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ABSTRACT
ON THE NON- UNI QUENESS OF ELASTI C ROTATI ONS
FOR DEFORVATI ONS OF MATERI ALS W TH ELASTI C RANGE
by
David R Oaen

In this note precise definitions of the concepts of per-
manent deformation, annealed state, and non-softening materi al
are used to establish non-uniqueness of elastic rotations for

deformations of certain materials wth elastic range.



ON THE NON-UNIQUENESS OF ELASTIC ROTATIONS
FOR DEFORMATIONS OF MATERIALS WITH ELASTIC RANGE
by

David R. Owen

1. Introduction

A feature common to theories of elastic-plastic materials
is a representation of deformations in terms of elastic and in-
elastic parts. The question of uniqueness of such a representation
has been commented upon by many authors. In references [l1], [2],
and [3], the inherent non-uniqueness of such representations has
been asserted. On the other hand, some writers (see [4], for
example) have assumed uniqueness of such representations. The
purpoée of this note is to state precise conditions under which
non-uniqueness (in the form of non-uniqueness of elastic rotations)
arises in a mechanical theory proposed by the present author ([1].
Roughly speaking, I show that in a material with elastic range
which does not work soften. the larger the symmetry group the
larger the number of possibilities for the elastic rotation.
In particular, the elastic rotation is shown to be arbitrary for
isotropic materials.

These results are useful when discussing approximate con-

stitutive relations for the case of infinitesimal elastic



deformations. 1In fact, for isotropic materials it follows that
one can exclude all elastic rotations which arise in such

approximations.

2. Basic Concepts

In this section, I summarize the concepts presented in [1]
which are relevant to the discussion which follows. 1In addition,
a definition of the concept of a "non-softening" material is
introduced.

A material with elastic range is a material whose stress

response

T(t) = N(FY)

(with T(t) the current stress tensor and Ft the history of
deformation gradient up to time t) satisfies the additional
restriction that continuations of the deformation gradient

history Ft which remain in a set ]E(Ft) produce a path in-

dependent response. Accordingly, one can write
T * t
(') =10 (A,F)

. . . t . . .

whenever G‘r is a continuation of F which remains in IE(Ft)
. . t .

and ends at the point A in E(F ). The set :E(Ft) is called

the elastic range corresponding to Ft and the function H*(.’Ft)




. t
is called the elastic response determined by F .

A history H of deformation gradient is said to determine

an annealed state of the given material if three conditions on

IE(H) and H*(-,H) hold (see, [l], pp. 89-90); the condition

needed here is:

(a3) E(H) is invariant under both right and left multi-
plication of all tensors in this set by arbitrary orthogonal

tensors.

This condition provides the "initial" elastic range, for defor-
mation starting from an annealed state, with abundant symmetries.
Given a history Ft, a second history F; is said to be a

permanent deformation history corresponding to Ft if the

following conditions hold:

Pl. F;(o) is in the elastic range determined by Ft—o,

for every o > O. (F;(U) represents the permanent deformation

at time t - o0.)

P2. As 0 tends to zero, the points F;(o) are bounded

away from the boundary BZE(Ft) of the elastic range IE(Ft).

P3. A fixed function Ho determines the local elastic

response through the relation

RURT Loanai

CARNEGIE-MELLON UNIVERSITY




* t-o t -1
I (a,F ") = HO(A(FP(G)) )

. t-o
for every 0 > O and every A in IE(F ).

It should be noted that Condition P3 embodies the assumption
that only the current permanent deformation and the current total
deformation aie necessary for the determination of the current
stress at points in the current elastic range. 1In P3, (F;(O'))—l
denotes the inverse of F;(o).

I assume in the following development that the history 1*,
corresponding to rest in a given reference configuration,
determines an annealed state of the material and that l+ is
a permanent deformation history corresponding to itself (see [1],
A3).

A final definition, not given in [l1], is needed here. If

the history l+ is such that

g

m(l*)F;(o) c E(FTY)

. . . t .
for every choice of histories F and F;, with F; a permanent
. . . t
deformation history corresponding to F , and for every o > O,

then the given material is said to be non-softening. The set

:E(1+)F;(o) can then be thought of as being a translated copy

of the initial elastic range ]E(l+) which, according to the

o . t-
above condition, is a subset of IE(F 0). Thus, the concept




of a non-softening material enbodies the assunptions that, in a
certain sense, the elastic range cannot shrink during continued

def ormati on. (This concept woul d not be sensible were it not

t t-o*

P . . _ .
for the fact that F (a) is in 3HF4 )t for everyta”> 0 which

p
inmplies that for all materials IKE1 )F (a) PI 3HF ~ ) is not

enpty.)

