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by
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Abstract

We consider the Euler equations associated with a func-

tional of the form

h (u) = -! F. (x,u,grad u) dx

where

2 2
F. (x,u,p) = a(x,u , p®p) - Ab(x,u ),
A

2
and F. is convex in (u ,p<Sp) for A > 0. This class of

equations contains the class of semi-linear second order

elliptic problems generally referred to as sublinear. Under

appropriate conditions of continuity, ellipticity, and "strict

sublinearity" we prove existence and uniqueness of a positive

u for which h. attains a maximum.
—A
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1. Following the classification which appears to have been

introduced by Pimbley [14], [15], one calls the semi-linear

boundary value problem

(1.1) Lu = f (x,u) , x € Q

(1. 2) Mu = 0 x € SO

sublinear if the linear operator £ determined by L and the

boundary conditions (1.2) has, in some sense, a positive inverse

and 0 < uf (x,tu) <̂  tuf(x,u) for xefl, u / 0 and t ]> 1; the

problem is called superlinear if £ is the same and

0 < f(x,tu) £ tuf(x,u) for x€ Q, u ^ 0, and 0 < t < 1.

If the operator <£ has a positive Green's function, so

that (1.1)-(1.2) is equivalent to an integral equation

u(x) = J G(x,t) f (t,u(t))dt,

then one can expect uniqueness of the positive solution of (1.1)

(1.2), i.e. that this problem can have at most one solution

which is positive in ft. For the second order ordinary differ-

ential equation with zero end conditions such a result was

This research was supported by National Science Foundation Grant
GP-21512.



proved by Picard [13]. (For this case the uniqueness proof

reduces to showing that there is never a conjugate point in

the interior of the interval. For the superlinear case, as

considered in [3], the question of the uniqueness of a posi-

tive solution is a more subtle one.) In [17] Urysohn proved

uniqueness of a positive solution for a sublinear case of the

equation bearing his name, i.e.

u(x) = \ K(x,t;u(t))dt.

Urysohn1s result was abstracted and generalized by Krasno-

sel'skii and Ladyzhenskii [8]; see also [6] or [7]. Similar

uniqueness results are found, for second order ordinary dif-

ferential equations in [1], [4] and [5], for integral equations

in [9] and [12] and for second order elliptic partial differ-

ential equations in [16]. Uniqueness results for elliptic

problems with non-homogeneous boundary conditions are given in

[10].

In this paper we show how the notion of sublinearity can

be extended to a class of quasi-linear second order elliptic

boundary value problems of variational type. For such equa-

tions we give a uniqueness theorem for positive weak solutions.

The proof uses elementary variational inequalities; by contrast

the proofs of the theorems quoted above depend mainly on order

theoretic methods, which in fact are not entirely absent here

either.



The problem which we treat here can be written formally as

(1.3) L J*- (j(^r- + T T - ) a ( x , u 2 ( x ) ^
ij=l j ^ij 5ji

+ ||(x,u2(x),?(x))u(x) = -|^ b(x,u2(x)), in

(1.4) u(x) = 0 on

where % (x) is the matrix (>— *r—) , and b(x,rj) is concave

in T] while a(x,r),?) is convex in (rj,?). It is consistent

with the classification referred to earlier to call this prob-

lem a sublinear boundary value problem. We observe that, for-

mally at least, it includes the semi-linear problems studied

in [4] and [16].

N 2

2. Let Q be a bounded region in R with a C bound-

ary and let Q be a subset of £1 of full measure. We will

denote by u the set of all triples (x.,rjj,5) where x c Q , r\ is
o

a non-negative real number and 5 = (?• •) is a real N x N

matrix.

Throughout this paper p will denote a fixed real number

with p ^ 2 and s will denote a fixed element in the extended

real number system with
(2.1) p £ s, and s < Np/(N-p) if p £ N.

By E we denote the Banach space of measurable functions
P *s

x —> (tfj?) y T) a real number, 5 a real N x N matrix, which

are defined on Q, and for which the following norm is finite



(2 .2) 8(77,5)

2
where U»*«|| i-s the L (flJ norms

2
( J l n | ) S , s < oo

2 Q

Ihlloo = e s s

and
£ 1

ell - (J I5 | 2 dx>p,l
2 "

w h e r e •,
N= ( £

r2 v2

'ij) '

We denote by E the "half-space"
p,s

[(i],?)eEn o : TJ(X) ^ 0, X€ Q }.

