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ABSTRACT

It is shown that a Banach space is super-reflexive if

and only if the girth of its unit ball is greater than

4. Consequently, "girth greater than 41T is a property

preserved under isomorphisms and duality.

1. Introduction

This note is a further contribution to the geometrical insight into

certain conditions, stronger than reflexivity, for Banach spaces. The

concept of super-reflexivity of Banach spaces was introduced and dis-

cussed by James [4], who showed that it has several equivalent geometric

interpretations and that it is preserved under isomorphisms and duality.

The concept of the girth of the unit ball, i.e., the infimum of the

lengths of centrally symmetric simple closed rectifiable curves on its

surface, was introduced by Schaffer [5]; Schaffer and Sundaresan proved

in [7] that a Banach space is reflexive if the girth of its unit ball is

not 4. In this note we prove that, in fact, the space is super-reflexive

if and only ij: this girth is not 4. We thus obtain, on the one hand, an

additional metric characterization of super-reflexivity, and prove, on

the other, that "girth not 4Tt is a property preserved under isomorphism

and duality.

2 • Definitions and auxiliary results

All normed spaces shall be non-trivial real normed linear spaces.

A subspace of a normed space is a linear subspace provided with the norm

induced by the inclusion.
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If X and Y are normed spaces, Y is said to be finitely repre-

sentable jLn X if and only if for every finite-dimensional subspace Z

of Y and every number \ > 1 there exists a linear mapping T: Z -» X

such that AT̂ IzJI £ ||Tz|J ^ X.||z|| for all z e Z; equivalently, if and

only if for every finite-dimensional subspace Z of X and every num-

ber £ > 0 there exists a subspace W of X, of the same dimension,

such that A(Z,W) ^ £ , where A is the Banach-Mazur distance [1; pp.

242-243]. Finite representability is a transitive relation, and it is

easy to see that a rtormed space is finitely representable in every

dense subspace of itself. It follows that Y is finitely representable

in X if and only if the completion of Y is.

A Banach space X is said to be super-reflexive [4] if and only if

no non-reflexive Banach space is finitely representable in X. The pre-

ceding comments show that to prove that a given Banach space X is not

super-reflexive it is enough to exhibit a normed space that has a non-

reflexive completion and is finitely representable in X.

For a normed space X, we denote by 2m(X) the girth of its unit

ball, as defined in the introduction. For a more detailed discussion of

this concept, see [5], [7]. Obviously, m(X) ^ 2. The link between the

condition Mm(X) = 2 " and the geometric conditions that prevent the

space from being super-reflexive is the following property of a normed

space X, introduced in [7]; it is a generalized negation of uniform

non-squareness [2]:

(J): For every positive integer n and every number p, 0 < p < 1,

there exist x € X, k = 1,. . .,n, such that Ijx, II ̂  1 for k = 1, . . . ,n,

N~ 1 Xk + t Xk" > Pn j = °>"->n-



We require several auxiliary results; the first two are theorems

from [ 7] .

2 • * • Theorem ([ 7 ; Theorem 2 .2 ]) . ̂If Y ±s_ <a non-reflexive Banach

space, then Y satisfies (J) .

2.2. Theorem ([7; The orem 3.2]). A normed space X satisfies (J)

jLf and only _if m(X) = 2 .

2 '^ • Lemma. Let X be_ a. normed space, £ a number, 0 < £ < 1,

and n a positive integer. JLf u, e X and ||u jj ̂ 1 for k = 1, ... ,n,

£L .2 _
and if II ) u, || > n-£, then II ) v, u, II > (1-6) , y, , for every choice

ii / ^ kti . ii 7 ( ' k fcii /_j *̂ k ^ ^

of numbers y, S'O^ k = 1, . . . ^ n ^ o t h e r t h a n y - . . . = y = 0 .

