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Abstract

Of concern is a cantilever beam resting on an elastic foun-

dation and supporting a load at the free end. The beam is of

rectangular cross section and of constant height but variable

width. It is required to taper the beam for maximum strength,

or what is the same, for supporting maximum vertical load W

at the free end when the free end is given unit deflection.

The constraint is that the weight of the beam should not exceed

a given bound K. It is shown that the optimum taper should be

chosen so that the curvature of the beam is constant. This

yields the solution of the problem in terms of explicit formu-

las. Turning to more general constraints, a duality inequality

is found which gives upper and lower bounds for the maximum

load W.

Prepared under Research Grant DA-ARO-D-31-124-71-G17, Army
Research Office (Durham).
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DUAL EXTREMUM PRINCIPLES RELATING TO

OPTIMUM BEAM DESIGN

1« Introduction.

Beams are used in structures to support loads imparted by

other members of the structure. A beam can be supported by an

elastic wall or sheet along its entire length. A loading con-

dition on such a beam of rectangular cross section is shown in

Figure 1 where a vertical load is acting at one end while the

other end is clamped.

Figure 1. Cantilever beam on an elastic foundation
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A design question for such a cantilever beam would be — how

should the width of a. beam of limited weight K b£ tapered

so as to have maximum strength or what is the same, so as to

support ja maximum end load W while this end is to have unit

deflection?

By making certain tacit assumptions the physical problem

is given a mathematical setting. The maximizing question is

transformed into a minimax problem of the Calculus of Varia-

tions and then given a rigorous analysis.

This study leads to a simple criterion for the optimum taper-

ing of a rectangular beam of fixed height -- the curvature of

the deflection curve or what is the same, the second derivative

of the deflection function, should be a. constant. This leads

to explicit expression for the flexural rigidity function, and

hence for the tapering of the width of the optimal beam.

Analogous design problems in Networks and Heat Transfer were

treated in references [l]-[4]. For example in [4] we considered

a lumped network having a finite number of conducting branches.

Certain branches, termed set B, are allowed to vary their con-

ductance but the total conductance is limited by an I norm

P
type constraint

Here g is the conductance o£ branch s and K and p are

positive constants. Then the design problem is to maximize the

joint conductance of the network between two specified input

points. The network question may be characterized as a maximiz-

ing problem of mathematical programming, thus suggesting that
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there is a dual minimizing problem. Pursuing this idea we

were lead to the duality inequality, namely

IMIa,o

Here \\ |L and II II? A are certa^n dual norms. The vector

v is an arbitrary normalized voltage distribution satisfying

Kirchhoff's voltage law. The vector y is an arbitrary normal-

ized current vector satisfying Kirchofffs current law. r is

the optimum conductance. There is no "duality gap"; in other

words the duality inequality could be used to give a sharp es-

timate of T.

This network model suggested to us what duality inequality

should hold for the elasticity problem on hand. Moreover it

r 1

suggested replacing the weight constraint pdx <̂  K on the

width p by the more general constraint I p^dx £ KP. Thus

we prove in this work the following duality inequality

Here II |L and II |L are certain dual norms. The functions
Z ,QL Z 9 p

u(x) and y(x) are arbitrary smooth functions normalized at the

boundary. Moreover u(x) is a deflection function and y(x) is

a moment function. W is the maximum strength of the beam. This

duality inequality could be used to give upper and lower bounds

for W.

Various problems concerning the design of beams and columns

for maximum strength were solved by H. Blasius [5]. Recently
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interesting developments along similar lines have been made

by I. Tadjbaksh and J. B. Keller [6]• A comprehensive treat-

ment of beams supported by elastic foundations has been given

by M. Hetenyi [7]. None of these authors treat the problem

posed here.

Certain modifications of the basic problem are treated.

Presumably several other modifications are feasible.
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2. Formulation of The Problem and Heuristic Analysis.

Consider a beam of rectangular cross section of fixed

height elastically supported by an elastic sheet or wall^ it

is clamped at one end and a load is acting at the other end so

as to produce a desired deflection of this end. In Figure 1

is shown such a beam. In Figure 2 is sketched the deflection

curve.

