) can be satis--
fiedonlyif \j) = 0O and cpd_-.J_.

These two exanples illustrate that conditions (Hm) gi ves
qualitatively stronger results when m> 0 than when m = 0.

There are two nmjor inprovenents when m> O:
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(1) Autonomous perturbations h(t,u) = H(u) are allowed.
(2) For partial differential operators £ can depend on
higher order derivatives.

An important special case of (Hm) for m > 0 is,

EX)  [h(t,w) | < m'llg)]] + B(t), m' < m, BeL,(0,m)

(H;) clearly illustrates improvement (1) above. We
consider next an example which extends Example 3.2 and which

illustrates improvement (2).

Example 2.3. (Linear partial differential functional equations).

Let Q be a bounded domain in R® and ¥ = Lz(Q). We
introduce the spaces Hk(Q) consisting of functions with strong

L, derivatives up to order k in { and set,

(3.6) 2 = 5 [ o%)2ax.
laj<k "
(Here o = (ql,...,an), . non-negative integers and
a a k
%= &) h..&) % ol = za).
1 n j=1 J

Hg(ﬂ) denotes the closure of CG)KD in H

o) k’

We let g be a linear elliptic operator of order 2M of

the form,

DBu) a = a

_ A
(3.7) g(u) = T D (a, aB Ba ’

lal<m .
|8 <M
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with snooth coefficients aqg. For &g we take HZMDH,\?. Thi s

means we are inposing Dirichlet boundary conditions of the form,
(3.8) D?u = 0 on an la] < M.

We assunme that the coefficient of |IYf, '™ Garding's inequality

is zero, that is, if

3.8 B(u,v) =, E JDW a_.pPvax,

(3.8) (u, V) (alsMQ 3D vax
12

t hen

(3.9 B(u,u) > c|[|ul|?, c >0 for all ueH‘i\a.

(Condition (3.9) guarantees that the problem g(u) = f has a

uni que sol ution ue&g for all felL,(Q, see [3]).
This situation was discussed in [8 where it was pointed

out that a suitable Qu) is,

(3. 10) Gu) = 5B(u,u) .

(3,9) shows that (Gl) is satisfied. W consider perturbations

of the form

(3.11) f(t,u) = f(x)t + fo(x) + h(t,x, D*u), ly| < 2M

Suppose that h is sublinear in the variables D‘u that is satisfies,

2M
(3.12) |h(t,x,£) | 1ju L E Vi + J(t)
=0 |yl5
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where J(t) € L2(O,a>;L2(Q)). Then the following result from
the theory of partial differential equations [3] shows that

(H%) will be satisfied if py is sufficiently small.

Lemma 3.1. If g satisfies (3.9) _there exists a constant

c¢' > 0 such that,

(3.13) g 12 > e fullZ,-

When m = O we cannot use this idea and must work directly

with (HO). This requires that
(3.14) (h,g) = P J Dah(t,x,DO(u)Dau dx
” Her
B|<M
be estimated by B(u,u). However (3.9) shows that B(u,u)

is O(Jlu |l) hence (3.14) shows that we cannot allow h to

depend on DYu for y # O. It is clear that (Hy) will be
satisfied if, for instance, h = h(t,u) with
(3.15) Ihu(t,g)]‘g v(t), geL; (0,m)  for all ¢g.

These considerations show that the result of Example 3.2 is
quite general.

Let us consider the meaning of conditions (F.) and (F

0 1)

in the present example. We have,
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. a B
(3.16) fo = z D f.a_ D u dx,
B|<M

hence by 3.9, the first of conditions (FO) Is satisfied if
fo € Hn(Q); simlarly for the first of (F.). Note that (Fg
and (pl) are to be applied only in the case when h satisfies
(I—b). Hence we assune as above that h = h(t,x,u). Then the

second of conditions (FLO is satisfied if,

(3.17) | h(t,x,u) | < (e) (1+ ul) el (0, ),

and foe L,(0). Simlarly for (Fl). Thus the results of
Theorens 3.1 (ii) and 3.2 (iii) and (iv) are applicable

if h satisfies (3.15) and (3.17) and f, (or £)e Hyfi).

