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NONLINEAR SEMIGROUPS AND A HYPERBOLIC CONSERVATION LAW

by

H. Flaschka

Abstract

This paper is concerned with the hyperbolic conservation

law

M i\ Sxa . db(u) _
(1-1) St + ^ x ^ ~ °

(1.2) u(x,O) = f (x) .

By means of the Crandall-Liggett theory of nonlinear semigroups

([1]), it will be shown that the operator A : u H-> ——b(u)
Q. X

generates a semigroup S = {Sfc; t ;> 0} of contraction operators

on L (IR). The function t h-» S.f may then be thought of as

a generalized solution of the initial value problem (1.1-,2),

and it will be seen that for f e L fl L 9 this function is a

weak solution in the usual sense. Finally, semigroup methods

will be employed to derive the "ordering principle" for the

solutions of (1.1-.2), in a form due to Kruzkov [3].
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NONLINEAR SEMIGROUPS AND A HYPERBOLIC CONSERVATION LAW

by

H. Flaschka

§1. Ihis paper is concerned with the hyperbolic conservation

law

(1.2) u(x,O) = f (x) .

By means of the Crandall-Liggett theory of nonlinear semigroups

([1]), it will be shown that the operator A : u H-» -=—_:b(u)
Q. X

generates a semigroup S = {S ; t ̂  0} of contraction operators

on L (IR) . The function t i—» S.f may then be thought of as

a generalized solution of the initial value problem (1.1-.2),

and it will be seen that for f e L 0 L , this function is a

weak solution in the usual sense. Finally, semigroup methods

will be employed to derive the "ordering principle" for the

solutions of (1.1-.2), in a form due to Kruzkov [3].

Ihe statement of the Crandall-Liggett theorem, and an

overview of the technical aspects of the paper, will be given

in §2. Ihe remainder of this introductory section is devoted

to a general comparison of the present approach and the existing

theory of equation (1.1).

Ihe conservation law (1.1) has been studied quite thorough-

ly, both because of its mathematical interest, and because it

This work was supported by NSF Grant GU-2056.



is the prototype of some important hyperbolic systems des-

cribing physical phonomena. First of all, simple examples

show that solutions of (1.1) can develop discontinuities

("shocks") even for smooth data (1.2); consequently, a

solution can only be expected to satisfy the equation in

a weak sense:

(1...3) Definition. A bounded, measurable function u of

(x,t) is said to be a weak solution of (1.1) , (1.2) , if

i) u(t,x) —-> f(x) for a.e. x, as t —» 0;

ii) fucp, + b(u)cp }dxdt = 0 for all twice con-

t>0 xeIR

tinuously differentiable functions <p with compact support in

the half-plane t > 0.

The fundamental result in the theory, and the source of

most of the complications, is this: <a weak solution exists for

any f e L°°, but it need not be unique. One now introduces an

additional constraint, which has the effect of choosing a unique

solution from all the possible weak solutions of (1.1-.2). This

restriction, called the "entropy condition", imposes a certain

behavior on the solution near a curve of discontinuity. The

semigroup property (or "principle of causality") in the class

of weak solutions satisfying the entropy condition follows

There are several formulations of the entropy condition for
functions whose discontinuities have a less regular structure;
see [3], [4], [6], [9].



immediately from uniqueness. Finally, arguments based, again,

on the entropy condition, can be used to demonstrate the

L -stability of piecewise smooth solutions [7]:

(1.4) |u(.,t) - v ^ t ) ! ^ £ |u(.,0) - V ( . , 0 ) | L 1 ,

as well as the ordering principle [3],

(1.5) |u(-,t) - v ^ t ) ! ^ u(.,0) - V(.,0)| L 1.

(We use the symbol |h| , to denote the L -norm of the positive
LX

part of h) .

In the semigroup approach, the entropy condition plays a

somewhat different role. Once the operator A is known to

generate a semigroup, the existence of weak solutions and the

ordering property will follow from purely global considerations

(§§4-6) . However, the proof that A ij3 a generator involves a

problem for an ordinary differential equation which exhibits many

of the nhyperbolicfr phenomena: discontinuous solutions, possible

non-uniqueness, and a one-dimensional version of the entropy con-

dition. The equation in question is f + Ab (f) ! = h (! = -r—) ,
Q. X

which is to have a solution f in L for each h e L ; this

is the problem -- also encountered in the linear theory -- of

showing that the resolvent (I+AA)"" is everywhere defined.

The treatment by semigroup theory has the drawback that

it makes a satisfactory uniqueness theorem hard to formulate.

In a function space setting, where local properties are somewhat

out of place, there may be no way to decide whether a given

weak solution is the one generated by the semigroup. It is



known from the work of Quinn [7], that the semigroup solutions

are precisely the entropy solutions, but we have not attempted

to include this result in the present study.

In summary, then, our approach offers something new insofar

as it shows the theory of the conservation law (1.1) to be, to

a considerable extent, a part of the theory of abstract evolu-

tion equations; in §7, we will also point out certain differences

in the technical details. Finally, there may be some interest

in this study as an example in the theory of evolution equations,

since the problem (1.1-,2) is quite pathological in comparison

with parabolic, or even semi-linear hyperbolic equations: the

underlying Banach space almost certainly cannot be reflexive;

the solution generated by the operator A is not strong; and,

because the operator A is not monotone, the usual problem of

the surjectivity of I + AA requires new techniques.

