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Abstract

Of concern is a cantilever beam resting on an elastic foun-
dation and supporting a load at the free end. The beam is of
rectangular cross section and of constant height but variable
width., It is required to taper the beam for maximum strength,
or what is the same, for supporting maximum vertical load W
at the free end when the free end is given unit deflection.
The constraint is that the weight of the beam should not exceed
a given bound K. It is shown that the optimum taper should be
chosen so that the curvature of the beam is constant. This
yields the solution of the problem in terms of explicit formu-
las. Turning to more.general constraints, a duality inequality
is found which gives upper and lower bounds for the maximum

load Ww.

* Prepared under Research Grant DA-ARO-D-31-124-71-Gl17, Army

Research Office (Durham).



D1

DUAL EXTREMUM PRINCIPLES RELATING TO
OPTIMUM BEAM DESIGN

1. Introduction.

Beams are used in structures to support loads imparted by
other members of the structure. A beam can be supported by an
elastic wall or sheet along its entire length. A loading con-
dition on such a beam of rectangular cross section is shown in
Figure 1 where a vertical load is acting at one end while the

other end is clamped.

‘ ‘ U 2laskic Bheet

%b
load -

Figure 1. Cantilever beam on an elastic foundation
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A design question for such a cantilever beamwoul d be — how

should the width of a. beamof limted weight K bf tapered

S0 as to have maximum strength or what is the sane, so as to

support ja maximumend load W while this end is to have unit

defl ecti on?

By maki ng certain tacit assunptions the physical problem
is given a mathematical setting. The maxim zing question is
transforned into a m ni max problemof the Cal culus of Vari a-
tions and then given a rigorous analysis.

This study leads to a sinple criterion for the opti mum t aper -

ing of a rectangul ar beam of fixed height -- the curvature of

t he deflection curve or what is the sane, the second derivative

of the deflection function, should he a. constant. This |eads
to explicit expression for the flexural rigidity function, and
hence for the tapering of the width of the optimal beam

Anal ogous design problens in Networks and Heat Transfer were
treated in references [I]-[4]. For exanple in [4 we considered
a lunped network having a finite nunber of conducting branches.
Certain branches, termed set B, are allowed to vary their con-

ductance but the total conductance is limted by an | nor m
P

type constraint
(Eﬁg‘:)l/"gx p > 1.

Her e Og is the conductance of branch s and K and p are
positive constants. Then the design problemis to maxi m ze the
joint conductance of the network between two specified input
points. The network question may be characterized as a maxim z-

ing problemof nathematical progranning; t hus suggesting that
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there is a dual minimizing problem. Pursuing this idea we

were lead to the duality inequality, namely

/

Wlly o > T2 2 Vvl -

Here || Hz,a and || H2,B are certain dual norms. The vector
v is an arbitrary normalized voltage distribution satisfying
Kirchhoff's voltage law. The vector y is an arbitrary normal-
ized current vector satisfying Kirchoff's current law. T is
the optimum conductance. There is no "duality gap"; in other
words the duality inequality could be used to give a sharp es-
timate of T.

This network model suggested to us what duality inequality
should hold for the elasticity problem on hand. Moreover it

_ 1
suggested replacing the weight constraint J pdx < K on the
9]

1
width p by the more general constraint J ppdx g_Kp. Thus
o)

we prove in this work the following duality inequality

/

”unz,a Z-Wl 2 2 l/HYHZ:B.

Here and are certain dual norms. The functions

. Iy,
u(x) and y(x) are arbitrary smooth functions normalized at the
boundary. Moreover u(x) is a deflection function and y(x) is

a moment function. W is the maximum strength of the beam. This
duality inequality could be used to give upper and lower bounds
for W,

Various problems concerning the design of beams and columns

for maximum strength were solved by H. Blasius [5]. Recently



D4
interesting developments along similar lines have been made
by I. Tadjbaksh and J. B. Keller [6]. A comprehensive treat-
ment of beams supported by elastic foundations has been given

by M. Hetenyi [7]. None of these authors treat the problem

posed here.

Certain modifications of the basic problem are treated.

Presumably several other modifications are feasible.



2. _Formulation of The Problem and Heuristic Anal ysis.

Consi der a beam of rectangul ar cross section of fixed
hei ght elastically supported by an el astic sheet or wall”™ it

is clanped at one end and a load is acting at the other end so

as to produce a desired deflection of this end. In Figure 1
is shown such a beam In Figure 2 is sketched the deflection
curve.