Remark 3.4. It is shown in [8 that, in this case, weak
convergence of g(u(t)) to y in L2(Q i mplies strong conver -

gence of g(u(t)) to y in HI?{Q.

Exanpl e 3. 4. (A nonlinear partial differential functional equation).

Let Jt = Lo(0,1) and take g(v) :-L)S(a(vx), with
v(0) =v(I') =0. It is shown in [8] that an appropriate G
in this case is,

1 3
(3. 18) r jr xc(g)dg.
qu) =J
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V¢ inpose the condition a' (£) > € >0. Then (3.18) yields,

1 1
(3.19) Qu) >L | u® dx >cJ uidx, for u(0)=u(l)=0.
: d

0 0
Hence (Gl) is satisfied. The condition o' > e also yields,
2 _ 2,12 ST ' 2
(3.20)  [lg(u]l? =j" a" (uy)y’dx>e Jhg dx > €' N~
v v

We consi der perturbations of the form

2

f(t,u) = fx(x)t + fo({x) + h(t,x,u,u_,u_)

XX

Suppose in analogy to (3.12),

(3.2D h(t,Kioiria) i M(kol*lg ]+ 1g,1) + (%)

«l p

J7dx G L, (Q>®) .
J 2

0
A few cal cul ations based on (3.20),wll show one that estinates
of the form (H‘n) or (HO) are not possible unless a is
actually sublinear in u (a’(£) nust be bounded). Hence if
X

one wants to apply the results of Theorens 3.1 and (3.2

for a genuinely non-linear a one nust be content with the
case h = 0. The question is whether (Fg and (F.,J) can
ever be satisfied with non-linear g's. W have,

1 af
(3.22) (fo, ) =J‘0 32 0(u,)dx
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Suppose ¢ satisfies a condition of the form lo (&) | <K' (1+]E]F)
1 < r < 2. Then by Holder's inequality,

1 af 1/a
(3.23) (£,,9) < K (€l + (jo 359|q) nunl), q = —g——; > 2.

1 afo q
—_— dx is bounded.

Hence (F 3%

O) is satisfied if I |
O
Remark 3.5. This example, and Theorem (3.2), show that for this
special g the equation (Em) for m > O provides no change in
the results for m = 0. The latter was discussed in [7] together
with an application to elasticity. The equation for m > O yields
a new model for the elasticity problem but this new model yields
the same results on approach to steady state. The importance of
the case m > O 1is that in the next two sections we will demon-

strate that the conditional results of this example can then be

made rigorous.

Remark 3.6. Equations (3.13) and (3.20) illustrate an essential
limitation to our methods. They represent a priori bounds for
differential operators. The best one can ever expect in this

direction, for an operator of order 2m is |g(u)| > cllul,_.

This fact will always limit the theory to linear perturbations h.

Proofs of Theorems 3.1 and 3.2.

(3.1) (i) Multiply the equation by g(u(t)) and integrate

from O to T. (3.2) and (Hm,) yield,
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T > T
(3.23) G(u(T)) + (m—m')j lg(u(e)) || “at < Jop(t)(l+G(u(t))dt-+G(u(0)).
0]

It follows that G(u(T)) 1is bounded for all T and Hg(u(t)HeaLz(O,aﬂ.

Thus for any ved (g(u(t),v) € L2(O,aﬁ and, if this quantity
is uniformly continuous, it must tend to zero. (Note that, here
strong uniform continuity of g(u(t)) implies strong convergence

to zero.

(3.2) (i), (ii). The proofs of these are essentially the same

as in [8]. Again one multiplies by g(u(t)) and integrates
from O to T. 1In case (i) (3.2) and Hm imply that G(u(T))
and Qa[g(u);T] are uniformly bounded the result then follows

from Theorem 2.1. 1In case (ii) one obtains, by (3.2) and (Hm),
T

G(u(T)) + 9 lg(n);T] gizfﬂlnfonz + f b(t) (1+G(u(t))dt+G(u(0)).
O

Hence G(u(T)) and Qb[g(u);T] are bounded and the result follows

from Theorem 2.1.

