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Abstract

Let L(E,F) be the set of bounded linear operators
from the Banach space E to the Banach space F. If m
is a measure defined on a ring C of subsets of T with
values in L(E,F), for each y* 1in the dual F*, one de-
fines a measure m x from € into EX*. Also for each
A in C one may define a semi-norm pm,A on F* in
terms of the g-variation of my*. Topologies are defined
on the unit sphere o¢* of F* utilizing these semi-norms-
We then investigate the relationships of these topologies
to the properties of the measures.

We consider when the topologies are Hausdorff and
when they are compact. The results improve those of
P. Lewis where the assumption that o* be compact was
essential. Our essential feature is that the g-variation
is countably subadditive and the g-semi variation is finite.
If o¢* is compact we determine when the g-semi variation
is right continuous. If o¢* 1is not compact, conditions

recently introduced by Orlicz are utilized.



We then consider operators on SE (w (1 <p< wm)
using the above topologies. If U 1is a continuous operator
from £§(y) into F and if U is absolutely continuous
with respect to u then U is compact if and only if the
associated topology makes ¢* compact. The g-semi-
variation is right continuous if and only if there exists
some sequence of open Baire sets converging to @ and the
integral satisfies a continuity condition on the unit ball
of £§(N) (% + é =1, p# o). Additional results for
continuous and compact operators U which are absolutely
continuous with respect to u are obtained.

Pertinent to these results are the recent works of

N. Dinculeanu and P. Lewis, W. Orlicz and M. M. Rao.
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1. | nt r oducti on.

The recent definitive work by m/ Olicz in [6
generates additional interest in the relationship of
topol ogi es placed on the unit sphere a* of a dual space
F* to the neasure theoretic properties. In particular,
in [4 and [5 a topology associated with a neasure
is defined as foll ows.

Let L(E,F) be the set of bounded |inear operators
from the feanach space E into the Banach space F and
let C be a ring of subsets of a non enpty set T. |If
Is a measure defined on C wth values in L(E, F), then

for each A in O a sem-norm p _ is defined on the
o "MA
dual F* of F by

R myi(rYs) = T v ¢ A)

wher e ﬁv: denotes the variation of the neasure myM

that maps C into the dual E* ,and is defined by

ny*(A> = <m(A), y* >

The collection P of all such sem-nornms for A in C

generates a topology in the usual way. This topol ogy
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when restricted to o¢*, the unit sphere of F¥*, turns out
to be of interest. Also of interest is the topology gener-
ated by pm,A for A in C where m is now an element
in the set r(E,F) of finitely additive set functions
from C into L(E,F). Among the numerous results con-
tained in [4] and [5] one main property seems to be
central. Namely, if the sphere ¢* 1is compact in the

above topology the following statements are equivalent.

(1) The measure my* is countably additive
for y* in o¢o*

(2) The measure m 1is variationally semi
regular, that is, if the sequence {An}neN

of sets monotonically decreases to ¢ then

the sequence 'm( converges to O,

An)}ncN
where m 1is the semi-variation of m.

(3) The measure m is norm countably additive.

For the space CO(H,E) of continuous functions de-
fined on the locally compact space H and vanishing at
infinity,operators are defined and studied in [5].

Among the main results is the characterization of compact

operators on CO(H,E). An operator is shown to be compact
if and only if the topology generated by pm,A for A

in C 1is compact on g¢*. 1In this case m is the measure

used to represent the operator as an integral. It is
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natural to study corresponding results for operators

defined on £F spaces. The (g-semi variation of a measure
seems to be the natural vehicle for such a study. An example
of this may be found in the representation theorems for

operators on gP

spaces contained in [1l]. As a matter
of fact the notion of g-semi variation has recently been
generalized to ¢-bounded variation and used for the study

of g% spaces (see [7]).

