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Abstract

Of concern is the nonlinear differential equation

(k(u)p(x)uf) T = p^CxjQfu) 0 £ x £ b subject to the boundary

conditions: u = 1 at x = b and (kpuf) takes the values

yQ > 0 and 0 at x = b and x = 0 respectively. Here

0 £ i? < 1 is a given constant and k and Q are known func-

tions and the question posed is to find a positive constant

b > O, a function p(x) > O in O < x £ b and a solution u

of the differential equation such that the norm

b i
(i p^dx) P, p >̂ 1 is minimized. A special transformation of
0

variables together with Holder's inequality leads to the solu-

tion in terms of explicit quadrature formulas.

Prepared under Research Grant DA-ARO-D-31-124-71-G17, Army
Research Office (Durham) .
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ON THE NONLINEAR METHOD OF WILKINS

FOR COOLING FIN OPTIMIZATION

1. Introduction.

This is a study of a minimizing problem suggested by the

works of J. E. Wilkins, Jr. , concerning minimizing the mass of

cooling fins [5,6,7].

Under consideration is the differential equation

(I) (k(u)p(x)uM! = P^xXMu) in O 1 x £ b, ()' = -|j

subject to the boundary conditions: u = 1 at x = b, (kpuT) =

y (>0) at x = b and (kpu») = 0 at x = 0. Here 0 £ 17 < 1

is a given constant and k and Q are known functions and the

question posed is to find a positive constant b > 0, a function

p(x) > 0 in 0 < x <£ b and a solution u of the differential

equation such that the L -norm

P
pb i

(ID (J PPdx)p,
0

is minimized. It is assumed that k is a positive function

of u. Also Q > 0 for u > 0 and Q £ 0 for u £ 0.

By a heuristic analysis we are led to the following trans-

formation:

= J_k(s) [Q(s)]Cds, C = Jr
(III) [

.<t> = j y & , 6 = i + c

where y (x) = k (u (x)) p (x) u1 (x) . This transforms the norm II into
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and this is minimized by applying the Holder's inequality to

. ldjh. The condition for equality in Holder1 s inequality

leads to a key relation, namely

.a r
Here ty~ = I k(s) [Q(s)]^ds. This yields expressions for u(x),

0

p(x) and b satisfying I and the above mentioned boundary con-

ditions and minimizing the norm II.

The papers [5,6,7] by Wilkins, mentioned above, concern

the design of the profile of minimum mass cooling fins and

spines. He has studies two cases of the equation I with T) = 0

(rectangular cooling fin) and rj = •j (cooling spine) , separately.

The equation I is then the steady state heat flow equation. u(x)

is the temperature, p(x) the thickness (radius) of the cooling

fin (spine). Also k(u) is proportional to specific conductivity of

the material. He minimizes the weight of the cooling fin (spine),

that is to say Jpdx. Thus p = 1 in his case. He uses dif-

ferent algebraic identities, instead of Holder's inequality,

for the cases r\ = 0 and r\ = r- to minimize Jpdx. It is as-

sumed that the cooling coefficient of the fin (spine) is a con-

stant and ambient temperature is 0°A. For the Newton1s linear

law of cooling Q (u) = u and for the Stefan-Boltzmann law of
4

cooling Q(u) = u .
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Our results coincide with those of Wilkins [5,6,7] on

taking r) = 0, p = 1 and r) = -j, P = 1# Moreover if in

these cases we take k (u) = constant and Q(u) = u we ob-

tain the results of E. Schmidt [3] and R. Focke [4] giving

the profiles of minimum mass rectangular cooling fin and mini-

mum mass circular spine.

Certain results complementing the results obtained here

have been treated by R. J. Duffin, D. K. McLain and S. Bhargava.

In reference [2], R. J, Duffin solves the maximizing of the

heat dissipation in rectangular and circular fins subject to

the constraint that the weight be a constant. In reference [1]

R. J. Duffin and D. K. McLain treat the same problem for arbi-

trary convex fins. Their approach permits a variable cooling

coefficient in contrast to Wilkin1s Method given in [5] and

generalized here. Further the Duffin-McLain approach has been

further developed in reference [9] by S. Bhargava and R. J. Duf-

fin to give dual extremum principles for the maximum heat dis-

sipation under more general non-linear weight constraint of the

1

L -norm type: (Jp^dx)p £ K, p ̂ > 1. However these principles

are limited to the case of Newton's linear law of cooling. For

example, the approach does not permit the Stefan-Boltzmann
4

u -law of cooling. In references [8] and [10] they obtain

analogous dual extremum principles for optimum Network and Beam

designs.