.'tu-l

Figure 2. Deflection Curve

Let u(x) be the deflection function and q(x) > 0 the

elastic coefficient of the supporting material. Assuming that

the reaction due to the elastic support is a linear function of

the deflection u(x), equilibrium state of bending is given by

the differential equation

(1) (pu")M + qu = 0 in 0 £ x £ 1, ( ) f = d/dx

where p(x) is the flexural rigidity of the beam. The geometri-

cal boundary conditions are
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(2) u = 0 at x = O.

(3) u1 = O at x = 0.

(4) u = -1 at x = 1.

The mechanical boundary conditions on torque and force are

(5) pu" = 0 at x = 1

and

(6) (puM) » = w at x = 1.

Of course

(7) p ^ 0 in 0 £ x £ 1.

•The load w in (6) can be regarded as the strength of the

beam in the following sense: The beam being clamped at x = 0

is capable of supporting a vertical load w at x = 1 While

maintaining a deflection -1 of the end x = 1.

Now, the flexural rigidity function is proportional to the

width of the beam since the height is a constant throughout the

length of the beam. Thus the integral of the width function or

that of the flexural rigidity function is a measure of the weight

of the beam. It is assumed that the density and Young1s modulus

of the material of the beam are constants. In view of this, the

inequality (8) below can be regarded as weight constraint.

With the deflection determined by (l)-(5) we can formulate

the following optimization problem:

Problem 1. Find the maximum strength W ojE ci beam subject to

the constraint that the weight is bounded by ei given constant:
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r 1

(8) pdx £ K, K > 0.

J0

We now develop a solution of Problem 1 providing K ex-

ceeds a positive bound. This bound on K shall be established

in the course of the solution. It is desirable to recast the

problem into a minimax problem in terms of the functional

(9) E(p,u) = J (pu"2 + qu2)dx.

This change is motivated by the following heuristic analysis.

Let p, q and u be sufficiently smooth in 0 <̂  x <£ 1

so that integration by parts below is valid. Let v be an

arbitrary smooth function. Then

r 1

(10) E(p,u+v) = E(p,u) + E(p,v) + 2J (puT!vTI + quv) dx.

Integrating by parts gives

(11) [ (pu"vff+quv)dx = f [(pu")n+qu]vdx + [(pu")v»] -[(pu")'v] .
J0 J0 0 0

The first integral on the right side vanishes by (1) . If we

impose v = 0 at x = 0 and x - 1 and vf = 0 at x = 0

then u + v satisfies the geometrical boundary conditions (2)-(4)

and the boundary terms in (11) reduce to zero. Here (5) is also

used. Thus (10) becomes

(12) E(p,u+v) = E(p,u) + E(p,v) ^ E(p,u).

It follows that E(p,u) is minimized for the class of functions

satisfying the boundary conditions (2)-(4) by u satisfying (1)

and (5). This is a standard result of the calculus of variations.

In the calculus of variations (5) is termed a natural boundary
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condition because it is necessarily satisfied by the minimizing

function.

Now letting v = u in (11) and using (l)-(6) gives

(13) E(p,u) = [(pu")t] = w.
x=l

Lemma JU Tg the function u satisfies the Euler differential

equation (1) corresponding to the saddle functional E(p,u) and

if p and u satisfy the boundary conditions (2)-(5) then

(14) w = E(p,u)

where w jLs_ the strength of the beam.

Proof: This immediately follows from (13).

In view of relations (12) and (14) we pose an equivalent

problem:

Problem 2^. Find

(15) w = max min E(p,u) .
p u

Here u JJB, not necessarily subject to the differential equation

(1) but satisfies the boundary conditions (2)-(4) and p(x) is

subject to the constraints (7) and (8) .

Thus the original maximizing problem has been replaced by

a minimax problem. We continue the heuristic analysis and in-

vestigate this minimax problem.

Lemma 2_. Tg p (x) j-s_ continuous in 0 £ x £ 1 satisfying the

conditions (7) and (8) and u(x) JLS, continuous with continuous

first derivative and piecewise continuous second derivative in

0 <£ x £ 1, then



D9

(16) E(p,u) £ K Sup(u")2 + f qu2dx.
J0

This is an equality if

r 1

(17) pdx = K

and

(18) u" = A, a_ constant in 0 £. x £ 1.

Proof; It is enough to see that

(19) J pu"2dx £ (J pdx) .sup(u")2 £ K Sup(u")2.
0 0 0^ x^ 1 0^ x^ 1

Because (19) becomes an equality throughout when (17) and (18)

hold, the case of equality is also shown.