The remaining cases can be reduced to ones already treated.

It is here that condition (Gi) enters. We have the obvious result:
(3.24) 1If (Gi) is satisfied and &(u) = G(u) - (B,u) then
(L+G(u) < K(L+G(u)) for some constant K.

(3.1) (ii) Write the equation as,

. ~ f
(3.25) 4 =-mF(u(t)) + h(t,u), g =g - =2 .
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£
Then we have G(u) = g(u) - (Eg,u). By (Gi), G satisfies (Gl).

From (HO), (3.24) and (FO) we have,

(3.26) (0,8 = (h,9) - 2(h,£y) < P(E) (L+G(w) +3 q(t) (1+G(w))

< K(p(t) + g(t)) (L+8(u)).

Hence the result follows from 3.1(i).

®
(3.2) (iii). Let T = (m + J b('r)d'r)-lfo and write the
(0]

equation as,
‘. N t
(3.27) u = -mg(u(t)) - ‘r a(t-7)g(u(r))dr + h + IB(t),
O
g(u) =g(u - T
We have, by (Ho), (FO), (A4), (Gi) and (3.24),

(3.28) (h + IB(t),5) = (h,g) + (B(H)Thg) - (b, D) - a(t)|T)°

® -1
< p(t) (1+G() + 8(8) m + [ b(nan b (£,.9 |
o

a
+ @+ [ bman Tt m ey | + s
o

S pP(E) (1+G(u)) + B(E)K' (L+G(u)) + K"q(t)(l-*-G(u))-FP(t)HIﬂ2

L r(e) (1 + &(u))
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Then the result follows from (3.2) (i).

(3.2.(iv) Write the equation as,

t ~ -
(3.29) 4(t) = -mG(u(t)) - | a(e-mFlrar + & + §,
0]
£ ~ fl a
where §(w = g(u) - o¥= . I, = £, - iy blMar,
(0]

£

h=hh+ a (@)

B(t).

Then one checks, by calculations like those above, that the
hypothesis of case 3.2(iii) are satisfied. Hence the result

follows from that case.

4. Existence Theory.

We consider equations of the form,

(4.1) u (x,t) = T (g(u) (x,-)) () + £(x,t)

with the initial condition,
(4.2) u(x,0) = 0.

. . . n . .
Here x 1lies in a bounded domain of R and g 1is a non-linear

partial differential operator of the form,

(4.3) g6 = ¢ 1I%%_ 0%, 0), |y <m
a|<m
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u is to satisfy the Dirichlet boundary conditions*,
(4.4) Du = 0 on ad, la]<;ml.
We assume that the hypotheses of Theorem (2.1) are in effect.

Then we may invert equation (4.1) and if we integrate by parts

in the resulting equation we obtain,

(4.5) ﬁ]uhc(x,t) + L(x,u) (x,t) + kJi(t-T)u(x,T)dT = cp(x,t),
wher e,
(4.6) - Lu =g(u) - M cp(x,t) = TAH(f(x, +)) (1),
k(0. '
with 3= ' >0 and k strongly positive.
m

Qur main object is to establish the existence of a generalized
solution of (4.6) under certain conditions on g. W will see,
(Remark 4.4) that this solution can also be considered giving a
generalized solution of (4.1). The solutions are to reflect the
boundary conditions (4.4) while allowing for algebraic non-
linearities in g. Appropriate for this are the Sobol ev spaces

mb(() consisting of functions w with generalized derivatives

D up to order m belonging to Lp' W set

~Inhonogeneities in either (4.2) or (4.4) can also be treated
in a standard way.
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(4,7) HngJm = qugm f IDGwlpdx.
- Q

%2 consists of the completion of CSDKD in the norms (4.7).

o—-m . o .

Wb consists of the dual of Wg. We will use also the space
[o]

LP[O,T; %p] T > 0, of functions u: [O0,T] = Wp which are

o_
measurable with Hqu,m(t) € Lp[O,T], and also Lq[O,T; W?m].