Figure 2. Deflection Curve

Let u(x) be the deflection function and q(x) > 0 the
elastic coefficient of the supporting material. Assum ng that
the reaction due to the elastic support is a linear function of
the deflection wu(x), equilibriumstate of bending is given by

the differential equation
(1) (pu )" + qu=0 in 0£x£1 ()" = ddx

where p(x) is the flexural rigidity of the beam The geometri -.

cal boundary conditions are
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(2) u=0 at x =0
(3) ut =0 at x = 0.
(4) u=-1 at x = 1.

The mechani cal boundary conditions on torque and force are

(5) pu =0 at x =1
and

(6) (pu™ » =w at x = 1.
Of course

(7) pr"0 in 0£x£ L

*The load w in (6) can be regarded as the strength of the
beamin the follow ng sense: The beambeing clanped at x =0
I's capable of supporting a vertical load w at x =1 Wile

mai ntaining a deflection -1 of the end x = 1.

Now, the flexural rigidity function is proportional to the
wi dt h of the beam since the height is a constant throughout the
| ength of the beam Thus the integral of the width function or
that of the flexural rigidity function is a neasure of the weight
of the beam It is assumed that the density and Young's nodul us
of the material of the beamare constants. In viewof this, the
inequality (8) below can be regarded as wei ght constraint.

Wth the deflection determined by (1)-(5 we can fornmulate

the follow ng optim zation problem

Problem 1. Find the maxinmum strength. W oE_ ci beam subject to

the constraint that the weight is bounded by ei given constant:
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1
(8) j pdx < K, K> O.
o)

We now develop a solution of Problem 1 providing K ex-
ceeds a positive bound. This bound on K shall be established
in the course of the solution. It is desirable to recast the

problem into a minimax problem in terms of the functional

(9) E(P,u) = (Pu
(0]

This change is motivated by the following heuristic analysis.
Let p, g and u be sufficiently smooth in 0 x< 1
so that integration by parts below is valid. Let v be an

arbitrary smooth function. Then
1

(10) E(p,ut+v) = E(p,u) + E(p,v) + Zj (pu"v" + quv)dx.
(0]

Integrating by parts gives
1 1 1 1
1D | (pu'v'+quviax = [ [(pu")"+qulvax + [(pu)v'] - [(pu") V] .
(0] (0] . o (0]
The first integral on the right side vanishes by (1). If we
impose v =0 at x=0 and x =1 and Vv!' =0 at x =0
then u + v satisfies the geometrical boundary conditions (2)-(4)

and the boundary terms in (1l) reduce to zero. Here (5) is also

used. Thus (10) becomes

(12) E(p,u+v) = E(p,u) + E(p,v) > E(p,u).

It follows that E(p,U) is minimized for the class of functions
satisfying the boundary conditions (2)-(4) by u satisfying (1)
and (5). This is a standard result of the calculus of variations.

In the calculus of variations (5) is termed a natural boundary
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condition because it is necessarily satisfied by the minimizing

function.

Now letting v = u in (11) and using (1)-(6) gives

I
]

[(pu") ']
x=1

(13) E(p,u) w.

Lemma 1. If the function u satisfies the Euler differential

equation (1) corresponding to the saddle functional E(p,u) and

if p and u satisfy the boundary conditions (2)-(5) then

(14) w = E(p,u)

where w 1is the strength of the beam.

Proof: This immediately follows from (13).
In view of relations (12) and (14) we pose an equivalent

problem:
Problem 2. Find
(15) W = max min E(p,u).

P u

Here u is not necessarily subject to the differential equation

(1) but satisfies the boundary conditions (2)-(4) and p(x) is

subject to the constraints (7) and (8).

Thus the original maximizing problem has been replaced by
a minimax problem. We continue the heuristic analysis and in-

vestigate this minimax problem,

Lemma 2. If p(x) is continuous in 0 ¢ x {1 satisfying the

conditions (7) and (8) and wu(x) is continuous with continuous

first derivative and piecewise continuous second derivative in

0L x<K 1, then
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2 1 >
(16) E(p,u) < K Sup(u")” + j qu-dx.
oKxK1 o

This is an equality if

(17) [ pax = x
0]
and
(18) u" = A, a constant in 0 x { 1.

