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ABSTRACT

A SHORT PROOF OF ALEXANDROFF! S THEOREM
by

Steve Fesmire and Paul H avac

A. D. Alexandroff proved that there is a linear isonetry
between C (T) and the space of regular, bounded, additive set
functions defined on a field 3 of subsets of T. Here C (T)
is the dual of the space of bounded, continuous functions on
a topol ogi cal space T. 3 is the field generated by the zero
sets of T.

Dunford and Schwartz have given a sinple proof of this
duality theorem in the case when the underlying topol ogical
space is a nornmal Hausdorff space. In this note we use the nethods
of Dunford and Schwartz to give an elenmentary proof of Al exandr of f 's

result.




A SHORT PROOF OF ALEXANDROFF'S THEOREM
by

Steve Fesmire and Paul Hlavac

1. Introduction

In his paper, "Additive Set Functions in Abstract Spaces",
Alexandroff [1] has given a concrete representation of the dual
of the space of bounded continuous functions on a topological
space T. Dunford and Schwartz [2] give a shorter and more
elementary proof of this theorem in the special case when T
is a normal Hausdorff space (Theorem 2, p. 262 of [2]). 1In
this note we provide a simple proof of Alexandroff's theorem
using the techniques applied by Dunford and Schwartz. The
authors are indebted to Professor K. Sundaresan for suggesting

this method of proof.

2. Preliminaries

In this section we give a few definitions and mention
certain basic results concerning zero and cozero sets. Let T

be an arbitrary topological space.
c(T) = {f|f : T~»R, £ is bounded and continuous}.

Then C(T) is a normed linear space with ||f|l = sup|£(t)].
teT

¥
c (1) = {LIL : C(T)~»R, L is continuous and linear}.

Then C (T) is the normed conjugate of cC(T) with ||L|| = sup |L(£)] .

I£lla




A set Z CT 1is a zero set if 2z = f—l(o) for some feC(T).
Let Z = {2z c T|z is a zero set} and let ¥ be the field

generated by Z. A set G C T 1is a cozero set if T\GeZ.

Throughout this paper Z and Z; will always denote zero
sets, G and G; will always denote cozero sets.

We say that a set function m : F~R 1is reqular if given
Eed and € > 0 there are 2 and G such that Z C E € G and

c ©G\z, Ce¥F implies |m(c)| < € . Let
M= {mlm : 3—~R, m is regular, bounded and additive]}.

If m denotes the variation of m, then we define |m| = m(T). We
order M by defining m > 0O if m(E) > 0O for all Eed. C*(T)
has the usual ordering, i.e., L > 0 if L(f) > 0 for all
£ >0, feC(T).

In the following lemma, we collect some results which are

easily verified from the definitions.

LEMMA. (1) The intersection or union of two zero sets

is a zero set.

(2) If E 1is a closed set (open set) in R and £eC(T)
then f_l(E) is a zero set (cozero set) in T.
(3) 1If {Zi}2=l are pairwise disjoint (p.w.d.) then there
n
are [Gi]i=l p.w.d. such that z; <gG,.

(4) If 2 < G then there exists £feC(T) such that f£(t) =1

for tez and f(t) = 0 for teT\G.




3. Proof of the Duality Theorem

THEOREM Let T, C(T), & (T and M as above. Then
there is an isonetric isonorphismbetween C (T) and M such

that corresponding elements L and m satisfy

for all feC(T). Further, this isonorphismpreserves order.
Proof: W first note that if feC(T) and nEM then f is

integrable with respect to m For let £> 0. Cover f(T)

Wi th open sets U,J.,.,.,Un such that di an(U.l < £ . Let A,l = U[[,
_ J'I P ' A\
A.3 = U3\i =LleLi. for j =2,...,n. If A3 0, choose 1'-5€Aé
and if A. =0 let a_=0 Thenif B._= f~*A) and
] ] ] J
n
g= EaXn > g is an msinple function and clearly ||gf|| <€ €,

Thus f is'the uniformlimt of msinple functions and since
mMT) <ooj f is m integrable.

Si nce
| Jf dm £sup| f (1) | -T(T)
T teT
if L(f) = j_rfl_ dm then clearly LeC*(T) and ||L]|| <£ |m|. To show

ILIl = lm|l, let 6> 0 be given and let {E.}2 , be p.w.d. sets
n —
in 3 such that 2 |m(EX.)| A m|| - £ . Noting that m is

regular since m is regular, we may choose Z; c E; so that
MOEYXZY) < 6/n. Then choose {Gi¥fi-; p.w.d. such that Z, ¢ G

and M(G.\zs) < €/n. Define a = +1 according as m(E.) > 0
i ! e !

or mE.) <0 and let f.eC(T), OE£f. <1 such that f.(t) =
-L X 1 X

0



n
if teT\Gi and f,(t) = 1 if teZz;. Defining £ = S a.f.

i=1 * %
we have that Hfon < 1 and
IL(£)| = || £qam| = | T | agfiam + T | £. dn|
= - . . a- .
0 L0 i=1"z, * * i=1"¢;\z; - *
U G,
i=1 *
n
> ,Ellm(Ei)l - 2& > |mf| - 38 .
1=

Thus ||L|| = |m].
Since it is clear that our correspondence represents a
linear map,we need only show that given LeC*(T) there is meM

such that L(£) = | £ dm for all feC(T). Therefore let LeC (T).
T

Then L has a continuous extension ﬁ : B(T) —~= R where
B(T) = {f : T—»R|f is a bounded function}.

