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Abstract

Jerison introduced the Banach spaces C (S) of continuous

real or complex-valued odd functions with respect to an in-

voluntory homeomorphism a : S •• • P S of the compact Hausdorff

space S. It has been conjectured that any Banach space of the

type C (S) is isomorphic to a Banach space of all continuous

functions on some compact Hausdorff space. This conjecture is

shown to be true if either (1) S is a Cartesian product of

compact metric spaces or (2) S is a linearly ordered compact

Hausdorff space and a has at most one fixed point.
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ISOMORPHIC CLASSES OF THE SPACES Ca(S)

By M. A. Labbe and John Wolfe

INTRODUCTION

Let S always denote a compact Hausdorff space. C(S)

will denote the Banach space of real or complex-valued con-

tinuous functions on S equipped with the supremum norm. A

homeomorphism a : S >S is involutory if cr(a(s)) = s for

each seS. Jerison [2] introduced the Banach space c (S) =

(f€C(S) : f(cr(s)) = -f(s)} of odd functions with respect to an

involutory homeomorphism a : S <—*S. If X and Y are Banach

spaces then X is isomorphic (isometric) to Y, and we will

write X ~ Y (X~Y), if there is a bounded (norm preserving)

one-to-one bounded linear operator from X onto Y.

A special case of a conjecture due to A. Pe£czynski [8]

is as follows: for any Banach space C (S) there is a compact

Hausdorff space T with C (S) ~ C(T). In this paper we

prove this conjecture when S is either a Cartesian product

of compact metric spaces or a linearly ordered compact Hausdorff

space (in the second case we assume a has at most one fixed

point). The results and techniques of this paper generalize,

and provide shorter proofs of, some results of Samuel [11].



SECTION 1; LINEARLY ORDERED SPACES

A topological space A is a linearly ordered topological

space if the topology on A is the order topology ([4] , page 57)

arising from some linear ordering on the set A. Examples of

linearly ordered spaces are the closed interval [0,1], every

space of ordinal numbers, every totally disconnected compact

metric space ( [5], Corollary 2a), and every compact subset of

a linearly ordered space.

THEOREM 1; Let S bê  an infinite linearly ordered com-

pact Hausdorff space. If a _i_s an involutory homeomorphism on

S with at most one fixed point, then C (S) ~ C(T) for some

compact Hausdorff space T.

Proof: The function SV : S •—~»S defined by ^(s) =

min{s,a(s)} is continuous on S. Set T = ^(S) ; the compact

set T contains exactly one point from each of the pairs fs,a(s)}

and thus T U cr(T) = S and T PI a(T) contains at most the

fixed point of a. If T D a(T) = 0, then C (S) is isometric

to C(T) via the restriction map. If T D CT(T) = ft }, where

t is the fixed point of a, then restriction of the functions

in C (S) to T is an isometry of C (S) onto the closed hyper-

plane C(T,t ) = ffcC(T) : f(t ) = 0} of C(T). By [1],

C(T,t ) ^ C(T) if T contains a convergent sequence with dis-

tinct terms. Since T is infinite, it contains a strictly

monotone sequence (t ). This sequence converges either to its



supremum or to its infimum and thus C(T,t ) ~ C(T) •

REMARK; The first part of this proof shows that if

a : S -—£S is an arbitrary involutory homeomorphism on a

linearly ordered compact Hausdorff space S, T is as in the

proof, and T = fseS : a(s) = s}, then C (S) « C(T,T ) =

ffeC(S) : f(TQ) c fo}}.

If S is a countable compact metric space, then S is

linearly ordered since it is homeomorphic to a closed subset

of the Cantor set ([5], page 286). Thus the following result

due to Samuel [11] is an easy consequence.

COROLLARY 2: Suppose S JLS[ â  countably infinite compact

metric space and a : S ^S i£>_ an_ involutory homeomorph ism

on S with at most one fixed point. Then C (S) ~ C(S) .