Proof: It is enough to see that

(19) I pu" dx < (J pdx) - Sup(u") < K Sup(u")
o<x< 1 0<x<1
Because (19) becomes an equality throughout when (17) and (18)
hold, the case of equality is also shown.
The relation (18) enables us to solve for a p(x) and a
u(x) satisfying (1)-(5), (7) and (8). This we do below ip Lem-
ma 3. That this solution for p and u 1is the ﬁnique optimal

solution of Problems 1 and 2 will be established in Section 3.

Lemma 3a. The solution of the differential equation (18) sub-

ject to the boundary conditions (2)-(4) and corresponding A

are given by

(20) uo(x) = _x? in 0 x<K 1.
(21) A= -2,

Proof: 1Integrating (18) gives

AX
U, = 5 + cq X + c.,.
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Using (2)-(4) gives c, = 0 = Cys A= =2,

Lemma 3b. For u given by (20) the differential equation (1)

reduces to one for p namely

1

= -2 x%q® in 0<xg1

(22) p"

and the boundary condition (5) becomes

(23) P 0O at x = 1.

Subjecting the constant K to the limitation

1
(24) K> 7 f (1-%) x°q (x) dx
(0]

and assuming g(x) > O is continuous in O < x < 1, the unique

solution of (22) satisfying (7), (17) and (23) is given by

1 1
(25 o0 = 2x-0 + L2 ] aan - Jif xawax
X

+ X Jl 2 3 .
| 2[ xx g(x)dx] in 0 x< 1,

Moreover
(7a) po(x) >0 in 0< x< 1.

Proof: Substituting (20) in (1) and (5) immediately gives (22)
and (23). Then integrating (22) twice and using (23) gives

X

(25a) 2pé(x) = - (a + j xzq(x)dx)
(0]
and
1 X 1
(26) 2po(x) = a(l-x) + I xzq(x)dx - X I xzq(x)dx - J x3q(x)dx
O (o] X

where o is the integration constant uniquely determined by (17)

'namely




1 D
(27) a = 4K - f (1-X%)x2q(x)dx.

70
Substituting (27) in (26) gives (25). If p° is to satisfy (7),
inparticular PofO ~> 0 and this and (25) give (24) . The
condition (24) is sufficient for p© to satisfy (7) and (7a)
for, substituting (24) in (25 gives

2po(X) * (1-X) fo3q(x)dx + X Jixz(l-x)q(x)dx.

Here, because q(x) >0 in 0”*x <A1 the right side is non-
negative in 0 <€ x <1 and positive in 0< x < 1.

This conpletes the proof of the |enmm.

Lerma 3. The functions u® and p_ given by (20) and (25

satisfy the differential equation (1), the boundary conditions

(2)- (5 _and the constraints (7) and (8). Moreover p_ satisfies

(7a) po(x) >0 in 0<x <.1.
and(17).

Proof; This is an immediate consequence of Lenmma (3a) and Lem
ma (3b) .
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3. Comparison Relations and the Main Proof.

In this section we obtain rigorous results to show that

the solution p = Pgs 4 = Uy of Lemma 3 is the optimal beam

and is the unique optimal beam. Because u, = constant, this

beam [p = Py, u = uo] will be referred to hereafter as the

"Constant Curvature" beam or CC-beam.

It is desirable to relax some of the restrictions of Prob-

lem 2. Thus we formulate the following problem:

Problem 3. Let u be a continuous function in 0 x < 1 with

continuous first derivative and piecewise continuous second der-

ivative there. Let p > O be a continuous function in 0 < x < 1.

Let u satisfy the boundary conditions (2)-(4) and p the

weight constraint (8). Then find

(28) W = sup inf E(p,u)
P u

the constant K being given to satisfy the bounding inequality

(24) .

Lemma 4. Let Py and Uy be the flexural rigidity function

and deflection function for the CC-beam given by (20) and (25).

Let p be an arbitrary admissible flexural rigidity function.

Then the saddle functional satisfies

(29) E(po,uo) > E(p,uo) .

" 1
Proof: Since u 2 - c2 = 4 and r p.dx = K we have
Zroozr 0 uOO
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1
E(po,uo) = c2K + qu(x)ug(x)dx >

1 1
2 2
c pdx + g(x)u” (x)dx =
Io J‘o o

2

1
" 2
jotpuo + quilax = E(p,ug).

Theorem 1. The CC-beam [p = Py, u = uo] is optimal.