In this article we will define a topology analogous
to that above by replacing the variation my* with the
g-variation (my*) of the measure my*. In particular,

q
for A in C we will define the semi-norms Pn A by

As in [4] and ([5] it will be of interest when o¢* is
compact relative to this topology. However here the situa-

tion is different in that the above topology need not be

Hausdorff. It also should be pointed out that in contrast
m

to the countable additivity of «» the g-variation
Y

(my*)q is only countably subadditive. In [4] and [5]

it was of interest to determine under what conditions m

is countably additive. 1In the present situation countable
additivity will follow from the fact that the g semi-

variation is finite (for q # 1) (see [1]). 1In this
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respect at the conclusion of this work, we will be able
to state some additional ideas which will require further
research.

In [6] Orlicz studied the properties of weakly ab-
solutely continuous subadditive set functions. Some of
the present results are applicable to the present situation
when o* fails to be compact in contrast to the situation

in [5] where compactness is always used.

The results of this article will be organized as
foliows. In section 2, the main notations and definitions
will be presented. The topology of o* will be studied,
and the cénditions under which the g semi-variation is
right continuous will be established in section 3. As
pointed out earlier one of our hypothesis will be that ¢¥*
is compact. If ¢* 1is not compact some conditions intro-
duced in [6] by Orlicz will be used. Conditions for the
topology to be Hausdorff will be defined and topologies
corresponding to different values of g will be compared.
In section 4, operators on £§(u) (1 < pP< ®) spaces
will be studied using the topology introduced in section 3.
If U 1is a continuous operator from £g(u) into F with
U absolutely continuous with respect to g then U is
shown to be compact if and only if the associated topology
makes o¢* compact. It is then shown that the g semi-

variation is right continuous if and only if there exists
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sone sequence of open Baire sets converging to 0 and the

integral satisfies sonme continuity condition on the unit

bal | of £&|i) (for A+~é= 1, and pr D). If U is a
conti nuous and conpac; operator from AT%Q into F wth
U absolutely continuous with respect to JU it is then
shown that the representative neasure of U is countably
additive. Finally if U 1is a continuous operator from

sg(u) into F (p” @) andif
<U, y*>(f) =<U(£f), y*>

for f e @M(/i) then it is shown that whenever \\<Ugy* Al ,
Hi I\ P

for y* e a*, satisfies a Fatou condition and is dom nated
by a set function having the 0‘1 property (see [6]), the
representative nmeasure of U has a right continuous (q

sem -variation

The book [1] by N, Dincul eanu on Meciar Measures

has generated nuch interest in this area of research.
Frequent reference to it will be nmade throughout the

paper .
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2. Definitions and Notations

As above C will denote a ring of subsets of the non-
empty set T, and py will denote a positive finite measure
on C. For the Banach spaces E and F, L(E,F) will denote
all bounded linear operators from E into F and ¢g* will
denote the unit sphere of the dual space F* of F. By SE(p)
we will denote all E valued functions that are p-integrable
with respect to pu (in the sense of [1]). If £ belongs to
xgun, then Np(f) will denote the p-norm of f£. If U is a
linear operator defined on £g(u) we will write UK uy if
HUAHP = 0 whenever p(A) = 0 (see [1l]). The letter m will
denote always a measure from € into L(E,F).

As in [1], for 1 < g ®, % + é = 1 the g-semi variation

of the measure m is defined for A in C by

m_(A) = sup|2nﬂAi)xi|

where the supremum is taken over all disjoint sets Ai in C
and X in E for i 1in a finite indexing set I and for which

N (X X X represents the charac-

) 1. For A in C,
P jer it

XA

teristic function of A. The g-variation E; of the measure m

is defined for A in C by

mq(A) = sup EIm(Ai)llin
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where the supremum is taken in the same manner as the g-semi
variation.

Two important properties of these definitions are

(1) ?n'q(A) = sup [(m_y'*-)q(A): y* in  g*}.
(2) 'an = %q if F is the field of scalars.

The set r(E,F) will denote all finitely additive set

functions from ¢ into L(E,F).

For the set r(E,F) defined above, we will let rq repre-
sent that subcollection of set functions m in r(E,F) whose
g-variation, Eg, is finite on C. If g # 1, it is known

that m 1is countably additive.