§2. We turn now to a preliminary description of the technical

aspects of the paper. The fundamental theorem of M. G. Crandall

and T. M. Liggett [1] was originally established for multi-

valued operators defined on non-dense subsets of a Banach

space; we require only a special case:

THEOREM (): Let X be a. Banach space, A a. (nonlinear)

operator in X with dense domain D(A) . Suppose that

I A JL§. accretive, i. eo , for all A > 0 and all

x,y e D(A) ,



(2.1)

(C) 2 for all A > 0, the range of I + AA is. all <of X.

Then the limit

(2.2) S. x = Lim ( l + ^ A ) ~ N x

c def N-*oo

exists for all x e X, and defines a. strongly continuous semi-

group S = {S.; t ̂  0} <Df contraction operators;

||stx - Sty|| £ ||x-y||.

The three steps: defining D(A), and verifying (C)- and

(C)«, are closely interdependent, more so than in the linear

theory. We obtain the description of D(A), and the estimate

(2.1), as consequences of the surjectivity of I + AA. The

latter property means, concretely, that

(2.3) f + Ab(f) ' = h

(where ! = —-) has a solution f € D(A) for all h e L (IR) .

By requiring that f e L , we are in effect posing a two-point

boundary value problem for a first-order equation. Attempts

at a "direct" solution of (2.3) were unsuccessful, and so we

approach the problem via an approximate second order equation

over a finite interval,

(2.4) f + bN(f)
 ! - £f" = h, f (±N1) = 0.

(b is a cutoff version of b) . (2.4) can be solved by the



Leray-Schauder degree theory; the necessary a-priori estimates

of the solutions of (2.4) are obtained from a study of the

associated parabolic equation

(2.5)

ut = £ uxx " bN ( u )x

u(x,O) = f(x)

u(+N.,t) = 0.
1

The reader will recognize the similarity of this development

to the "method of vanishing viscosity", which provides solu-

tions of (1.1-,2) as limits of solutions of the parabolic

equations u + b(u) = £ u . It should be noted, however —

and this may be important for any extension of the present

method to systems -- that we require only the local solvability

of (2,5), whereas the viscosity method is based on the more

difficult global solvability of the parabolic equation.

We arrive at a solution of (2.3), by letting N —> oo

and £ —> 0 in (2.4). To show that the limiting function is

independent of the manner in which £ —> 0, we must establish

that all such limits satisfy a one-dimensional "entropy condi-

tion", and that any two solutions obeying this restriction are,

in fact, identical. The details of this argument are carried

out in §3#

Once the operator A is known to generate a semigroup S,

one must decide in what sense the function t i—> S.f is a solu-

tion of the Cauchy problem

(2.6) dg^ t ) + Au(t) = 0, u(0) = f.



If the problem were set in a reflexive space, the results of

[1] would yield the a.e.-differentiability of ti—> Stf, and

this function could be shown to be the unique "strong" solu-

tion of (2.6). But L is not reflexive, and the general

theory cannot assert such regularity. One can, in fact, argue

that the conservation law (1.1) will fail to have a strong

solution for some data: as was mentioned earlier, the entropy

solution must be expected to develop discontinuities, even

when the initial value feD(A). In general, b(S.f) will also

become discontinuous, and as we shall see, this forces S.f

outside of D(A), so that (2.6) can no longer be satisfied --

by S.f -- in a pointwise sense.

In §4, we introduce generators in abstract divergence

form: A = LB (in the case of (1.1), L = --r—, and B(f) =

b(f)), and show that t »—> S.f can be interpreted as a weak

solution of (2.6), whenever feD(B). In §6, this abstract

result will be shown to apply to equation (1.1); however, that

final verification depends also on the availability of the

ordering principle (1.5), which will be proved in §5 by means

of an adaptation of K. Sato!s theory of positive (linear) semi-

groups on Banach lattices ([8]).

I wish to take this occasion to express my deep gratitude to

Professor V. J. Mizel, for his interest and encouragement. I al-

so thank Professors C. V. Coffman and Z. Nehari, and Dr. D. D. M.

Tong, for some helpful conversations. Finally, I want to ack-

nowledge the influence of B. K. Quinnfs paper [7], which stimu-

lated my interest in this problem.
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§3. As already stated, our object in this section is to

show that Theorem 0 is applicable to the operator

A : f *—*b(f)!. We assume that the function b is four-

times continuously differentiable, and (without any loss of

generality) that b(0) = 0. First we solve the equation

(3.0) f + b(f) T = h

by studying a fairly lengthy sequence of approximating equa-

tions; only after this has been accomplished, will we be able

to describe D(A) and verify accretiveness (condition

3.1 A two-point boundary value problem, with he C

Let he C (IR) be fixed throughout this subsection,

and choose N > 0 so that supp h c (-N,N) . We want to

solve the problem (for fixed 6 > 0)

(3.1)

f + [C^f)]' - t f" = h,

= 0.

Here C N is a "cutoff" function with these properties:

(i) C N 6 C ^ ° ( m ) ;

(ii) supp C N c (-N^N^ t

(iii) C N s 1 on [-N,N] ;

(iv) |cN(x) | £ 1 for all x.

Furthermore, we require y = H
 suPlc

Nl
 + suPlcvrl t o t>e small.

To be precise, define

R = max{|h|., 2|h«L + 1},

K = sup{ |b« (TJ) | J |T)I 1 R}.



We wish to have

(3.3) YK < \, ;L f

Ihe significance of these restrictions will become apparent

later; for the moment, we only observe that a choice of C

consistent with (3.3) is possible, provided that N, is

taken large enough. We do so, and now consider as fixed,

once and for all, the quantities entering into (3.1).

