ISOMORPHIC CLASSES OF THE

SPACES $C_{\sigma}(S)$

M. A. Labbe and John Wolfe

Research Report 72-8

March, 1972

APR 1 1 '72

HUNT LIBRARY Carnegie-Mellon University

ISOMORPHIC CLASSES OF THE SPACES $C_{\sigma}(S)$

by

M. A. Labbé and John Wolfe

Abstract

Jerison introduced the Banach spaces $C_{\sigma}(S)$ of continuous real or complex-valued odd functions with respect to an involuntory homeomorphism $\sigma: S \longrightarrow S$ of the compact Hausdorff space S. It has been conjectured that any Banach space of the type $C_{\sigma}(S)$ is isomorphic to a Banach space of all continuous functions on some compact Hausdorff space. This conjecture is shown to be true if either (1) S is a Cartesian product of compact metric spaces or (2) S is a linearly ordered compact Hausdorff space and σ has at most one fixed point.

/nlc 2/17/72

ISOMORPHIC CLASSES OF THE SPACES $C_{\sigma}(S)$

By M. A. Labbe and John Wolfe

INTRODUCTION

Let S always denote a compact Hausdorff space. C(S) will denote the Banach space of real or complex-valued continuous functions on S equipped with the supremum norm. A homeomorphism $\sigma: S \longrightarrow S$ is involutory if $\sigma(\sigma(s)) = s$ for each seS. Jerison [2] introduced the Banach space $C_{\sigma}(S) =$ $\{f \in C(S) : f(\sigma(s)) = -f(s)\}$ of odd functions with respect to an involutory homeomorphism $\sigma: S \longrightarrow S$. If X and Y are Banach spaces then X is <u>isomorphic</u> (<u>isometric</u>) to Y, and we will write X ~ Y (X~Y), if there is a bounded (norm preserving) one-to-one bounded linear operator from X onto Y.

A special case of a conjecture due to A. Pełczyński [8] is as follows: for any Banach space $C_{\sigma}(S)$ there is a compact Hausdorff space T with $C_{\sigma}(S) \sim C(T)$. In this paper we prove this conjecture when S is either a Cartesian product of compact metric spaces or a linearly ordered compact Hausdorff space (in the second case we assume σ has at most one fixed point). The results and techniques of this paper generalize, and provide shorter proofs of, some results of Samuel [11].

SECTION 1; LINEARLY ORDERED SPACES

A topological space A is a <u>linearly ordered topological</u> <u>space</u> if the topology on A is the order topology ([4], page 57) arising from some linear ordering on the set A. Examples of linearly ordered spaces are the closed interval [0,1], every space of ordinal numbers, every totally disconnected compact metric space ([5], Corollary 2a), and every compact subset of a linearly ordered space.

THEOREM 1; Let S be an infinite linearly ordered compact Hausdorff space. If a <u>is</u> an involutory homeomorphism on S with at most one fixed point, then $C_{\sigma}(S) \sim C(T)$ for some compact Hausdorff space T.

<u>Proof</u>: The function ${}^{S}V$: S \longrightarrow S defined by \wedge (s) = min{s,a(s)} is continuous on S. Set T = \wedge (S); the compact set T contains exactly one point from each of the pairs fs,a(s)} and thus T U cr(T) = S and T PI a(T) contains at most the fixed point of a. If T D a(T) = 0, then C_g(S) is isometric to C(T) via the restriction map. If T D CT(T) = ft₀}, where t₀ is the fixed point of a, then restriction of the functions in C_g(S) to T is an isometry of C_g(S) onto the closed hyperplane C(T,t₀) = ffcC(T) : f(t₀) = 0} of C(T). By [1], C(T,t₀) \wedge C(T) if T contains a convergent sequence with distinct terms. Since T is infinite, it contains a strictly monotone sequence (t_n). This sequence converges either to its supremum or to its infimum and thus $C(T,t_0) \sim C(T)$.

<u>REMARK</u>: The first part of this proof shows that if $\sigma : S \longrightarrow S$ is an arbitrary involutory homeomorphism on a linearly ordered compact Hausdorff space S, T is as in the proof, and $T_o = \{s \in S : \sigma(s) = s\}$, then $C_{\sigma}(S) \approx C(T, T_o) = \{f \in C(S) : f(T_o) \subset \{0\}\}$.

