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Abstract

Let L(E,F) be the set of bounded linear operators

from the Banach space E to the Banach space F. If m

is a measure defined on a ring C of subsets of T with

values in L(E,F), for each y* in the dual F*, one de-

fines a measure m . from C into E*. Also for each
y*

A in C one may define a semi-norm p _ on F* in
J m,, A

terms of the q-variation of m ^. Topologies are defined

on the unit sphere a* of F* utilizing these semi-norms*

We then investigate the relationships of these topologies

to the properties of the measures.

We consider when the topologies are Hausdorff and

when they are compact. The results improve those of

P. Lewis where the assumption that a* be compact was

essential. Our essential feature is that the q-variation

is countably subadditive and the q-semi variation is finite.

If a* is compact we determine when the q-semi variation

is right continuous. If a* is not compact, conditions

recently introduced by Orlicz are utilized.



We then consider operators on £^ (jx) (1 <C p <£ OD )

using the above topologies. If U is a continuous operator

from £p(ju) into F and if U is absolutely continuous

with respect to /Lt then U is compact if and only if the

associated topology makes a* compact. The q-semi-

variation is right continuous if and only if there exists

some sequence of open Baire sets converging to 0 and the

integral satisfies a continuity condition on the unit ball

of £̂ (fi) (- + — = 1, p ^ OD ) . Additional results for

continuous and compact operators U which are absolutely

continuous with respect to JLI are obtained.

Pertinent to these results are the recent works of

N. Dinculeanu and P. Lewis,, W. Orlicz and M. M. Rao.
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1. Introduction.

The recent definitive work by W. Orlicz in [6J

generates additional interest in the relationship of

topologies placed on the unit sphere a* of a dual space

F* to the measure theoretic properties. In particular,

in [4] and [5] a topology associated with a measure

is defined as follows.

Let L(E,F) be the set of bounded linear operators

from the feanach space E into the Banach space F and

let C be a ring of subsets of a non empty set T. If m

is a measure defined on C with values in L(E,F), then

for each A in 0 a semi-norm p _ is defined on the
•̂ m̂ A

dual F* of F by

P 7v (Y*) ==: m *. (A)*mAvjr y*v '

where m „ denotes the variation of the measure m „y* y*

that maps C into the dual E* and is defined by

m

The collection P of all such semi-norms for A in C

generates a topology in the usual way. This topology



[2]

when restricted to cr*, the unit sphere of F*, turns out

to be of interest. Also of interest is the topology gener-

ated by p ^ for A in C where m is now an element
•* m, A

in the set r(E,F) of finitely additive set functions

from C into L(E,F). Among the numerous results con-

tained in [4] and [5] one main property seems to be

central. Namely, if the sphere a* is compact in the

above topology the following statements are equivalent.

(1) The measure m is countably additive
Y

for y* in a*

(2) The measure m is variationally semi

regular, that is, if the sequence { A }

of sets monotonically decreases to 0 then

the sequence rm(A )} converges to 0,

where m is the semi-variation of m.

(3) The measure m is norm countably additive.

For the space C (H,E) of continuous functions de-

fined on the locally compact space H and vanishing at

infinity,operators are defined and studied in [5].

Among the main results is the characterization of compact

operators on C (H,E). An operator is shown to be compact

if and only if the topology generated by p for A
m , jt\

in C is compact on Q-*. In this case m is the measure

used to represent the operator as an integral. It is
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natural to study corresponding results for operators

defined on <£̂  spaces. The q-semi variation of a measure

seems to be the natural vehicle for such a study. An example

of this may be found in the representation theorems for

operators on Z^ spaces contained in [1]. As a matter

of fact the notion of q-semi variation has recently been

generalized to cp-bounded variation and used for the study

of £^ spaces (see [7]).

In this article we will define a topology analogous

to that above by replacing the variation m ^ with the

q-variation (m ^) of the measure m ^. In particular,

for A in C we will define the semi-norms p - by

p (y*) = (in ̂ ) (A) .