A. Conversion to an integral ecruation0

We want to look at (3.1) as an operator equation in the

space C( [-N.j,N, ]) = d fY, normed by the sup-norm | • | . Let K

be the Green function for the operator I - £ — 5 — with zero

boundary conditions at x = +N-. , and define an operator T by

>N1 ,N1

(3.4) (Tg) (x) = j -4r K(x,y).cN(y)b(g(y))dy + f K(x,y)h (y) dy,

LEMMA 2-1- 11 f e Y satisfies f = Tf, then it is a

twice-differentiable solution of (3.1).

The proof is straightforward: it can be seen from the ex-

plicit formula for K that > v is continuous, so that f is

differentiable. One may then integrate by parts in the first

integral in (3.4); the fact that f satisfies (3.1) then fol-

lows from the definition of K.

We will use degree theory to establish the existence of

a fixed point for T. The first step in this direction is
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LEMMA 2..Z. T jls. <a completely continuous operator from

Y to. Y.

The proof is again standard. The fact that T maps into

Y, and is continuous, follows from elementary estimates. The

compactness of T is a consequence of the Arzela-Ascoli

theorem.

B. A-priori estimates on solutions of f = jLtTf.

We will prove

LEMMA .3..3.O i_f R iĵ  defined as in (3.2) , and if

| f | = R, then f = jLiTf cannot hold for any p, e [0,1] .

First observe that if f = jiTf, then f is a twice-

differentiable solution of

f + jifCjjjbU) ) ' - £ f" =

) = O.
(3.5)

(cf. Lemma 3.1).

We will estimate the sup-norm of a solution of (3.5) by getting

an L -estimate of its derivative. The following is the basic

step:

LEMMA 3m.±. Let G(x,rj) be C jLn both variables

x e [-ISLjN.,] , 7} e 3R . Suppose that Gt+EL,'*]) = 0 for all r\9

and that G(x,0) = 0 for all x. Let f e C ^ - N ^ N J , and

assume that f satisfies one of the end conditions

= 0

(B) 2 f • (+NX) = 0,
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Define (G«f) (x) = G(x,f(x)). Then

(3. 6) |f+(Gof) • - gf"

Proof. We study the auxiliary parabolic problem

(3.7) ufc =

u(x,O) = f(x)

with one of these two boundary cond i t i ons :

(PB)

(PB)

u(+Nn , t) = 0, t > 0.
1

u x (+N 1 , t ) = 0 , t > 0.

It is known (e.g., P. E. Sobolevskix, Dok. A. N. 136,p. 292) that

there exists a solution u e C ( [-N,,N,]x [0, t ) ) , for some

t > 0 depending on f.

Suppose we could prove, for this solution u:

(3.8)

(3.8)

, 0 1 t

t"1[u(-,t)-f] - [£f"-(Gcf) »] I. -> 0 as t-»0.

Then we could estimate as follows:

f\1 - t"
1

- t " 1 t f |

Letting t —> 0, and using (3.8)„

|f+(Gof) • - lf

as desired.
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Now (3.8)^ is easy to verify: for each x,

t"1[u(x,t)-f(x) ] = t"1[u(x,t)-u(x,O) ] —> ufc(x,O) =

= efM (x) - (Gcf) t (x).

This pointwise convergence is dominated, so that the L -

convergence asserted by (3.8)2 follows.

Lemma 3.4 will therefore be proved, once we establish

(3,8)-. We do so first for a function f with simple zeros

at points labelled z.: -N, = z < ... < z - = 1SL , for

condition (B-) ; -N, < z-< . . . < z < N-, for condition (B2)

Now solve u(x,t) = 0 for x as a function of t > 0, with

x = z . when t = 0. There will result a finite number of

C -curves x = x.(t) (with x = -N.., x - s N,) all defined

for t £ some t^. In case (B) , holds, u(x.(t),t) = 0 for

all j, 0 £ j ^.p+ 1; we may assume that the function u

changes sign across the "interior" curves (since it does so

at t = 0). In case (B)^ holds, we again have curves x =

x. (t) , 1 <1 j <£. p* across which u changes sign; to these we

adjoin the boundary lines x
0(

fc) - -N,, x . (t) = N, .

We will show that

(3.8)- immediately follows from this inequality. First we

write

P r j
(3.9) u(«,t) - = S sgn(j) u(x,t)dx,

1 j=0 J
X ( t )
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where sgn(j) is the sign of u(x,t) for x. (t) < x < x.+1(t)

Now we differentiate (3.9) ; the right side will be a sum of

terms of the form

(3.10) sgn(j)-~ u(x,t)dx.

Carrying out the differentiation, and omitting the sgn(j),

we get

ufc(x,t)dx

(x. abbreviates x. (t) , and x. = —ZTT x.) . The bracketed

term vanishes, since either u(x.,t) = 0 or x. = 0 . On

using equation (3.7), we convert the second integral to

(3.11) { £u (x,t) - (Gou) (x,t) }|
x x=x.

The term involving G vanishes for all j, by virtue of the

assumptions on G. Hence, in (3.11) there only remains

(3.12) £{u x(x j + rt) - ux(x.,t)}7

this term is always opposite in sign to u on the interval

x. < x < x.+-. Since (3.12) coincides with (3.10), less the

factor sgn(j), we conclude that (3.10) is nonpositive, and

on summing over j -- that

Finally, let f e C be arbitrary. It can be approximated

3SARY
C»VJ::&-. \ i i e - ; UNIVERSITY
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2
in C ([-N,,N,]) by functions f with simple zeros (which

satisfy the appropriate end condition). For example: the

2
Bernstein polynomials of f converge to f in C ; a small

correction term will remove any multiple roots. By dominated

convergence, the approximating functions, and their first two

derivatives, converge also in L . Since (3.6) holds for each

f , it will still be true for the limit function. This proves

Lemma 3.4.