In order to avoid certain technical complications we will
. assume throughout that p > 2. We impose on the Aa the growth

conditions,

(1) | |Aq(g7)| < Ky ( > [gy]p_l-kl) for some constant k.

Observe that p > 2 implies that the Aa's are of at least

linear growth. We set,

£(u,v) = I IAO‘(D”u)DO‘v dx
alm 2
(4.8)
L(u,v) - B I uvdx
Q

L(u,v)

]

It follows from (I) and H8lder's inequality that & satisfies,

(4.9) |L(u,v) | S.C1HUN§{E anm,p’

B I
+
Q [
]
=

. [¢]
This means that £ takes ueLp[O,T; Wg] into an element of

[+
Lq[O,T; me] (as a functional of v). We write,
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T
(4.10) S[u,v] = IO £ (u,v)dt, wv e Lo, T; %g].

Now we consider the expression I(u,v) defined by,

t
(4.11) T(w,v) = | k(t=m [ vx,0)u(x, nax ar.
° Q
We have, by Holder's inequality,
4.12 e jt lp ), 1/pa
(4.12) [T, | < cylivily m(8) oHulp,m(r

o]
Thus I acts as a mapping from the function space Lp[O,T; Wg]

-m
p ]
. o-m . .
into Wp as is &£. We write,

] (o]
into Lq[O,T; W (Notice that I is not a map from Wg

T o
(4.13) I[u,v] = jox(u,v)dt; u,v e L [0,T; W$]°

We are now ready to define our generalized solutions.
. . ' ) O_m *
Definition 4.1. Let o € Lq[O,T; Wp ]

solution of (4.5), (4.4), (4.2) 1is a function u € Lp[O,T; %g]

Then a generalized

such that,

. . . (o8
(i) u has a derivative u, € Lq(O,T; me]

(idi) [ut,v] + Lfu,v] + I[u,v] = [op,v] for all veLp[O,T: %2],

(iii) lim f u? (x,t)dx = o.
£t 0 Q

*
This will be true, in the present case, if £ in (3.1) « L2«O,T);

Lz(Q)), for this property is preserved under T;l. Hence

® € L,((0,T); L,(Q)) but then Imxfdx € Wq[O,T; %;m) since q < 2.
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an. 0—flft
Renmarks 4.1. (a) For ”“eL [O,T;, w1l and XelL-~[o, T, W I

P P 4 P
[y ;0] denotes ! <~ ,~A>dt. We indicate in the outline of the

70
proof the sense in which (i) and (ii) are to be interpreted,
(b) (iti) may, of course, require redefining u on a set of
nmeasure zero.
VW obtain an existence theoremif we inpose conditions

on g which make L nonotone and positive. These conditions

are:

(rnr) X(u,u) > aol |ul|”p for all ueSj, ag > 0;

(1) E£(u,u-v) - £(u,u-v) >_31II”-V||"Pj a; > 0,
for all u,ve?lg.

Remark 4.2. In usual termnology £ would be called nonotone

if the right side of 11l were replaced by zero. This is not

enough for us because of the presence of the term 3_5' uvdx in L
d

(see Lemma 4.1 below). W need the stronger condition |11.
Notice that if A (0) =0 then (IlIl) inplies (Il). It is
shown in [2] (lemma 1) that in any case (IIl) inplies

(=) £(u, u) 3a0||u||rﬁ>’p- k for sone Kk

It will be clear fromthe calculations followng that (I11%)

suffices for our purposes hence it is enough to require (II1).
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Remark 4.3. Conditions (II) and (III) are very restrictive.

We discuss equations for which they hold at the end of this section.
They are the conditions given in [2] under the name ellipticity
and strong ellipticity. They can, presumably, be weakened in the

same way as in [2].

Theorem 4.1. Suppose (II) and (III) hold. Then (4.5)

has a generalized solution. This solution is unique if m 1is

sufficiently large.

Outline of Proof: The proof involves only minor variations
of the proof of Theorem 9 (or Theorem 13) of [2] hence we present

only an outline. We begin with a lemma which establishes certain

positivity and monotonicity requirements.