Proof: Let p and u refer to arbitrary admissible flexural

rigidity function and deflection function respectively. Then

inf E(p,u) < E(p,uo) < E(pO,uo) by (29),
u

and therefore

(30) sup inf E(p,u) g.E(pO,uO).
P u
Also,
(31) sup inf E(p,u) > inf E(po,u) = E(po,uo).
P u u :

The last equality in (31) is true because Uy satisfies the
Euler differential equation, (1) with p = Py of the positive
definite quadratic functional E(po,u) and the boundary condi-
tions (2)-(5). The relations (30) and (31) now imply the de-
sired result that
(32) E(p.,u.) = sup inf E(p,u).

(02N 0]

P u

The relation (32) is the same as (28) with W = E(po,uo), the

strength of the CC-beam.

o ,'3‘,’!

CARNEBIE-HELLGH UNIVERS!

iy
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Theorem 2, The CC-beamis the only optinmal beam

Proof: The uniqueness of the optinmal beamis also a consequence
of Lemma 4. It can be treated in essentially the sane manner as
t he uni queness proof given by Duffin and MLain in Theorem 2,
reference [3], In order not to interrupt the main |ine of

t hought the uni queness proof is postponed until Section 7.
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4- Formul ae for the oti mum Taper,

It is a direct consequence of the results of preceding
sections that the optinumbeamhas flexural rigidity given by
(25) and that the deflection of the beamis given by (20) .

The infimumand supremumin the fornul ation of Problem 3
are actually assunmed for the flexural rigidity and defl ection
functions of the GGbeam Hence the solution of Problem3 is
also a solution of Problem2. He flexural rigidity and de-
flection functions of the GG beamare sufficiently smooth (po

has two conti nuous derivatives and uo has four conti nuous

derivatives -- in fact, 'N has continuous derivatives of all
order -- in O0<€£x £ 1) so that integration by parts in Section 1
is valid. It follows that the solution of the mnimax problem

Is the maximumstrength or, what is the same, the naxi numver-
tical end |oad which can be supported by a cantil ever beam
having a unit deflection at the |oaded end, when the beamis

subject to the constraint that its weight cannot exceed a con-

stant -- this constraint being expressed by
l
(8) pdx £ K K> 0,
70
and the maxi num strength is given by
n 1
(33) W= (PUQ ' = 4K + J x“*g(x) dx.
x=l 0

This formula is a sinple consequence of substituting (20) and (27)
in (25a) .
If qg(x) is a constant the integrations can actually be car-

ried out and nore explicit formulae obtained for p® and W
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The results for constant and non-constant g are summarized

in the following theorem.

Theorem 3. The flexural rigidity function pO for the beam

of maximum strength or, what is the same, for the beam which

supports the maximum load in the class of all beams which are

clamped at the end x = O, which have a deflection -1 at the

other end, which have continuous flexural rigidity functions

p(x) in 0 x < 1 satisfying

1
(8) J pdx < K, K> 0O
(0]

in which K satisfies

1

17 3
(24) K Z-Z J (1-x) x" g (x) dx,

o)

and which are supported throughout the length by an elastic sheet

of elastic coefficient g(x) > O, is given by

1 1
(25) p(x) = 2K(1-x) + 15X [jox4q<x)dx1 - 3t FPamoax +
X

1
%[jxxzq(x)dxl

in 0 x < 1.

The deflection of this optimum beam is given by

(20) u, (%) = -x%> in o0¢ x < 1.

The end load that the beam can support at x = 1, or the maximum

strength W 1is given by

1
(33) W = (pouo)' = 4K + I x4q(x)dx.
X= O

1
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If g 1™ a constant these becone

(34) po(x) = (2x—L - (xgdix - & i

(35) Wa 4K + 55’-

when K> 0 .is. limted by

(36) Ky .

Remark JL rf the beamis an ordinary cantilever and not el as-

——— e S —— Wi

tically supported then”

(37) q = 0.

In this case (36) j-s, automatically satisfied and it is ct sinple

matter to show that the optinum taper and maxi mum strength are

given by (34) and (35 wth g =0 Nanely,

(38) po( X) = 2K(I-x) 0 £x £ |y
and

(39) W = 4K.
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5. A Duality Inequality for the Maximum Strength.