The relation (18) enables us to solve for a p(x) and a

u(x) satisfying (l)-(5), (7) and (8). This we do below in Lem-

ma 3. That this solution for p and u is the unique optimal

solution of Problems 1 and 2 will be established in Section 3.

Lemma 3a. TTie solution of the differential equation (18) sub-

ject to the boundary conditions (2)- (4) and corresponding A

are given by

(20) uo ( x) = " x 2 i n 0 £ x £ 1.

(21) A = -2.

Proof; Integrating (18) gives

2
U0 = H r + C1 X + C2-
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Using (2)-(4) gives c 1 = 0 = e~, A = -2.

Lemma 3b, For u given by (20) the differential equation (1)

reduces to one for p namely

(22) p" = -i x2q(x) in 0 £ x

and the boundary condition (5) becomes

(23) p = 0 at x = 1.

Subjecting the constant K to the limitation

(24) K ̂  4 J U-x)x3q(x)dx

and assuming q(x) > 0 JLS. continuous in 0 £ x £ 1, the unique

solution of (22) satisfying (7), (17) and (23) j ^ given

(25) pQ(x) = 2K(l-x) [J x4q(x)dx] - |[J x3q(x)dx]

+ f U x2q(x)dx] in 0 £ x £ 1.

Moreover

(7a) P0(x) > 0 in 0 < x < 1.

Proof; Substituting (20) in (1) and (5) immediately gives (22)

and (23). Ihen integrating (22) twice and using (23) gives

(25a)

and

f x 2
2p' (x) = -(a + f x2q(x)dx)

0

1 x 1
(26) 2po(x) = a(l-x) + J x

2q(x)dx - x J x2q(x)dx - J x3q(x)dx

0 O x

where a is the integration constant uniquely determined by (17)

namely
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(27) a = 4K - f (1-X2)x2q(x)dx.

J0

Substituting (27) in (26) gives (25). If p is to satisfy (7) ,

in particular PO(O) ^> 0 and this and (25) give (24) . The

condition (24) is sufficient for p to satisfy (7) and (7a)

for, substituting (24) in (25) gives

2po(x) ^ (1-x) J x
3q(x)dx + x J x2(l-x)q(x)dx.

Here, because q(x) >0 in 0 ^ x <^ 1 the right side is non-

negative in 0 <£ x <^ 1 and positive in 0 < x < 1.

This completes the proof of the lemma.

Lemma 3. The functions u^ and p_ given by (20) and (25)

satisfy the differential equation (1), the boundary conditions

(2)- (5) and the constraints (7) and (8). Moreover p_ satisfies

(7a) pQ(x) > 0 in 0 < x < 1.

and (17).

Proof; This is an immediate consequence of Lemma (3a) and Lem-

ma (3b) .
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3. Comparison Relations and the Main Proof.

In this section we obtain rigorous results to show that

the solution p = p , u = u of Lemma 3 is the optimal beam
it

and is the unique optimal beam. Because u = constant, this

beam [p = p , u = u ] will be referred to hereafter as the

"Constant Curvature" beam or CC-beam.

It is desirable to relax some of the restrictions of Prob-

lem 2. Thus we formulate the following problem:

Problem 3_. Let u be a. continuous function in 0 <£ x <£ 1 with

continuous first derivative and piecewise continuous second der-

ivative there. Let p ;> 0 be a. continuous function in 0 <£ x £ 1,

Let u satisfy the boundary conditions (2)- (4) and p the

weight constraint (8). Then find

(28) W = sup inf E(p,u)
P u

the constant K being given to satisfy the bounding inequality

(24).

Lemma 4. Let p^ and u^ be the flexural rigidity function

and deflection function for the CC-beam given by (20) and (25) .

Let p be, an arbitrary admissible flexural rigidity function.

Then the saddle functional satisfies

(29)

M 2 2
Proof; Since u_ = c = 4 and | p^dx = K we have
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C2K + f q(x)u2(x)dx ^
J0 °

c2 J pdx + J q(x)u2(x)dx =
O O

f\ "2 2 ,
J [PU

O
 + ^0]dX = E ( P ' V *

Theorem jL. The CC-bearo [p = p , u = u ] _is. optiinal.