Lemma 4.1. Let L satisfy (II) and (III). Set W(u,v) = L(u,v)+I(u,v)

and W[u,v] = L[u,v] + I[u,v]. Then we have,
T P
(I1') wlu,u] > aj Joﬁlullm’pdt - Ky,
TP
1
(II1') Wlu,u-v] - W[w,u-v] > a} Iol\u“m’pdt - K, ,

(o]
for constants aé > 0, ai > 0, Kl and K2, for all u,vwst[o,T;Wg].

If m is sufficiently large we can take K, and K, = 0.

Proof: Consider first the expression I[u,u]. We have,

T t .
(4.14) I[u,u] = J f u(x,t) j k(t-T)u(x,7)dr dt dx > O
0 0

Q
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since k is positive and W([u,u-v] - W[v,u-v]= W[u-v,u-v] > O.
Hence it suffices to consider L[u,v]. We have,

T 2
(4.15) Llu,u] = £lu,ul - 8 | (o] jat.

O 3

The problem is that B 1is positive. If m is so large that
B < min(ao, al) we see that (II') and (III') hold from (II)

and (III). Otherwise we have, by Young's inequality,
(4.16) Hu”o,z < e HuHO,S + K(e),
for any € and any s > 2, where K 1is a constant depending

on s and on the domain Q. It follows from the embedding

theorems for Sobolev spaces, [3], that,

. 1
(4.17) ”uHO,s < CHuHm,p if s < T &
o) n
. 1 m . 1 m .
if = - E’Z O and for all s 1if 7 < H'g o Since p > 2 and
-I——la~ > p we see that we can always choose an s, 2 < s, such
? n '

that ”uHO,s S.CHuHm,p- It follows that,

2 29 o)
(4.18) B2, < 52 IulE , + K

for some K3. Then (II') follows from (II) with K, = K.T.

1

(II1I') 1is obtained from (III) in an analogous manner.

3
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V1/\V2/\.,, be a

We proceed by Gal erkin's nethod. Let
conpl ete systemin v°r1; whi ch, for conveni ence,, we assune to be

orthonormal in L,(0)e W define approxi mate solutions u,

K <k
u“(x,t) = 3E1 c*(t)v.(x),
3 3

where the ci- are determned by the equations,

(4.19) Ju’\(x,t)v.](x)dx+V\(uk(-,t),Vj) :<h;v_J>
n

for j =1,...,k. Equations (4.19) are of the form

(4. 20) c(t) =- |.:,k(t-T)c(T)dT + f(t,c(t)),

on the finite dimensional space R with k(t) a (strongly)

N

positive kernel on R . We have, by (et and (4.14),

k
EMwv., E c];(t)vj)

3 1 J:|

1N~

(4.21) (c (1) ,f(t, () y=-L(
R j

SENCTIA

It follows fromthe positivity of a then, that the gjs are

The exi stence of a
(where 4.19

bounded independently of te[Q Tl and Kk.
solution of (4.19) then follows just as in [2]

was an ordinary differential equation.)
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If one multiplies (4.19) by c?(t) sums over Jj, and

integrates from O to T (the calculation just indicated)

one finds as in [2] that,

(4.22) J ok ax <my
Q
T
k)P
(4.23) jonu Hm’pdt.g M, ,

for all k. It follows that one can extract a subsequence con-
verging weakly in Lp[O,T; %g] to uesz[O,T; %E]. From (I)
and (4.23) one deduces that a further subsequence can be
extracted so that the Aa(Dyuk)'s all converge weakly in
Lq[(O,T) x 1] to some aq’s. The main problem is to show
that a, = Aa(Dyu) on which we comment later. The validity
of (ii) of Definition (4.1) then follows from (4.19) and
a passage to the limit through the subsequences (see [2]).

