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Abstract

We consider the Euler equations associated with a func-

tional of the form

h. (u) = —V F, (x,u,grad u)dx
=A J o~ A
9]
where
2 2
F}\ (X:u:p) = a(x,u :p®p) - )\b(x,u )s
and F is convex in (u2,p®p) for AN > O. This class of

A
equations contains the class of =semi-linear second order

elliptic problems generally referred to as sublinear. Under

rn

appropriate conditions of continuity, ellipticity, and "strict
sublinearity" we prove existence and uniqueness of a positive

u for which h, attains a maximum.
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OF SUBLINEAR TYPE

by

Charles V. Coffman

1. Following the classification which appears to have been
introduced by Pimbley [14], [15], one calls the semi-linear

boundary value problem

f(x,u), xe

(1.1) Lu
(1.2) Mu = O Xeof

sublinear if the linear operator £ determined by I and the
boundary conditions (1.2) has, in some sense, a positive inverse
and O < uf(x,tu) < tuf(x,u) for xe§, u# 0 and t > 1; the

problem is called superlinear if & is the same and

0 < f(x,tu) £ tuf(x,u) for xe, u #0, and O <t <«1l.
If the operator &£ has a positive Green's function, so

that (1.1)-(1.2) is equivalent to an integral equation
u(x) = j G(x,t) £(t,u(t))adt,
Q

then one can expect uniqueness of the positive solution of (1.1)-
(1.2), i.e. that this problem can have at most one solution
which is positive in {. For the second order ordinary differ-

ential equation with zero end conditions such a result was

This research was supported by National Science Foundation Grant
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proved by Picard [13]. (For this case the uniqueness proof
reduces to showing that there is never a conjugate point in
the interior of the interval. For the superlinear case, as
considered in [3], the question of the uniqueness of a posi-
tive solution is a more subtle one.) 1In [17] Urysohn proved
uniqueness of a positive solution for a sublinear case of the

equation bearing his name, i.e.
u(x) = Y K(x,t;u(t))dt.
Q

Urysohn's result was abstracted and generalized by Krasno-
selt'skii and Ladyzhenskii [8]; see also [6] or [7]. Similar
uniqueness results are found, for second order ordinary dif-
ferential equations in [1], [4] and [5], for integral equations
in [9] and [12] and for second order elliptic partial differ-
ential equations in [16]. Uniqueness results for elliptic
problems with non-homogeneous boundary conditions are given in
[10].

In this paper we show how the notion of sublinearity can
be extended to a class of quasi-linear second order elliptic
boundary value problems of variational type. For such equa-
tions we give a uniqueness theorem for positive weak solutions.
The proof uses elementary variational inequalities; by contrast
the proofs of the theorems quoted above depend mainly on order
theoretic methods, which in fact are not entirely absent here

either.



The problemwhich we treat here can be witten formally as

N
(1.3) Lo 05 8- T ) a(x, uZeen) Ao
=l %) i i
+ 1106 U0, 2(0)u(x) = -2 b(x,u(x)), in &
(1. 4) u(x) =0 on 34,

where %(x) is the matrix (QE—*%E—}, and b(x,rj) is concave
in T while a(xr),?) is con\l/ex in (rj,?). It is consistent
with the classification referred to earlier to call this prob-
| em a sublinear boundary val ue problem W observe that, for-
mally at least, it includes the sem -linear problens studied

in [4 and [16].

N 2
2. Let Q be a bounded region in R wth a C bound-
(0]
ary and let Q be a subset of £1 of full nmeasure. W will

denote by u the set of all triples (x,rjj,5 where xc Q, r\ is
17 o

a non-negative real nunber and 5 = (?» ) is areal Nx N
matri x.

Throughout this paper p wll denote a fixed real nunber
wth p”*2 and s wll denote a fixed elenent in the extended

real nunmber systemw th
(2.1) p £ s, and s < Np/(Np) if p£N

By EP*S we denote the Banach space of neasurable functions

¥ = (tfj?) y T) a real nunber, 5 areal Nx N matrix, which

are defined on Q and for which the following normis finite




(2.2) 8(77.5) ()b, ¢ = linllg + 18l
2 2
s
where  U»*«||g i-° the L2(fIJ norm
Z s 2
( S
I, = 0 I'nide”, s < o0
> Q
lhiloo = ©° sue ini,
and
£ 1
lell, - (3 15[°dx>p,
> "
where oL
HEEN G A
( (5 )
We denote by = the "half-space"
p, S
[(i],?2)eEno @ TI(X) ~ 0, XEQ}.
Let = afx,”,?,) be a function defined on u and |et

an(x,T},§) = cia(x,T),8)/d?)

aij {x.!n:g) = %(aa(xsn.vg)/aglj + aa(x:ﬂsg)/agji)s

we shall assune that a satisfies the follow ng conditions.