Let a = afx,^,?,) be a function defined on u and let

a (x,T},§) = cia(x,T),§)/d?)

we shall assume that a satisfies the following conditions.

(A.I) For each fixed pair {r\,%), a(«,rj,§) is measurable,

a(x,',-) is of class C and convex in (r?,?) for each fixed

x e Qo and

(2.3) a(x,O,O) = 0, x e O
o *



There exists an m > 0 such that for all (X,T},§) e U

N N p

L aij(x,T?,?)titj ^ m L tj

for all real vectors t. Finally

a (x,rj5?) ^ o.

(A. 2) Ihe mapping

(<n, ?) (•) —^ a ( - , T J ( * ) * 5( * ) )

+ r
takes E into L (Q and is bounded on bounded sets and contin-

p,s

uous, where

(2.4) r - s/(s-2) , (r = 1 if s = oo) .

For each i,j = 1,,..,N, the mapping

takes E into L (Q and is bounded on bounded sets and con-
P y S

tinuous with respect to the strong topology on E and the

r P,s

weak topology on L (Q , where

(2.6) r± = p/(p-2), (r1 = oo if p = 2) .

We shall say that a satisfies condition (A. 2+) if it
+ rlsatisfies (A.2) and the mapping (2.5) from E to L (ft) iscontinuous; in the case p = 2, r- = oo, this becomes overly

restrictive,

plies (A. 2+) .

restrictive, when on the other hand r- < oo then (A. 2) im-
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As a consequence of the convexity assumption in (A.1) we

have for symmetric matrices %,, §' the inequality

N

(2.7) a(x,t?,5) - a(x,Tj',?') 1 Z a. . (X,TJ,§) (?. .-Sj .)
i,j=l lJ 3 3

+ a (x,r»,5) (77-TjM .

With the aid of this inequality we prove the following result.

LEMMA 1. Let (A.I) and (A. 2) hold. Then

(2.8) a(u) = f a(x,u2(x),5(x))dx

where

defines a_ continuous functional a., bounded on bounded sets, on

W 1' p(« ando

(2.9) a(0) = 0.

Moreover, a_ ^s_ Gateaux dif ferentiable with derivative A defined

(2.10) (Au,v) = f

+ a (x,u2 (x) , 5 (x) ) u (x) v (x) ) dx,

for veWQ
l P(J | , and where § is as above; if (A. 2+) holds,

then a is Frechet differentiable.



Proof. Making use of the Sobolev imbedding theorem, we

first observe that the mapping u —* (u , (̂ — ^ — ) ) is continuous
OX• OX•

1 D + X D

from W '^(C$) to E • maps bounded sets onto bounded sets, ando p, s
is Frechet dif ferentiable; its Frechet derivative at U € W '^ (Q)

to E defined byp,s

v -4 (2uv, (-̂  TT + •*- ^ ) ) #
dx. dx. dx. dx . '

We now consider the functional

(2.11) J a(x,rj(x) ,?(x))dx

on E . From the inequality (2.7), used twice, we have for
p j s

p, s

r N

(2.12) I ( L â ^ . (x,r/! , §!) (%± .-?]_ .) + a (x,7)T , ?!) (?]-n!) ) dx
Q i,j=l

^ j (a(x:,r),§) - a (x,t]
! , 5!) ) dx

r N

^•J (. ? ai:.(x,7],?) (?ij-§ij) + a (x,t),S) (rj-??M)dx.

The continuity and boundedness on bounded sets of (2.11) on E

follows from (A. 2) and (2.12). If (A. 2+) holds then the left-most

and right-most terms in (2.12) differ by o(| (rj-T}! , ?- ?f) I ) as
'P* S

(rjf ̂  ?f) —> (?7, 5) in E . Otherwise we put ?! = % + th,

7]T = 17 + tk, t real, and then for h5k fixed these same two

terms differ by o(|t|) as t —> 0, and the Gateaux differentiabil-

ity follows.

The lemma now follows by composition and application of the

chain rule; (2.9) follows immediately from (2.3).
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We note that Au is of the form L u where L is the

linear operator from W^p(fi) to (Wo'
p(ft))* defined by

(2.13) (Luw,v) =

C N 0 >. 7\

2 ( L a. . (x,u (x),?(x))§-£- gL. + a(x,vT(x) , ? (x) ) w(x) v(x)) dx.