Equations (4.19) vyield,

T
(4.24) | f uf ¢ axdt = -w[u®,¢] + <h, >
(0]
Q
k
for all ('s which are of the form ( = ZT cj(t)vj(x). The fact
1

that the Aa(Dyuk) converge weakly in Lq[(O,T) x ] to a,

while the uk’s converge weakly in %g (hence in L2[(0,T)x(H)

shows that




35

(4 .25) lim J J UiE cIxdt = -3 ] ag(x,t) Q(x, t)dxdt
k=@ °n °n
+ /33 J u(x,1)C(x,t)dxdt * Io I C(x,t)Jok(t-T)u(x,r)dT dxdt

Q2 f1

+ <h, >,

where the |imt is through the subsequence and £ is any linear

conmbi nation of terns c.v.. The right side of (4.25) defines

J 3]
a bounded linear functional of £ for _al £elL_[QT; \C}TJ and
ALk P P
q Oprn £

this functional isin L [0, T, W] . W define u* by the right
side of- (4.25), that is,

w

H(4. 26) JfO <u., CG3t = right side of (4.25) for all OeLp[Q T:OVISD’)'_V

Ve returnto (4.24). Inthis fornula let £(x,t) =u (k><,t)x[O,r),
O<T<T. W obtain, since u,K(x,O) = 0,

(4.27) J(uk(x, 7)) 2%dx = -Wuk, d + ~h, C&
Q

*
Note that for an C = Sc(t)v.(x with smooth s such that

o T
c. () =0, (4.24) yields, -| fu";@xdt:-V\{u\ Cl ++*, C. Here

we can let k-~ CD (through the subsequence) in the termon the

T T
left. W conpare with (4.26) and obtain, I <q:.,u(>dt :-j Ju\ggxdt .
0 .o

This justifies the termderivative for ug.
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Now from the boundedness of the Aa(DVuk) in Lq[(O,T))(Q] and
(4.22) one deduces from (4.27) that,

)l/p

,
(4.28) | o, m2ax <y (JO [1d* Pax at £ N, (1)
Q

Q

where N2(T)-§ O as T -0. Now we observe that the embedding
of L,[0,T; WPl into L [0, T; WPl is compact. Hence by (4.23)
there is a subsequence which converges strongly to uesz[O,T;%g]
hence a fortiori in L2[(O,T)x Q] . Still a further subsequence
must converge strongly to u in Lz(Q) pointwise almost every-
where in t. If we let k tend to infinity through all these

subsequences we obtain, then from 4.28,

T 1/p
(4.29) [ w? e, max < Nl(f [1a|Pax at ) + N, (1)
0
Q Q

Result (iii) of Definition 4.1 follows from this formula.

The verification that a, = Aa(Dyu) proceeds exactly as
in [2] and is a standard argument. It is based on the mono-
tonicity result (III') and the fact that W[u,v] is hemi-

continuous. This means that W[u-¢(C,(] > O as £ - O.

The uniqueness is again standard, as in [2]. One subtracts

two solutions u and u* and uses (III') to obtain,

T b
(4.30) JOHu—u*Hm,pdt < o,
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from which the result follows. This completes the proof of

Theorem 4.1.

Remark 4.4. We can write equations (4.19) in the form,

k -1 k
(4.31) g u, v. dx = Tm {S(u ,vj) +-<h,vj>}

or, on applying Tm’

t
(4.32) i ut vj dx =-4n£(uk,vj)— Io a(t—7)£(uk(-,r)vj)dr

+ <f,vj> 3 =1,...,k.

We multiply by smooth functions of t and integrate from O

to T. This yields

Tt
(4.33) J uz v dx =-4n£[uk,v]— J f a(t—r)£(uk(-,f),v(.,t)det
00
Q

T
+ f <f,v>dt,
0
for all v's which are linear combinations of cj(t)vj(x). Now
however we can pass to the limit through the subsequence. Since
the Lq[(O,T)x Q] limits ag of the AG(Dyuk) have already

been identified as Aa(Dyu) the result will be,
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T.t
(4.34) J u.v dx = -m&[u,v] - J I a(t-r)L(u(e,7),v(.,t)drdt
o0
Q

T
+ ‘[ <f,v >dt.