A sequence {A_} of sets in C 1is said to be decreasing
n-neN ®
monotonically to ¢ if N An = ¢. In this case we will write
n=1
(An}neN d.m. ¢.

A scalar valued set function h on C is said to be

right continuous at the sequence {An}neN of sets in C if

An d.m. ¢ implies that the sequence {h(An)}neN converges

to 0. The function n satisfies the OM property (as in

[6]) if for every sequence {Bn} of disjoint sets in C,

neN

the sequence {n(Bn)} converges to O (some authors have

neN
referred to this property as "strongly bounded").

It is shown in [6] that while every function of finite
variation satisfies the 0“ condition, the converse need not

be true.
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The scalar valued function mn 1is said to satisfy the Fatou

property if n is real valued and if lim inf n(E ) 2> n(E)

whenever En c E and the sequence {u(E- En)}n€N converges to O.

We finally recall that
Im@;) [T 41/q
—_— 1 if g # 1 where the

(3) (m)@) =sup |Z -
a [ M(Ai)q 1l

sup is taken over a finite family of disjoint sets Ai

from C with Ai c AcC and

— _ [mng _ = ;
(4) (m)(B) = sup LB = (m ) (&) where the sup is
taken over BeC, B ¢ AcC. The convention that % is

interpreted as O 1is maintained.

In general all the notations and concepts pertaining to

vector measures can be found in [1].

3. Topologies associated with mq.

For m in r and A 1in C we consider the functions

pm,A defined on F* by

B —

Ppaly¥) = (m

, y*)q(A)-

In the unit sphere o* of F* we consider the following two

topologies. We denote by 5m q the weakest topology on g¢%*
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making all sem -norns (which we now prove) p . continuous.
mj /\

By Gq we nean the topology on & generated (in the usual

way) by all the sem -norns pw_.\ for r A in C and m in
|

r

q

LEMVA 1. For_every 1<q<OO, p oA jLs_ji_ sem -norm

on F*. Thus F* is a locally convex space under the topo'l oqy

generated by p , (see [3]).
\

Proof: It is clear fromthe fornula defining (my*)q
t hat p_m”‘n(_ay*)_ = |‘a|,p_mjﬂ(_y*)_ « Since
+ q
Im@A.)+m (A)l 1/q
PmA iy = sup 2 CTT. J
mA 1 / L m (CAL) 9% J

for g™ ao (where the sup is taken over a finite sequence
of disjoint sets A, with A cA it follows fromthe

M nkowski inequality applied to the ¢-sunmable sequences

I (A) | Imy (A )l

{a, },~+ and f b~ " where a. = "1 Ar and b. 2 s
A AT 5‘.!- <AL g-l
p(Ai) d p(Ai) q

that
Po,a¥1 * ¥3) S P av]) + pp 2 v3) -

If g=0D the inequality follows inmediately fromthe ex-

ression for m .
P ( Y*) cD
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From [4] we are motivated to define the boundary of «r

g
to be all m 1in rq such that whenever A is in C there
exists some y* in ¢* with m_(A) = (m_,) (A).

q Yyt a
LEMMA 2. If (c*,ém q) is a compact space then the
b
boundary of Ty is Tq
Proof: There exists a sequence {y; heN in ¢* such that
the sequence {(my;)q(A)]néN converges to mq(A). Without
loss of generality we may assume (by compactness) that {yg}neN

converges to y* in the Gm q topology (for some y* in ¢¥%).

)q(A)I]

Thus the sequence {|(m (a) - (m converges to O

y*)q y; neN

and iﬁq(A) = M) _@d).

Y*)q
If o*% 1is compact in the topology generated by the semi-

norm pm,A (for m and A fixed) then mq(A) = (my*)q(A).

The proof follows the proof of Lemma 2.

Since right continuity of mq will be of importance for
later results, the following theorem, which outlines some basic
results in that direction, will be of interest.