As in [4] and [5] it will be of interest when a* is

compact relative to this topology. However here the situa-

tion is different in that the above topology need not be

Hausdorff. It also should be pointed out that in contrast

to the countable additivity of m ^, the q-variation

(my*)q
 i s o n ly countably subadditive. In [4] and [5]

it was of interest to determine under what conditions m

is countably additive. In the present situation countable

additivity will follow from the fact that the q semi-

variation is finite (for q ^ 1) (see [1]). In this
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r e Sp e ct at the conclusion of this work, we will be able

to state some additional ideas which will require further

research.

In [6] Orlicz studied the properties of weakly ab-

solutely continuous subadditive set functions. Some of

the present results are applicable to the present situation

when a* fails to be compact in contrast to the situation

in [5] where compactness is always used.

The results of this article will be organized as

follows. In section 2, the main notations and definitions

will be presented. The topology of &* will be studied,

and the conditions under which the q semi-variation is

right continuous will be established in section 3. As

pointed out earlier one of our hypothesis will be that a*

is compact. If a* is not compact some conditions intro-

duced in [6] by Orlicz will be used. Conditions for the

topology to be Hausdorff will be defined and topologies

corresponding to different values of q will be compared.

In section 4, operators on £g(|u) (1 <£ p < a> ) spaces

will be studied using the topology introduced in section 3.

If U is a continuous operator from £̂ (/i) into F with

U absolutely continuous with respect to /i then U is

shown to be compact if and only if the associated topology

makes a* compact. It is then shown that the q semi-

variation is right continuous if and only if there exists



some sequence of open Baire sets converging to 0 and the

integral satisfies some continuity condition on the unit

ball of £g(|i) (for ^ + ~ = 1, and p ̂  OD ) . If U is a

continuous and compact operator from ^(a) into F with

U absolutely continuous with respect to JU, it is then

shown that the representative measure of U is countably

additive. Finally if U is a continuous operator from

into F (p ̂  QD ) and if

, y*>(f) =

f o r f e £™(/i) t h e n i t i s shown t h a t whenever \\<U9 ^ !
Hi /\ P

for y* e a*, satisfies a Fatou condition and is dominated

by a set function having the 0 property (see [6]), the

representative measure of U has a right continuous q

semi-variation.

The book [1] by N, Dinculeanu on Vector Measures

has generated much interest in this area of research.

Frequent reference to it will be made throughout the

paper.
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2. Definitions and Notations

As above C will denote a ring of subsets of the non-

empty set T, and JU will denote a positive finite measure

on C For the Banach spaces E and F, L(E,F) will denote

all bounded linear operators from E into F and a* will

denote the unit sphere of the dual space F* of F. By £™({i)

we will denote all E valued functions that are p-integrable

with respect to fj, (in the sense of [1]) . If f belongs to

, then N (f) will denote the p-norm of f. If U is a
p

linear operator defined on Ŝ(ju) we will write U « JU if

IlnJI = 0 whenever u(A) = 0 (see [1]). The letter m willA P

denote always a measure from C into L(E,F).

As in [1] 9 for 1 { q ^ OD, — + — = 1 the q- semi variation

of the measure m is defined for A in C by

in (A) = sup|£m(A. )x. |

where the supremum is taken over all disjoint sets A. in C

and x. in E for i in a finite indexing set I and for which

N ( £ XA X- ) <. 1- For A in C , y represents the charac-
p i€l i ' A

teristic function of A. The q-variation ~ of the measure m

is defined for A in C by

m (A) = sup
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where the supremum is taken in the same manner as the q-semi

variation.

Two important properties of these definitions are

(1) mg(A) = sup {(iT7)g(A): y* in a*) .

(2) "m"" = m if F is the field of scalars.

The set r(E,F) will denote all finitely additive set

functions from C into L(E,F).

