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Abstract

Jerison introduced the Banach spaces CU(S) of continuous
real or complex-valued odd functions with respect to an in-
voluntory homeomorphism ¢ : S-S of the compact Hausdorff
space S. It has been conjectured that any Banach space of the
type CU(S) is isomorphic to a Banach space of all continuous
functions on some compact Hausdorff space. This conjecture is
shown to be trué if either (1) S 1is a Cartesian product of
compact metric spaces or (2) S 1is a linearly ordered compact

Hausdorff space and O has at most one fixed point.
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ISOMORPHIC CLASSES OF THE SPACES CO(S)

By M. A. Labbé and John Wolfe

INTRODUCTION

Let S always denote a compact Hausdorff space. C(S)
will denote the Banach space of real or complex-valued con-
tinuous functions on S equipped with the supremum norm. A
homeomorphism ¢ : S—»S is involutory if o(o(s)) = s for
each seS. Jerison [2] introduced the Banach space CU(S) =
{fec(s) : f(o(s)) = -f(s)} of odd functions with respect to an
involutory homeomorphism O : S-—»S. If X and Y are Banach

spaces then X 1is isomorphic (isometric) to Y, and we will

write X ~ Y (X®Y), if there is a bounded (norm preserving)
one- to-one bounded linear operator from X onto Y.

A special case of a conjecture due to A. Pe¥czyhski [8]
is as follows: for any Ranach space CG(S) there is a compact
Hausdorff space T with CU(S) ~ C(T). 1In tﬁis paper we
prove this conjecture when S is either a Cartesian product
of compact metric spaces or a linearly ordered compact Hausdorff
space (in the second case we assume ¢ has at most one fixed
point). The results and techniques of this paper generalize,

and provide shorter proofs of, some results of Samuel [11].



SECTION 1; LINEARLY ORDERED SPACES

A topological space A is a linearly ordered topol ogical

space if the topology on A is the order topology ([4] , page 57)
arising from sone linear ordering on the set A  Exanples of
linearly ordered spaces are the closed interval [O0,1], every
space of ordinal nunbers, every totally disconnected conpact
metric space ( [5], Corollary 2a), and every conpact subset of

a linearly ordered space.

THEOREM 1; Let S beM an_infinite linearly ordered com

pact Hausdorff space. 1f a _is an_involutory honeonorphismon

Swith at nost one fixed point, then CU(S) ~ T) for sone

conpact Hausdorff space T.

Proof: The function 5 : Se—=»S defined by 7(s) =
mn{s,a(s)} is continuous on S. Set T = 7(S); the conpact
set T contains exactly one point fromeach of the pairs fs,a(s)}
and thus T Uecr(T) =S and T Pl a(T) contains at nost the
fixed point of a. If T Da(T) =0, then C-U(S) is isometric
to C(T) viathe restriction map. |If T DCT(T) :fto}, wher e
to is the fixed point of a, then restriction of the functions
in CU(S) to T is an isonetry of CU(S) onto the closed hyper-
pl ane C(T,tg = ffc(T) : f(to) =0} of C(T). By [1],

C(T,to) ACT) if T contains a convergent sequence with dis-
tinct terms. Since T is infinite, it contains a strictly

nonot one sequence (tn). Thi s sequence converges either to its




supremum or to its infimum and thus C(T,to) ~ Cc(T).

REMARK: The first part of this proof shows that if
0 : S—>3S 1is an arbitrary involutory homeomorphism on a
linearly ordered compact Hausdorff space S, T is as in the
proof, and To = {seS : o(s) = s}, then CO(S) ~ C(T,TO) =
{fec(s) : £(T) < {o}}.

If S is a countable compact metric space, then S 1is
linearly ordered since it is homeomorphic to a closed subset
of the Cantor set ([5], page 286). Thus the following result

due to Samuel [l11] is an easy consequence.

COROLTARY 2: Suppose S is a countably infinite compact

metric space and 0 : S —»S 1is an involutory homeomorphism

on S with at most one fixed point. Then CU(S) ~ C(8).