THEOREM 1. Let ({A_}

be a sequence of sets i
n’neN a o} o s in C,

decreasing monotonically to ¢. If o* is compact in the

topology generated by pm A then there exists a sequence
s
1
* 3 * = -~ 1
{yn]neN in o¢* such that (my*)q(An) mq(An). Moreover if

n
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y* is an accumulation point of {yg neN in the above topology,

then the following statements hold.

(a) If (my*)q is right continuous at {An}neN then mq
is right continuous at {An}neN'

() 1If g#1 and m is in g then m is countably

additive.
() If (my*)q is right continuous at {An}neN and if
\ ~ . .
p@ ) >0 then m_  is continuous at [An}neN for

all 1< r < qg.

(@)

H

f m is in r, and if my* is countably additive

~

or every y* in o* then my is right continuous

at every sequence [An}neN d.m. ¢ .

(e) If (my*)q satisfies the O“ condition and the Fatou

property for each increasing sequence ({E_}

n°'neN EEEE

(my*)q is right continuous at every sequence {An}neN

d.m. ¢ .

If o* 1is not necessarily compact in the topology 6m q’ then
3

m_is still right continuous at every sequence (A }

n nen d.m. ¢

provided there exists some set function A from C into F for

which

(£) (mz*)q < N for every z* in o¥*.
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(g) AN satisfies the Ou condition.

(h) Each (mz*)q satisfies the Fatou condition.

(z* in o¥)

Proof: First we show statement (a). If mq is not right

continuous at (A_}

n)nen we may assume that for some ¢ > O,

it * * :
mq(An) > € . Then (yn) > € (yn exists by the note

pm,A
n

preceding the theorem). Thus

pm,Al(yg - y*) < €/4 for all

n > N. Consequently p_ A (yg - y*) < ¢/4 for n > N. How-
’'n
ever by Lemma 1, p_ » (y*) > €/2. This contradicts the hypo-
’'n
n’neN’

thesis that (my*)q is right continuous at ({A_]

Statement (b) is shown in [1]. Statement (c) follows
from (a) and from the inequality
1/r

@Y R @ < pe) VIR @)

for A such that p(A) > 0 (see [1]).

In statement (d), if m is in Ly, then m << p. Thus

m = ﬁl' In [4] the stated property is shown to be true for m.

Statement (e) follows from Theorem 4 of [6j applied to

(my*)q

Finally the second part of the theorem follows from

Theorem 7 of [6]. It is necessary to apply that theorem to the
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famly M= {(m,) : z*ee*}. inparticular as needed there, if
z_4
the sequence {(m %) (A )}~ converges uniformy to 0 for z*
z q n ijtiN

in <j* then the sequence {i”rg; (A) }&N converges to 0. This

conpl etes the proof of the theorem

Applying the results of [6] to the above famly M would
yield conditions under which the (m?") are uniformy absolutely

Z q
continuous with respect to \x (inthe e - 6 sense) .

We can now obtain conditions equivalent to the space

(a* , %) bei ng Hausdorff.

LEMVA 3. The foll ow ng conditions are equival ent.

(1) The space (<*, 6 ) _s Hausdorff.
q

(2) _The closure of the linear span of u UmA) a
mer AeC

q
is F (for or _the unit sphere of FE) .

(3) _The topology 6 is stronger than the weak* topology.
q 1

Proof; The proof follows a pattern simlar to that in [4]

That (3) dimplies (1) is clear. Now assume that (1) is

true and that (2) is false. Pick a non-zero z in c¢* such
that for a finite indexing set I, -< Fs. mA)x., z> =0

iel X 1 1
(the s, are scalars and the X, belong to a). Thus n = 0
and (riE,,)q- = 0. Hence e (z) =0 for all m in M and A

in C  This contradicts (1) .