For the set r(E,F) defined above, we will let r repre-

sent that subcollection of set functions m in r(E,F) whose

q-variation^ m 9 is finite on C. If q ^ 1, it is known

that m is countably additive.

A sequence {A } of sets in C is said to be decreasing

monotonically to 0 if n A = 0. In this case we will write
1 x1

[A } XT d.m. 0.

A scalar valued set function ft on C is said to be

right continuous at the sequence {A } of sets in C if

A d.m. 0 implies that the sequence {H(A )) converges

to 0. The function h satisfies the 0 property (as in

[6]) if for every sequence {B } of disjoint sets in C*

the sequence {n(B )} converges to 0 (some authors have

referred to this property as "strongly bounded").

It is shown in [6] that while every function of finite

variation satisfies the 0 condition,, the converse need not

be true.
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Ttie scalar valued function r? is said to satisfy the Fatou

property if v is real valued and if lim inf r?(En) ̂  *?(E)

whenever E c E and the sequence (M E~ E
n)} n GN

 c o n v e r < ? e s t o Ot

(A.) |q

We finally recall that

r Im(A.) | nl/q
(3) (in ) (A) = sup £ ^ if q ^ 1 where the

sup is taken over a finite family of disjoint sets A.

from C with A i c AeC and

(4) (m )(A) = sup 'm{^j 1 = (m )(A) where the sup is
CD \X \&) CD

taken over BeC , B c A e C . The convention that — is

interpreted as 0 is maintained.

In general all the notations and concepts pertaining to

vector measures can be found in [1].

3. Topologies associated with m -
c a q

For m in r and A in C we consider the functions
q

p defined on F* by
m ̂  i\

In the unit sphere a* of F* we consider the following two

topologies. We denote by 6 the weakest topology on a*
vtXy q
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making all semi-norms (which we now prove) p . continuous.
m j /\

By 6 we mean the topology on &* generated (in the usual

way) by all the semi-norms p for A in C and m in
m^ i\

rq '

LEMMA 1. For every 1 < q < OD , p - jLs ji semi-norm

on F*. Thus F* is a locally convex space under the topology

generated by p (see [8]
m y z\

Proof: It is clear from the formula defining

that p_ ̂  (ay*) = |a|p_ * (y*) • Since

I m (A .) + m (A.) Iq

P m A ( y l + y 2 ) = S U p L1 cTl J
m,A 1 / L M ( A ) q X J

for q ^ ao (where the sup is taken over a finite sequence

of disjoint sets A. with Ai c A) it follows from the

Minkowski inequality applied to the q-summable sequences

|m (A.) | |my (A.) |

{a, },^T and f b ^ ^ where a± = -̂̂ - and b.

that

If q = OD the inequality follows immediately from the ex-

pression for (m
CD
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From [4] we are motivated to define the boundary of r

to be all m in r such that whenever A is in C there
q

exists some y* in a* with m
a(

A) = (m*) a (
A) •

LEMMA 2. If (a*, 6 ) is a compact space then the
m,q

boundary of r is r .
— q — q

Proof; There exists a sequence (Y*)n M ^n ®* such that

the sequence {(m *) a(
A)} n e N converges to m (A) . Without

loss of generality we may assume (by compactness) that (Y*}n N

converges to y* in the 6 topology (for some y* in <?*) .

Thus the sequence {|(m J (A) - (m„) (A)|}n^N converges to 0J (A) (m„)
y m y n si

and mg(A) =

If a* is compact in the topology generated by the semi-
norm p (for m and A fixed) then m (A) = (m #) (A) .

Tci,t\ q y q

The proof follows the proof of Lemma 2.

Since right continuity of m will be of importance for

later results, the following theorem, which outlines some basic

results in that direction, will be of interest.