P r o o f , Le t t h e y be g iven^ and s e t y = y y k = l , . . . _ , n - l ,
K. n~r K K

Then

( - « I rk < III S l | f rk - II V | rk+iVll 1 II £ rkukl! + f irk+t||uk|| s
t

and the conclusion follows.

2 .4. Lemma. Let E be_ a, real linear space and let jt: E -» R b<e a

seminorm on E. If n is a positive integer and x. e E, k = 1 ... n,

satisfy

(2.1) *(xk) < 1, k = l,...,n,

(2.2) TT(- ) x + ) x ) > n-1, j = 0, ...,n,

then JC( ) avxv) > ° for a ^ real a, , k = 1, ... ;n^ unless

al = ... = a n = 0.

Proof (cf. [6; Proof of Theorem 2]). Suppose that, on the contrary,

there exist a,, not all 0, such that

(2.3) jr( )^ akxk) = 0.

We may assume without loss of generality that



(2.4) k k

f o r s o m e h 1 ^ h ^ n , T h e n

Z K- i a k + I a k> - <-Z a k + z
=2|a h| = 2 .

One of the two summands of the leftmost member is not less than 1; setting

j = h-1 or j = h, and replacing every a, by -a, if necessary, we may

consequently assume, without invalidating (2.3), (2.4), that

X .*,

(2.5) - ) ak + ) ak > 1 for some j, 0 S j ^ n.

Combining (2.2) for that value of j with (2.3), (2.4), (2.1),
(2.5), we find

n - 1 < Tt(- ^ xk + ^ x
k > = ^ ( - ^ < 1 + a f c ) x + I ( 1 " a ) x }

(l-ak) = n - (- ̂  ak + ̂  ak) S n-l,

a contradiction,

3• The main theorem

3.1. Theorem. _I_f X îs a. Banach space, X j^ super-reflexive ĵ f

and only if X does not satisfy (J) .

Proof. 1. Suppose that X is not super-reflexive. Then there exists

a non-reflexive Banach space Y that is finitely representable in X;

by Theorem 2.1, Y satisfies (J). Let n and p, 0 < p < 1, be given,

2
and choose X, > 1 such that A, p < 1. There exist y, e Y, k = l,...,n,

J_ k_r»

such t h a t | | y k | | £ 1 fo r k= l , . . . , n and j j - ) y k + ) y j j - > \ 2
 p n f o r

j = 0 , . . . , n . If Z is the (a t most n-dimensional) subspace of Y

spanned by y , , . . . ^ , there e x i s t s a l i n e a r mapping T: Z -» X such

tha t X""lli|z|| % ||Tz|| < \\\z\\ for a l l z € Z. We se t xk = ^"1Tyk e X,

k = l , . . . , n , and find ||x || ^ \~ X.||yJ| S 1 for k = l , . . # , n , and

A. n J n

ZJ
 Xkl« " X ~ 2 " " l y k + l y k " > pn f ° r j = ° > - - ^ n - s ince n



and p, 0 < p < 1, were arbitrary, X satisfies (J).

2. In the rest of the proof we assume that X satisfies (J). There

exist, therefore, x, e X for all k = l,...,n and n ̂  1 such that

(3.1) ||xj|| ̂  1 for all k=l,...,n and n £ l

and ||- ) x, + y x Ij > n-n for all j = 0, . ..,n and n > 1. From

Lemma 2.3 we conclude that

0.2) ||-̂  yk
xj + V Vk'l > (1-n"1> L y k for a11 j = °>--->n; a11

choices of y, = 0 other than y1 = . .. = y = 0 ; and all n ̂  1.

3. Let E be a* linear space with a countable Hamel basis

fe, : k = 1,2,...}, and let E be the m-dimensional linear subspace
ic m

spanned by e-,...,e , for each m = 1,2,....

