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ABSTRACT

ON THE NON-UNIQUENESS OF ELASTIC ROTATIONS

FOR DEFORMATIONS OF MATERIALS WITH ELASTIC RANGE

by

David R. Owen

In this note precise definitions of the concepts of per-

manent deformation, annealed state, and non-softening material

are used to establish non-uniqueness of elastic rotations for

deformations of certain materials with elastic range.
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1. introduction

A feature common to theories of elastic-plastic materials

is a representation of deformations in terms of elastic and in-

elastic parts. The question of uniqueness of such a representation

has been commented upon by many authors. In references [1], [2],

and [3], the inherent non-uniqueness of such representations has

been asserted. On the other hand, some writers (see [4], for

example) have assumed uniqueness of such representations. The

purpose of this note is to state precise conditions under which

non-uniqueness (in the form of non-uniqueness of elastic rotations)

arises in a mechanical theory proposed by the present author [1].

Roughly speaking, I show that in a material with elastic range

which does not work soften, the larger the symmetry group the

larger the number of possibilities for the elastic rotation.

In particular, the elastic rotation is shown to be arbitrary for

isotropic materials.

These results are useful when discussing approximate con-

stitutive relations for the case of infinitesimal elastic



deformations. In fact, for isotropic materials it follows that

one can exclude all elastic rotations which arise in such

approximations.

2. Basic Concepts

In this section, I summarize the concepts presented in [1]

which are relevant to the discussion which follows. In addition,

a definition of the concept of a "non-softening" material is

introduced.

A material with elastic range is a material whose stress

response

T(t) = n(Ft)

(with T(t) the current stress tensor and F the history of

deformation gradient up to time t) satisfies the additional

restriction that continuations of the deformation gradient

history F which remain in a set 3E(F ) produce a path in-

dependent response. Accordingly, one can write

n(GT) = IMA^)

T t t
whenever G is a continuation of F which remains in IE(F )

and ends at the point A in 1E(F ). The set HE(F ) is called

t •# t

the elastic range corresponding to F and the function II (-,F )



is called the elastic response determined by F .

A history H of deformation gradient is said to determine

an annealed state of the given material if three conditions on

nE(H) and II*(*,H) hold (see, [1] , pp. 89-90); the condition

needed here is:

(a,3) 3E(H) is invariant under both right and left multi-

plication of all tensors in this set by arbitrary orthogonal

tensors.

This condition provides the "initial" elastic range, for defor-

mation starting from an annealed state, with abundant symmetries,

Given a history F , a second history F is said to be a

permanent deformation history corresponding to F if the

following conditions hold:

Pi. F (a) is in the elastic range determined by F ,

for every a ̂ _ 0. (F (a) represents the permanent deformation

at time t - a.)

P2. As a tends to zero, the points F (a) are bounded

away from the boundary 5 E ( F ) of the elastic range IE(F ).

P3, A fixed function II determines the local elastic
o

response through the relation
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for every a ̂ > 0 and every A in IE(F ) .

It should be noted that Condition P3 embodies the assumption

that only the current permanent deformation and the current total

deformation aie necessary for the determination of the current

stress at points in the current elastic range. In P3, (F (a))

denotes the inverse of F (a) .

I assume in the following development that the history 1",

corresponding to rest in a given reference configuration,

determines an annealed state of the material and that 1' is

a permanent deformation history corresponding to itself (see [1],

A3) .

A final definition, not given in [1], is needed here. If

the history 1 is such that

]E(lt)Ft((T) c 3E(Ft"(T)
P

for every choice of histories F and F , with F a permanent

deformation history corresponding to F , and for every cr > 0,

then the given material is said to be non-softening. The set

IE(1 )F (a) can then be thought of as being a translated copy

of the initial elastic range 3E(1 ) which, according to the

above condition, is a subset of IE(F ). Thus, the concept



of a non-softening material embodies the assumptions that, in a

certain sense, the elastic range cannot shrink during continued

deformation. (This concept would not be sensible were it not

t t-o*

for the fact that F (a) is in 3E(F ) for every a ̂ > 0 which

implies that for all materials IE(1 )F (a) PI 3E(F ~ ) is not

empty.)