This section concerns a different approach to the optimi-
zation problem and an interesting generalization. The generali-
zation consists in replacing the linear constralnt I pdx < K
by a nonlinear constraint of the form J ppdx g,KP ghe new
approach is to obtain a duality 1nequa11ty giving upper bounds
and lower bounds for the maximum strength W. The following

derivation of the duality inequality does not depend on the

previous theorems.

Theorem 4. Let u and y be continuous functions in 0 x< 1

with continuous first derivatives and piecewise continuous second

derivatives in that interval. Let u and y satisfy the boun-

dary conditions

(40) u(0) =u'(0) =0, u(l) = -1 and

(41) y(l) =0, y' (1) = 1.

he= 1 / 1 /
AT n Qg /G = Bax) 1/ 8

(42) bl = (T 1®a0 % il = (] Jv1Pax M.

Then define dual norms as

Il

Hqu’a [KHu”Hi + quuzdx]l/2

I

1 .2
W5, = 0 Hivly + [ Yo a2

where a, B are positive constants satisfying

(43) T+ g7 =1,

and K is another positive constant and g(x) > O is continuous

in 0 x < 1. Then the following inequality holds for some con-

stant W* independent of u and vy:
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(44) lullr £ w22 fyl5 .

Proof; Substituting the boundary conditions (40) and (41) in

the identity
1 o

[(u'y-uy")] o =J o (U™ y-uy" )dx
gives |

1= Jg (u"y-uy")dx
and therefore

1 g,|5’h"ydx| + fﬁlhy"dx|.
0 0

Here applying Holder's inequality to the first term and meighfed

Schwarz's inequality to the second gives
L lghely ¢ (e 2 ([ an
= &M Myl (j qu?ax) 1/ j-‘ﬁ-—— ax /2,
Appl yi ng Cauchy inequality to this gives

1<l ol o

The factors on the right side cannot vanish and therefore divi-.

sion gives

W o | «x /2 | ||yE|A

for sone W-. This is the sane as (44) . W is independent
of u and y because in (44), ||yL does not depend on vy

and ||y||£ogo does not depend on u.
p
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This completes the proof of Theorem 4. The relation (44)
furnishes upper and lower bounds for the quantity W* and so
we term (44) a duality inequality. It may be that the duality
inequality gives a non-unique W*, However it would seem that

under the constraint

rl

J ppdx < kP, L,2. 1 o>1

0 pQ
the relation (44) determines a unique W* equal to the maximum
value of Problem la where Problem la is stated as Problem 1

1
with the linear constraint J pdx < K replaced by the more
0]

general Lp type constraint Iippdx g_KP, p>1l. We do not
pursue in this work either this question or the solution of Prob-
lem la.

However we now show that for o = oo and p =1 and the
usual meaning for g(x) and K -- as in Problem 3, for instance --
the relation (44) determines a unique W* equal to the minimax

value W of Problem 3. 1In such a case when W*¥ 1is unique we

say there is no gap in the duality inequality.

Theorem 5a. Let W Dbe the maximum strength -- the minimax value
of Problem 3 -- and let u be a continuous function in 0 xK'1

with continuous first derivative and piecewise continuous second

derivative in that interval. Let wu satisfy the boundary con-

ditions (40). Then
2
(45) w2

| e —— O—— S——

1
(46) W < K Sup u"2 + I quzdx.
o<Kx£1 o)
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Moreover these become equalities for u = uo the deflection

of the CC-beam.

Proof: Let Po and Uy be the flexural rigidity function

and the deflection function of the CC-beam. Then

W = E(po,uo) = m;n E(po,u) < E(po,u)

1 5 1 2 1 2 1 2 -
j pou” ax + I qu dx < (I podx)-Sup u"” o+ j qudx =
o) 0 o) o<x<1 0

1
K Sup u”2 + J quzdx.
oKxL1 o

This proves (45) and (46).

"

since u, = constant, the right side of (45)

Now if u = Uy o

or (46) becomes
1 "o 1 5
fopouo dx + foquodx = E(po,uo) = W.

The proof is complete.

It follows from Theorem 5a that we can take the constant W
of the duality inequality equal to W. This proves the inequali-
ties (47) and (48) of Theorem 5b below. Theorem 5b is the dual

of Theorem 5a and shows that there is no duality gap.

