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Abstract
Of concern is the nonlinear differential equation

(k(u)p(x)u')' = pn(x)Q(u) 0 £ x < b subject to the boundary
conditions: u =1 at x =Db and (kpu') takes the values

Yo >0 and 0 at x =Db and x = 0 respectively. Here
0<M<K 1 1is a given constant and k and Q are known func-
tions and the question posed is to find a positive constant

b > 0, a function p(x) > 0 in 0< x < b and a solution u

of the differential equation such that the norm
1

(f ppdx)p, p>1 is minimized. A special transformation of

variables together with HOlder's inequality leads to the solu-

tion in terms of explicit quadrature formulas.

Prepared under Research Grant DA-ARO-D-31-124-71-Gl7, Army
Research Office (Durham).
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ON THE NONLINEAR METHOD OF WILKINS
FOR COOLING FIN OPTIMIZATION

1. Introduction.

This is a study of a minimizing problem suggested by the
works of J. E. Wilkins, Jr., concerning minimizing the mass of
cooling fins [5,6,7].

Under consideration is the differential equation

(1) (k(wp(x)u")!' = pM(x)Q(w) in 0 x< b, () =_g_§

subject to the boundary conditions: u =1 at x = b, (kpu') =
Yo (>0) at x=Db and (kpu') =0 at x =0. Here 0 n<Kl
is a given constant and k and Q are known functions and the
question posed is to find a positive constant b > O, a function
p(x) > 0 in 0< x< b and a solution u of the differential
equation such that the Lp—norm

b L
(11) ([ pPan®, p > 1

o]
is minimized. It is assumed that k is a positive function
of u. Also Q>0 for u> 0 and Q< O for u( O.

By a heuristic analysis we are led to the following trans-

formation:
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where vy(x) = k(u(x))p(x)u'(x). This transforms the norm II into
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2
(1v) Jw 2 %ay, g+ ¢ =1
1

and this is minimized by applying the HOlder's inequality to

L)
j (%%).1d¢. The condition for equality in HOlder's inequality
by

leads to a key relation, namely

¥4 _ oy,
) (Yo) ('bz)

ol
Here 3, = J k(s)[Q(s)]cds. This yields expressions for u(x),
(0]

p(x) and b satisfying I and the above mentioned boundary con-
ditions and minimizing the norm II.

The papers [5,6,7] by Wilkins, mentioned above, concern
the design of the profile of minimum mass cooling fins and
spines. He has studies two cases of the equation I with n =0
(rectangular cooling fin) and 1 = % (cooling spine), separately.
The equation I is then the steady state heat flow equation. u(x)
is the temperature, p(x) the thickness (radius) of the cooling
fin (spine). Also k(u)‘ is proportional to specific conductivity of
the material. He minimizes the weight of the cooling fin (spine),
that is to say jpdx. Thus p =1 in his case. He uses dif-
ferent algebraic identities, instead of Holder's inequality,
for the cases n =0 and 7 = %- to minimize fpdx. It is as-
sumed that the cooling coefficient of the fin (spine) is a con-
stant and ambient temperature is OCA. For the Newton's linear
law of cooling Q(u) = u and for the Stefan-Boltzmann law of

cooling Q(u) = u4.
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Qur results coincide with those of Wlkins [5,6,7] on
taking r) =0, p=1 and r) :;J, P=% Moreover if in
these cases we take k(u) = constant and Qu) = u we ob-
tain the results of E Schmdt [3] and R Focke [4] givVing
the profiles of m nimummass rectangular cooling fin and m ni -
mum mass circul ar spine.

Certain results conplenenting the results obtained here
have been treated by R J. Duffin, D. K MLain and S. Bhargava.
In reference [2], R J, Duffin solves the maxim zing of the
heat dissipation in rectangular and circular fins subject to
the constraint that the weight be a constant. |In reference [1]
R J. Duffinand DO K MLain treat the same problemfor arbi-
trary convex fins. Their approach permts a variable cooling
coefficient in contrast to WIkin's Method given in [5 and
general i zed here. Further the Duffin-MLain approach has been
further developed in reference [9] by S. Bhargava and R J. Duf-
fin to give dual extremumprinciples for the maxi mumheat dis-

si pati on under nore general non-linear weight constraint of the

1

Lp-norn1type: (Jprdx)P £ K p 7> 1. However these principles

are limted to the case of Newton's linear |aw of cooling. For
exanpl e, the approach does not permt the Stefan-Boltzmann
u4-lam10f cooling. In references [8 ‘and [10] they obtain
anal ogous dual extrenmum principles for opti num Network and Beam
desi gns.