If S is a countable compact metric space, then S is linearly ordered since it is homeomorphic to a closed subset of the Cantor set ([5], page 286). Thus the following result due to Samuel [11] is an easy consequence.

<u>COROLLARY 2</u>: <u>Suppose</u> S is a countably infinite compact metric space and σ : S \longrightarrow S is an involutory homeomorphism on S with at most one fixed point. Then $C_{\sigma}(S) \sim C(S)$.

<u>Proof</u>: If T is an infinite compact metric space, then $C(T) \sim C(T) \oplus C(T)$ ([10], page 514) where \oplus denotes the Cartesian product normed by taking the maximum of the norms of the two coordinates. Now, if T is as in Theorem 1 so that $S = T \cup \sigma T$ and $T \cap \sigma T$ has at most one point, it follows that $C(S) \sim C(T) \oplus C(\sigma(T))$: this is immediate if $T \cap \sigma(T) = \phi$; if $T \cap \sigma(T) = \{t_o\}$, then we have the string of isomorphisms $C(S) \sim C(S, t_o) \approx C(T, t_o) \oplus C(\sigma(T), t_o) \sim C(T) \oplus C(\sigma(T))$. Thus $C_{\sigma}(S) \sim C(T) \sim C(T) \oplus C(T) \sim C(T) \oplus C(\sigma(T)) \sim C(S)$ if S is countably infinite compact metric and σ has at most one fixed point.

<u>REMARK</u>: In general, even for an involutory homeomorphism σ : S \longrightarrow S having no fixed points on an ordinal space S, it

is not true that $C_{\sigma}(S) - C(S)$. We are indebted to J. J. Schäffer for the following example. Let $w_{\overline{1}}$ be the first uncountable ordinal number and let $S = \{a : a \text{ an ordinal and } 1 \land a \leq iy 2\}$. Let $F_1 = [aeS : a \leq i u^{\wedge}]$ and $F_2 = [\infty eS : a > u^{\wedge}]$. Then $r : a - w^{T} + a : F - F_0$ is a homeomorphism, and we define $1 \qquad 1 \qquad z$ the involutory homeomorphism a : S - S by a(a) = r(a) if

aff, a (a) = r" (a) if aeF_2 . Then $C^{\sigma}(S)$ is isomorphic to C(F¹.). However, C(F^A) is not isomorphic to C(S) ([12], Theorem 2)

SECTION 2; PRODUCTS OF COMPACT METRIC SPACES

We begin this section with some terminology and preliminary facts from [9]. A subspace Z of a Banach space X is <u>complemented</u> if there is a bounded linear projection

P : X with range Z, i.e., P = P and P(X) = Z. For Banach spaces Y and X, Y is a factor of X if there is a complemented subspace Z of X with Y ~ Z. If a : S - ^S is an involutory homeomorphism, then the operator P : C(S)-^C(S) defined by (Pf)(s) = -|-[f(s) - f(a(s))] projects C(S) onto the subspace of odd functions C $^{\sigma}(S)$. Thus C $^{\sigma}(S)$ is a factor of C(S).

D will denote the twompoint discrete space (0,1) and, for each cardinal number m, D will denote the generalized Cantor set which is the Cartesian product of m copies of D. We will need the following isomorphism criterion due to A. Peiczynski ([9], Proposition 8.3): If X is a Banach space and X is a factor of $C(D^m)$ and $C(D^m)$ is a factor of X, then $X - C(D^m)$.