MHT LIBRARY
CARHESEMELLON  [iKil'ESSITY
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Finally we show that (2) implies (3). Assume the net

converges to z in the topology Gq. To show {za}aeA

{Za}a €A
A m. be such

converges to z in the weak* topology, let s;s Ay, My

that |y- i_Z_,J; S5 mi(Ai)xiH < ¢/2. For some a_  and a >a, we
have
Z,k |s, IN_(X x.) (m,,z_-2z) _(B) < €.
i=1 1'°p Ai 1 i’ a q
So
|<_§( s; my(A)%;, 2 —z>| = |< S5 J Xy ¥, dmg, z -z >
i=1 . i=1 1
< 1sile(XA_ x,) (my, 2, - Z)q(Ai)< €.
i=1 i
It follows that |<y, z_ - z>| < 2¢.
THEOREM 2. (1) If (o*, 5q) is a Hausdorff space then
(o%, Gq) is compact if and only if (o¥*, bq) = (g%, wk¥),

where wk* represents the weak* topology for o¥.

(2) If (o*, 6q) and (o¥*, 6r) are Hausdorff spaces

then (o¥*, éq) and (o¥*, 6r) are both compact if and only

if 6q = 8 = wk*.
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Proof: We show (1). If (o*, Gq) is Hausdorff then the
identity map from (co*, Gq) onto (¢*, wk*) is continuous by
Lemma 3. Since (0%, wk*) is a Hausdorff space, the map is a
homeomorphism. Of course statement (2) follows immediately

from statement (1).

In contrast to the situation depicted in [4] one may
have (0%, bq) as a non Hausdorff space. If p is identically
zero, then rq reduces to zero. Thus statement (2) of Lemma 3
shows that (g%, Gq) is non Hausdorff. The other extreme is to
have pu purely atomic. Then (o¥%, bq) is always a Hausdorff
space. In fact let mt(A) = 0 when t £ A and mt(A) = Ue L(E,F)
when teA. If A, 1is the atom containing t,(p(Ai) > 0. 1If

B F A, then pu(B) = 0 if and only if B = ¢), then

ull

(;t)q(A) -1 is finite. So m, belongs to rq. By
pa) g
statement (2) of Lemma 3, it follows that (¢¥*, Gq) is
Hausdorff.
The preceding observations point out that there are many
more countably additive measures than measures in r (for
g #1). In [4] some conditions were pointed out which were

equivalent to the topology generated by pm,A (m finitely
additive, fixed, and A in CC also fixed). A brief look at
the proof shows that this does not carry over to the present
setting since the point mass in general is not in r_. However

we have the following result.
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PROPOSI TION 1. Assume {<j*, 6q) Jis. . Hausdorff space,
then the followi ng conditions are equivalent,

(1) The fgpoloqv qéheratédm p . (for m jun r_
fixed and A i C also fixed) is Hausdorff.
— . . . —-/\ - . .
(2) rq. = {n: n_jln qr for_which (lgn f\-'I 0 implies
(ny*)q = 0O}

(3) _The _topology generated by Pp A Q0. g% jis. st'ronger

than the wk* _topology of «c*.

Proof: If (2 holds and (1) does not there exists a

non-zero y* in a* such that (m ,) =0. Thus for all n
_ y* q

in r (n ) =0. This contradicts the fact that (o*, 6 )

q y q q

is a Hausdorff space. The rest of the proof follows the pattern

of [4 and will not be reproduced here.

4. Li near Operators on £7

In this section C - will denote the a-ring of
ta-finite subsets of T (see [1] ). Nowif 1 <Cp < OD,
if U is a continuous |inear operator from <¥(tx into F
with U« (i and if TeC ~3 then there exists a unique
measure m from C into L(EsF) with irTq(T) finite and

Uf) =JF dm If p = 0D, then there exists a finitely



[17]

additive set function m from C into L(R,X) with m(T) < @
@

¢
such that U(f) = Jf dm for all £ in S;%p) where R denotes

the scalar field (see [1]).