3. Non-Uniqueness of Permanent Deformations

As the main step toward establishing the non-uniqueness

of elastic rotations, a result is presented below which gives

conditions under which permanent deformations are not unique.

Before giving this result, a preliminary remark is needed: I_f

an orthogonal tensor Q is. $£. element of the symmetry group of the

response functional II, then the same tensor is an element of the

symmetry group of the function II , i.e. the condition

no(AQo} = V A ) '

holds for all tensors A whenever the condition

n(FtQQ) = n(Ffc)

holds for all histories F « This result is proved as part of

Proposition 1, p. 95, [1].



It is now possible to state and prove the following pro-

position: Given a. non-softening material with elastic range,

a history F , and a permanent deformation history F
— p
corresponding to F , it follows that Q F is also a permanent

o p
deformation history F corresponding to F whenever Q

p o

is an orthogonal tensor which is in the symmetry group of the

response functional II. In. particular, if the material is

isotropic, then for every orthogonal Q the history Q F
Q Q P

is a. permanent deformation history corresponding to F #

Thus, the existence of many symmetry transformations of

the material leads to many possibilities for the permanent

deformation.

The proposition can be established simply by showing that

if the conditions Pi, P2 and P3 are valid for F , then they

are valid for Q F whenever Q corresponds to a symmetry

transformation.

Pi. Since Q F (a) = Q IF (a) and since the identity
o p o p

tensor 1 is in JE(1 ) (see [1], p. 89), it follows that

QoFV)GQQIE(l
+)Fp((T). However, Q Q I E ( 1

+ ) = IE(1+), since 1 +

determines an annealed state. Therefore, one concludes that

QQF
t(a)e HE(l+)Ft(a) cz 3E(Ft"a) ; the last conclusion follows



from the fact that the material is non-softening. Thus, for

every a ]> 0, Q F (or) is in the set IE(F ) . (Note that

this argument shows also that Q F (a) is not in the boundary

of 3E(F ), since 3E(F ) is open.

P2. Suppose that P2 is not satisfied. Then there exists

points A ,A ,...,A ,... in dlE(F ) and times a , a ,...,a ...,

with lim a = 0 , such that the distance between A and Q F (a )
n ' n o pv n

n oo

tends to zero as n tends to infinity. However, Q F (a ) tends

to Q F (0) as n tends to infinity, so that the sequence {A }

must tend to the same limit. This is impossible, since the

limit of the sequence {A } must be in d JE(F ) whereas Q F (0)

is not in d 2E (F ) .

P3. For every Ae IE(F ) , II (A,F ) = II (A(F (a))"" )

since F is a permanent deformation corresponding to F .

However, for each Q in the symmetry group of the given

material, the preliminary remark implies that

and this relation holds for all A in JE(F ). Hence, for

all such A and for all a ;> o



8

This argument establishes P3.

4. Elastic Deformations and the Non-Uniqueness of Elastic

Rotations

Given a history F and a corresponding permanent deformation

history F , we define for every cr ̂> o

F̂ (cr) = Ft(a) (F^a))""1;

F is called an elastic deformation history corresponding to

F . Thus the relation

Ft(a) = F ^ t

holds for all a ̂ > 0. Since for each Q in the symmetry group

of the material the history Q F also is a permanent deformation

history corresponding to F 3 it follows that for each Q the

t T
history F Q is an elastic deformation history corresponding to

F whenever F is an elastic deformation history. In particular,

t T
for an isotropic material the histories F Q are,for every

choice of orthogonal Q , elastic deformation histories corresponding

to Ft.

These remarks suffice to establish the non-uniqueness of

elastic rotations. In fact, one can write the polar decomposition

e e e



for any elastic deformation history F ; thus each orthogonal

tensor Q in the symmetry group gives rise to an elastic

deformation history

t T t t T
F Q = V (R Q1)
e o ex e o

having the same stretch V but different elastic rotation.
^ e
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