Theorem 5b. Let W be the maximum strength -- the minimax value

of Problem 3. Then

(47) W< vlg

or what is the same

1 1.2
(48) wl x| Iylan? + [T ax,
0 o4
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where y is a continuous function in 0 x < 1 with con-

tinuous first derivative and piecewise continuous second deriva-

tive there and satisfies the boundary conditions (41l). Moreover

these become equalities for y = Yo where Yo is defined by
(49) ¥, = &(p,ul)
0O w'ro o'’

Here p, and u, are the flexural rigidity function and deflec-

tion function of the CC-beam.

Proof: Clearly yO is an admissible y-function for (poua =0

at x =1 and (pou =W at x = 1.

5"

1
Since u62 = c2 = 4 and I podx = K, (49) gives
0
1 2
(50) Tlyglan? = & &2,
o W

Oon the other hand pou'(')2 = CZPO so

1
(51) K Sup u"2 = J P u"2dx = c2K.
OOO

ogx<1 ©

Further, since Pgs Y, satisfy (1), (49) gives

qu
52 . )
(52) Yo o
This gives
"2
ly 1
(53) Iidx=—iffqugdx.
o9 w’ Yo

Then (50), (51) and (53) show that

1 1 1

2 2 2, - all {

K Sup uy + J quodx = W [K l(I |y0|dx)2 + J 0 dx].
o<x<1 o 0 o 4

Left side of this being W by Theorem (5a), we have
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-1

1 1
W o= K-l(j |y0|dx)2 + I A — dx
0 o ~»

and the proof is conplete.
Theorem 5a and Theorem 5b are the fornul ati ons of the dua

extremum principles promsed in the title of this study.
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6. A Design Problem for a Different Set of Boundary Conditions.

We now consider a beam of rectangular cross section with
fixed height and variable width which is hinged at both ends,
X =0 and x = 1 (Figure 3). The beam is subject to external
moments M at the ends and is supported throughout its length
by an elastic sheet of elastic coefficient 1. The
slope of the beam at the ends x =0 'and x =1 1is required to
have values -1 and 1 respectively and it is desired to taper
the beam subject to the weight constraint f:pdx < K so as to

support maximum M.

Figure 3. Hinged Beam on An Elastic Foundation.

Here p(x) is the flexural rigidity function, symmetric about the
point x ='% and K > O is a given constant. We call this

Problem 4. 1In this problem, the quantity M can be called the
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strength of the beam and thus we have set out to find a beam

of maxi mum strength.
The problem can be solved under a suitable bound for K
W nmerely give the fornulae for the optinum taper and omt the

details.since the treatnent is simlar to that of Problem 1, with

obvi ous nodificati ons.

Theorem 6. The flexural rigidity function p. for the beam of

maxi nrum strengthg or what is the same, for the beamwhich supports

maxi num external nmonents M a: the ends x =0, x =1 _in the

class of all beams which are sinply supported at the ends x = 0, -

x =1 where they have slopes -1 and 1 respectively, which

have continuous flexural rigidity functions. p(x) jlp 0O £ x £ 1
(54) j pdx £K K>0
0

in which K satisfies

(55) K> -2-
640
and Which are supported Throughout THe Tengtn Dy an erastic Sneet

Of erastrc coeffrcrent. 1 |5 Given by

3 4
(56) Do(X) =K*'F&o-""1%-f4 iS °£x<Ll,
I'he deflection of this optimimbeamis given by
(57) Ug = x* - x Jin O0£x £ 1

The maxi num strength M s given by
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(58) M= (poul) = (pouy) = (2K

The duality inequality for the maximum strength M is

1 1 1
(59) 2k sup(u)? + [ wlax] » My 2 ([ |ylan ? + [y lax"L.
o 0] (0]

Here u and y are arbitrary continuous functions with contin-

uous first derivatives and piecewise continuous second derivatives

satisfying the boundary conditions

(60) u(o) = u(l) =0, u'(0) = -1, ut(l) =1

(61) y(0) =1 =y(1).

There iﬁ_equallty throughout (59) for u =u given by (57) and

PoYo °
= M where Po and M are given by (56) and (58).

Y
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7. Unigueness Proof.

Given here is a detailed proof of the statement in Section 3.

Theorem 2. The CC-beam is the only optimal beam.

Proof: Let Pg and u, be the flexural rigidity function and

(0]
deflection function for the CC-beam. Assume that P is another

admissible flexural rigidity function, that U is the deflection

function which minimizes E(P,u) and that

(62) E(P,U) = E(po,uo).
Then
(63) E(P,u) > E(P,U).