B(T) is equipped with the sup norm. By Corollary 5.3, p. 259 of

Dunford and Schwartz [2] there is an isometry between B*(T) and
ba(T) = {m|m : 2T-4>R, M is a bounded additive set function}.

Therefore let Aeba(T) be such that H(f) = J £ d\ for all
T

feB(T). By the Jordan Decomposition Theorem we may assume that

A > 0. We must find meM such that | £ dm = J f d\ for all
T T

fec(T). Define My : Z=—PR Dby ul(z) = inf A(G) for all 2ZeZ
Z2cG
and define p. : 2'—aR by p,(E) = sup p,(z) for all E < T.
2 2 rep 1 <

It is obvious that both My and B, are non-negative and non-

decreasing.
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Now if Z2,, Gy, and G are such that Zl\Gl C G then

Z, <G V] Gy and since A(G U Gl) < MNG) + A(Gl) we have that

ul(zl) < 7\((;1) 4+ A(G). Therefore “1(21) < >\(Gl) + “1(Zl\G1)'
Allowing Gl to range over all cozero sets containing 2 N Zq

we have u,(2Z;) < mu;(2 Nz + pz(zl\z). If ECT and 2,

ranges over all zero sets which are subsets of E then

Bo(E) £ uy(E N 2) + py(ENZ).

Let Z, and Z, be disjoint. Choose disjoint cozero sets

G and G such that 2, <€ G cG,. If G2 2, UZ%Z

1 2 1 1’ 2 2 1 2
AN(G) 2.A(G n Gl) + A(G N G2) SO u.l(zl U Zz) Z-“l(zl) + ul(zz).

P4 then
Now let E €T and 2ZeZ. 1If Zl- ranges over all zero sets
which are subsets of E N 2 while Z, ranges over all zero
sets which are subsets of E\Z, we therefore have that

Hy(E) 2 Ky (E nz) + yz(E\Z). Thus we have proven that

Hy(E) = py(E N 2) + pZ(E\Z) for any E C T and 2ZeZ. By Lemma
5.2, p. 133 of Dunford and Schwartz [2], if m is defined to be
the restriction of M, to ¥, then m is an additive set
function on &. From their definitions it is clear that

ul(Z) = uz(Z) = m(2) if 2ZeZ. Therefore m(E) = ;gg m(z) if

Ee¥ so that m is regular and since m(T) < @ we have

that meM.

We need only show that I f dm = j f dN for all fecC(T).
T T

We can assume O < £ < 1. Let g > O and partition T by a
family {Ei]2=l of p.w.d. sets in & such that
n

;
L am(E,) + & f dm
i=1 Yt ZJT




where a, = inf £(t). There exist sets Z.l C Ei such that
teE.
i

m(Ei\Zi) < &/n which implies that

n
Lam(z) +2€ > £an
i=1 * T

n
Now choose [Gi] j=1 P-w.d. such that 2z, € G, and

b, = inf £(t) > a, "‘ﬂéﬂ' ,
1 t€Gi 1 njm

n .
so that = bim(Gi) + 3& > J f dmn. If Z G we have m(2) < A(G)
i=1 T
'n n
so that m(G) < MN(G). Therefore z bim(Gi) <z bi7\(Gi) < j £f dA
i=1 i=1 T

and thus j f dm gj f d\. Since m(T) = A(T) we also have

T T
j (1-f)air < I (1-f)dm and we can conclude _[ (1-f)dm = I (1-£f)an.
T T T T

Therefore, réplacing f by 1-f we have J f dm = J £f d\ for
T T
all fec(T).
To complete the proof we must show that this isometry is

order-preserving. Clearly J fdm >0 if m> O and fecCc(T),
T
f > 0. Conversely let J f dm > O for each feC(T) such that
T

f > 0 and suppose that there is Eed such that m(E) < - € < O.

Since m is regular there are sets Z and G such. that
ZC EC G and m(G\z) < E/4. Let gec(T), 0< g< 1, such

that g(t) =1 1if teZ and g(t) = 0 if teT\G. Then

|J g dm - m(E)| < &/2 contradicting J g dm > 0. Therefore
T T

e g 1



the mapping is order-preserving. |
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