1 1
THEOREM 3. (1) Let p # o, D + 3= 1 and let Tecc_’f.

f U 4is a continuous linear operator from £g(ﬂ) into F

L]

uch that U <K p, then U is a compact operator if and only

A

(o*, & q) is a compact space.
i

(2) Let p=®. If U is a continuous linear operator

0]

(=

from £§%p) into F such that U< p, then U is a compact

operator if and only if (o¥, & 1) is a compact space.
. 3

Proof: 1In showing (1), let us assume that U 1is compact
and let {z;}neN be a sequence in ¢*. Without loss of gener-
ality we may assume that the sequence converges to z¥* in the
weak* topology. Thus we need to show that the sequence converges

to z* in the 6m q topology. (Now the sequence {U*(z;)]

s neN
converges to U*(z¥*) in the norm (see [3]).) Note that
(my*)q = (my*)q since ™% has values in a dual space. Thus

for A in C, there exists a disjoint sequence of sets Ai
in C with Ai c A, 1ieN, such that if € > 0 and if

(m )q(A) < |<Zm(Ai)xi, z¥-zX>| + ¢

z*_.z*
n
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Thus

(m ) (A) < |<U(D xn * X:), 2¥-2¥>| + ¢
z*—z; a Ai i n

< NL(D X, x;) |lux(z*- 20| + e

Consequently the sequence {Zg}neN converges to z* in the

6m,q topology.

Now assume that (g¢*, 6 ) 1is compact and let {Zg}neN

be a sequence in ¢¥*. Without loss of generality we may assume
(by compactness) that the sequence converges to z* in the
o} topology. If £ ¢ Sg(u), then

m,gq

l‘<f,U*(zg) - U*(z*)>] =v|<U(f),Z;_ z*> |

|<Ifdm, z* - z*>|
n

< Np(f) (m ) ., (T)

z*.. z*
n q

Since the latter converges to zero for n in N, the sequence

{U*(z;)}neN converges to U¥*(z*) in the norm. Thus u* is
is compact and by [3] U is compact. The proof of (2) is

similar and will not be reproduced here.

For the next theorem let C denote the ¢g-ring generated

by the compact G6 subsets of the locally compact Hausdorff

1

space T. Again if 1 < p < o, + 3

% =1, and if mer
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then it is shown in [1] that "the integral of £ e Sg(y)
relative to m" is defined (and is denoted by jf dm) provided
that Eé(A) is finite for all A ¢ Go £ (the variation of m

however, need not be finite).

The next theorem establishes a relation between the
continuity of the integral If dm on the unit ball of Sg and

the right continuity of Sq.

THEOREM 4. Let C be as described above and let p # o,

% + é =1, If m is a measure from C into L(E,F) with ﬁq

o g Xhen the right continuity of ﬁq is equiva-
Ean

lent to the following two conditions taken simultaneously.

finite on C

(1) For every sequence (A ]} f sets in C decreasing

n"-neN —

monotonically to ¢, there exists a sequence of open

Baire sets U, in T such that A L cU,, n in N,

and the sequence {mq(Un)}n€N converges to O.

(2) The seguence {[an dml}neN converges uniformly

. p .
to O for every seguence {fn}neN in SE(u) with

Np(fn) <1 and f (x) =0 for x in T\U_,

n in N.

Proof: Let us assume that ﬁq is right continuous. As
in the proof of a similar result given in [2], it can be

shown (replacing the p quasi semi variation by ;q) that



[20]

for every AeC and € > O there exists a compact Baire set K
and an open Baire set G with K cA c G and mq(G- K) < €.

Thus we obtain a sequence {U_] of open Baire sets with

n-neN

the sequence {aé(Un)} converging to 0. For every

neN

fn(nl£g(p) satisfying (2)
|an dm| < N, (£)m (U))

Of course the latter becomes arbitrarily small.

Conversely assume (1) and (2) hold. Let {An}neN
d.m. ¢ and let Un be as above. Going to a subsequence if
necessary, let us assume ﬁé(An) > ¢ for all n. Pick Jj

large enough so that whenever the support of £ 1is a subset

of Uy and N, (£) L1 |If dm| < €/2. There exists some
zcg* and some finite set of disjoint subsets By of Aj
such that |<:§ m(B,)x;, z>| > e with Np(f XBi. x;) < 1.