(A1) For each fixed pair {r\,%, a(«rj,8) is neasurable,
a(x,',-) is of class ct and convex in (r2,7) for each fixed
xeQ and

(2.3)

a(x,0,0) = O, xeo w



There exists an m > O such that for all (x,7,8) € U

N N,
T a..(x,m,8)t.t. >m Tt
i,j=1 37773 j=1

for all real vectors t. Finally
an (X:nyg) > O.
(A.2) The mapping
(n:g) (') — an(':n('):g('))

takes E+ s into Lr(KD and is bounded on bounded sets and contin-
E

uous, where
(2.4) r = s/(s-2), (r =1 if s = oo).
For each 1i,j = 1,...,N, the mapping

(2.5) n,8) (+) —> aij(-:n('),g(-))

r

takes E; s into L IISD and is bounded on bounded sets and con-
3

tinuous with respect to the strong topology on E; s and the
r s
weak topology on L 1((», where

(2.6) r, = p/(p-2), (ry = 00 if p = 2).

We shall say that a satisfies condition (A.2+) if it
r

satisfies (A.2) and the mapping (2.5) from E; . to L N@ is
E

continuous; in the case p = 2, r, = oo, this becomes overly

restrictive , when on the other hand ry < oo then (A.2) im-

plies (A.2+).



As a consequence of the convexity assunption in (A1l we
the inequality

have for symmetric matrices %, §
N
(2.7) a(x,t?2,5 - a(x,Tj',?) 1 Za. .{x1,8(?. .t § .)
i,j=| 1J 3 3

+ an(x, r»>5) (77-TJM.

Wth the aid of this inequality we prove the following result.

LEMVA 1. Let (A1) and (A 2) hold. Then
(2.8) a(u) = f a(x, u’(x),5(x))dx
where
defines a _continuous functional a., _bounded_on bounded sets, on
WP« _and
a(0) = o0.

(2.9
N"s _CGateaux _differentiable with_derivative A defined

Mor eover, a_

by

N
= 2 E)u Bv
(2 10) (AU, V) 2{9 (i,g:=laij (x,u" (x),§ (x))g}—{—l- &;
+ ag,,(x,u2 () ,5()ux V(X)) dx,
for verQ'P(J|, ad where 8 is as above;, if (A.2+) holds,

_is _Frechet differentiable.

then a




Proof. Making use of the Sobolev imbedding theorem, we

first observe that the mapping u — (u2,(%§—-%§~)) is continuous
_ i .

J
from Wi’p(S» to E; 52 Maps bounded sets onto bounded sets, and
J

is Frechet differentiable; its Frechet derivative at uezwi’p((b

t E defined b
°© ®p,s Y

du ov Ju  dv
v (2uv,(ax' ox. t 3. O%.
J 1 1 J

)) .

We now consider the functional

(2.11) j'ﬂa(x,.n (x) ,E(x)) ax

on E; s From the inequality (2.7), usea twice, we have for
(1:8) (-), (M',8) () c B

(2.12) [0 D anGomt,80) (5nBl) + a (ko0 5E0) (non') ) dx
’ Yo, e 13 1377137 T Sy eneE A

< ‘(ﬂ(a(x,n,@) - a(x,n',51))dx

(9

N
f 1
.. y L.=-5..) + R g -n! dx.
< Jﬂ(i’?zlalj(x n,é)(ilJ %lj) an(x n,8) (n-n'))adx
The continuity and boundedness on bounded sets of (2.11) on E; s
E

follows from (A.2) and (2.12). If (A.2+) holds then the left-most

and right-most terms in (2,12) differ by o(l(n—n',@-g')lp S) as
b

n,&8) — M,8 in E; < Otherwise we put &' = € + th,
’
n' =n+ tk, t real, and then for h,k fixed these same two

terms differ by o(|t|) as t — 0, and the Gateaux differentiabil-
ity follows.
The lemma now follows by composition and application of the

chain rule; (2.9) follows immediately from (2.3).