——e

Proof: If T 1is an infinite compact metric space, then
C(T) ~ C(T) » C(T) ([10], page 514) where ® denotes the
Cartesian product normed by taking the maximum of the norms
of the two coordinates. Now, if T 1is as in Theorem 1 so
that s =T U oT and T N oT has at most one point, it follows
that C(S) ~ C(T) @ C(o(T)): this is immediate if T N o(T) = B;
if T N o(T) = (to], then we have the string of isomorphisms
c(s) ~c(s,t) = C(T,t)) ® C(a(T),t)) ~ C(T) ® C(c(T)). Thus
CO(S) ~ C(T) ~ C(T) ® C(T) ~ C(T) ® C(o(T)) ~ C(S) if S is
countably infinite compact metric and o has at most one fixed
point.

REMARK: In general, even for an involutory homeomorphism

0 : S—»5 having no fixed points on an ordinal space S, it
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is not true that CU(S) - C(S). W are indebted to J. J. Schaffer
for the followi ng exanple. Let P be the first uncountable

ordinal nunber and let S = {a : a an ordinal and 1" a < ;y?2].

s

Let Fl= [aeS : a < u'} and F, = [oceS : a > u*} . Then

r - a- »T +a: F—*Fo is a honeonorphism and we define
1 1 z

the involutory Romeonorphism a : S —=S by a(a) =r(a) if

a£F,l, a(a) =r" (a if aeF,. Then CU(S) is isonorphic to

C(F.l.). However, C(F") is not isonorphic to C(S) ([12], Theorem 2)

SECTI ON 2; PRODUCTS OF COVPACT METRI C SPACES

W begin this section with sonme term nology and prelim
inary facts from|[9]. A subspace Z of a Banach space X

Is conplenented if there is a bounded linear projection
2

P: X_—_—*X wth range Z,. i.e., P =P and P(X) = Z  For

Banach spaces Y and X Y is aimg X if there is a
conpl enented subspace Z of X with Y ~ Z If a: S—S
is an involutory homeonor phi sm- then the operator P : C(S)—2C(S)
defined by (Pf)(s) = -|-[f(s) - f(a(s))] projects C(S) onto the
subspace of odd functions CU(S) . Thus CG(S) is a factor of C(9S).
D wll denote the twogpoint discrete space (O,'l} and, for
each cardinal nunber m D wll denote the generalized Cantor
set which is the Cartesian product of m copies of D W wll
need the follow ng isonmorphismcriterion due to A Peiczynski
([9], Proposition 8.3): If X is a Banach space and X is a
factor of C(D™ and C(D" is a factor of X, then X - C(DM.

Following [9], we say that a space S is an alnost MIlutin

space if, for some cardinal nunber m there is a continuous

onto map 6 : Do _>S such that the subspace X = (fof) : feC(S)}
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of C(Dm) is complemented. If T 1is a closed subset of the

space S, an extension operator is a bounded linear operator

E : C(T) —»C(S) such that, for each feC(T), Ef|T = £ where
"|" Jenotes the restriction. A compact Hausdorff space T

is an almost Dugundji space if, for every embedding i : T —»S

of T into a compact Hausdorff space S, there is an extension
operator E : C(i(T))~—>C(S). Every Cartesian product of com-
pact metric spaces (in particular, every space D) is both an
almost Milutin and an almost Dugundji space ([9], Theorems 5.6
and 6.6). The weight of a space S is the smallest cardinal
number m such that there is a base for the topology of S
consisting of m open sets. If S is either an almost Milutin
or an almost Dugundji space, then C(S) is a factor of C(Dm),
where m 1is the weight of S (see the proof of [9], Proposi-
tion 8.4).