Proof; Let p and u refer to arbitrary admissible flexural

rigidity function and deflection function respectively. Then

inf E(p,u) £ E(p,u ) £ E(p ,u ) by (29),
u

and therefore

(30) sup inf E(p,u) £ E(p ,u ).
p u

Also,

(31) sup inf E(p,u) •£ inf E(p ,u) = E(p ,u ) .
p u u -

The last equality in (31) is true because u satisfies the

Euler differential equation,(1) with p = p , of the positive

definite quadratic functional E(p_,u) and the boundary condi-

tions (2)-(5). The relations (30) and (31) now imply the de-

sired result that

(32) E(p ,u ) = sup inf E(p,u).
p u

The relation (32) is the same as (28) with W = E(p ,u ) , the

strength of the CC-beam.

CARNEEIE-KELLGN UfflVEfiSfflf
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Theorem 2_, The CC-beam is the only optimal beam.

Proof: The uniqueness of the optimal beam is also a consequence

of Lemma 4. It can be treated in essentially the same manner as

the uniqueness proof given by Duffin and McLain in Theorem 2,

reference [3], In order not to interrupt the main line of

thought the uniqueness proof is postponed until Section 7.
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4- Formulae for the Optimum Taper,

It is a direct consequence of the results of preceding

sections that the optimum beam has flexural rigidity given by

(25) and that the deflection of the beam is given by (20) .

The infimum and supremum in the formulation of Problem 3

are actually assumed for the flexural rigidity and deflection

functions of the CC-beam. Hence the solution of Problem 3 is

also a solution of Problem 2. Hie flexural rigidity and de-

flection functions of the CC-beam are sufficiently smooth (p0

has two continuous derivatives and u has four continuous

derivatives -- in fact, u has continuous derivatives of all

order -- in 0 <£ x £ 1) so that integration by parts in Section 1

is valid. It follows that the solution of the minimax problem

is the maximum strength or, what is the same, the maximum ver-

tical end load which can be supported by a cantilever beam

having a unit deflection at the loaded end, when the beam is

subject to the constraint that its weight cannot exceed a con-

stant -- this constraint being expressed by

r 1

(8) pdx £ K, K > 0,
J0

and the maximum strength is given by

(33) W = (PQUQ) ' = 4K + J x4q(x)dx.

x=l 0

This formula is a simple consequence of substituting (20) and (27)

in (25a) .

If q(x) is a constant the integrations can actually be car-

ried out and more explicit formulae obtained for p and W.
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The results for constant and non-constant q are summarized

in the following theorem.

Theorem 3_. The flexural rigidity function p for the beam

of maximum strength or, what is the same, for the beam which

supports the maximum load in the class of all beams which are

clamped at the end x = 0, which have a. deflection -1 ajb the

other end, which have continuous flexural rigidity functions

p(x) jLn 0 <£ x <̂  1 satisfying

r 1

(8) J pdx £ K, K > 0

in which K satisfies

(24) K ̂  - \ (l-x)x3q(x)dx,

0

and which are supported throughout the length by an elastic sheet

of elastic coefficient q(x) > 0, JL§_ given by
(25) p (x) = 2K(l-x) .+ -&J&. {\ x

4q(x)dx] - h\ x3q(x)dx] +
0 x

§[J x2q(x)dx]
x

in 0 £ x £ 1.

The deflection of this optimum beam is given by

(20) u (x) = -x 2 in 0 £ x £ 1.

The end load that the beam can support at x = 1, or the maximum

strength W _is_ given by

(33) W = (pnu") ' = 4K + f x4q(x)dx.
0 ° x=l J0



D17

If q i^ a constant these become

(34) pQ(x) =

(35) W a 4K +

when K > 0 .is. limited by

(36) K

Remark JL. rf the beam is an ordinary cantilever and not elas-

tically supported then^

(37) q = 0.

In this case (36) j-s, automatically satisfied and it is ci simple

matter to show that the optimum taper and maximum strength are

given by (34) and (35) with q = 0. Namely,

(38) pQ(x) = 2K(l-x) 0 £ x £ lf

and

(39) W = 4K.
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5. A Duality Inequality for the Maximum Strength.