For each tn, consider the functions f : E -» R, n Jf m, defined by
; mn m ' ' J

Each one of these functions is a seminorm (actually a norm, but we do

not need this fact) . For fixed m, the sequence (f ) ^ is uniformly
' mn n ̂  m

equicontinuous, and uniformly bounded on compact sets (all these terms

refer to the natural separated uniformity of the m-dimensional space E ),

since I W l ' W ~ W l ^ W l - I K-\\ on account of (3.3) and
(3.1). Therefore an application of AscoliTs Theorem for each m, combined

with a diagonal process, yields the existence of a strictly increasing

sequence (p(n)) of positive integers such that the limit

(3.4) *( Y a-e. ) = lim f . N ( 7 a, e. ) = limll V (Xxfv ' v L k k n-̂ a, m p(n)v /_, k W H^^JI /_. k k

exists for all ) Ot.e e E. (We could have obtained this result by a

single appeal to AscoliTs Theorem for functions on the space E provided

with the direct sum uniformity.) From (3.4) it is clear that n: E -> R

is a seminorm. We shall now show that it actually is a norm.



4. From (3.1), (3.2), (3.4) we deduce

(3.5) jt(ek) ^ 1 for all k £ 1,

(3.6) TC(- V y ke k+-^ ykek) > ^ yk for all j =0,...,m; all

Jerri k«jfl "k«l

choices of y, ^ 0, k = l,...,m; and all m ̂  1.

In particular,

(3.7) jt(- ) e
k + )

 e
k ) =

 m f o r a 1 1 J = 0, . ..,m and all m > 1.

It follows from (3.7) and Lemma 2.4 that jt is a norm on E, as claimed.

From now on, E shall be taken to be the given linear space provided

with the norm re. We remark in passing that the triangle inequality

compels equality in (3.5), (3.6), (3.7).

5. We claim that E is finitely representable in X. Since every

finite-dimensional subspace of E is a subspace of E for a suitable
m

m, it is enough to show that, for each m and each number A, > 1,

there exists a linear mapping T: E -» X such that X rt(z) = ||Tz|| ^ A,it(z)

for all z € E .
m

In the argument leading to (3.4), the use of AscoliTs Theorem allows
us to assert that the convergence of the sequence (f , v) to the

H v m,p(n)yn
restriction of jr to E is uniform on compact subsets of E . Since

m m
rt is a norm, the set { z e E : TT(Z) = 1} is compact; since the

f , N and jt, being seminorms, are absolutely homogeneous, it follows
m,p(n) >

that there exists a positive integer n* such that

(3.8) ^ ^ ( z ) ^ fm p(n*}(z) ^ ̂ (z) for all z e

We then define T: E -> X by T( ) a. e. ) = ) axf^11*^. Thus T is
m / i Ac K. / f K. Kk-i

linear and, by (3.3), jjTzjj = f *\(z) f o r a 1 1 z e E . In view of

(3.8), T satisfies all the required conditions.
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6. To conclude, we claim that the completion of E is not reflexive,

Indeed, its unit ball contains the vectors e..,e , ..., and (3.6) implies

dist(convfe-,...,e.}, convfe e ,...}) = 2 for all j ̂  1.

Therefore this space is not reflexive [3; Theorem 8: equivalence of (29)

and (32)].

The normed space E is finitely representable in X and its com-

pletion is not reflexive. Therefore X is not super-reflexive, and the

proof is complete.

3.2. Corollary. ̂  normed space has £ super-reflexive completion jLf

and only j-f m(X) > 2 .

Proof, It is obvious that a normed space satisfies (J) if and only

if its completion satsifies (J) . The conclusion follows from Theorems

3.1 and 2.2.

3.3 • Corollary. If X and Y are isomorphic normed spaces, then

m(X) > 2 jLf and only if: m(Y) > 2. Lf X is a normed space, m(X) > 2

jLf and only jLf m(X*) > 2 .

Proof. Super-reflexivity of Banach spaces is preserved under iso-

morphism and duality (and implies reflexivity) [4; Theorem 2]. The con-

clusion follows from Corollary 3.2.
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