THEOREM 1. Let ( A
n) n -N be a. sequence of sets _in C,

decreasing monotonically to 0. JjE <j* JLS compact in the

topology generated by p 3 then there exists a. sequence

.in <y* such that (m ) (An) = m (An) . Moreover if
^n ^
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y 1& 3JQ. accumulation point of (Y^n N ~ t h e a^ o v e topology,

then the following statements hold,

(a) If (m „) is right continuous at {A ) ._ then m
— y* q - — — - — — _ J*J n€N — q
is right continuous at {A } •

(b) Ijl q fi 1 and m JLS ̂ in r then m jLs countably

additive.

(c) If (m ») is right continuous at [A } ._ and if
"""~" y Q — — _ — _ — _ - . n n6JN — —
LI(A ) > 0 then m i s continuous a t (A } XT for
r- ft ————- j* _ _ « _ _ - _ 21 n£JN • — •

all 1 < r < q.

(d) I_f m xs_ _in r, and if m ̂  Ĵ s countably additive

for every y* Jm a^ then m, îs right continuous

at every sequence [A } d.m. 0 .

(e) If (m .) satisfies the O condition and the Fatou
— y* q \l
property for each increasing sequence {E } then

(m J) is right continuous at every sequence [A }
y g "~—— «—--—--—---—. — • n

d«m, 0 .

If a* iŝ  not necessarily compact in the topology 6 3 then

m i^. still right continuous at every sequence [A ) d.m. 0

provided there exists some set function A from C into F for

which

(f) (m ̂ ) <C A for every z* ir̂  a*.z q
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(g) 7\ satisfies the O condition,

(h) Each (m ^) satisfies the Fatou condition,

(z* in a*)

Proof: First we show statement (a) If m is not right

continuous at {A } we may assume that for some e > 0 9

m (A ) > £ . Then p w (y*) > e (y* exists by the note
q n iu_,f\ n n

preceding the theorem) . Thus p A (y* - y*) < e/4 for all
m ^ Jt\ -• n

n > N. Consequently p m - (y* - y*) < e/4 for n ^ N , How-
"™™ ill • xTL ii

ever by Lemma 1, p m A (y*) > c/2. This contradicts the hypo-

thesis that (m ^) is right continuous at {A } •

Statement (b) is shown in [1] . Statement (c) follows

from (a) and from the inequality

mr(A) < ju(A)""
1/q m (A)

for A such that JLI(A) > 0 (see [1]).

In statement (d) , if m is in r,, then m « \x . TTius

m = in-. In [4] the stated property is shown to be true for m.

Statement (e) follows from Theorem 4 of [6] applied to

Vq *
Finally the second part of the theorem follows from

Theorem 7 of [6]. It is necessary to apply that theorem to the
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family M = { (m „) : z* e er*} . in particular as needed there, if
z q

the sequence {(m ) (A )} converges uniformly to 0 for z*
z q n ijtiN

in <j* then the sequence {in (An) }n converges to 0. This

completes the proof of the theorem.

Applying the results of [6] to the above family M would

yield conditions under which the (m ^) are uniformly absolutely
z q

continuous with respect to \x (in the e - 6 sense) .

We can now obtain conditions equivalent to the space

(a* , 6 ) being Hausdorff.

LEMMA 3. The following conditions are equivalent.

(1) The space (<?* , 6 ) is Hausdorff.
q

(2) The closure of the linear span of U U m(A) a
mer AeC

is F (for or the unit sphere of E) .

(3) The topology 6 is stronger than the weak* topology.
q '

Proof; The proof follows a pattern similar to that in [4]•

That (3) implies (1) is clear. Now assume that (1) is

true and that (2) is false. Pick a non-zero z in cr* such

that for a finite indexing set I, -< F s. m(A.)x., z> =0
iel x 1 1

(the s. are scalars and the x. belong to a ) . Thus m = 0-*- I z

and (ni ) = 0. Hence pw . (z) =0 for all m in r and A
£* q in y r\ q

in C. This contradicts (1) .