Following [9], we say that a space S is an almost Milutin space if, for some cardinal number m, there is a continuous onto map $6 : D^m \longrightarrow S$ such that the subspace X = (fof) : feC(S)}

4

of C(D^m) is complemented. If T is a closed subset of the space S, an extension operator is a bounded linear operator E : C(T) \longrightarrow C(S) such that, for each f \in C(T), Ef T = f where "|" denotes the restriction. A compact Hausdorff space T is an almost Dugundji space if, for every embedding i : $T \rightarrow S$ of T into a compact Hausdorff space S, there is an extension operator E : $C(i(T)) \rightarrow C(S)$. Every Cartesian product of compact metric spaces (in particular, every space D^m) is both an almost Milutin and an almost Dugundji space ([9], Theorems 5.6 and 6.6). The weight of a space S is the smallest cardinal number m such that there is a base for the topology of S S is either an almost Milutin consisting of m open sets. If or an almost Dugundji space, then C(S) is a factor of $C(D^m)$, where m is the weight of S (see the proof of [9], Proposition 8.4).

<u>PROPOSITION 3</u>: Let S be either an almost Milutin space or an almost Dugundji space and let $\sigma : S \longrightarrow S$ be an involutory homeomorphism on S. Suppose there is a closed subset F of S with $\sigma(F) \cap F = \emptyset$ such that F is homeomorphic to D^m , where m is the weight of S. Then $C_{\sigma}(S) \sim C(S)$.

<u>Proof</u>: Since $C_{\sigma}(S)$ is a factor of C(S) and C(S) is a factor of $C(D^{m})$, $C_{\sigma}(S)$ is a factor of $C(D^{m})$. Thus, by Pełczyński's criterion, it suffices to show that $C(D^{m})$ is a factor of $C_{\sigma}(S)$. Since F and $\sigma(F)$ are disjoint and each is homeomorphic to D^{m} , $F \cup \sigma(F)$ is homeomorphic to the almost Dugundji space D^{m+1} . Hence there exists an extension operator E : $C(F \cup \sigma(F)) \longrightarrow C(S)$. Let σ' be the restriction of σ to the invariant set $F \cup \sigma(F)$ and let $P : C(S) \longrightarrow C_{\sigma}(S)$

5

be the above-defined projection onto the odd functions. Then C_{σ} , (F U $\sigma(F)$) is isomorphic to the range of the projection Q defined on $C_{\sigma}(S)$ by Qf = PE(f|(F U $\sigma(F)$)). Since C_{σ} , (F U $\sigma(F)$) is trivially isometric to C(F), which is isometric to C(D^m), it follows that C(D^m) is a factor of $C_{\sigma}(S)$.

LEMMA 4: If S is an infinite product of non-trivial compact metric spaces and σ : S \longrightarrow S is an involutory homeomorphism on S that is not the identity, then $C_{\sigma}(S) \sim C(S)$.

<u>Proof</u>: Let $S = \prod_{i \in I} S_i$, where each S_i has at least two points. A basis for the topology of S is given by the open sets U of the form $U = (\prod_{i \in I} S_i) \times (\prod_{i \in A} U_i)$ where A is a finite subset of I and U_i is an open set in S_i for icA. If I is infinite, then the weight m of S is the cardinality of I. So it suffices, by Proposition 3, to construct a closed set F in S which is homeomorphic to D^m with $b(F) \cap F = \emptyset$. There exists $s \in S$ with $\sigma(s) \neq s$; choose a basic neighborhood U of s with $\sigma(U) \cap U = \emptyset$. Then U = $(\prod_{i \in I \setminus A} S_i) \times (\prod_{i \in A} U_i)$ for some finite set A in I. For each i, $i \in I \setminus A$ i $i \in A$. Let $\{t_i^1, t_i^2\}$ be any pair of distinct points in S_i if $i \in I \setminus A$, and just any pair of points in U_i if $i \in A$. Let F = $\prod_{i \in I} \{t_i^1, t_i^2\}$. Then F is homeomorphic to D^m and $\sigma(F) \cap F = \emptyset$.

LEMMA 5: If S is an uncountable compact metric space and σ is an involutory homeomorphism on S such that {s : $\sigma(s) = s$ } is countable, then $C_{\sigma}(S) \sim C(S)$.

.......

<u>Proof</u>: Let P be the set of condensation points of S, i.e., $s \in P$ iff every neighborhood of s is uncountable. By the Cantor-Bendixson Theorem ([5], page 253), the complement of P is countable. Thus P is uncountable and there is a point $s \in P$ with $\sigma(s) \neq s$. Let F_0 be a closed neighborhood of s with $\sigma(F_0) \cap F_0 = \emptyset$. Since F_0 is an uncountable compact metric space, it must contain a closed subset F homeomorphic

to $D^{N_{O}}$ ([5], page 445). Clearly $\sigma(F) \cap F = \emptyset$. Since the weight of S is \aleph_{O} , the conclusion follows from Proposition 3.