The met hod devel oped by Wlkins in [5 for mnimzing the

lﬂ,-nonn Epdx and generalized here for mnimzing the LD-norm
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(jppdx)D permts a class of cooling laws Qu) including

Newt on's |inear |law and Stefan-Boltzmann's u4llamn But his
approach does not seemto lead to dual extremum principles

for the mnimumwei ght nor does it seemto extend to Q being

a function of X Thus it does not apply to the circular cool -

ing fins treated in [2].
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2, The M nim zing Problem and Heuristic Analysis.

ProblemJL To find two functions p(x) and u(x) and a. positive

number b having the follow ng properties; u(x) JLS_a. differ-

entiable function in O£ x £b satisfying the differential

equation

(1) (k(uyp(x)u«) ¢« = pACxXMu) in O1x£hb, () :—c:ci-i;

and the boundary conditions

(2) u=1 at x = b,
(3) (kpu') =0 at x =0,
(4) (kpu') = Yo(>0) at X = b;

p(x) jus_continuous in O £x £b and satisfies the condition

(5) p(x) >0 in 0<x€£b.

Under these conditions we seek to mnimze the functional

(6 w= fphdx.

Here O £r) <1 and p ™> 1 _are given constants and Q(u) and

k(u) _are known functions such that Qu) > 0 for wu > 0,

Qu) "0 for uf£0 and k(u >0 for all u Further Q [j3

continuous and k JLS" differentiable in every finite interval.

It is shown in section 5 that if for a b >0, u(x) and p(x)
satisfy (l)-(5) then, under the assumptions on k(u) and Qu)

‘made above, u(x) and y(x) where

(7) y(x) = k(u(x))p(x)u» (x) in O~x"hb
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are positive and increasing for x > O and hence Q > O in

(1) . Further the positivity of u and y show, by (1) and
(7) , that

(8) S+& >0 for x> o.

We now derive by a heuristic analysis a transformation which
will enable us to obtain rigorous solution of Problem l. We in-

troduce the following quantities for convenience:

(9) =01 21
1,1
(10) e+ ¢ 1
1
11 6 =1+ 3.
(11) +

On using (7) equation (1) becomes
(12) y' =p’0 in 0< x< b.

Equating pn obtained from (7) and (12) gives

!
(13) & = "

Using (7) and (13) ppdx can be expressed in terms of u, Yy, k

and Q as

pPax = (Lo Plax) Pt =

kdu
1

(yCay) ®

£
L & s

[(kau) =1 o%8-%y,



Thus %
(14) pedx = [Lgf—ﬁckoﬁau).
kQ>=du

This suggests the transformation yi—»(p and u»» JJ given by
(15) & =J k(s) [Qs) ]'Ms

0
(16) <t> =f ye.

Using these in (14) gives

b Vs
(17) w= | pPax = Sap
0 1
wher e
*u(Q -
(18) 0, = 0] = | k(s)JF(s)ds
x=0 "0
and
1
(19) O< 0y = 01 = f k(s)Q‘(s)ds » ~_.
2 x=b ‘0O X

Relation (2) has been used in (19) . Also, onusing (3) and (4)

we introduce

(20) <p. = <p\ =0
. x=0
and
i)
(21) O < <p = <p\ =AYQ-
x=b

[t is shown in Section (3) that on applying HGl der's inequal-
ity to (17) that w=j ptdx is mnimzed if and only if u(x)
and p(x) and the const%nt b satisfy
€) =), y, =0
A2 <2 A
besi des ( (5). iTiese relations yield unique solutions p(x) =

l) -
Polx} o U(x) ="(x) and b:bL’,‘ of Problem 1.
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3. Solution of the Minimizing Problem.

On introducing y(x) defined by (7), equation (1) is
equivalent to the two first order equations (7) and (12). If
u, v and p satisfy (7) and (12) then, by the transformation
given by (15) and (16), (6) is equivalent to (17) and the bound-
ary conditions (2), (3) and (4) are equivalent to (19), (20)

and (21) respectively. Now, consider the identity

)
(‘pz_(pl) =j‘ (%)-ldlp.
31
Applying HOlder's inequality to this and using (18)-(21) gives
by 1y, 1
(22) 0y < (] G %ap (] 1fant.
¥1 ¥y
Rewriting this and using (17) gives
b g
© ®
(23) [ pPax» —2— » (25
0 £

1
(d)z"d)l) ¢ ‘bzc
There is equality in (22) if and only if

do

(24) a$~ = AN (>0 by (8), (15) and (16)).

Using this, there is equality throughout (23) if and only if

(24) holds and
(25) $; = O.
Using (20) and (25) and integrating (24) gives

(26) (<2 = (X9 in 0< x < b.
& P
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Here (19) and (21) have been used. Relation (26) can be

written as

(27) (-L)é = (9 in 0< x < b.
Yo ¥2

condition (25), on:using (18) becomes
(28) u(o0) = O.