We note that Au is of the form Luu where Lu is the

linear operator from Wi’p(fb'to (Wi’p(§a)* defined by
(2.13) (Luw,v) =
N
2 ow OV 2
2] (T a;.(xu"(x),E(x)5— + a_(x,u”(x),8(x))w(x)v(x))dx.
fn i,j=1 *J %i Sx—j- n

In fact we have the following.

LEMMA 2. The operator A satisfies

where L, is defined by (2.13). The mappin

u — Lu

is continuous with respect to the strong topology on wé’p(fb and

the weak operator topology.

We now let b(x,n) denote a real-valued function defined on

G% X §; and assume the following.

(B.1l) For each fixed xe:ﬁ%, b(x,+) is of class C1 and

concave in 1),

(2.14) b(x,0) = 0, x<s€%.

(B.2) The mapping

(2.15) ni) — bn(-,n(-))

S
takes L2(€b into IFKK», and is bounded on bounded sets and con-

tinuous, where r is given by (2.4).




The concavity assumption implies

(2.16) b(x,n) - b(x,n') < (n—n')bn(x,n'), xe Q.

LEMMA 3. The functional

b(u) = Iab(x,uz(X))dx

is bounded on bounded sets and continuous with respect to the weak

1’p(m;

()

topology on bounded subsets of W

(2.17) b(0) = O.

Moreover, b is Frechet differentiable with derivative

where M.u : Wi’p(SD —5 (Wé’p((»)* is the multiplication operator
2
W —> an(°,u (+))w.

The linear operator Mu and the operator B are both compact and

u—> M
u

is continuous on Wl

o’p(SD with respect to the uniform operator

topology.

Proof. The boundedness assumption concerning (2.15) is equiva-
lent to
S
lbn(x,n){ < o(x) + cnzr,
for some non-negative OezIFXSD and positive constant c¢. This

implies that




10

s
Ib(x,m) | < M(0(x) + 2er(s+2r) " 1n°%),

which in turn implies the boundedness assertion concerning b.
To complete the proof one uses the compactness of the imbedding
Wé’p(SD-—e-Ls(SD, the argument is similar to that in the proof
of Lemma 1.

We set

h(x,n,8%) = b(x,n) - a(x,n,8)

and

h=Db-2a
and assume the following condition of strict sublinearity.
(H. 1) For‘ n#n
h(x,5(040") 2 (5+81)) > Z(h(x,m,8) + hix,n',8").

Note that the convexity assumption on a and the concavity assump-
tion on b, which were made respectively in (A.1l) and (B.1l) above
imply

h(x,2min) ,2(8+81) > Tmean, 9 + nixnr,en).

LEMMA 4. Let (A.1), (%.2), (B.1l), (B.2) and (H.1l) hold.

Then for u,veswé’p(s»

(2.18) h(v) - h(u) < (Luu,u) - (Muu,u) - (Luv,v) + (Muv,v),

with equality only if |u| = |v
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Proof, W use the inequalities (2.7) and (2.16) to estimate

[NV (T
[* - >
and then integrate to obtain (2.18). From (HI1) it follows that
the inequality in the indicated estimate will be strict at points
xeaOb where | u(x) | ™~ |v(x)], it folloms that (2.18) is strict

unless Ju(x) | = |v(x) | alnost everywhere in £1.

3. Throughout this section we shall assume the conditions

(A1), (A2), (B1), (B2 and (H1).

THEOREM JL  £f

(3.1) b(x,rj) >0 for all xe O,O and all r}*

t hen the weak problem (1.3)-(1.4), i.e.

(3.2) Lyu = Mu

has at npst one non-trivial non-negative solution. |f such a.

—

solution exists then it nust be positive alnobst everywhere.

Pr oof . Let u be a non-trivial non-negative solution of

(3.2), then from (2.18) and (3.2)
h(u) > h(v) + (Lw,v) - (Mv,V)

for all V€\Nf“((2 with |vl ~ u, the inequality being strict
by Lemma 4. Since u is an eigenfunction corresponding to the

ei genvalue 1 of
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Luw = %Muw,
it follows from Theorem 3, in the appendix , that
(LuV,V) - (MuV:V) > 0

unless Vv 1is proportional to u. We conclude that h assumes

1,p

a maximum in Wo () at and only at u and -u. It follows

that (3.2) cannot have another non-trivial non-negative solution.