But by Lemma 4

(64) E(pg,uy) 2 E(P,uy).

Now, (62), (63), and (64) imply that (63) is actually an equality.
Thus

(65) E(P:uo) = E(P,U) = E(Po,uo)-

Considering E(P,u) as a quadratic functional in u, by parallelo-

gram law for quadratic functionals we have
(66) (o] g_E(P,U;uO) = 2E(P,U) + 2E(P,uo) - 4E(P,Z)

where 2Z = (U+uo)/2. Because Z satisfies the boundary condi-

tions (2)- (4)
(67) E(P,2) > E(P,U).

Now, by (65), (66) and (67) it follows that
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(68) E(P,Uuy) =0
and hence
(69) Us UQ.

That P = Po in 0<Ax<*1 nowfollow is carried out in
Lenma 5 and Lemmm 6 bel ow. There, the '"Second Lenma" of the
Cal culus of Variations [8] is enployed to show that the contin-
uous function P has in fact two continuous derivatives and
then the relation (65 and the property E(P,ud) =mn E(P, u)

u
are used to conclude that P = pg.

Lemma 3% Let P b<e the flexural rigidity function appearing in

the proof of Theorem 2. Then

(70) Pur = cq+ ¢ - J [J qugx]dx in O£x€£1
' o 0

for some constants co and cy

Proof: The proof is essentially an application of the well-known
"Second Lenma" of the Cal culus of Variations [8].
Let us define the follow ng continuous function which appears

frequently in this proof:
X X
(71) Mx) = Pu: +Y [Y gu.dxJdx - ¢. - ¢,x in 0<x< 1

The system of equations

(72) [1
JQxl\/(x)dx =0
in co and ¢ has a unique solution for constants cg and ¢4

since its determnant IS non-zero .
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1 rl
J dx J xdx

(0] 0 1

= 12

rl rl >
J xdx J x dx

0O o}

Thus the constants 5 and ¢ in (71) be defined by (72).

Then v (x) defined in O <x<1 by
X

(73) V(%) =f (x-t) M(t)dt
0

has continuous first and second derivatives in O < x { 1. 1Indeed,

X

(74) V1 (x) = J M(t) dt
0

and

(75) V' (%) = M(x).

Moreover by (71), (72) and (74), Vv satisfies the boundary con-

ditions
(76) V(0) =V'(0) =0 =v(1) =7v'(1).
Now, because
E(P,uo) = min E(P,u)
u

for all u continuous in O ¢ x {1 and having continuous first
derivatives and piecewise continuous second derivatives there and
satisfying the boundary conditions (2)-(4), the first variation

of the functional E(P,uo) should necessarily vanish:
1
(77) jO[PuOV + quov]dx =0

for all v continuous in O < x < 1 having continuous first

derivatives and piecewise continuous second derivatives there
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and satisfying v(0) = v'(0) = 0 = v(1). Substituting v =¥

in (77) and integrating by parts gives

1
(78) f [M(x) + ¢, + c;xIM(x)dx = O.
(0]

0]
Here (71), (75) and (76) have been used. Using (72) in (78) gives

1
j Mzdx =0
)

which proves M(x) = 0 in 0< x< 1 and hence (70).

ILemma 6. The flexural rigidity function P(x) appearing in the

proof of Theorem 2 coincides with the flexural rigidity function

po(x) of the CC-beam.

Proof: By virtue of Lemma 3b, it is enough to show that P(x)
satisfies the differential equation (22) and the boundary condi-
tion (23) and the integral equality (17). This is because it was
proved in Lemma 3b that the solution for P(x) is unique and
equals po(x) in 0 x<K 1.

Now the right side of (70) being continuously differentiable
twice, it immediately follows that P(x) satisfies the differential
equation (22). Since P has two continuous derivatives and u

(0]
has four continuous derivatives in 0 ¢ x < 1 and since

E(P,uo) = min E(P,u)
u
for all u continuous in O < x < 1 and having continuous first
derivatives and piecewise continuous second derivatives there and
satisfying the boundary conditions (2)-(4), the natural boundary
condition Pu’ = O is satisfied at x = 1 and this means P (x)

O
satisfies (23). Lastly, we have
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(65) E(P,ug = E(pysu,).

But this reduces to
r 1 r 1
JoPdx = Jgpdx = K
proving that P(x) satisfies (17) .
The proof of the Lemma is conplete and hence the proof of

Theorem 2.
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