In fact we have the following.

LEMMA 2_. Ihe operator A satisfies

Au = L u

where L jLŝ  defined by (2. 13) . The mapping

1 pis continuous with respect to the strong topology on W ^ (ft) and

the weak operator topology.

We now let b(x,r)) denote a real-valued function defined on

ft x R+ and assume the following.

(B.I) For each fixed xeftQ, b(x,«) is of class C and

concave in r\,

(2.14) b(x,O) = 0 , x G 0Q.

(B.2) TTie mapping

(2.15) f](.) —> b (.,tl(0)

2" r

takes L (ft) into L (ft) , and is bounded on bounded sets and con-

tinuous, where r is given by (2.4) .



The concavity assumption implies

(2.16) b(x,t|) - b(x,nf) £ (T»-r?!)b (x,T}») , x e O Q.

LEMMA 3_. The functional

b(u) = f b(x,u2(x) )dx

is bounded on bounded sets and continuous with respect to the weak

topology on bounded subsets of W *P(Q) ;

(2.17) b(0) = 0.

Moreover3 b jjs Frechet differentiable with derivative

Bu = Muu

where M : W1^P(O) —> (W 'P(a))^ is the multiplication operator

U O O
2

w —> 2b (*,u (-))w.

The linear operator M and the operator B are both compact and

u —> Mu

is. continuous cm Wl5P(q) with respect to the uniform operator

topology.

Proof. The boundedness assumption concerning (2.15) is equiva-

lent to
s

k-^T?) I £. °(ae) + CTJ2r,

rfor some non-negative a e L (Q>) and positive constant c. This

implies that
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+ 2cr(s+2r)"1Tj
2r),

which in turn implies the boundedness assertion concerning b.

To complete the proof one uses the compactness of the imbedding

W *^(Q —> L (£1) 9 the argument is similar to that in the proof

of Lemma 1.

We set

h(x,T],S) = b(x,rj) - a(x,7),S)

and

h = b - a

and assume the following condition of strict sublinearity.

(H.I) For 77 £ rj!

Note that the convexity assumption on a and the concavity assump-

tion on b, which were made respectively in (A.I) and (B.I) above

imply

LEMMA 4. Let (A.I), (7^.2), (B.I), (B. 2) and (H.I) hold.

Then for u,veW1)P((J
Q

(2.18) h(v) - h(u) £ (L u,u) - (M u,u) - (L v,v) +

with equality only if |u| = |v| .
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Proof, We use the inequalities (2.7) and (2.16) to estimate

. , 2 ,dv dv s v , , 2 du du
h ( x> v '^^r^ - h ( x> u '

and then integrate to obtain (2.18). From (H.I) it follows that

the inequality in the indicated estimate will be strict at points

x e O where | u (x) | ^ |v(x)|, it follows that (2.18) is strict

unless |u(x) | = |v(x) | almost everywhere in £1.

3. Throughout this section we shall assume the conditions

(A.I), (A. 2), (B.I), (B.2) and (H.I).

THEOREM JL. £f

(3.1) b(x,rj) > 0 for all x e 0, and all r}*

then the weak problem (1.3)-(1.4), i.e.

(3.2) Luu = M^u

has at most one non-trivial non-negative solution. If such a.

solution exists then it must be positive almost everywhere.

Proof. Let u be a non-trivial non-negative solution of

(3.2), then from (2.18) and (3.2)

h(u) > h(v) + (Luv,v) - (Muv,v)

for all V € W 9^ (Q with |v| ^ u, the inequality being strict

by Lemma 4. Since u is an eigenfunction corresponding to the

eigenvalue 1 of
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L w = AM w,
u u 9

it follows from Theorem 3, in the appendix , that

(Luv,v) - (l\v,v) > 0

unless v is proportional to u. We conclude that h assumes
l.p

a maximum in W (O) at and only at u and -u. It follows

that (3.2) cannot have another non-trivial non-negative solution.

Remarks. The non-negativity condition on a (x,r},§) in
T?

assumption (A.1) can be relaxed to

a (X,TJ,?) ;> -mT , (x,r|,5) G U

where mT depends only on m in (5.2) and on Q, and is chosen

so as to guarantee that L is strictly definite on W 'is strictly definite on W

This is particularly relevant for the semi-linear case, where we

obtain a theorem similar to that of Rabinowitz [16]. The proof

in [16] makes essential use of the maximum principle; here also

we use this principle (see the proof of Lemma 8) but only for har-

monic functions.