(Ihe idea of studying the decomposition (3.9) is taken

from Quinn [7]).

Proof of Lemma 3̂ .3.. Let f be any solution of (3.5)# Ac-

cording to Lemma 3.4, with G(x,7)) = /zCN(c) b(rj) , we have

(3.13) |h|x = |f+^(CNb(f)) ' - e f ' l ^ |f
r

Next, we differentiate (3.5) to get an equation for fT,

and find that g = fT is a solution of

(3.14) g + jx(c^b(f))' + H(C^' (f)g) » - £ g" = h» .

Ihe appropriate end conditions are

(3.15) gt (+1^) = 0;

to see th is , observe that near x = +N, , CXT = h = 0, so that
""— 1 JN

equation (3.5) reduces to f - £ f" = 0. Since f(±N..) = 0,

we have (ff)T =0 at +N-, , which suggests (3.15).

Choosing G(x,rj) = /iCN(x) b
1 (f (x) ) y), we again apply Lem-

ma (3.4) (for notational simplicity, we use the symbol g

instead of f') :



Froin (3.14),
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(3.16)

Now

(3.17) -> ! (f)gli-

In terms of the constants introduced in (3.2), we continue to

estimate in (3.17):

£ YKlf^ + YKlg^,

which, by (3.13) and (3.3) is

1 + 1 | .

Inserting this into (3.16), we obtain, when g = f! :

2 ' ' 1 2

Hence,

(3.18) V | < 2|hJ \± + 1 = R.

>x
Finally, using the fact that f (x) = j ff (y) dy we get from (3.18) :

(3.19)

Summarizing: the assumption that there is a solution f

of f = jiTf, for which |f| = R, leads to the contradictory

(3.19) . QED.
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Co The existence proof.

The results of A and B show that T : Y —> Y is

completely continuous, and that (I-/1T) f = 0 has no solutions

on the sphere {g e Y; |g|Q = R) = Q. By homotopy invariance

of Leray-Schauder degree, we conclude that deg(I-T,Q,O) =

deg(I,Q,O) ^ 0, and hence that (I-T) f = 0 has a solution f

with |f| < R (see, for example [2,C!h.2]).

It is not hard to see that this solution is unique. If

there were two solutions, f and g, then their difference

f - g = F would satisfy

F! + (CNBF)
 ! - £F" = 0, F{±^±) = 0,

where

B(x) = J b' (tf(x) + (l-t)g(x))dt.

Another application of Lemma 3.4 then shows: |F|, <̂  0.

In summary:

LEMMA .3..J3.. There exists â  unique 9 twice-dif ferentiable

solution of problem Q. 1) .

3.2. The second-order equation on the whole line.

As in §3.1, h and £. remain fixed. We want to let

N -» 00 in (3.5) to arrive at

LEMMA 3_.<6. There exists ji unique, twice-dif ferentiable

solution f oj£

(3.20) f + b(f) » - £f" = h

which satisfies
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(3.21) I f ^ 1 \ti\1

(3.22) |f» \± 1 2|h« | x + 1.

Proof. For each integer N, starting with a sufficiently

large value, we choose a cutoff function CN, and an integer

N 1 = N..(N), as described in §3.1. The unique solution of (3.5)

will be denoted by fN« Using the estimates (3.13) and (3.19),

we find

with B independent of N. Since f (Ĥ N-. ) = 0, fN(x ) = 0

for some x € [-N-,N-]. Thus

x
whence

i

(3.23) lfN'o ̂  B^ independently of N.

By differentiating (3.5) twice, and imitating the above

argument, we find: There is ci constant B, independent of N,

such that I fvr1 I <L B, i = 0,...,3. [The supremum is taken

over the domain [-N̂ N̂-] of f ] .

By a diagonal argument, and repeated application of the

Arzela-Ascoli theorem, we can assert the existence of a sequence

EL —* 0, such that given any compact set T c JR, {f } will

2 2

converge in C (T) to a function fee (3R). Furthermore,

f + b(f) f - £f" = h.

On any interval [-M,M] , f —> f uniformly, hence in L ; since

|fN lx 1 l*^, ™e have
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J | f (x) |dx

whence f e L ^ H R ) , with the estimate (3.21). (3.22) follows

in a similar way from (3.18).

This proves existence. To prove that the solution is

unique, we assume that (3.20), (3.21) and (3.22) are satisfied

by two functions, f and g. On any given interval [-<-M,M]

containing the support of h, their difference f - g = F

satisfies an equation of the form (see §3.1,C)

(3.24) F + (B.F) ! - LF" = 0

with non-homogeneous end conditions, say

F(-M) = a, F(M) = p.

One can now attempt to duplicate the argument which led to

rM

Lemma 3.3, in order to obtain the estimate |F| £ 0. This
-M

will not quite succeed, because in general a,p / 0. There

will be certain non-zero contributions from the endpoints in

the parabolic estimates of Lemma 3.4, and one will obtain
M

(3.25) j |F(x) |dx £ k(M) ,

-M

where k(M) = O(|a| + |p| + |F!(M)| + |Ff (-M) | ) . This, however,

is enough: (3.21), (3.22), and the L -estimate on Ft! supplied

by (3.24) show that F(x) and F! (x) tend to 0 as |x| —> oo ;

hence, k(M) —> 0 as M —> oo , and so from (3.25),

|F|i £ 0.
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Tlie details of this argument could easily be supplied by

the interested reader.

3.3. Existence and uniqueness as £ —> 0; he C°° .
_ _ _ _ _ Q

A. For each £ > 0, there is a unique solution f^ of

(3.20), satisfying (3.21-.22). The uniform estimate

I f£, I i <L R implies that the family {f^} is of uniformly bound-

ed variation. By Helly's theorem, there exists a subsequence

{ff } which converges pointwise to a function f of bounded

variation. Let us write f, = f .