0O
Equation (4.34) holds first for the span of cjvj and then by
closure for all of Lp[O,T; %2]. Thus u is a generalized
solution of (4.1) in the same sense as it is a generalized
solution of (4.5). Our first efforts on this problem were
devoted to establishing directly that the uk’s in (4.34)
conwerged to a solution. This failed because in this generalized
formulation there seems to be no analog of multiplying the equa-
tion by g(u) and integrating, the device we used in section 3
to establish a priori bounds. This is the reason we passed to
equation (4.5) thus having u appear only linearly in the

integral term.

Remark 4.5. It is shown in [2] (Theorem 5) that a sufficient

condition for (III), and hence, by Remark 4.2 for our result,

is that the Aa satisfy conditions of the form,

dA

(TII") T T (e )T M, > a, T p-2,2
al m 3Eg 08 TaMg 2 33 a]=ml€°‘I Mo

Bl<m

<
<

for all ¢ and 7. Conditions (I) and (III') are very
restrictive. They state, essentially that Aa(Dyu) depends

only on D”u for |y] = m and that these occur to the power
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(p-1). Let us illustrate with the case discussed in Example 3.4.

et n=1, Q= (0,1), m = 1. Then,

(4.35) g(u) = w%; c(x,u,ux).
Here a =0 or 1, gy = (go,gl), AO =0 Al = c(x,go,gl).

(I) vyields

(4.36) 0 (x,6,,6,) < K (16, |F71 + 6,177 + 1),

while (III") Dbecomes,

3c (X,§.,€,) 36 (x,£.,6)
081 0’81 2 -2 2
(4.37) ago nl‘flo + agl nl 2 a3]€1| 771 .
3o (x,€,)

Thus we need - = 0 and -——————l—_z a,|¢& lphz. An acceptable ©

ok 3E, 3161
would be

1 .
q(x,u,ux) = —%;-(luxlp_ sign u_), p> 2.

5. Validity of Asymptotic Stability Results.

In this section we demonstrate the validity of the asymptotic
stability results of section 3 1in a special case. We take g
as in section 4. We assume that m is so large that (II') and
(II1I') hold with Kl and K2 equal to zero, see Lemma 4.1.

We consider the equation,
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(5.1) u(x,t) =Tug(u) (x, ¢)) (1) + fL,(x)t + f(x) + p(x, 1)
u(x,0) = 0*

Here f, and f_ arein L,(0) and pelyg(0, OD, L~(Q) and the
hypot heses of Theorem 2.3 hold. The results of section 3 then

yield the provisional result,
(5.2) weak lira g(u(t)) =-74¢ f- (%),
(ab) -

t - GD

provided that g is weakly stable.

Remark 5.1. The provisional result (5.1) requires the existence

of a G satisfying (3.2). 1In general, there will be no such G
for the operator (4.3). Thus it is remarkable that the rigorous

result of this section is obtained wi.thout this assunption

The results of [2] show that under the conditions (II)

and (IlIl) which we have placed on g the problent,

(5.3) g(u(x)) =7reyfi<)
(5.4) D*u = 0 on dt la) <m 1

Qur result holds with mnor nodifications for any initial condition,,
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has a unique generalized solution uo(x). This is a function

u,. € %m such that,
0 p

(5.5) £(u,v) = j Z%Eﬁ fl(x)v(x)dx for all vez%g.
Q

Theorem 5.1. Suppose a satisfies the conditions of Theorem 2.2

with m large enough for uniqueness. Let u be the (unigue)

generalized solution of the inverted equation associated with

5.1. Then u satisfies,

(5.6) u(-,t)—ﬂl%)b) in LZ(Q)‘

Before we prove this theorem we indicate its implications
in the study of approach to steady state. Consider the second
order equation,

(5.7) u = %E T (g(u) + £ (x), u(x,0) = u,(x,0) = 0.

Suppose u 1is a classical solution. Then u will also be a
classical solution of (5.1) with fO = 0. It is then a classical
solution of the inverted equation and must be the same as the
generalized solution. It follows that u satisfies (5.6).

Notice that if g(0) = O then u, = o if fl = 0, by

uniqueness. Hence if g(0) = O then solutions of (5.1) for

fl = 0 must tend to zero in L2(Q).