(2) The variational uniqueness principle for sublinear

problems which is developed here is in a sense dual to the varia-

tional existence principles used by Nehari in [11] and subsequent

work are further exploited by the author in [2].
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4. in this section we shall prove the existence of an

almost everywhere positive solution in Wo (Q of (3.2). In

order to do this we must make the following assumption.

(H.2) For p as above there exists a positive constant

r 1
e > 0 and there exist functions f e L (Q) , g € L (Q 3 (where r

is given by (2.4), and s satisfies (2.1))such that for xefl ,

7} ̂  0, t e RN,

(4.1) b(x,rj) - a(x,r?, (t±tj)) £ -e| t|
p + f (x)r) + g(x) .

2
If p = 2 then for each xeQ 9 a(x,u , (t.t.)) is convex in

(u,t) , and, given any £ > 0, f and g can be chosen so that

THEOREM 2. Let (A.I), (A. 2), (B.I), (B.2) and (H.2) hold.

Assume also that the spectrum of the linear eigenvalue problem

(4.2) L Q W = A M Q W

contains -a number < 1. Then (3.2) has a. non-negative non-trivial

solution u.

1 ~
Proof. From (H.2) it follows that for u e W '-o

For such a u,

RliHT LIBRARY
CARNEeiE-MELLON UNIVERSITY
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thus, by making a suitable choice of f,g if p = 2, we have

(4.3) h(u) £ -e!llulli,p + Y

where e! > 0, y is a constant.

From (2.18), since ja and b vanish at 0

(4.4) b(u) - a.(u) ^ (M^u) - (I^u,u) .

From the hypothesis concerning the spectrum of (4.2) and the con-

tinuity assertions in Lemmas 2 and 3 concerning the operators

L and M it follows that for some u e W '*? (£})
u u o

(4.5) (Muu,u) - (Luu,u) > 0.

indeed by hypothesis there is a v with (M v,v) - (L v,v) > 0,

then as a -» 0,

putting u = av, for some small a, we have 4.5. From (4.4) and

(4.5) it follows that

(4.6) sup(h(u) : uew£'
p(«) > 0.

From (4.3) we conclude that h is bounded above and h(u) -> -oo

as ||u|L —> co. Since b is weakly continuous, in order to

prove the existence of a maximum for h it suffices to show that

a. is weakly upper semi-continuous; this is proved in Lemma 5 be-

low, if h attains a maximum at u then u must be a solution

of (3.2) since the Gateaux derivative of h at u must be zero.
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Since u can be replaced by |u| without changing the value of

h (this is proved in much the same way as Lemma 6, below, is

proved), we can assume that u is non-negative. Up to the

proof of Lemma 5 this completes the proof of Theorem 2.

LEMMA 5_. The functional a. is^ weakly upper semi- continuous

on W*'

Proof, If p = 2 then by (H. 2) a. is convex on W^'

and the weak upper semi-continuity follows. If p > 2 then we

consider the functional

r

on E . The weak upper semi-continuity of this functional
P *s

follows from the convexity assumption in (A. 1) 9 that of a.

follows directly.

Remark, The proof of Theorem 2 is essentially the argument

given by Hempel [4] in the proof of the same result for the semi

linear case. We note that Hempelfs hypothesis, in our notation

(4.7) lim b (x,n) 1 0,
7} -> OO '

together with (B.I) and (B.2) implies that given £ > 0

(4.8) b(x,r?) <: f(x) |rj| + g(x)

with ||f||r ^ £. , ge L1 (O) . Indeed

^(XjT?) 1 b (x,0)
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so let 6 be chosen so that

J b (x,o

when A c fl is measurable and /i(A) <̂  6 (/i denotes Lebesgue

measure). Choose T^ > 0 (by Egoroff's theorem) so that on a

measurable subset B of £2 with /i(B) > /-t(f̂  - 6,

(x,r?) ££/2jx(O) when f|
7/

Thus for x G B

r7?
b(x,r?) = J b (x,t)dt 1 ?]^/2M(n) + T^ b (x,o)

o ' 'o

Thus (4.8) holds with

f = )Ub (.,0) + e/2/i(«), g = Tcb(x,0)

where x denotes the characteristic function of A = £J\B. Thus,

when p = 2 the condition

(4.9) a(x,r?,(titj)) ^ e|t|
2 - Y

f

for all x e Cl , r\ ;> 0, t € RN, together with (4.7) implies (4.1) ,

with f,g as indicated. In particular Theorem 2 contains the

corresponding result for the semi-linear case as obtained in [4].
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5* Appendix. Here we treat certain elements, required

above, from the theory of eigenvalue problems for Dirichlet

forms with integrable coefficients. As above, we consider

only real-valued functions.