M H T LIBRARY
CARHESIE-MELLON liKil'ESSI
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Finally we show that (2) implies (3). Assume the net

fz 1 converges to z in the topology 6 . To show [ z a ) a € A1 aJaeA H

converges to z in the weak* topology, let s±} A£, m± be such

that ||y- X? S;. mi(Ai)xi|| < €/2. For some aQ and a > a
i=l

Q we

have

i
i l

Np(XA i
 X i } < m i^a- Z ) q ( A ) <

So

< TJ S . m. (A . j
m •% «L -i- J -

^ N (XA_ xi)(miJza-z)q(Ai)<

It follows that |<y, z a- z >| < 2e

THEOREM 2. (1) T£ (a*, 6̂ ) is a Hausdorff space then

(e*, bj is compact if and only if (cr*, 6 ) = (G*, wk*) ,
q q

where wk* represents the weak* topology for g*.

(2) If (a*, 6 ) and (&*, 6 ) are Hausdorff spaces
q r - —————— —

then (a*, 6 ) and (cr*, 6 ) a r e bo th compact i f and only

i f 6 = 6 r = wk*.
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Proof; We show (1) . If (a*, 6 ) is Hausdorff then the

identity map from (o*, 6 ) onto (a*, wk*) is continuous by

Lemma 3. Since (a*, wk*) is a Hausdorff space,, the map is a

homeomorphism. Of course statement (2) follows immediately

from statement (1).

In contrast to the situation depicted in [4] one may

have (cr*, 6 ) as a non Hausdorff space. If \i is identically

zero,, then r reduces to zero. Thus statement (2) of Lemma 3

shows that (g*, 6 ) is non Hausdorff. Ihe other extreme is to

have /it purely atomic. Then (a*, 6 ) is always a Hausdorff

space. In fact let m (A) = 0 when t / A and mt(A) = UeL(E,F)

when teA. If A. is the atom containing t, ()Lt(Â ) > 0. If

B c A. , then /i(B) = 0 if and only if B = 0) , then

(m, ) (A) = — ^ 7— is finite. So m belongs to r . By
t CJ Q -L t- VI

/i(Ai) q

statement (2) of Lemma 3, it follows that (c*, 6 ) is
Si

Hausdorff.

The preceding observations point out that there are many

more countably additive measures than measures in r (for

q ^ 1). In [4] some conditions were pointed out which were

equivalent to the topology generated by p (m finitely
m ̂  i\

additive, fixed, and A in C also fixed). A brief look at

the proof shows that this does not carry over to the present

setting since the point mass in general is not in r . However

we have the following result.
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PROPOSITION 1. Assume {<j*, 6 ) JLs a. Hausdorff space,

then the following conditions are equivalent,

(1) The topology generated by p (for m jun r

fixed and A _iii C also fixed) is Hausdorff.

(2) r . .== {n: n jLn r for which (m ^) =0 implies

(3) The topology generated by p A on g* jjs stronger

than the wk* topology of c*.

Proof: If (2) holds and (1) does not there exists a

non-zero y* in a* such that (m „) = 0 . Thus for all n
y* q

in r , (n „) = 0. This contradicts the fact that (o*, 6 )
q y q q

is a Hausdorff space. The rest of the proof follows the pattern

of [4] and will not be reproduced here.

4. Linear Operators on £^ .

In this section C - will denote the a-ring of

^ta-finite subsets of T (see [1] ) . Now if 1 <C p < OD ,

if U is a continuous linear operator from <£~,(tx) into F

with U « (i and if TeC ~9 then there exists a unique

measure m from C into L(E5F) with in (T) finite and

U(f) = Jf dm. If p = OD , then there exists a finitely
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additive set function m from C into L(R,X) with m(T) < OD
QD

such that U(f) = J f dm for all f in £ ()i) where R denotes

the scalar field (see [1]).

THEOREM 3. (1) Let p ^ O D , - + - r = l and let TeC f.
— p q — g-̂  ±

If u is a. continuous linear operator from ££(jLl) into F

such that U « ju , then U ijs ja compact operator if and only

if (or** 6m ) is a compact space.