THEOREM 6: If S is a product of compact metric spaces and σ is an involutory homeomorphism on S that is not the identity, then $C_{\sigma}(S) \sim C(T)$ for some compact Hausdorff space T.

<u>Proof</u>: If S is an infinite product of non-trivial compact metric spaces, then $C_{\sigma}(S) \sim C(S)$ by Lemma 4. If S is a finite product of compact metric spaces, then S is compact metric. Let T be the quotient space obtained from S by identifying the fixed points of σ . Let σ' denote the involutory homeomorphism on T which is induced by σ ; it has at most one fixed point. Then $C_{\sigma}(S) \approx C_{\sigma'}(T)$, and $C_{\sigma'}(T) \sim C(T)$ by Lemma 5 if T is uncountable; by Corollary 2 if T is countably infinite. The conclusion is obvious if T is finite.

We conclude with an application to the problem of the isomorphic classification of complemented subspaces of the Banach spaces of type C(S). This result is due to Samuel [11].

<u>COROLLARY 7</u>: Let X be a subspace of C(S), where S is a compact metric space. If X is the range of a norm-1 projection on C(S), then $X \sim C(T)$ for some compact metric space T.

<u>Proof</u>: By [7] or [3] (see also [6]), we have $X \approx C_{\sigma}(K)$

~ <u>+</u> ~ *****

7

where σ is an involutory homeomorphism on a certain subspace K of a Hausdorff quotient space of S. Since a Hausdorff quotient of a compact metric space is metric, $C_{\sigma}(K) \sim C(T)$ for some compact metric space T by the preceding theorem.

......

BIBLIOGRAPHY

- [1.] Dean, D. W., "Projections in certain continuous function spaces C(H) and subspaces of C(H) isomorphic with C(H),^{ff} Canadian J. Math. <u>l</u>f (1962), 385-401.
- [2.] Jerison, M., "Certain spaces of continuous functions," Trans. Amer. Math. Soc. <u>10</u> (1951), 103-11[^].
- [3.] Jonac, M. and Samuel, C., "Sur les sous-espaces complementés de C(S),^M Bull, Sci. Math., 2^e serie <u>2</u>± (1970), 159-163.
- [4.] Kelley, J. L., <u>General Topology</u>, Princeton, New Jersey, 1955.
- [5.] Kuratowski, K., <u>Topology</u>, Vol. I., New York, New York, 1966.
- [6.] Lindberg, K. J., "Contractive projections in Orlicz sequence spaces and continuous function spaces," Thesis, University of California at Berkeley, 1971.
- [7.] Lindenstrauss, J. and Wulbert, D. E-, "On the classifications, of the Banach spaces whose duals are L, spaces,"
 J. Functional Analysis £ (1969), 332-349.
- [8.] Peiczyński, A., "Projections in certain Banach spaces," Studia Math. J<u>9</u> (1960), 209-22B.
- [9.] , "Linear extensions, linear averagings and their applications to linear classification of spaces of continuous functions," Rozprawy Matematyczne <u>S8</u> (1968).
- [10.] _____, "On C(S) subspaces of separable Banach spaces," Studia Math. <u>31</u> (1968), 513-522.
- [11.] Samuel, C, "Sur certains espaces c_a(S) et sur les sous-espaces complfmentes de C(S)," Bull. Sci. Math., 2^e serie J95. (1971), 65-82.
- [12.] Semadeni, Z., "Banach spaces non-isomorphic to their Cartesian squares. II," Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. J3 (1960), 81-84.

Department of Mathematics University of Pittsburgh Pittsburgh, Pennsylvania 15213 U.S.A.

Department of Mathematics Carnegie-Mellon University Pittsburgh, Pennsylvania 15213 U.S.A.

> KHKT U3RARY CARHEE1E-KELLOH UNIVERSITY

/Is 1/28/72