This section concerns a different approach to the optimi-

zation problem and an interesting generalization. The generali-

r 1

zation consists in replacing the linear constraint pdx £ K

rl 0
by a nonlinear constraint of the form ppdx £ Kp. The new

0
approach is to obtain a duality inequality giving upper bounds

and lower bounds for the maximum strength W. The following

derivation of the duality inequality does not depend on the

previous theorems•

Theorem 4_. Let u and y be continuous functions in 0 £ x £ 1

with continuous first derivatives and piecewise continuous second

derivatives in that interval. Let u and y satisfy the boun-

dary conditions

(40) u(0) = u' (0) = 0 , u(l) = -1 and

(41) y(l) = 0, yt (1) = 1.

LetLet 1 ±

(42) Hu"|L = (J |u" | a dx) 1 / a , | |y j | = (J l
a o p o

Then define dual norms as

Hl2 a
 =

where a, p are positive constants satisfying

(43) a"1 + p""1 = 1,

and K JLS_ another positive constant and q(x) > 0 jus continuous

in 0 £ x £ 1. Then the following inequality holds for some con-

stant W* independent of u and y:
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1/2 .

Proof; Substituting the boundary conditions (40) and (41) in

the identity
1 .1

[(u'y-uy')] =J (u"y-uy")dx
0

gives

0

and therefore

r 1

1 = J (u"y-uy")dx

P l «1
|J u"ydx| + |J uy"dx|.
0 0

Here applying Holder's inequality to the first term and weighted

Schwarz1 s inequality to the second gives

Applying Cauchy inequality to this gives

The factors on the right side cannot vanish and therefore divi-

sion gives

Wl 2 < a i « i ||y||̂

for some Ŵ -. This is the same as (44) . W* is independent

of u and y because in (44) , ||u|L does not depend on y

and ||y||o o does not depend on u.
£9 p
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This completes the proof of theorem 4. The relation (44)

furnishes upper and lower bounds for the quantity W* and so

we term (44) a duality inequality. It may be that the duality

inequality gives a non-unique W*. However it would seem that

under the constraint

J W i. K", i • I - 1 oil
the relation (44) determines a unique W* equal to the maximum

value of Problem la where Problem la is stated as Problem 1

r 1

with the linear constraint pdx £ K replaced by the moreV
general L type constraint I p^dx <1 KP, p ^ 1. We do not

pursue in this work either this question or the solution of Prob-

lem la.

However we now show that for a = oo and p = 1 and the

usual meaning for q(x) and K -- as in Problem 3, for instance -

the relation (44) determines a unique W* equal to the minimax

value W of Problem 3. In such a case when W* is unique we

say there is no gap in the duality inequality.

Theorem 5a. Let W bê  the maximum strength -- the minimax value

of Problem 3_ -- and let u be a. continuous function in 0 £ x £

with continuous first derivative and piecewise continuous second

derivative in that interval. Let u satisfy the boundary con-

ditions (40) . Then

(45) W 1 H ^

or what, is. the same

(46) W £ K Sup u"2 + J qu2dx.
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Moreover these become equalities for u = u^ the deflection

of the CC-beam.

Proof; Let p and u be the flexural rigidity function

and the deflection function of the CC-beam. Then

W = E(po,uo) = min E(pQ,u) £ E(pQ,u) =*

r1 2 r̂  2 r1 2 r̂  2
pnu" dx + qu dx £ ( pndx) • Sup u

t! + qu dx =
J0 ° J0 J0 ° 0£*-l J0

K Sup u"2 + f qu2dx.
0

This proves (45) and (46) .
it

Now if u = u , since u = constant, the right side of (45)

or (46) becomes

J po uo 2 d x + J ^ o d x
0 w 0

Ihe proof is complete.

It follows from Theorem 5a that we can take the constant W*

of the duality inequality equal to W. This proves the inequali-

ties (47) and (48) of Theorem 5b below. Theorem 5b is the dual

of Theorem 5a and shows that there is no duality gap.

Theorem 5b. Let W be the maximum strength -- the minimax value

of Problem 3. Then

or what is the same

- 1 - 1 (*̂i , 2 P^v" ̂

(48) W x £ K x( y dx)z + 2 — dx,
J0 J0 q
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where y jLs ja continuous function in 0 £ x £ 1 with con-

tinuous first derivative and piecewise continuous second deriva-

tive there and satisfies the boundary conditions (41). Moreover

these become equalities for y = y where y jLs. defined by

<49> y0 = l ( P o u o } •

Here p and u are the flexural rigidity function and deflec-

tion function of the OC-beam.