Remarks. The non-negativity condition on an(X,n:g) in

assumption (A.1l) can be relaxed to
an(xan)g) 2_ "m'_v (Xvnyg) e U

where m' depends only on m in (5.2) and on §, and is chosen

1

s
o = (&Y.

so as to guarantee that Lu is strictly definite on W
This is particularly relevant for the semi-linear case, where we
obtain a theorem similar to that of Rabinowitz [16]. The proof
in [16] makes essential use of the maximum principle; here also
we use this principle (see the proof of Lemma 8) but only for har-
monic functions.
(2) The variational uniqueness principle for sublinear

problems which is developed here is in a sense dual to the varia-

tional existence principles used by Nehari in [11] and subsequent

work are further exploited by the author in [2].
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4, 1In this section we shall prove the existence of an
almost everywhere positive solution in Wi’p(fb of (3.2). 1In

order to do this we must make the following assumption.

(H.2) For p as above there exists a positive constant
e > 0 and there exist functions f¢ LY (), gWSI}(SD, (where r
is given by (2.4), and s satisfies (2.1))such that for xe¢ QB,

n>o0, terY,

(4.1)  blx,m - axn, (t5t)) < ~elt]P + £0n + g(x).

If p =2 then for each xecQ, a(x,uz,(titj)) is convex in

(u,t), and, given any & > O, £ and g can be chosen so that

Il < &

THEOREM 2. Let (A.1), (A.2), (B.1l), (B.2) and (H.2) hold.

Assume also that the spectrum of the linear eigenvalue problem

(4.2) Low = 7\Mow

contains a number < 1. Then (3.2) has a non-negative non-trivial

solution u.

Proof. From (H.2) it follows that for ue;wé’P(g»

new < -eflalld o+ el )2 + gl

For such a u,

lullg < clally s

KUAT LIGRARY
CARNEGIE-MELLON UNIVERSITY
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thus, by making a suitable choice-of f,g if p = 2, we have

(4.3) b(u) £-S1198,, + v

where e >0, y is a constant.

From (2.18), since [a and _b vanish at O
(4.4 b(u) - a(uy ~ (M*u) - (l1”*u,u) .

From the hypot hesis concerning the spectrumof (4.2) and the con--
tinuity assertions in Lemmas 2 and 3 concerning the operators

L and Mu it follows that for sone ueW":)*’?(f})

u
(4.5) (Mu,u) - (Lyu,u) > 0.
i ndeed by hypothesis there is a v wth (M(\)/,v) - (Lov,v) > 0,

then as a -» 0,
(MCLVV’V) - (Lavvpv) —r (MOV’V) - (LOV,V),

putting u = av, for sone small a, we have 4.5. From (4.4) and

(4.5) it follows that
(4. 6) sup(h(u) . uewf' P(«) > 0.

From (4.3) we conclude that h 1is bounded above and h(u) -> -o00
as ||u|1ll’p» co. Since b is weakly continuous, in order to

prove the existence of a maximum for h it suffices to show that
a. is weakly upper sem -continuous; this is proved in Lenma 5 be-
| ow, if h attains a maximumat u then u nust be a solution

of (3.2) since the Gateaux derivative of h at u nust be zero.
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Since u can be replaced by |ul wthout changing the val ue of
h (this is proved in nmuch the sane way as Lemma 6, below, is
proved), we can assune that u is non-negative. Up to the

proof of Lenmma 5 this conpletes the proof of Theorem 2.

LEMVA 5. The functional a. is” weakly upper sem - conti nuous

onWw ' Py,

Proof, If p=2 thenby (H 2 a is convex on W"Z(G)
and the weak upper semi-continuity follows. If p>2 then we

consi der the functional

+
p*

follows fromthe convexity assunption in (A 1) ¢ that of a~

on E The weak upper sem -continuity of this functional

follows directly.

Remark, The proof of Theorem 2 is essentially the argunent
given by Henpel [4] in the proof of the same result for the sem -

| inear case. W note that Henpel's hypothesis, in our notation
4.7) lim br(x,n) 1 O,
7}->00 '
together with (B.l1) and (B.2) implies that given £>0
(4.8) b(x,r?) < f(x) Iri| + g(x)

with [IfllF * £ , geL'© . Indeed

M(XjT?) 1 by (x,0)
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so let & Dbe chosen so that

I'y (x,00ax ¢ 22

aAmn
when A €  is measurable and pu(3d) < 6 (u denotes Lebesgue
measure). Choose Ty > O (by Egoroff's theorem) so that on a

measurable subset B of Q with u(B) > p() - 6,
bn(x,n) < Z2/2u(Q) when n > T, .