On any interval [-M,M], f. —> f boundedly, since

|f kl o< R. Hence, ffc — ^ f in L1 ( [-M, M] ) , and from

[x 1 |h|
-M xx X

we conclude (as above) that f e L (IR) , with | f | - <^ |h|-.

Now we verify that f is a pointwise solution of the

equation

(3.0) f + b(f) » = h.

From the L -convergence of f, to f on compact sets

follows the weak convergence as well; in particular if

cp € C°° (JR ) , then

jhcpdx = J{fk + b(fk) ' - £kfk}cpdx =

v JC JC K K

P r

and since &.- jf,(p"dx —^ 0 . f<p"dx = 0 as £- —> 0, we ob-

ta in , in the l imi t :
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(3.26) jh<pdx = j{fcp - b(f)cp ! }dx, <p e

Now observe that (3.26) remains valid even for functions

<p which are approximated by <p e C°° , in the sense that

o.

Fix an x e IR, and A > 0, and define

A
(X) =

1,

1
2A

xo " A

A

A.

iTien

A
(X) =

A

0, otherwise.

The function <p can be approximated by C func-x ,A o
tions in the manner just described; inserting it into (3.26),

we get

x +A

(3.27) J(f-h)<p Jj b(f)dx.

Now le t A —> 0. Because f - h e L 1 n L00 , the le f t side

tends to
xr f - hdx

for any choice of x . The right side converges to -b(f(x ))

for a.e. x . Hence, redefining f on a set of measure zero,

if necessary, we find that
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x

f f(y) - My) dy = -b(f(y)),
^CO

for all x € 3R . We have proved:

EXISTENCE RESULT, There exists at least one function

f € L with these properties:

i) f JLS o_f bounded variation, and bounded;

ii) \f\1^ |h|1?

(3.28) iii) b(f) is absolutely continuous;

iv) b(f) ! € L1;

v) f + b(f) ' = h, for a.e. x.

B. The argument of (A) shows that, for any choice of

£ , —> 0, a subsequence of the solutions f^ of (3.20) con-

verges to a solution of (3.0), but it is not clear that two

different sequences {^) determine the same limit function.

Here we prove that this is in fact the case.

DEFINITION. For a,p€lR, put

T(a,p) = sgn(a-p) (b(a)-b(p)) .

UNIQUENESS RESULT. There exists exactly one f e L

which satisfies (3.28 (i) , (iii)-(v)) , and the supplementary

condition

(3.29) T(f(x"),k) ^ T(f(x+),k)

for all x5 and all real k. (f(x~)5 f(x ) are the left, resp«

right, limits of f at x) .
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Remark. (3.29) is similar to, though not the same as,

the entropy condition on solutions of the conservation law

(1.1). As an example, take b to be convex. If f has a

discontinuity at x, then (3.29) requires b(f(x ) = b(f(x~))

and f(x~) > f(x ). It is a familiar fact that for such a

function b, the entropy solution of (1.1) can also have de-

creasing jump-discontinuities only. This relationship is to

be expected, since the latter solution is a limit of solutions

of ordinary differential equations of the form (3.0).

Proof. Suppose that both f and g have the stated

properties. In particular,

(3.30) T(f(x"),k) ^T(f(x+),k)

(3.31) T(g(x"),k) ^T(g(x+),k),

for all x and k. Set k = g(x~) in (3.30), and k = g(x )

in (3.31); using the symmetry of T, one finds

(3.32) T(f(x"),g(x")) ^ T(f (x+) ,g (x+) ) .

Define T (x) = T(f (x) ,g (x)) . It is known that r is of bound-

ed variation, and that its distribution derivative 5r satis-

fies

(3.33) J STdx = T(P~) - r(a+)
a

(see [9,equ. (5.22)]). Furthermore, the one-dimensional version

of (5.29) in [9] (an integration-by-parts formula) gives
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(3.34) J 5Tdx = J {b(f)« - b(g) »}sgn(f-g)dx + £ T (x+) - r(x"),

where the summation is taken over the points of discontinuity

of f - g in (a,p). We transform (3.34) by substituting

b(f)T - b(g)! = -(f-g), and using the fact that r (x+) £ T ( X " )

(cf.(3.32)):

hrdx < - 1 f-g I dx,

or, by (3.33)

(3.35) J | f - g | d x £ T ( a ) - r ( p ) .

* a

Since b(f),b(g) eL , it follows from the definition of T,

that the right side of (3.35) tends to zero as a —* -oo,

P —^ +oo through suitably chosen subsequences. Thus

|f-g|. <̂  0, whence f = g a.e. Q.E.D.

LEMMA 3̂ .7̂ . Suppose f i_ŝ  a. limit of ci sequence f £_
k

of solutions of equation (3. 20) (as_ described under (A)) .

Then f satisfies (3.29).

Proof. Let $ be a convex, twice-differentiable function

on IR, and let \h e C°° (HR) , ib ]> 0. Multiply the equation
o

f^ + b(fL ) ' - -̂ifg - h = 0 by $' (fe ) j/> and integrate by
k k k k

parts:

f [*• (ft ) (fg -h)4> - {f b'.(y)*' (y)dy)0» - S. *(f£ )
J k k Jk k k

E )2>l) £ 0.
k
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As e~ —* O, this results in

(3.36) I [*» (f) (f-h)0 - {J bt (y)*» (y)dy}̂ )» ]dx ̂  O.
k

Now (3.36) is s t i l l valid for functions $ for which

$! is approximable in L by C°°-functions; with the choice

$ (r)) = |rj-k| , we get

(3 .37) J ^ ) ( f - h ) s g n ( f - k ) d x - J s g n ( f - k ) ( b ( f ) - b ( k ) } - 0 » dx £ 0 .