42

Proof of Theorem 5.1. Theorem 2.3 shows that the inversion

of (5.1) yields an equation of the form,

5.8) = s jtk ar = “le t
(5.8) T u +&u + o (t-1)u(x,r)dT = a(®) l(x)+ r(x,t)

where rest(O,an LZ(Q)]’ and, by Corollary 3.1, kest(O,an.

The associated generalized solution then satisfies,

T
(5.9) % j <ut,v> + Lu,v] + I[u,v]
(0]

= '51_](-—{13—) jz i £1v dx dt + JZ f r(x)v dxdt,

From (5.5) we have,

1 (T

(5.10) S[uo,v] = a(®) Jo j flV dx dt .
Q

We set,

(5.11) wo=u- uj

Then if we subtract (5.10) from (5.9) we can write the

result as,

T ~
% J~<wt,v>-+ Llw,v] + I[w,v]
(0]

.12
(5.12) -

-

T
]' r(x,t)v(x,t)dxdt - j k(t)J u, (v (x, t)ax At ,
(0]

°q Q
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wher e,

T »

(5.13) Llw, vl = X[w:ug v] - £[Uo, V] - ~JogJ wvdxdt.
[
Conditions (Il1) and (IlIl) for X inply that (I1)

and (I11) are also satisfied for E[w,v] = £[w+ug Vvl - £[ug V]
((1ry for 1 follows from (IlIl) for Z). Since r and Kk
are in L,(0,0D), hence in L,(O/T), the right side of (5.12)
has the form [cp,v] where cp e Lq[O,T; \3\6”1 (p 22 nmeans q <2) .
Thus we conclude that we can find a generalized solution. W
assume that m is large enough so that the constants K; and K;
in Lenma (4.1) are zero. Then we have uni queness. Moreover we
obtain, in this case, by choosing v equal w in (5.12) and

using (I1Y) of Lemma (4.1)*,

m

n .
(5:14) T1IUTHz 0 B OMES S GO of

wher e aeLZEO, ao) .

From (5.14) we deduce that ||V\(-,t)|||_2l’\} i s bounded for

all t and that |(W] e L (oo0D . The second statenent yields
m b

X

the follow ng provisional result:
(5.15) If |||:9‘w(«,t)||L ¢ is uniformy continuous on [0 cD)
r

for any a, |a] <m and any r <_p, then |||jV\”Lr(LQ)\'A 0.

The cal culation giving the first termis justified as in section 4
by passage to the limt through the subsequence.
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We prove Theorem (5.1) Dby using the equation to show that

HW(.,t)“Lz(Q) is uniformly continuous. The calculation is

1ike that for (4.29). Given tl < t2 we choose w in (5.12)

to be w(x’t)x[tl,tzl and obtain,

1 1
(5.16) 5“’“'(”":2)“1,2(9) - 3 flu,ty) “LZ(Q)
= - ZJ IAQ(Dyu)Dau dxdt + B J I u? axdt
1q f1 0
€2 .
- J‘ I k(t'T)J u(x,t)u(x,r)dxdrdt
t, 0 o
t
2 .
+ I J(r(x,t) - k(B)uy(x))v(x,t)dxdt
t1q

The boundedness of |[u(-,t), @ 2and the fact that r and k
2

are in L2 on (O,m) show that the last three terms on the
right side of (5.16) are uniformly small with t2- tl. For
the first term we have by Holder's inequality

t

2 q
s.17) |[ [ a 0wp% axat
10
Itz 1/q Jt2 1/p
<) oY), at %P g at
£, 13 (Q) t) ‘Lp(Q)
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2]
We have indicated before that ueLp[O,T; W‘(;] and condition I

imply that A% (Dyu) IS Lq[(O,T) x Q] . But we have shown that

u €LP[O,CD7 gsf;] hence Aa(Dyu) € Lq[(o,a)) «Q]. Thus both terms
on the right of (5.17) are uniformly small with t2— tl' This

completes the proof that fu(:,t) HL () is uniformly continuous
2

and hence the proof of Theorem 5.1.
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