Let Q, be a bounded, smoothly bounded connected open set

N
in R and let a..(x), i,j = 1,...,N, b(x), c(x) belong to

j-j

L1(a) with

(5.1) Mb(x) ;> c(x) > 0 a.e. on ft,

for some positive constant M. Let there exist m > 0 such that

for almost a l l x e Q,

N ?

( 5 . 2 ) L a . . ( x ) ? § . 1 x n | 5 r

i , j = l ^ x D

for all real vectors §.

We denote by X the space obtained by completing C (£2)

with respect to the inner product

r N

(5.3) <u,v> = ( L a. .(x)u v 4- b(x)uv)dx.
Ji2 i,j=l ±3 xi xj

From (5.1) and (5.2) it is clear that

X c U^(il) - wJ'*2(Q) .

LEMMA 6̂. JEj[ u e X then j u | (r X and u and | u | have the

same norm.

Proof. Let u e C (£i) , then there is a sequence of functions

[w } in C°° (Q such that: w —^ |u| uniformly on Q, and the
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sequence (grad w } remains bounded in the sup norm and tends

uniformly to (sgn u) grad u on any closed set in ft not inter-

secting the zero set of u. Since this zero set is contained in

the union of a set of small measure and a set where | grad u| is

small, the assertion follows for u e C°° (ft) . It clearly follows

then for arbitrary u e X.

COROLLARY, If u,v e X are such that uv = 0 a..£. in ft

then

<u,v> = 0.

Proof, By considering positive and negative parts we can

reduce to the case where u and v are non-negative. Then u

and v can be regarded as positive and negative parts of a func

tion we X, i.e. w = u - v. By the lemma above we then have

| | u - v | | x - | | | | x

from which follows the orthogonality of u and v.

By Y we denote the Hilbert space of real-valued measurable

functions f on ft for which

f | f (x) |2c(x)dx < oo;

the inner product on Y is

(f,g) = f f(x)g(x)c(x)dx.
Jft

We denote by i the imbedding X —» Y; by (5.1) this is bounded.

The adjoint i* is the operator of the Lax-Milgram theorem and
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u = i*f is the solution of the weak problem

<u,v> = (f,iv), v e X.

LEMMA 7. The operator i* _is_ non-negative i.e. ^f

f(x) ^ 0 a...e. .in Cl, f eY, and u = i*f then u(x) ;> 0 a..£.

in Q,.

Proof. For f G Y , U = i*f maximizes (f,iu) subject to

u e X, <u,u> <^ 1. From Lemma 6 and the properties of (.,.) it

follows that this maximum is attained (and by uniqueness only

attained) for u ;> 0 if f ;> 0.

LEMMA £L Let u e Y bê  a. non- negative eigen function of the

positive definite self-adjoint operator k = ii*. Then u is

positive almost everywhere on £2.

Proof, The operator k is clearly self-adjoint, that it

is positive definite follows from the relation

(kf,f) = <i*f,i*f>.

Since i clearly preserves non-negativity so, by Lemma 7, does k.

Suppose now that u is an eigenfunction of k and u(x) ^0

a.e. on O. Let Q, - A U B where A,B are measurable, A n B

has measure zero, u (x) > 0 a.e. on A and u (x) =0 a.e. on B.

We shall show that B must have measure zero. An elementary

argument shows that f e Y and

(5.7) f(x) = 0 a.e. on A
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implies (kf) (x) = 0 a.e. on A and that if g e Y and

(5.8) g(x) = 0 a.e. on B

then (kg) (x) = 0 a.e. on B. (Notice that since k is positive

definite and preserves non-negativity then in fact (kh)(x) > 0

a.e. on any measurable set in Q on which h(x) > 0 a.e., heY.)