Let x be fixed, and choose a sequence [ij) } of triangular

functions: 0 (x ) = 1, 0 (x) = 0 for |x-x | ]> --, and piece-

wise-linear for |x-x | <̂  —. (3.37) is still valid for these

^ ; as n —> co , the first integral tends to zero, and the

second to T(f(x~),k) - T(f(x+),k). (3.29) then follows. Q.E.D.

TTie proof of Lemma 3.7 is a one-dimensional version of

an argument given by Kruzkov [3].

3.4. Extension to general h.

LEMMA 3.8. Let h.,ho € C°° , and let f.,fo be the (unique)

solutions of f + b(f) f = h. , i = 1,2, obtained in §3.3. Then

(3.38) | f l - f2\1^ |hx - h 2 | r

Proof. f. is a limit of solutions of approximate equations

f + (cNb(f))
 ! - £k f" = hi, f (±N1) = 0; by virtue of the unique-

ness result in §3.3, we may assume {CN}, [N, (N)}, and C^} to

be independent of i = 1,2. In a by now familiar manner,

Lemma 3.4 yields
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for the solutions of the approximating equations, and (3.38)

follows by passage to the limit. Q.E.D.

Now let h e L 1 , and let {hn} c C
00, h^ —> h in L . Let

f be the unique solution of f + b(f) ! = h . From (3.38),

we infer the existence of f e L , for which | f - f | . — > 0.

Hence, b ( f ) t = h - f —> h - f in L . We may assume that

{f } and {h } converge pointwise a.e.; then, for a.e. x,

x

b(f(x)) = lim b(f (x)) = lira J b(f (y))'dy =
n -» oo n -* oo -co

x x

= lim J h (y) - f (y)dy = J h(y) - f(y)dy.
n -» oo -oo -oo

Thus, after changing f on a set of measure zero, if neces-

sary, we conclude: b(f) i^ absolutely continuous, and

f + b(f) ? = h.

It is clear that this solution f is independent of the

sequence [h ). Following Kruzkov, we could characterize f as

the unique solution of (3.0) which satisfies (3.37) (equ. (3.29)

need no longer be meaningful), but this will not be necessary.

Of course, the results obtained in this paragraph

hold equally well for the equation

(3.39) f + Ab(f) « = h;

we summarize the above work in

THEOREM 1. Let A > 0, and he L1. Then equation (3.39)

has a solution f with these properties:
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i) f e L , and

ii) b(f) JL£ absolutely continuous;

iii) b(f) • e L 1.

Furthermore 5 there is ja unique solution which is either of

bounded variation and satisfies (3.29) , or; (jlf n<o such solution

exists) is the limit of solutions satisfying (3,29).

Borrowing some terminology from hyperbolic equations,

we will call this uniquely determined solution of (3.39) the

entropy solution.

3.5. Concerning Theorem 0.

It is now a simple matter to verify that the Crandall-

Liggett theorem is applicable. D(A) .is. defined to be the set

of entropy solutions of equation (3.0), as h ranges over L .

Now:

1) D(A) JLS, dense in L . Indeed, C°° c D (A) , for if

g e C , then g satisfies the equation (in f) f + b(f) ! =

g 4- b ( g ) ? . Also, g is continuous, so (3.29) holds trivially,

and g is an entropy solution.

2) (C) 2 holds. Let h e L , and let f.. be the entropy

solution of f (x) + b(f (xj) • = h(Ax) . Define f. (x) = f. (£) .
A 1 A

Then f^ is a solution of equation (3.39). It is easy to

verify that it is actually the entropy solution.

3) (C) 1 holds. We know that | f]_| ± <^ J |h(Ax) | dx = ~-|h| .
The scaling under (2) then makes j _ or

(2.1) follows in a similar way from (3.38)
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§4. Weak Solutions, In this paragraph, X is a general Banach

space, and A a densely defined operator satisfying (C) and

(C)2 of Theorem 0; thus, A generates a semigroup S. We as-

sume that A contains a factorization LB, meaning that

D(LB) c D(A), where:

I. L is a linear operator with non-empty resolvent set;

II. (for simplicity) D(B) is closed;

III. B : D(B) —> X is continuous from the strong topology

to the weak (-X ) topology;

IV. JA(D(A) flD(B) ) c D(A) 0 D(B) (together with II, this

implies StD(B) cD(B)).

We have set

JA =

DEFINITION. A function u : IR —?• D(B) i_s a. weak solution

of the Cauchy problem

(4.1) ddt^ + Au(t) = °' U(O) =

0

for all

J <u(t) ,cp' (t)> + <Bu(t) ,L <p(t)>dt = O

2 * 2

<p € C ( (0,00) ; D(L ) ) , and if

(4.3) ||u(t)-x|| —•> 0 as t —^ 0.

(We will use x,y to denote elements of X; this should cause

no confusion with our earlier notation xe H. <•,•> is the

pairing between X and X , and || • II is the norm in X.)
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THEOREM 2!. Let A have the s t r u c t u r e desc r ibed above.

Then if x e D(B) , the funct ion t |—» S. x is^ ji weak s o l u t i o n

of (4.1) .

Proof. It is enough to prove the theorem when

xeD(A) fl D(B). Assume this has been accomplished, and let

x e D(A) fl D(B) converge to xe D(B) . For each t ̂ > 0,

S.x —» S.x (strongly), so by III and IV, BS. x -^ BS. x
L> n u ry u n v.