Thus for Xx¢ B

Y .
b(x.m) = | b, (x,8) 8t < ME/2u(Q) + T, b (x,0).

o

Thus (4.8) holds with

f = xAbn(-,o) + € /2u(Q), g = T,b(x,0)

where denotes the characteristic function of A = §\B. Thus,

*a
when p = 2 the condition

(4.9) a(x,n,(titj)) > elt{z - y!

for all xeQ, N >0, te RY, together with (4.7) implies (4.1),

with f,g as indicated. 1In particular Theorem 2 contains the

corresponding result for the semi-linear case as obtained in [4].
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5. Appendix. Here we treat certain elements, required
above, from the theory of eigenvalue problems for Dirichlet
forms with integrable coefficients. As above, we consider
only real-valued functions.

Let § Dbe a bounded, smoothly bounded connected open set
in RN and let aij(x), i,j=1,...,N, b(x), c(x) belong to

11 (@) with
(5.1) Mb(x) > c(x) > O a.e. on £,

for some positive constant M. Let there exist m > O such that
for almost all x¢ Q
: N .
(5.2) LI Aty 2 m| 5|
for all real vectors §.
il

We denote by X the space obtained by completing Co

Q)

with respect to the inner product

N
(5.3) <{u,v> = ( ¥ a,.(xX)u_ v + b(x)uv)dx.
js‘z =1t i ¥y

From (5.1) and (5.2) it is clear that
1, _ .1,2
X c Ho(ﬂ) = WO (€9 .

LEMMA 6. If ueX then |ulc¢X and u and |u| have the

——

same norm.,

Proof. Let uezcgj(Sh, then there is a sequence of functions

(w )} in CgO(KD such that: w_ — |u|l uniformly on © and the




18

sequence {grad wn] remains bounded in the sup norm and tends
uniformly to (sgn u)grad u on any closed set in § not inter-
secting the zero set of u. Since this zero set is contained in
the union of a set of small measure and a set where |grad u| is
small, the assertion follows for wuc CgD(K». It clearly follows

then for arbitrary ue X.

COROLLARY. f u,veX are such that uv =0 a.e. in_

then

<u,v> = 0,

Proof. By considering positive and negative parts we can
reduce to the case where u and v are non-negative. Then u
and Vv can be regarded as positive and negative parts of a func-

tion weX, i.e. w =u - v. By the lemma above we then have

lu-vily = llusvll,

from which follows the orthogonality of u and v.
By Y we denote the Hilbert space of real-valued measurable
functions f on Q for which
2
j | £(x) | “c(x)dx < o0;
$

the inner product on Y is

(£,9) = jgf(x)g(x)c(x) ax.

We denote by i the imbedding X — Y; by (5.1) this is bounded.

The adjoint i* is the operator of the Lax-Milgram theorem and
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u=1i*f 1is the solution of the weak problem
<u,v> = (f,iv), veX
LEMVA 7. The operator i* _is non-negative i.e. ~f

f(x) 0 a..e .in d, feY,_and u=i*f then u(x) ;>0 a.£f

Proof. For f GY, U= i*f nmaximzes (f,iu) subject to
ue X, <u,u> <M 1. FromLemm 6 and the properties of (.,.) it
follows that this maximum is attained (and by uni queness only

attained) for u;>0 if f ;>0

LEMVA £L ‘Let ueY be! a. non-_negative eigenfunction of the

positive definite self-adjoint operator. k = ii*. Then u is

positive alnost everywhere on £

Proof, The operator k 1is clearly self-adjoint, that it

Is positive definite follows fromthe relation
(kf,f) =<i*f,i*f>

Since i clearly preserves non-negativity so, by Lemma 7, does K.
Suppose now that u is an eigenfunction of k and u(x) "0

a.e. on O Let Q~ AUB where A B are neasurable, An B

has neasure zero, u(x) >0 a.e. on A and u(x) =0 a.e. on B

We shall show that B nust have nmeasure zero. An elenentary

argunent shows that f eY and

(5.7) f(x) =0 a.e. on A
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implies (kf) (x) = O a.e. on A and that if geY and
(5.8) g(x) =0 a.e. on B
then (kg) (x) = O a.e. on B. (Notice that since k is positive

definite and preserves non-negativity then in fact (kh) (x) > O
a.e. on any measurable set in  on which h(x) > O a.e., heY.)
We can write