Thus a necessary and sufficient condition that u(x), y(x),
p(x) and b satisfying (9) and (12) and the side conditions
(2)-(5) minimize (6) is that (27) and (28) be satisfied. Now,

eliminating p and y between (7), (12) and (27) gives
i-n

sp, O L Tn3p
(29) &) - (—2—1_5)1”"- ({o(w) —l] in 0< x b,
YO Py

k (u) (Q(u))P™"

Integrating (29) and using (28) gives u(x) = uo(x) and then

using (2) gives b = b _:

o
v 1-n 1 u El—
(30) X = (L—i__—u—) I (J k(S) (9(s)) ] ds
59, ° (p(s)) 1-M+2p
v 1-n _1_ —%ﬁ
(31) by = (2 ;_n_l+" <J ') )P
5y, ° (p(s)) 1-M+20
Using (27) and (29) gives p(x) = po(x)
. - 1 1
(32) Po () = (—2%) MMy (ug (0) 117120 1w (x)) 1PN,
5

59,
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For these uo(x), po(x) and bo, (27) and (28) are satisfied
besides (1)-(5) and therefore (23) gives
o
b
Yo ) 8

(33) W = min J ppdx = (
o]

l 3
6¢2C

We can formulate the above discussion as follows:

Theorem 1. Problem 1 has unique solution given by (30), (31)

and (32) and the minimum W _of the functional (6) is given by

(33). In_ these formulae (30)-(33), &, &, 6; ¢ and ¢2 are

given by (9)-(11), (15) and (19).

Proof: See the discussion immediately preceding the statement.
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4, Special Cases and Application to Design of Minimum Mass

Cooling Fins.

In this section we demonstrate that our results obtained
in Section 3 contain earlier results of J. E. Wilkins [5],
E. Schmidt [3] and R. Focke [4] concerning the profile of mini-
mum mass cooling fins and spines. By applying Theorem 1 we

obtain the results tabulated in Table 1:
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AO# Nd:.o.uw.fon_o(n— 40) Oﬂl

&hiw%(..s oW .T.

P..:oou

fe

2 15344 29)

aymyouId W)

pob W fo aumyeurdweay
$oof T @ pa)ddnwy  pory *o 239

[n] x>y o (<%
ysu! . ° 1] ml_
e | | GBI e
o 4 Vo5 v =4 " .
:, [rwpon) TF
fowa =
- o oW ¥)0g
%st) €€ °q Aux.v ﬂww.’ ogmeo) Y| - 21s) auids \w:..%.u
0 w\ X AT 208911 Yoy IY)
[s] mmyom .,n.&_iua *RY 0T\ s WL A Tt A
K % 1, ovapwr)
e ¥€ o %y i 22 (xogeran)
H.mu_ u.ﬁ\ll,ﬂum ..mm...ﬂ. Lz < <f juoysuo) .ﬁ‘ "
£
sovauNing o uN..
I=n z -
: ° 1%
~ \70 ) - % A A@-MWMV . n\:.—} 1 “wayg
<2 — =2 X
:14@ 3 % zch hb _,Mﬂ.ucms 5% Rz ) ﬁ?cozv \Z uonN (m) ﬁ. (mP %:..moou wy
o o 2% pwo on &% -nbuv3I2)Y
[s] s“drm ¢ ag=x y°J : oA NIY
*.*@m ny NY2Mpuo w00
«L\«:“ut Es&o..n.“s ,:\«sd wnporaduay .eouﬂh.:ww.,ﬁw b.\.xu“& wo& m *\W M...._v %0134 Y2Pp
nearfay M ° 0°n 4 (m) ¥ (m)® uid




E13

5. A Lemmma Showing the Tenperature is Positive,

In this section we show that if p, u satisfy (1)-(5)
and y is given by (7 and k and Q satisfy the conditions
stated in Problem 1, then u and y are-positive and increas-

ing in x > 0.

Lemma JL  Let k(u) and Q(u) satisfy the conditions stated in

Problem1. Let p(x) and u(x) satisfy (1)-(5 _for some b >0

and let y he_given by (7). _Then u(x) and y(x) are positive

and increasing in x > 0.

Proof; Integrating (1) and using (3) gives
du 1 *
<34» S|1W1/<X>Q(U)dXIX> o_
Suppose u < 0 and x =0, so, from (34), (-d_—*‘) <0 in the right
ci X

nei ghborhood of x = 0. Hence u 1is a decreasing function and
never positive contradicting (1) A simlar argunent holds if u
has a negative maxinumat a point x = b* inside (0,b). Then
(34) holds with b’ replacing b. Thus u(x) >0 for x>0
and by (34),~>0 in x > 0; hence y(x) =* k(up(x)u' (x) >0
in x>0, Qu >0 in x>0 and |~ =p”Qu) >0 in x > 0.

This conpletes the proof of the |emm.

HilRT $13REY

CAPERRIEY T
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