Proof; Clearly y is an admissible y-function for (P O
UQ) = 0

at x = 1 and (pnu")
 f = W at x = 1.

U U m

Since u^ = c = 4 and J pQdx = K, (49) gives

(J |yJdx)2 = ^
0 W

(50) J
0 W

2 2On the other hand P O
UQ = c p so

(51) K Sup u"2 = f pnu"
2dx = c2K.

0̂ x̂ .1 ° Jo ° °

Further, since pQ, u Q satisfy (1), (49) gives

(52) *o = ~ IT •

This gives

(53) f ^ dx = -=L f1 U 2 d x

Then (50) , (51) and (53) show that

2
2 pi 2 7 i r^ o r»l y ^

o + J o ^ 0 ^ = w [K ( lo iyo i t o> + Jo - f " d x ]

Left side of this being W by Theorem (5a) , we have
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0 0 ^

and the proof is complete.

Theorem 5a and Theorem 5b are the formulations of the dual

extremum principles promised in the title of this study.
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6. A Design Problem for _a Different Set of Boundary Conditions.

We now consider a beam of rectangular cross section with

fixed height and variable width which is hinged at both ends,

x = 0 and x = 1 (Figure 3). The beam is subject to external

moments M at the ends and is supported throughout its length

by an elastic sheet of elastic coefficient 1 . The

slope of the beam at the ends x = 0 and x = 1 is required to

have values -1 and 1 respectively and it is desired to taper

r 1

the beam subject to the weight constraint j pdx £ K so as to
0

support maximum M.

Figure 2L Hinged Beam on An Elastic Foundation.

Here p(x) is the flexural rigidity function, symmetric about the

point x = 2" and K > 0 is a given constant. We call this

Problem £. In this problem, the quantity M can be called the
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strength of the beam and thus we have set out to find a beam

of maximum strength.

The problem can be solved under a suitable bound for K.

We merely give the formulae for the optimum taper and omit the

details.since the treatment is similar to that of Problem 1, with

obvious modifications.

Theorem 6. The flexural rigidity function p for the beam of

maximum strength9 or what is the same, for the beam which supports

maximum external moments M at: the ends x = 0, x = 1 in the

class of all beams which are simply supported at the ends x = 0,

x = 1 where they have slopes -1 and 1 respectively, which

have continuous flexural rigidity functions p(x) jln 0 £ x £ 1

symmetric about x = o" an(^ satisfying

(54) j pdx £ K, K > 0
0

in which K satisfies

(55) K > - 2 -

640

and which are supported throughout the length by an elastic sheet

of elastic coefficient 1 jLs, given by

(56) po(x) = K + i § o - ^ + 1 2 - f 4 iS ° £ x < L l .

1*he deflection of this optimum beam is given by

(57) uQ = x
2 - x in 0 £ x £ 1.

The maximum strength M is_ given by
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(58) M = (pouj) = (pouy = (2 K +^) .
x=0 x=l

The duality inequality for the maximum strength M is^

(59) ~[K Sup(u")2 + f u2dx] 1 M ̂  2[K~1(f | y | dx ) 2 + f y ' ^ d x ] " 1 .

°0 d0 0

Here u and y are arbitrary continuous functions with contin-

uous first derivatives and piecewise continuous second derivatives

satisfying the boundary conditions

(60) u(0) = u(l) = 0, u' (0) = -1, u« (1) = 1

(61) y(0) = 1 = y d ) .

There is equality throughout (59) for u = u given by (57) and
p" vT °o oy = Y. where p^ and M are given by (56) and (58) •
M — — — — (J — _ _ — .
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7. Uniqueness Proof.

Given here is a detailed proof of the statement in Section 3.

Theorem j2. The C O be am is the only optimal beam.

Proof: Let p Q and u be the flexural rigidity function and

deflection function for the CC-beam. Assume that P is another

admissible flexural rigidity function, that U is the deflection

function which minimizes E(P,u) and that

(62) E(P,U) = E(po,uQ) •

Then

(63) E(P,uQ) 1 E(P,U) .

But by Lemma 4

(64) E<P0,u0) i E(P,uQ).

Now, (62)j (63), and (64) imply that (63) is actually an equality.