If £=3Xx - x; then |If dm| < €/2 which contradicts
i

B.
1

ij dml > €. Consequently the sequence {ﬁé(An)} converges

neN
to O.

We now study the case for g = 1. Also for g # 1 we
may ask the question for what kind of operators on Sg(p) is

the g semi variation of the representative measure right

continuous?
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If U is a continuous (in the norm of <£’\(_ju), 1 <€£P< )
operator with U« JJL, from £8(fi) into F, then we introduce
the operator <U,y*> from £g?fi) into the scalar field R
defined by

<AJ, y*>(f) = <U(f),y*> (y*ea*)

THEOREM 5. (1) J§I U JLSji _continuous _and conpact operator

from £(”"0 into F wth U«/i, then the representative

neasure of U _iis countably additiyve.

(2) Let U be a. continuous operator from $L(\x) 1into

F (p/ D) wth U«a and let T € C ~ If there exists

a scalar valued set function A satisfying the O condition

wth | Uu, y*>A1|P__<, N(A  for all A jIn C and with

liminf [| <3, y*>a [|p 2 |I<U Y >, |, _for _every A, and A
n

in C for which the sequence {JU (A, -A)}rleN converges to O

then the representative neasure of U ijs qg-variationally sem -

Legular,

Proof; First we show statenent (1) . Since U and y*
are continuous and since <U y* > has its range contained in

R it follows that || | <usy®>a| \\™ = |]|<u, y">A|<_JD and t hat
| Hu, YAL TN < || <U, y*>1|] <@. Now u(f) =Jf dm where m

is finitely additive (see [1]). It is easy to see that
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<U,y*> (f) = J dmy*. Thus || |<Uy* >¢|H* = mF(T) which
is finite. By [1], rrilf N will be countably additive if ad
only if for every sequence {@,), .~ in i °°4)  which is de-
creasing and converging to 0O a.e. inplies that the sequence

[ <U, y*> (qor) }neN converges to 0. Since

| <Uy*> (cp) [ 1!]cpJumen

and the latter goes to 0 for neN, it follows that M, e S
countably additive. Since U is assuned conpact it follows
that U is also. W now showthat <j* 1is conpact in the
topol ogy generated by »p, ., Let [y”*}** be a net in a*.
Wt hout |oss of generaliltﬂyl/lwe may assmj'rrea'm[y.*K * converges
to y* in the weak” topology. By conpactness of U' U(y”")
cohverges to Uy”) in the normof (£2(/uQ*. Since m,
has values in a dual space (in the scalar field here) there
exists a famly A, of disjoint sets of C and scalars a,,
| g [-< 1 such that

mV W V")‘('J(T) <I <£_ m ‘ A . ) %(- ’ y*n h YA>\ + €
In’ 1

= <[z X T 9y dm YR - y*-| + € = [<Z VAL UX(yX-y*)>| + ¢

< fo*tyx - vyl +

Since the latter becones arbitrarily small for n in N it

follows that o” 1is conpact in the topology generated by p
m* X
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Using the compactness of ¢* and the fact that m_, is countably
additive, it is easy to give an argument by contradiction to show

that m is countably additive.

To show (2) we know from [l] since T ¢ Cc £ that
3
p ~
U(f) = JE dm where mq(T) is finite. It is easy to check
that
* = * = m
<o, y% > Ll = v, vl = @) @)

It then follows from the last part of Theorem 1 that m has

a right continuous g semi variation.

5. Some Concluding Remarks.

It would be interesting to further study these topological
spaces associated with these measures. The topological spaces
under consideration, as has been seen, need not be metrizable in
fact they need not even be Hausdorff. It would be interesting to
consider the requirement that (g¥, 6m) or (o¥*, 6m ) be para-

q
compact, metacompact or any of the other "compactness type"
conditions. What is the effect of these conditions on the corre-
sponding operator defined on £g(u)? The compact operators are
then a subclass of the class of operators so obtained. Let us

emphasize again that to go beyond the more restricted setting

of compactness, we found essential the results of Orlicz in [6].
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