(2) Let p = OD . rf U JLS _a continuous linear operator

from £̂ ?(/Ll) into F such that U « JLI , then U i s a compact

operator if and only if (<?*, 6W n) is a compact space.'y

Proof; In showing (1) , let us assume that U is compact

and let {z*} be a sequence in a*. Without loss of gener-

ality we may assume that the sequence converges to z* in the

weak* topology. Thus we need to show that the sequence converges

to z* in the 6 topology. (Now the sequence {U*(z*)}

converges to U*(z*) in the norm (see [3]).) Note that

(m „) = (m J since m „ has values in a dual space. Tiiusv cr v cr v

for A in C, there exists a disjoint sequence of sets A.

in C with A.̂  c A, ieN, such that if € > 0 and if

N (E xA • x±) < 1 then,
p i

S*)Q(
A) < |<Lm(Ai)xi, z*- z*> I + e

Jn ^
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Thus

N (E XA • x^H^tz*- z*)|| + e
v i

Consequently the sequence (z£}n€N
 c o n v e r 9 e s t o z* i n t h e

6 topology.
vciy q

Now assume that (c*5 6^ ) is compact and let (z^n€N

be a sequence in a*. Without loss of generality we may assume

(by compactness) that the sequence converges to z* in the

6 topology. If f e s£,(ix) , then
Hlj Vj[ Hi

, U*(z*) - U*(z*)>| = |<U(f) , z*- z*

= I < f dm, z* - z*>
J n

< N.

Since the latter converges to zero for n in N, the sequence

{U*(z*)} xr converges to U*(z*) in the norm. Thus U* is

is compact and by [3] U is compact. The proof of (2) is

similar and will not be reproduced here.

For the next theorem let C denote the a-ring generated

by the compact Gg subsets of the locally compact Hausdorff

space T. Again if 1 < . P < . O D > ~~ + — = 1, and if
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then it is shown in [1] that "the integral of f e £:

relative to m" is defined (and is denoted by J f dm) provided

that m (A) is finite for all A e C ^ (the variation of m
q (J y J-

however,, need not be finite) .

The next theorem establishes a relation between the

continuity of the integral J f dm on the unit ball of <£̂  and

the right continuity of m .

THEOREM 4. Let C be as described above and let p ^ OD ,

— + — = 1. If m is a measure from C into L(E,F) with mp q q

finite on C ^ , then the right continuity of m jLs equiva-

lent to the following two conditions taken simultaneously.

(1) For every sequence (A } of? sets in C decreasing

monotonically to Q3 there exists a^ sequence of open

Baire sets U jLn T such that A c U 3 n J-n N^

and the sequence {m (U )} converges to 0.

(2) The seguence Ujf dml 3 N converges uniformly

to 0 for every sequence ff } XT in £„ (û  with

N^(f ) < 1 and f (x) = 0 for x in T\U ,
p n — — n • — n

n in N.

Proof: Let us assume that m is right continuous. As

in the proof of a similar result given in [2], it can be

shown (replacing the p quasi semi variation by m ) that
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for every AeC and e > 0 there exists a compact Baire set K

and an open Baire set G with K c A c G and m (G - K) < €•

Thus we obtain a sequence ( u
n} n e N

 o f °P e n Baire sets with

the sequence {m (U n)) n € N converging to 0. For every

f (m<£̂ (jLj) satisfying (2)

|Jfndm| <Np(fn)mq(Un)

Of course the latter becomes arbitrarily small.

Conversely assume (1) and (2) hold. Let CA
n}n€N

d.m. 0 and let U be as above. Going to a subsequence if

necessary, let us assume m (A^) > e for all n. Pick j

large enough so that whenever the support of f is a subset

of U. and N (f) <, 1 |Jf dm| < e/2. Ttiere exists some

zea* and some finite set of disjoint subsets B. of A.

such that \<Z m(Bi)xi, z> | > e with N (E xB • *±) < 1-
i i i

If f =

x
x. then |Jf dm| < e/2 which contradicts

i

IJ f dm| > e. Consequently the sequence [m (A )} converges

to 0.