We can write

Y = M©N

where feM if and only if (5.7) holds and g e N if and only if

(5.8) holds. Since i is an imbedding, and k = ii*5 it follows

from what we have just shown concerning k that (if) (x) = 0

a.e. on A for f e M and (i*g) (x) = 0 a.e. on B for geN.

Thus, by the corollary to Lemma 6, i* (M) and i*(N) are orthogonal

in X. Since i*(Y) is dense in X it follows that X = U®V

where the functions in U vanish a.e. on A and those in V

vanish a.e. on B. Finally, if j denotes the inclusion

X c H 1^) , then since j (X) is dense in H1(a) and j (U) and

j(V) are orthogonal in H (Q we obtain a similar decomposition

of that space

= ui®vr

This is impossible unless B has measure zero since otherwise

the problem

Au = f in £1, u = 0 on

2
for f e L (Q) , f(x) = 0 a.e. on B, would have a weak solution
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in H (fl) vanishing a.e. on B, and this cannot happen for non-

negative f ̂  0. Tfriis completes the proof of Lemma 8.

The following result, which is trivial if k is compact,

seems of some interest for its own sake. The proof was provided

by Professor R. J. Duffin.

LEMMA 9. Tg ku = Au and u(x) > 0 ji.e.. on Q then

(5.9) A = \\k\\.

Proof. Let

(5.10) « = E 1 U E 2 U . . . U E n

be a partitioning of Q, into measurable sets; put

(5.11) f. = o v u, i = 1,... ,n
JL JL xli •

where x^ i s t h e c h a r a c t e r i s t i c f u n c t i o n of E . , and a . > 0
hi. 1 1

is chosen so that

(5.12) (f^fj = 6,̂ 5

5.. is the Kronecker delta. For some positive constants

u = C lf ± + ... + cnfn.

It follows that the vector c = (c1,...,c ) is an eigenvector of

the non-negative symmetric matrix K = ((f<:,kf.)) corresponding

to the eigenvalue A. Since the components of c are positive,

A is the largest in absolute value of the eigenvalues of K.
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If P denotes the orthogonal projection of Y onto the subspace

spanned by f,,..., f 9 then K is the matrix of PkP relative

to the basis f.,..., f . By choosing a sequence of finer and

finer partitions (5.10) we obtain a corresponding sequence of

projections [P } such that, because of (5.11) and the fact that

u(x) > 0 a.e. on Cl, P tends strongly to I. Thus also

P kP tends strongly to k. Since |JP kP || = A for each jx
p p p p

it follows that \\k\\ = A, This completes the proof.

THEOREM 3_. Let the Dirichlet form (5.3) have integrable

coefficients satisfying (5.2) and

b(x) ;> 0 a. e. on £2.

Let c e L (Q jjPJ-

c(x) > 0, a.e. on £2.

P N P nn
(5.13) ( £ a (x)u v + b(x)uvdx = A uvc(x)dx, v e C°° (0) ,

*J -rt j • -i 1 I X . X . «J*-x O

If the weak eigenvalue problem

N
a . .(x)u

i D

has a. non-negative eigenfunction u, corresponding to an eigen-
value A- then u. (x) > 0 a.e. on 0 and for all u e C°° (Q ,

l l o

(5.14) f ( £ a..(x)u u + b(x)u2)dx > An f u
2c(x)dx,

ci I,D=I I : a

and A, i_ŝ  a simple eigenvalue f so that (5.14) i^ strict unless

u JLS proportional to u-.

Proof. When (5.1) holds the first part of the theorem is

an immediate consequence of the preceding lemmas. The general
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case is trivially reduced to this by adding j uvc(x)dx

to both sides of (5.13).

To prove simplicity of A we observe that if 7\ has

multiplicity > 1 then there must be an eigenfunction a)

orthogonal to u.. and hence not essentially of one sign. Be-

cause k is non-negative a simple variational argument shows

that a) and cu are also in the eigenspace corresponding to

A,. Since uu and a)_ vanish on sets of positive measure,

the existence of u) contradicts Lemma 8.

Remark. It is clear that in the preceding discussion the

condition (5.1) could have been weakened to

Mb(x) ^ c(x) - M1

provided that M!M~ were sufficiently small so that the form

<.,.> on C (U) still dominates the H (&l) inner product.
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