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ABSTRACT

Under consideration is a differential equation (pur)r = qu

of the Sturm-Liouvilie type where the function q(x) > 0 is

given. The problem is to find a function p(x) > 0 in 0 £ x < b,

a constant b and a solution u(x) of the corresponding differential

equation such that the energy functional

rb 2 2
J [P(u! ) + qu ]dx
o

b
is maximized when p(x) is subject to the constraint I pPdx <£ K

o
and u is subject to the boundary conditions u = 1 at x = 0

du
and p — =0 at x = b. Here K > 0 and p ]> 1 are constants*

A key relation j -z—| = Ap , where A is a positive constant, is

found. This criterion leads to explicit solution of the problem.

A further consequence of this criterion together with a pair

of dual extremum principles is a "duality inequality" giving

sharp upper and lower estimates of the maximum value of the

energy functional.

Prepared under Research Grant DA-ARO-D-31-124-71-G17, Army
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This study is a sequel to previous studies on the opti-

mization of cooling fins by R. J. Duffin and D. K. McLain

[Jour. Math, and Mech. 8.(1959), 47-56 and .17(1968) , 769-784.]

In those papers p = 1. However, the latter deals with fins

on convex cylinders and thus the Sturm-Liouvilie equation they

study is a partial differential equation.



DUAL EXTREMUM PRINCIPLES RELATING TO COOLING PINS

1. Introduction

In reference [1], R. J. Duffin studied the maximization of

the functional

# = I q(x)u(x)dx

where q(x) > O is a given continuous function in x >̂ 0 and

u(x) is a differentiable function satisfying the Sturm-Liouvilie

differential equation

dx ( p ( x ) dx} = q ( x ) u i n 0 £ x £ b

and satisfying the boundary conditions

u = 1 at x = 0 and p — = 0 at x = b
^ dx

and where p(x) is a continuous function subject to the constraints

p(x) > 0 in 0 <̂  x < b

and

J p(x)dx = K > 0, a given constant,
o

In order to find the unknown constant b > 0 and the unknown

functions p(x) and u(x) having the above properties, he

eliminated the differential equation and the boundary conditions

and studied an equivalent maxmax problem. By a variational

argument it was shown that -- the optimal function u(x) should
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satisfy the condition

(I) |-~| = constant in 0 <x < b .

This criterion led to explicit solution for the unknowns b,

p(x), and u(x) maximizing the functional &.

In this study we have considered the problem of maximizing

the functional &(u) subjecting p(x) to a more general type of

constraint, namely an inequality constraint of the L norm
P

type

J PPdx £ KP, p ̂  1, K > 0.
o

With a view to find upper and lower estimates for the maximum

value H, a "duality inequality" is obtained, namely:

(ID Hu|l2ja k H
1 / 2 * IIYII"^.

Here || || and || || Q are certain dual norms, u(x) and y(x)

are arbitrary functions except that they satisfy certain smoothness

and normalized boundary conditions.

The problem of maximizing the functional Ji is recast into

a minimax or saddle point problem rather than a maxmax problem.

This together with (II) facilitates the formulation of a pair

of dual extremum principles for the maximum value H, namely
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(III) min||u|L = H 1 / 2 = max||y|| *
u 2'a y 'P

This is proved taking q(x) as a constant and in that case it is

shown that the optimal functions p(x) and u(x) satisfy the

condition

(IV) |^| = A(p(x)) 2 in 0

where A is a positive constant. This criterion leads to

explicit solution for the unknowns b, p(x), and u(x) which

maximize

The paper [1] by Duffin,mentioned above, concerns the optimum

design of a cooling fin of limited weight K so as to dissipate

the most heat H. The thickness of the fin, p(x), of the

optimum fin is determined by the criterion (I). Previously,

E. Schmidt [5] had proposed the criterion (I) but he based his

argument on a fallacious physical assumption.

Previous authors, among which R. J. Duffin and D. K. McLain

[2], J. E. Wilkins, Jr. [6,7], C. Y. Liu [8,9], F. C. Appl and

H. M. Hung [10] and R. Focke [11] are some, have given several

developments of the cooling fin problem. But they have not

considered the generalization treated here. Moreover, the duality

inequality (II) can be suitably employed to obtain upper and lower
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bounds for the maximum conductance H of the cooling fin.

Several ramifications of duality inequality are given in

references [3,4]#

This study is a sequel to a study on heat transfer in

networks [13]. There a network model for the cooling fin was

treated. These studies complement each other; the present

treatment is more specific and the network treatment is more

general. A later study [14] will treat, in an analogous way,

a problem in the design of an elastically supported beam for

maximum strength.
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2. Statement of the Maximization Problem and an Equivalent

Formulation

In this section we state a maximization problem and analyze

it heuristically to obtain an equivalent minimax problem. Rigorous

developments are given in later sections.