3. _Non-Uni gueness of Pernmanent Defornations

As the main step toward establishing the non-uni queness
of elastic rotations, a result is presented bel ow which gives
condi tions under which permanent deformations are not uni que.
Before giving this result, a prelimnary remark is needed: |f

an orthogonal tensor Qo i_,s. $£._elenment of _the_symmetry group of the

response functional |Il, _then the sane tensor is an elenent of the

symmetry group of the function ”o’ i.e. the condition
no(AQy} = yA)

holds for all tensors A whenever the condition

n(F'Q) = n(F)

holds for all histories Ft This result is proved as part of

Proposition 1, p. 95, [1].




It is now possible to state and prove the following pro-

position: Given a non-softening material with elastic range,

t . . t
a history F , and a permanent deformation history Fp

. t t .
corresponding to F , it follows that QOFp is also a permanent

deformation history F; corresponding to Ft whenever QO

is an orthogonal tensor which is in the symmetry group of the

response functional I[I. In particular, if the material is

. t
isotropic, then for every orthogonal Q0 the history QOFp

. . . t
is a permanent deformation history corresponding to F .

Thus, the existence of many symmetry transformations of
the material leads to many possibilities for the permanent
deformation.

The proposition can be established simply by showing that
if the conditions Pl, P2 and P3 are valid for F;, then they
are valid for QOF; whenever Qo corresponds to a symmetry

transformation.

Pl. Since QOF;(U) = QolF;(o) and since the identity

tensor 1 1is in 1E(l+) (see [1l], p. 89), it follows that

t + .t + _ + . +
QOFP(G)GQO]E(l )Fp(o). However, QOIE(l ) = IE(1'), since 1

determines an annealed state. Therefore, one concludes that

t—U)

t t
QOFP(U)eZE(1+)Fp(G) C IE(F ; the last conclusion follows




fromthe fact that the material is non-softening. Thus, for
every a|]> 0, QOF;(or) is in the set IE(Ft'c5 . (Note that
this argunent shows al so that QOF;(a) is not in the boundary

of 3E(Ft"c), si nce 3E(Ft_0) is open.

P2. Suppose that P2 is not satisfied. Then there exists

poi nt's Al’ 2,...,An,... in dIE(Ft) and tines TP R
with [im an:O,, such that the distance between An and QOFt(Van)
n 00 P
t
tends to zero as n tends to infinity. However, Q9%P(al® tends
t

to QOFP(0) as n tends to infinity, so that the sequence {Al}
must tend to the. sane limt. This is irrpossitbl e, since the
limt of the seqléence {AT} must be in dJEF ) whereas @EPFP(0)
Isnot in d2E(F) .

P3. For every AelEF 5% 11¥ArYY = IIO(A(F;(a))"" o)
si nce F; is a permanent deformation corresponding to FEt

However, for each (% in the symmetry group of the given

material, the prelimnary remark inplies that

t -1, _ t -1.T, _ £ -1
I, (A(FL(0))77) = T(A(F (0))770)) = I_(AIQF ()17,

and this relation holds for all A in JE(Ft'cj'. Hence, for

all such A and for all a ;> o

1

(A, 5% = T (Alg F ()17,

!




This argument establishes P3.

4. Elastic Deformations and the Non-Uniqueness of Elastic

Rotations
Given a history Ft and a corresponding permanent deformation

history F;, we define for every O > O

t t t -1
F_(0) = F (0) (F ()

F: is called an elastic deformation history corresponding to

Ft. Thus the relation
t t t
F (0) = F(0)F_(0)

holds for all o > O. Since for each QO in the symmetry group

of the material the history QoF; also is a permanent deformation
history corresponding to Ft, it follows that for each QO the
history FZQg is an elastic deformation history corresponding to

F whenever F: is an elastic deformation history. In particular,
for an isotropic material the histories FZQE are, for every

choice of orthogonal Qo’ elastic deformation histories corresponding
to Ft.

These remarks suffice to establish the non-uniqueness of

elastic rotations. In fact, one can write the polar decomposition

t




for any elastic deformation history FZ; t hus each orthogonal
t ensor QO in the symmetry group gives rise to an elastic

def ormati on history

e o e e o

havi ng the same stretch VZ but different elastic rotation.
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