Proof: If T is an infinite compact metric space, then

C(T) ~ C(T) <s> C(T) ([10], page 514) where fy denotes the

Cartesian product normed by taking the maximum of the norms

of the two coordinates. Now, if T is as in Theorem 1 so

that S = T U aT and T (1 oT has at most one point, it follows

that C(S) ~ C(T) ^ C(a(T)): this is immediate if T 0 <r(T) = )6;

if T D a(T) = ft }s then we have the string of isomorphisms

C(S) ~ C(S,tQ). « C(T,tQ) ^C(a(T),tQ) - C(T) ©C(a(T)). Thus

CQ(S) - C(T) - C(T) ffi C(T) - C(T) ©C(a(T)) ~C(S) if S is

countably infinite compact metric and a has at most one fixed

point.

REMARK: In general, even for an involutory homeomorphism

a : S -—»S having no fixed points on an ordinal space S, it



is not true that C (S) - C(S). We are indebted to J. J. Schaffer

for the following example. Let u>- be the first uncountable

ordinal number and let S = {a : a an ordinal and 1 ^ a < ;y 2].

Let F = [aeS : a <; u^} and F2 = [oceS : a > u^} . Then

r : a - »^T + a : F *FO is a homeomorph ism, and we define
1 1 z

the involutory homeomorph ism a : S —>S by a (a) = r(a) if

a£F, , a (a) = r" (a) if aeF2. Then C (S) is isomorphic to

C(F..). However, C(F^) is not isomorphic to C(S) ([12], Theorem 2)

SECTION 2; PRODUCTS OF COMPACT METRIC SPACES

We begin this section with some terminology and prelim-

inary facts from [9]. A subspace Z of a Banach space X

is complemented if there is a bounded linear projection

2

P : X *X with range Z, i.e., P = P and P(X) = Z. For

Banach spaces Y and X, Y is a_ factor of X if there is a

complemented subspace Z of X with Y ~ Z. If a : S — ^ S

is an involutory homeomorphism, then the operator P : C(S)—^C(S)

defined by (Pf)(s) = -|-[f(s) - f(a(s))] projects C(S) onto the

subspace of odd functions C (S) . Thus C (S) is a factor of C(S).

D will denote the two point discrete space (0,1} and, for

each cardinal number m, D will denote the generalized Cantor

set which is the Cartesian product of m copies of D. We will

need the following isomorphism criterion due to A. Peiczynski

([9], Proposition 8.3): If X is a Banach space and X is a

factor of C(Dm) and C(Dm) is a factor of X, then X - C(Dm).

Following [9], we say that a space S is an almost Milutin

space if, for some cardinal number m, there is a continuous

onto map 6 : Dm >S such that the subspace X = (fof) : feC(S)}
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of C(Dm) is complemented. If T is a closed subset of the

space S, an extension operator is a bounded linear operator

E : C(T)-—>C(S) such that, for each feC(T), Ef|T = f where

M|" denotes the restriction, A compact Hausdorff space T

is an almost Dugundji space if, for every embedding i : T —*S

of T into a compact Hausdorff space S, there is an extension

operator E : C(i(T))—>C(S). Every Cartesian product of com-

pact metric spaces (in particular, every space Dm) is both an

almost Milutin and an almost Dugundji space ([9], Theorems 5.6

and 6.6). The weight of a space S is the smallest cardinal

number m such that there is a base for the topology of S

consisting of m open sets* If S is either an almost Milutin

or an almost Dugundji space, then C(S) is a factor of C(D ),

where m is the weight of S (see the proof of [9], Proposi-

tion 8.4) .