PROBLEM JL. To find two functions u(x) and p(x) and _a

positive number b which have the following properties; u(x)

is dif ferentiable in the interval 0 <£_ x £ b and p(x) is

continuous in the same interval and the two satisfy the Sturm-

Liouville differential equation for u:

(1) d^ [ p ( x ) dS] = S(x)u(x) in 0 £ x £ b

where q(x) _ij3 positive and continuous in x ^ 0; and u jLs

to satisfy the boundary conditions

(2) u = 1 at x = 0

and

(3) p(x) ^ = 0 at x = b.
ax —

Moreover p(x) has to satisfy the conditions

(4) p(x) >0 in O ^ . x < b

and
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(5) J pPdx £ Kf

where p ̂  1 and K > 0 are given constants. Under these

conditions on p(x) and u(x) we seek to maximize the functional

(6) M(u) = j q(x)u(x)dx.
o

Introducing the functional

(7) E(p,u) = | [pu« + qu ]dx, ( )' = d/dx
o

enables us to recast the problem into a minimax problem. This

change is motivated by the following heuristic analysis.

Let p(x) and u(x) be functions satisfying conditions (1)-

(4) for some positive number b and be sufficiently smooth in

0 <£ x £ b so that integration by parts below is valid. Let

v be an arbitrary smooth function in 0 £ x £ b. Then

(8) E(p,u+v) = E(p,u) + E(p,v) + 2J [pu1 vT + quv]dx.
o

Integration by parts gives

rb rb b
(9) J [pu' v1 + quv]dx = J v [qu - (pu1)1 ]dx + [(pu')v] .

o o °

The first integral on the right side vanishes by (1). If we

impose v = 0 at x = 0 then the boundary term at x = 0
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vanishes and the other boundary term vanishes because of (3).

Moreover u + v satisfies the boundary condition (2). Thus

(8) becomes

(10) E(p,u+v) = E(p,u) + E(p,v) ^ E(p,u).

It follows that if E(p,u) is minimized for the class of functions

u satisfying (2) but not necessarily (1) then the minimum is

achieved by a function u satisfying (1) and (3). This is a

standard result of the Calculus of Variations where (3) is termed

a natural boundary condition because it is necessarily satisfied

by the minimizing function.

Now, choosing v = u in (9) gives

(ID E(p,u) = - [pu» ]Q.

On the other hand, choosing v = 1 in (9) gives

(12) J qudx = - [pu« ] .

LEMMA JL. JEjf the function u satisfies the Euler differential

equation (1) corresponding to the saddle functional E(p,u) and

if p and u satisfy the boundary conditions (2) and (3) and

the condition (4), then-

(13) H(u) = E(p,u)
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where # and E are given by (6) and (7) .

Proof; The lemma is an immediate consequence of (11) and

(12).

In view of relations (10) and (13) the following problem

is presumably equivalent to Problem 1.

PROBLEM 2L* Find

(14) H = max min E(p,u)
P u

subject to the following conditions: p >̂ 0 and p has a_

finite support which is an interval with 0 for left-hand end

point, p _is continuous in the closure of its support; the region

of integration is the support of p, and the integral of pP

over the support is not to exceed â  given positive constant K ;

the function u JLS continuous, has a_ piecewise continuous first

derivative and takes value 1 a/t x = 0. Here q(x) occur ing

in the expression for E JLS ja positive continuous function in

x >̂ 0 and p ̂  1 jlsi ja given constant.

We continue with the heuristic analysis and investigate

this problem.

LEMMA 2_. JLI P(x) is non-negative and continuous in 0 <£. x <£ b

and satisfies (5) and u(x) ĵ s continuous with piecewise continuous
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derivative in 0 £. x £ b then, for E given by (7)

2 ^

, . | u' I dx) + | qu(15) E(p,u) £ K(J |u' | adx) a + J qu dx

where the positive constant a is. given by

(16)

There

(17)

and

(18)

where

is equality in (15)

r £
o

u1

+ 2a 1 = 1.

if

>. _,p
dx = K

= -Ap a

A is a positive constant.

Proof: In

rb 2 2
(7) E(p,u) = j [pu' + qu ]dx

o

applying the Holder1 s inequality gives

JL _2 2L

(19) j pu' 2dx ̂  (j pPdx)P(J |u» | adx) a ̂  K(J |u» | adx) a ,
o o o o

where a is given by (16). Here (5) has been used. Substituting

(19) in (7) gives (15).