Y = M@N

where feM if and only if (5.7) holds and ge N if and only if
(5.8) holds. Since i is an imbedding, and k = ii¥, it follows
from what we have just shown concerning k that (i*f) (x) =0
a.e. on A for feM and (i*g)(x) = 0O a.e. on B for geN.
Thus, by the corollary to Lemma 6, i¥ (M) and i*(N) are orthogonal
in X. Since i*(Y) is dense in X it follows that X = UV
where the functions in U wvanish a.e. on A and those in V
vanish a.e., on B. Finally, if J denotes the inclusion

X c Hi(ﬂ), then since j(X) is dense in H(l)(.{&) and 3j(U) and

j (V) are orthogonal in Hi(Q) we obtain a similar decomposition

of that space

1 -
Hy () = U1®V1.

This is impossible unless B has measure zero since otherwise
the problem

s =f in £, u =0 on 0§,

for fe LZ(Q) , f(x) = 0 a.e. on B, would have a weak solution
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in Hi((» vanishing a.e. on B, and this cannot happen for non-
negative £ # 0. This completes the proof of Lemma 8.

The following result, which is trivial if %k is compact,
seems of some interest for its own sake. The proof was provided

by Professor R. J. Duffin.
LEMMA 9. f ku=2u and u(x) > 0 a.e. on Q then

(5.9) A

I
=

Proof. Let
(5.10) Q = El U E2 J ... UE

be a partitioning of £ into measurable sets; put

(5.11) fi = Oiinu, i=1,...,n
where Xg . is the characteristic function of Ei’ and Oi > 0
is chosenlso that
(5.12) (fi’fj) = 5ij’
6ij is the Kronecker delta. For some positive constants
ci,i =1,...,n,
u = lel + ... + ¢ n’
It follows that the vector c¢ = (cl,...,cn) is an eigenvector of
the non-negative symmetric matrix (K = ((fi,kfj)) corresponding

to the eigenvalue 2A. Since the components of ¢ are positive,

A  is the largest in absolute value of the eigenwvalues of K.
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If P denotes the orthogonal projection of Y onto the subspace
spanned by fl,...,fn, then K 1is the matrix of PKkP relative

to the basis f "’fn' By choosing a sequence of finer and

12°
finer partitions (5.10) we obtain a corresponding sequence of
projections {P“} such that, because of (5.11) and the fact that
u(x) > 0 a.e. on §, PM tends strongly to I. Thus also

P kPﬂ tends strongly to k. Since HPukP“H = N for each u

m
it follows that ||k|| = N\. This completes the proof.

THEOREM 3. Let the Dirichlet form (5.3) have integrable

coefficients satisfying (5.2) and

b(x) > 0 a.e. on Q.
1
Let ceL () and
c(x) > O, a.e. on .

If the weak eigenvalue problem

N
(5.13) ( z ai.(x)ux Vo + b(x)uvdx = %f uve (x) dx, VezCoo(SD,
Qi,j=1 *3 i%5 Q ©

has a non-negative eigenfunction uy corresponding to an eigen-

value A\ then ul(x) > 0 a.e. on Q and for all uce CgO(SD,

1

3 2 " W2
(5.14) ( ¥ a..(x)u_u + b(x)u”)dx > A u c(x) dx,

JQ i,5=1 13 X Xy l.JQ

and %1 is a simple eigenvalue, so that (5.14) is strict unless

u 1is proportional to u

l.
Proof. When (5.1) holds the first part of the theorem is

an immediate consequence of the preceding lemmas. The general
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case is trivially reduced to this by adding jl‘nuvc(x) dx
to both sides of (5.13).

To prove sinplicity of Al we observe that if 7\1 has
multiplicity > 1 then there nust be an eigenfunction a)
orthogonal to u, and hence not essentially of one sign. Be-
cause k 1is non-negative a sinple variational argunent shows
t hat a)+ and cu are also in the eigenspace corresponding to

A,l. Since uy and &g_ vanish on sets of positive neasure,

the existence of u) contradicts Lemma 8.

Renar k. It is clear that in the preceding discussion the

condition (5.1) could have been weakened to
Mo(x) ~ c(x) - M

provi ded t hat MM-1 were sufficiently small so that the form

<.,.> on Cg’U still dom nates the Hg&l) i nner product.
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