2 *
(weakly). If <p e C^ ( (0,oo) ;D(L )), then

(4.4) <Stxn,cp» (t)> + <BSfcxn,L*<p(t)> ^

for each t; since cp has compact support in t, this conver-

gence is dominated by an integrable function of t/ and we ob-

tain the desired conclusion by integrating (4.4).

Hence, let xeD(A) 0 D(B). Put J^ = (I+AA) . With this

S. x = lim J x,
n>co

notation,

and n

- 1 -In 1 n ~ 1 t - 1 i i
t" (Stx-x) = lim t" (J x-x) = lim — £ (~)" (J t(J f cx)-J >

n->co - n^co i=o n n n

1 n " 1 t 1 i
^ ^ ^ ^ n . n t t *n -> oo i=o — —n n

Since AJ-, = A (I-J\) , the l as t sum may be wri t ten

1 1 n " 1 i
( 4 . 5 ) t X ( S x - x ) = l i m - — L A J ^ x , X € D ( A ) .

n -> oo I = : C J "~~n
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Using (4.5), Crandall and Liggett show that if A is strong

weak continuous, then

weak-lim t" (S.x-x) + Ax = 0.

We want to reach a related conclusion, but must first remove

the unbounded factor L.

Let we<p(L), i.e., (L-wI)" is bounded. Then, so is

Lw =def ( L " W I ) " 1 L = L(L-wI)"1.

Now, observe that L B is strong-weak continuous. Let U

be a weak convex neighborhood of 0.

For yeD(A) ([1]),

(4.6) \\y - j£ y\\ £ t||Ay||, 0 £ i £ n.
n

By weak continuity of L B , i f t is small enough, then

(4.7) LwBy - LwB(jJy) e U, yeD(A) n D(B).

n

From (4.7), we get -- using convexity of U --

i n- x i
(4.8) L By - L {- L B(j;y) } G U,

i=0 —n

for t small enough, and all n.

Now by (4.5),

(L-wi)-1[t-1(s.y-y)] = -lim L {£ £ B(JS') },
n-->oo w n i=0 £

n
and so from (4.8)

(L-wi)-1[t"1(Sty-y) ] + L wByeU,
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for t small enough.

Hence

(4.9) weak-lim (L-wI) " -1 [t"1 (S. y-y) ] = -L By, yeD(A) n D(B)
C W

We will use (4.9) to establish the connection with weak solu-

tions.

2 * 2

Let (peC ( (0,00)7 D(L )). We wish to show

r°° r°° *
(4.10) <S.x,<p» (t)>dt = - <BS.x,L <p(t)>dt

Jo t Jo t

(condition (4.3) is guaranteed to hold by strong continuity of

s t ) .

Write

(4.11) cp'(t) = - 6"1((p(t)-(p(t-£ ))+0(e) ,

taking £ so small that cp(r) = 0 for 0 £ r ^ £ . 0(8) is

independent of t, since <p has compact support. Inserting

(4.11) into the left side of (4.10), and making the substitution

t — £ —> t in one of the resulting integrals, we get

(4.12) J <Stx,cp' (t)> = J < £""
1(St4.£x-Stx) ,<p(t)>dt + 0(8).

We write the second integrand as

and note that according to (4.9), it converges to

(4.13) -<LwBStx, (L-wI)*cp(t)> = -<BStx,L*<p(t)>

as t —> 0.
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If we let £ —* O in (4.12), and use (4.13), we obtain

the desired conclusion (4.10). Q.E.D.

REMARK. The hypothesis III is weaker than necessary for

our application; perhaps it will be appropriate for some other

problem. On the other hand, II and IV could probably be

weakened. Finally, D(L ) may be very small (unless L is

suitably restricted). The theorem would then be true, but

not very interesting.

§5. The Ordering Principle. In this section, we adapt a

characterization, due to K. Sato [8], of (linear) generators

of positive semigroups on a Banach lattice. It will actually

be more convenient to work in this general setting for a while,

but we will not try to find hypotheses which are either precise

or weak. The subject of nonlinear, order-preserving semigroups

seems to be of sufficient interest to warrant a more thorough,

separate study.

So, let X be a Banach lattice (as defined, for example,

in [8]), with cone K of non-negative elements. We write

llx II = llxll , and assume that llx -xll —-> 0 whenever llx -xll —> 0
MM MM" (1 J ^ I I II 1T% I I

(this certainly holds in L ). Following Sato, we define

T(x,y) = lira e"1(|lx+6y|| -||y||),

o(x,y) = inf T (x, (y+z) V(-px) ) ,

where x e K, and the inf is taken over all p > 0, and z

satisfying |z| A x = 0.
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THEOREM 3_* Let A satisfy the hypotheses of Theorem C),

and suppose that

a((x-y)+,Ax-Ay) ^ 0

for all x,y e D(A) , A > 0. Then

l|stx - Sty||+ £ ||x-y||+.

Proof. We record the following properties of a (see

[8,Prop. 3.1]) :

i) o(x,y) 1 ||y||+,

ii) a(x,ax+y) = a||x|| + a(x,y) for a l l a e 3R,

i i i ) if x A \z\ = 0, then a(x,y) = a(x,y+z).

iv) for a > 0, a (x,y) _̂ 0 •=£• a(x,ay) ^ 0.

(Always, x _̂ O.)

Now le t u,veD(A), and (I+AA)u = x, (I+AA)v = y. Then

llx-y|!+ 1 a((u-v)+ ,x-y) = a ((u-v)+ , (u-v)+A (Au-Av)) =

= a((u-v)+ , (u-v)+ + A(Au-Av)) =

= ||u-v||+ + a((u-v)+,A(Au-Av))

Alternatively,

(5.D V
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By iteration of (5.1) ,

n n

and so, in the limit n —> oo ,

Hsfcx - Sfcy|| £ \\X"Y\\ • Q.E.D.