PROPOSITION 3: Let S Dbe either an almost Milutin space

or an almost Dugundji space and let o0 : S —> 53 Dbe an involutory

homeomorphism on S. Suppose there is a closed subset F of

S with o{(F) N F =@ such that F 1is homeomorphic to Dm,

where m is the weight of S. Then C_(S) ~ C(S).
Proof: Since CO(S) is a factor of C(S) and C(S) is a
factor of C(Dm), CO(S) is a factor of C(Dm). Thus, by PeZ-

czyhski's criterion, it suffices to show that C(Dm) is a

factor of CO(S). Since F and o(F) are disjoint and each
is homeomorphic to Dm, F U o(F) is homeomorphic to the
almost Dugundji space Dm+l. Hence there exists an extension

operator E : C(F U o(F)) -—»C(S). Let 0' bDbe the restriction

of o0 to the invariant set F U o(F) and let P : C(S)——qCO(S)
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be the above=defined projection onto the odd functions. Then
CG,(F U o(F)) is isomorphic to the range of the projection Q
defined on C_(S) by Of = PE(f|(F U o(F))). Since Cyi (F U O(F))
is trivially isometric to C(F), which is isometric to C(D"), it

follows that C(Dm) is a factor of CC(S).

LEMMA 4: If S 1is an infinite product of non-trivial

compact metric spaces and 0 : S——pS is an involutory

homeomorphism on S that is not the identity, then CU(S)va(S).

Proof: Let S = 1 Si , where each Si has at least two
ieI

points. A basis for the topology of S 1is given by the open

sets U of the form U= ( 0 S.) x (1 Ui) where A is a
ieT\a * icA

finite subset . of I and U, is an open set in S, for ieA.
If I 1is infinite, then the weight m of S is the cardinal-
ity of 1I. So it suffices, by Proposition 3, to construct a
closed set F in S which is homeomorphic to D" with

b(F) N F = B. There exists seS with o0(s) # s: choose a
basic neighborhood U of s with o(U) N U= @. Then U =

( 0 S.) x ( 1 U,) for some finite set A in I. For each i,
. i . i
ieI\A icA

let {ti,ti] be any pair of distinct points in 8 if ie1nNa,
and just any pair of points in Us if ieA. Let F =

1 {t%,ti]. Then F is homeomorphic to D™ and @(F) N F = B.
iel

LEMMA 5: If S 1is an uncountable compact metric space and

o 1is a

involutory homeomorphism on S such that {s : o(s) = s}

is countable, then CO(S) ~ C(9).

Proof: TLet P Dbe the set of condensation points of §,

i.e., seP iff every neighborhood of s is uncountabkle. By
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the Cantor-Bendixson Theorem ([5], page 253), the complement of
P is countable. Thus P is uncountable and there is a point
seP with o(s) # s. Let FO be a closed neighborhood of s
with O(Fo) n Fo = #. Since FO is an uncountable compact
metric space, it must contain a closed subset F homeomorphic

R
to D ° ([5], page 445). Clearly O(F) NF = f. Since the
weight of S 1is No , the conclusion follows from Proposition 3.

THEOREM 6: f S 1is a product of compact metric spaces and

o 1is an involutory homeomorphism on S that is not the identity,

then CO(S) ~ C(T) for some compact Hausdorff space T.
Proof: Tf S is an infinite product of non-trivial
compact metric spaces, then CG(S) ~ C(S) by Lemma 4. If S
is a finite pfoduct of compact metric spaces, then S 1is com-
pact metric. TLet T be the quotient space obtained from S
by identifying the fixed points of o. Let 0' denote the in-
volutory homeomorphism on T which is induced by o0; it has
at most one fixed point. Then CO(S) ~ Co'(T)’ and Co'(T) ~ C(T)
by Lemma 5 if T is uncountable; by Corollary 2 if T is
countably infinite. The conclusion is obvioué if T 1is finite.
We conclude with an application to the problem of the
isomorphic classification of complemented subspaces of the Ban-

ach spaces of type C(S). This result is due to Samuel [11].

COROLLARY 7: Let X be a subspace of C(S), where S

is a compact metric space. If X 1is the range of a norm-1

projection on C(S), then X ~ C(T) for some compact metric

space T.

Proof: By [7] or [3] (see also [6]), we have X R CG(K)
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where o is an involutory homeomorphism on a certain subspace

K of a Hausdorff quotient space of S. Since a Hausdorff

quotient of a compact metric space is metric, Co(K) ~ C(T)

for some compact metric space T by the preceding theorem.
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