Thus

(65) E(P,uQ) = E(P,U) =E(p Q f u 0 ) .

Considering E(P,u) as a quadratic functional in u, by parallelo-

gram law for quadratic functionals we have

(66) 0 £ E(P,U-uQ) = 2E(P,U) + 2E(P,uQ) - 4E(P,Z)

where Z = (U+u )/2. Because Z satisfies the boundary condi-

tions (2)-(4)

(67) E(P,Z) 1 E(P,U) .

Now, by (65), (66) and (67) it follows that



D28

(68) E(P,U-u0) = 0

and hence

(69) U s uQ.

That P = p in 0 <^ x <^ 1 now follows is carried out in

Lemma 5 and Lemma 6 below. There, the ir Second Lemma" of the

Calculus of Variations [8] is employed to show that the contin-

uous function P has in fact two continuous derivatives and

then the relation (65) and the property E(P,u ) = min E(P,u)
u

are used to conclude that P = p .

Lemma 5̂ . Let P b<e the flexural rigidity function appearing in

the proof of Theorem 2_. Then

(70) Pu^ = cQ + c^x - J [J quQdx]dx in 0 £ x £ 1

for some constants cQ and c-.

Proof: The proof is essentially an application of the well-known

"Second Lemma" of the Calculus of Variations [8].

Let us define the following continuous function which appears

frequently in this proof:

(71) M(x) = Pu" + [ qu dx]dx - c. - c,x in 0 < x < 1.

The system of equations

r1

(72)

, M(x)dx = 0
J0

r 1

xM(x)dx = 0
J00

in c0 and c^ has a unique solution for constants c and

since its determinant is non-zero .



r1
dx

'0

r 1

xdx
J0
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r 1

xdx
J0

12

x dx

Thus the constants c and c.. in (71) be defined by (72)

Then v(x) defined in 0 <£ x <̂  1 by

(73) v(x) = I (x-t)M(t)dt
J0

has continuous first and second derivatives in 0 <̂  x ^ 1. Indeed,

(74)

and

(75)

v> (x) = M(t) dt
J0

v" (x) = M(x) .

Moreover by (71) , (72) and (74) , v satisfies the boundary con

ditions

(76) v(0) = v' (0) - 0 = v(l) = v» (1)

Now, because

E(P,u ) = min E(P,u)
u

for all u continuous in 0 £ x £ 1 and having continuous first

derivatives and piecewise continuous second derivatives there and

satisfying the boundary conditions (2)-(4), the first variation

of the functional E(P,u ) should necessarily vanish:

(77) r 1

J [Pû v" + quo
v]dx = 0

for all v continuous in 0 £ x <£. 1 having continuous first

derivatives and piecewise continuous second derivatives there



r 1

(78) [M(x) + c_ + c.x]M(x)dx = 0.
J0 0 1
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and satisfying v(0) = V (0) = 0 = v(l) . Substituting v = v

in (77) and integrating by parts gives

,1

lo
Here (71), (75) and (76) have been used. Using (72) in (78) gives

f M2dx = O
J0

which proves M(x) = O in O £ x £ 1 and hence (70) .

Lemma 6̂. The flexural rigidity function P(x) appearing in the

proof of Theorem 2_ coincides with the flexural rigidity function

p (x) <of the CC-beam.

Proof; By virtue of Lemma 3b, it is enough to show that P(x)

satisfies the differential equation (22) and the boundary condi-

tion (23) and the integral equality (17). This is because it was

proved in Lemma 3b that the solution for P(x) is unique and

equals PQ(x) in 0 £ x £ 1.

Now the right side of (70) being continuously differentiable

twice, it immediately follows that P(x) satisfies the differential

equation (22). Since P has two continuous derivatives and u

has four continuous derivatives in 0 <̂  x <̂  1 and since

E(P,u ) = min E(P,u)
u

for all u continuous in 0 £ x £ 1 and having continuous first

derivatives and piecewise continuous second derivatives there and

satisfying the boundary conditions (2) -(4), the natural boundary

condition Pu^ = 0 is satisfied at x = 1 and this means P(x)

satisfies (23). Lastly, we have
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(65) E(P,uQ) =

But this reduces to

r 1 r 1

J Pdx = J podx = K0 0

proving that P(x) satisfies (17) .

The proof of the Lemma is complete and hence the proof of

Theorem 2.
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