The method developed by Wilkins in [5] for minimizing the

L-,-norm ipdx and generalized here for minimizing the L -norm
l J D
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permits a class of cooling laws Q(u) including
4

Newton's linear law and Stefan-Boltzmann1s u -law. But his

approach does not seem to lead to dual extremum principles

for the minimum weight nor does it seem to extend to Q being

a function of X. Thus it does not apply to the circular cool-

ing fins treated in [2].
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2, The Minimizing Problem and Heuristic Analysis.

Problem JL. To find two functions p (x) and u (x) and a. positive

number b having the following properties; u (x) JLS, a. differ-

entiable function in 0 £ x £ b satisfying the differential

equation

(1) (k(u)p(x)u«) • = p^CxXMu) in 0 1 x £ b, ( ) • =

and the boundary conditions

(2) u = 1 at x = b,

(3) (kpu') =0 at x = 0,

(4) (kpu') = Y0(>0) at x = b;

p(x) jus continuous in 0 £ x £ b and satisfies the condition

(5) p(x) > 0 in 0 < x £ b.

Under these conditions we seek to minimize the functional

(6) w = f ppdx.

Here 0 £ r) < 1 and p ^> 1 are given constants and Q(u) and

k(u) are known functions such that Q(u) > 0 for u > 0,

Q(u) ^ 0 for u £ 0 and k (u) > 0 for all u. Further Q jj3

continuous and k JLS^ differentiable in every finite interval.

It is shown in section 5 that if for a b > 0, u(x) and p(x)

satisfy (l)-(5) then, under the assumptions on k(u) and Q(u)

made above, u(x) and y(x) where

(7) y(x) = k(u(x))p(x)u» (x) in O ^ x ^ b
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are positive and increasing for x > 0 and hence Q > 0 in

(I) . Further the positivity of u and y show, by (1) and

(7) , that

(8) <|S) "T (g) > 0 for x > 0.

We now derive by a heuristic analysis a transformation which

will enable us to obtain rigorous solution of Problem 1. We in-

troduce the following quantities for convenience:

(9) 5 - f±± * 1

(10) i + i = 1

(II) 6 = 1 + i

On using (7) equation (1) becomes

(12) y' = p^Q in 0 £ x £ b.

Equating p1* obtained from (7) and (12) gives

(13)

Using (7) and (13) p^dx can be expressed in terms of u, y, k

and Q as

1
) C (
; l Q

(YCdy)

[(kdu)5"1
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(14) p°dx =

This suggests the transformation yi—»(p and u»-» J/J given by

(15) 4> = J k(s) [Q(s) ]Ms

(16) <f> = j y 6

Using these in (14) gives

(17) w =

where

*u (O)
(18) 01 = 0| = | k(s)Qc(s)ds

x=O " 0

and

(19) O < 09 = 01 = f k(s)Q^(s)ds ^ ^ .
2 x=b JO X

Relation (2) has been used in (19) . Also, on using (3) and (4)

we introduce

(20) <p = <p\ = o
1 x=0

and

(21) O < <p2 = <p\ = ^ Y Q -

It is shown in Section (3) that on applying Holder's inequal-

ity to (17) that w = j p^dx is minimized if and only if u(x)

and p(x) and the constant b satisfy

^2 <̂2 -1-

besides (l)-(5). iTiese relations yield unique solutions p(x) =

9 u(x) = ^(x) and b = b^ of Problem 1.
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3. Solution of the Minimizing Problem,

On introducing y(x) defined by (7), equation (1) is

equivalent to the two first order equations (7) and (12). If

u, y and p satisfy (7) and (12) then, by the transformation

given by (15) and (16), (6) is equivalent to (17) and the bound-

ary conditions (2), (3) and (4) are equivalent to (19), (20)

and (21) respectively. Now, consider the identity

Applying Holder's inequality to this and using (18)-(21) gives

(22) <p 1 (J
0

Rewriting this and using (17) gives

b ?

(23) J p^dx ;> — 2 ^ (J
0

There is equality in (22) if and only if

(24) ^ 2 _ = A (̂,0 by (8), (15) and (16)).

Using this, there is equality throughout (23) if and only if

(24) holds and

(25) 4,1 = o.

Using (20) and (25) and integrating (24) gives

(26) (-£-) = (-*-) in 0 1 x 1 b.
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Here (19) and (21) have been used. Relation (26) can be

written as

(27) (-*-)6 = <-£-) in 0 £ x £ b .

Condition (25), on using (18) becomes

(28) u(0) = 0.