If X = L , we have the following explicit expression

for a (See [8]) :

a(f+,g) = J g(x)dx.
{f>0}

In order to apply Tlieorem 3 to the conservation law, we need

only verify that

(5.2) J b(f) » - b(g) »dx ̂ 0,

{f>g}

whenever f,geD(A). If f,g are of bounded variation, then

the one-dimensional Green formula ([9,(5.22)]) shows that the

integral in (5.2) is actually zero, since b(f) - b(g) = 0

on the boundary of the set {f>g}. It was established in §3.4

that every feD(A) is the limit, in L , of functions f of

bounded variation, for which (5.2) is valid; because

b( f
n) —>b(f) in L1, (5.2) follows easily for f.

(A somewhat longer proof, using approximation by smooth

solution of the second-order equation (3.20), but not requiring

Green1s formula, would also be possible)•
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§6. We wish to apply Theorem 2, or more precisely, the in-

equality

(5.1) ||JAx - JAY1I+<1 ||x-y||+

obtained during the proof of Theorem 2, to connect the semi-

group solutions of (1.1-.2) with the usual weak solutions.

To this end, we observe that A contains a factorization LB,

where L = -g— , Bf = b(f) ; the domain of B is taken as

D(B) = L 1 0 [f ; Ifl^ £ M}

for some fixed M > 0, and D(L) is the usual domain of ""XjjT*

Of the conditions I - IV of §5, only IV requires a proof,

which we now supply.

Recall IV; For any A > 0, J^(D(A) HD(B) ) c D(A) n D(B).

Proofo Certainly, J^ (D(A) HD(B) ) C D ( A ) . Now let

feD(A) n D(B) , and let r\ > 0 be given. Choose K so that

|f(x) | dx < 7). Now define the function <p as follows:

<p(x) =

M, for |x| £ K

M exp- (x-K)/AB, x > K

M exp(x+K)/AB, x <-K,

where B = sup{ | bT (y) | ; | y | <^ M}.

Observe that <p € D (A) : clearly, cp and b (<p) T are inte-

grable, and b (cp) is absolutely continuous; moreover, <p is an

entropy solution because it has no jumps (see §3.5).
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Define $ = cp + Ab(cp) !. For |x| < K, \j) = cp = M, and

since I f I < M, we have

(f-^) + = o on [-K,K] .

For |x| > K,

0 = cp + Ab(cp) ! >̂ <p - A B| cpf | = 0 ;

hence

(f-i/))4" < f+ for

From (5.1) we now find

J |f+(x) |dX
x|>K

In particular, since cp = M on [-K,K],

K

f (J. f (x)-M)+dx < r).

i K A

We conclude t h a t (J^f) (x) ^ M for a . e . x.

In a s i m i l a r f a sh ion , one shows t h a t ( J \ f ) (x) ;> -M, and

hence t h a t I j . f l < M, so t h a t J \ f e D ( B ) . Q.EoD.
1 A ' OO "*" A

By the results of §4, the function t \—j S, is an ab-

stract weak solution for f e D(B) ; given our choice of L,

it is clearly a weak solution in the sense of the definition

in §1.

§7. Concluding remarks. Although the semigroup approach to

the conservation law (1.1) is rather different, conceptually,

from the other treatments, the technical details have proved
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to be less independent of the known theory; specifically, our

uniqueness argument in §3.4 makes use of some of the most im-

portant ideas in the definitive papers by Vol'pert and Kruzkov.

Nonetheless, there are some differences of degree, which I

want to point out again: (1) the present approach requires

only the local, not the global, solvability of a parabolic

initial value problem; (2) the study of entropy solutions takes

place in one dimension, not two.

Without much current justification, I entertain the hope

that these differences might facilitate the study of hyperbolic

systems. There are other difficulties in the way of an exten-

sion in that direction, and the first of these is the choice

of an appropriate function space. Once this step has been

taken, even for a specific class of systems, the other details

should be manageable. One might try to begin with a "simple"

nonlinear wave-equation, for which arbitrary Riemann problems

are known to be solvable. iTiere are some problems which may

be more accessible, whose solution would be of interest (to

the author, at least) :

It seems desirable to streamline some of our arguments.

For instance: in §3, p.d.e.!s were used to study an ordinary

differential equation. Can this methodological detour be

avoided?

Can the uniqueness proof of §3 be simplified? Ihe tools

we used may be more powerful than necessary for the one-dimen-

sional problem.

Can the abstract weak-solution theorem (§4) be applied

to (1.1) without use of the ordering principle?
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Some possible generalizations also suggest themselves:

In §6, we showed (although this was not pointed out ex-

plicitly) that A generates a semigroup on the set

t"f € L°° ; | f | < M} • Problem: find conditions on op-

erators L and B, supplementing those of §4, which guarantee

that A generates a semigroup on D(B).

In many concrete evolution equations, the operator A

is monotone and coercive, and surjectivity of I + AA follows

from a general theory. Is there a more abstract point of view,

of which our result of §3 is a particular example?

Define a functional $ on X to be invariant for the

semigroup S if $(S.x) = §(x) for all t ̂ _ 0. One expects

that if the semigroup generator A is restricted to the set

D(A) PI 4" (a) 9 it should again generate a semigroup, one on

whose orbits $ is constant = a. One can show that §(f) =

Ifdx on L has precisely that property, relative to the

semigroup generated by b(-) !. There may be some interest in

a general study of such invariant functionals (see [5]) .
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