We now study the case for q = 1. Also for q / 1 we

may ask the question for what kind of operators on Z^(^x) is

the q semi variation of the representative measure right

continuous?
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If U is a continuous (in the norm of <£̂ (ju), 1 <£ P < OD )

operator with U « JJL, from £g(fi) into F, then we introduce

the operator <U,y*> from £g(fi) into the scalar field R

defined by

<\J, y*>(f) = <U(f),y*> (y*ea*)

THEOREM 5. (1) JEj: U JLS ji continuous and compact operator

from £^(^0 into F with U « /i , then the representative

measure of U _iis countably additive.

(2) Let U be a. continuous operator from $L(\x) into

F (p / OD ) with U « a and let T € C ~. If there exists

a scalar valued set function A satisfying the O condition

with lUu, y* > 1| <, ^ (A) for all A jln C and with

lim inf || <J, y^> A ||p 2 ||< U, Y^>A||p for every An and A

in C for which the sequence {JLI(A -A)} converges to O,

then the representative measure of U ijs q-variationally semi-

regular.

Proof; First we show statement (1) . Since U and y*

are continuous and since < U, y* > has its range contained in

R it follows that || | < us y^ >A | \\^ = ||<u, y^ >A || and that

IHu, Y ^ l l ^ < || <U, y^>T || < C3D . Now u(f) = Jf dm where m

is finitely additive (see [1]). It is easy to see that
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<U,y*> (f) = Jf dmy*. Thus || |< U,y* >T | H^ = my*(T) which

is finite. By [1], m ^ will be countably additive if and

only if for every sequence {cp ) N in i00^) which is de-

creasing and converging to 0 a.e. implies that the sequence

[<U,y*> (cp ) } N converges to 0. Since

|<U,y*> (cpn) | 1 !|cpJmm^

and the latter goes to 0 for neN, it follows that m „ is

countably additive. Since U is assumed compact it follows

that U* is also. We now show that <j* is compact in the

topology generated by pw _. Let [y^}^* be a net in a*.
ITlj 1 a. a.£t\

Without loss of generality we may assume [y*K * converges

to y* in the weak^ topology. By compactness of U^ U(y^)

converges to U(y^) in the norm of (£^(/uO)*. Since m .

has values in a dual space (in the scalar field here) there

exists a family A. of disjoint sets of C and scalars a.,

| a. | <; 1 such that

m „ v , ( T ) < < £ m ( A . ) a . , y * - Y^>\ + €v "**— v"^" . i x n
J n J 1

i

- y*)ll + c

Since the latter becomes arbitrarily small for n in N, it

follows that cr̂  is compact in the topology generated by p .
m^ x
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Using the compactness of <?* and the fact that m # is countably
J.

additive, it is easy to give an argument by contradiction to show

that m is countably additive.

To show (2) we know from [1] since T e C ^ that
a, £

f»
U(f) = i f dm where m (T) is finite. It is easy to check

J q
that

, Y*>A!|p

It then follows from the last part of Theorem 1 that m has

a right continuous q semi variation.

5. Some Concluding Remarks,

It would be interesting to further study these topological

spaces associated with these measures. The topological spaces

under consideration, as has been seen, need not be metrizable in

fact they need not even be Hausdorff. It would be interesting to

consider the requirement that (<j*, 6 ) or (a*, 6 ) be para-
q

compact, metacompact or any of the other "compactness type"

conditions. What is the effect of these conditions on the corre-

sponding operator defined on <£̂ (u)? The compact operators are

then a subclass of the class of operators so obtained. Let us

emphasize again that to go beyond the more restricted setting

of compactness, we found essential the results of Orlicz in [6J.
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