•Thus a necessary and sufficient condition that u(x), y(x) ,

p(x) and b satisfying (9) and (12) and the side conditions

(2)-(5) minimize (6) is that (27) and (28) be satisfied. Now,

eliminating p and y between (7), (12) and (27) gives

k(u)

Integrating (29) and using (28) gives u(x) = u (x) and then

using (2) gives b = b :

(30) x = ( ^ - ) 1 ^ (r
U0^(s)(Q(s))^ s

(31) bQ = (^L^)
1^ ( j ^ ^ C X Q ^ ) ^ ]ds)

Using (27) and (29) gives p(x) = pQ(x)

(32) po(x) =
vl X
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For these u Q(x), Po(*) and bQ, (27) and (28) are satisfied

besides (l)-(5) and therefore (23) gives

(33) W = min ppdx = (—*V~ ) •

o c

We can formulate the above discussion as follows:

Theorem jL. Problem JL has unique solution given by (30) , (31)

and (32) and the minimum W of the functional (6) JLŜ  given by

(33). In these formulae (30)-(33), ?, £, 6; 0 and ^2 are

given by (9)-(11), (15) and (19).

Proof: See the discussion immediately preceding the statement.
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4. Special Cases and Application to Design of Minimum Mass

Cooling Fins.

In this section we demonstrate that our results obtained

in Section 3 contain earlier results of J, E. Wilkins [5],

E. Schmidt [3] and R. Focke [4] concerning the profile of mini-

mum mass cooling fins and spines. By applying Theorem 1 we

obtain the results tabulated in Table 1:
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TABLE 1

21*

> C ^

?
tz

5
-6

I I

• * II

11

©

.8 _

C r ^ .

x\A

^ •31*
*s»^

-4>

3

s

V<*>

-l«

©

1

I I

I I

i
v
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5. A Lemma Showing the Temperature is Positive,

In this section we show that if p, u satisfy (l)-(5)

and y is given by (7) and k and Q satisfy the conditions

stated in Problem 1, then u and y are positive and increas-

ing in x > 0.

Lemma JL. Let k (u) and Q (u) satisfy the conditions stated in

Problem 1. Let p(x) and u(x) satisfy (1)-(5) for some b > 0

and let y he_ given by (7) . Then u(x) and y(x) are positive

and increasing in x > 0.

Proof; Integrating (1) and using (3) gives

<34» S " fcfrOpM 1 / < x > Q ( u ) d x ' x > °-

Suppose u < 0 and x = 0, so, from (34), (-=̂) <^ 0 in the right
cix

neighborhood of x = 0. Hence u is a decreasing function and

never positive contradicting (1)• A similar argument holds if u

has a negative maximum at a point x = b1 inside (0,b). Then

(34) holds with b' replacing b. Thus u(x) > 0 for x > 0

and by ( 3 4 ) , ^ > 0 in x > 0; hence y(x) =* k(u)p(x)u! (x) > 0

in x > o, Q(u) > 0 in x > 0 and |^ = p7?Q(u) > 0 in x > 0.

This completes the proof of the lemma.



E14

6. References

[1] Duffin, R.J., and D. K. McLain, "Optimum Shape of a Cooling
Fin on a Convex Cylinder", Jour. Math, and Mech. _T7 (1968),
769-784.

[2] Duffin, R.J., "A Variational Problem Relating to Cooling Fins",
Jour. Math, and Mech. 8, (1959), 47-56.

[3] Schmidt, E., "Die Warmeubertragung durch Rippen", Zeit.d.
ver. deutch. Ing., 22 (1926), 885-890.

[4] Focke, R., "Die Nadel als Kuhlelement", Forschung auf dem
Gebiete des Ingenieurwesens _13. (1942), 34-42.

[5] Wilkins, J.E. Jr., "Minimum Mass Thin Fins for Space
Radiators", Proc. Heat Transfer and Fluid Mech. Inst.,
Standord University Press, 1960, 229-243.

[6] , "Minimum Mass Thin Fins and Constant
Temperature Gradients", J. Soc. Ind. Appl. Math., ̂ 10 (1962),
62-73.

[7] , "Minimum Mass Thin Fins which Transfer
Heat only by Radiation to Surroundings at Absolute Zero",
J. Soc. Ind. Appl. Math. 8. (1960), 630-639.

[8] Bhargava, S. and R. J. Duffin, "Network Models for Maximiza-
tion of Heat Transfer Under Weight Constraints", Carnegie-
Mellon University, Department of Mathematics, Research
Report 71-48.

[9] , "Dual Extremum Principles
Relating to Cooling Fins", Carnegie-Mellon University,
Department of Mathematics, Research Report 71-53.

[10] , "Dual Extremum Principles
Relating to Option Beam Design", Carnegie-Mellon University
Department of Mathematics, Research Report 71-54.