PROPOSITION 3: Let S be either an almost Milutin space

or an almost Duqund j i space and let a : S > S bê  ajn involutory

home omo r ph i sm on S. Suppose there is ja closed subset F o>f

S with a(F) n F = j6 such that F _i_s homeomorph ic to Dm,

where m is the we ight of S. Then C (S) ~ C(S) .
"""""———— "' ' ————— Q

Proof; Since C (S) is a factor of C(S) and C(S) is a
Q

factor of C(Dm), C (S) is a factor of C(Dm). Thus, by Pe*-

czynski's criterion, it suffices to show that C(Dm) is a

factor of C (S) . Since F and a(F) are disjoint and each

is homeomorphic to D , F U a(F) is homeomorphic to the

almost Dugundji space D . Hence there exists an extension

operator E : C(F U a(F))—frC(S). Let a! be the restriction

of a to the invariant set F U a(F) and let P : C(S)~^C (S)
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be the above^defined projection onto the odd functions. Then

C ,(F U a(F)) is isomorphic to the range of the projection Q

defined on CQ(S) by Qf = PE(f|(F U o(F))). Since CQt (F U a(F) )

is trivially isometric to C(F), which is isometric to C(D ), it

follows that C(Dm) is a factor of C (S) .

LEMMA 4; If S _is _an infinite product of non-trivial

compact metric spaces and a : S • >S _i_s ar_ involutory

homeomorphism on S that is not the identity, then C (S) ~C(S).
•' '" • • — — — — - — _ — — — — — ________ __________ __________________________ _____________ ^y

Proof; Let S = II S. , where each S. has at least two

iel X X

points. A basis for the topology of S is given by the open

sets U of the form U = ( H S.) x ( II U.) where A is a
iel\A x 1

finite subset, of I and U. is an open set in S. for ieA.

If I is infinite^ then the weight m of S is the cardinal-

ity of I. So it suffices, by Proposition 3, to construct a

closed set F in S which is homeomorphic to D with

b(F) n F = 0. There exists seS with a(s) / s; choose a

basic neighborhood U of s with a(U) f) U = j6. Then U =

( II S.) x ( II U.) for some finite set A in 1. For each i,

1 2
let (t.^t.} be any pair of distinct points in S. if ieI\A,

and just any pair of points in U. if ieA. Let F =

n {t.,t.l. Then F is homeomorphic to Dm and cr(F) n F = f6.
iel x x

LEMMA 5; If S _i_s anL uncountable compact metric space and

a _i_s a_n involutory homeomorphism on S such that {s : a( s) = s]

is countable, then C (S) ~C(S).

Proof; Let P be the set of condensation points of S,

i.e., seP iff every neighborhood of s is uncountable. By
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the Cantor-Bendixson 'Theorem ([5], page 253) 9 the complement of

P is countable. Thus P is uncountable and there is a point

seP with a(s) ^ s. Let F be a closed neighborhood of s

with a(F ) fl F = j#. Since F is an uncountable compact
o o o

metric space, it must contain a closed subset F homeomorphic

to D ° ([5], page 445). Clearly a(F) n F = j6. Since the

weight of S is H ^ the conclusion follows from Proposition 3.

THEOREM 6; If S JLSS a product of compact metric spaces and

a _is a_n involutory homeomorphism on S that is not the identity,

then C (S) ~ C(T) for some compact Hausdorff space T.

Proof: If S is an infinite product of non-trivial

compact metric spaces, then c
a(S) ~

 C(S) bY Lemma 4. If S

is a finite product of compact metric spaces, then S is com-

pact metric. Let T be the quotient space obtained from S

by identifying the fixed points of a. Let aT denote the in-

volutory homeomorphism on T which is induced by a; it has

at most one fixed point. Then C
Q(

S) ~ C a T ^ T ^ a n d C !

by Lemma 5 if T is uncountable; by Corollary 2 if T is

countably infinite. The conclusion is obvious if T is finite.

We conclude with an application to the problem of the

isomorphic classification of complemented subspaces of the Ban-

ach spaces of type C(S). This result is due to Samuel [11].

COROLLARY 7: Let X be a subspace of C(S), where S

is a_ compact metric space. If X jus the range of a norm-1

projection on C(S) , then X ^ C(T) for some compact metric

space T.

Proof; By [7] or [3] (see also [6]), we have X ~ C (K)
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where a is an involutory homeomorphism on a certain subspace

K of a Hausdorff quotient space of S. Since a Hausdorff

quotient of a compact metric space is metric, c
a(

K) ~ C(T)

for some compact metric space T by the preceding theorem.
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