If p and u satisfy (17) and (18), there is equality
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throughout (19) and hence (15) also becomes an equality. This

completes the proof of the lemma. We regard the relation (18)

as a key result because it enables us to obtain explicit

expressions for the solution.

Problem la where Problem la is stated as Problem 1 with

q(x) = q > 0, a constant, and this particular case is our main

interest from now on. Similarly, Problem 2a is stated as

Problem 2 with q(x) = q.

LEMMA _3. A pair b = b and A = A of. positive constants

and a. solution u = u , p = p ĉ f the system of equations

(1) d^tp S ] = qu(x) -̂

(18) u! = -Apa in 0 £ x £ b

under the boundary conditions

(2) u = 1 at x = 0

(3) p

and s a t i s f y i n g

(4) p > 0 in 0 < x < b
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(17)

are given by

J pPdx = K

(20)

(21)

where

( 2 2 )

(23)

and

(24)

b
(2p+l)P p/(l+2p)

A =
b 6P/<X
o o

Proof; Multiplying (1) by 2u' and integrating gives

(25) JP 2 2 2
-J p' u1 dx + pu! = qu .

Here the boundary condition (3) has been used and an additional

condition u = 0 at x = b has been imposed. Substituting (18)

in (25) and integrating gives
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-K2 2
(26) ^- (p+l)pP = qu .

Here p(x) has been required to satisfy p = 0 at x = b. Elimi-

nating p(x) between (18) and (26) and integrating the result and using

the initial condition (2) gives u(x) and then substituting this

in (26) gives p(x), namely

(27) u = (1 - f ) P

and

(28) p = 6(1 - g ) 2

where 5,A and b satisfy

(29) » ()
b (p+l)/2p 4 V

(30) 6̂  = - ^ — .
A (p+1)

Requiring p to satisfy (17) gives

(31) - — 2 ^ b = KP.
A (p+1) (2p+l)

Eliminating A between (29) and (31) gives b = b where b
o o

is as in (23). Eliminating A between (29) and (30) and sub-

stituting b = b gives 6 = 6 where 6 is as in (22). Now
o o o

A = A Q where A is as in (24) follows from (22), (23) and (31)
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It is contained in Lemma 3 that p and u satisfy the

differential equation (1) and conditions (2)-(5) for b = b .

This was enabled by the relations (17) and (18) of Lemma 2 which

render (15) an equality for p = p , u = u and b = b .

Further it will be seen in Section 3 how the inequality (15)

can be used to solve the remaining part of Problem la. In fact,

we show rigorously that p = p , u = u , b = b is the unique

solution set solving Problem la.

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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3. Comparison Relations and the Main Proof

In this section we restate Problem 2a relaxing certain

conditions and show that p = p , u = u of Lemma 3 provide

the unique solution of the new problem, called Problem 3, It

is then shown that the solution of Problem 3 is also the unique

solution o f Problem 2 a and finally that p = p , u = u , b = b

is the unique solution set having the desired property of

satisfying (l)-(5) and maximizing & given by (6).

PROBLEM _3* Find

(32) H = sup inf E(p,u)

P u

subject to the following conditions; p ̂ > 0 and has ja finite

support which is an interval with 0 for the left-hand end

point, p is_ continuous in the closure of its support; the

region of integration is the support of p, and the integral

of p over the support is not to exceed _a given positive

constant K ; the function u JLS continuous, has piecewise

continuous first derivative and takes value 1 at. x = 0.

The quantity q > 0 occuring in the expression for E and

P ̂ L 1 are given constants.
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LEMMA 4L. Let p be aji arbitrary function satisfying

the conditions of the p- functions of Problem 3. Let p and
Q

u be the functions given by (20) - (23) . Then

(33) ^ P o ' V ̂  E(P'UO>-
Proof; By Lemma 3, for b = b , the functions p and uJ ' o ^o o

satisfy (17) and (18) of Lemma 2 and (15) becomes an equality

for p = p . u = u and b = b . Hence
* ^o' o o

b 2 b

(34) E(pQ,u ) = K(J |u^|
adx)a + J qu^dx.

Now let b be the right-hand end point of the support

of p. It is convenient to consider the two cases b < b and

b >̂ b separately:

Case (JL) b < b: Since u (b ) = 0 by defining u as

zero for x > b we have a continuous extension of u and
o o

thus the extended function has the admissibility properties of

the u-functions of Problem 3. So,

b b - b

(35) E(p,uQ) = J [pu^2 + qu2]dx £ K(J |u j j a dx) a + J qu^dx.
o o o

Here we have applied the Holder1s inequality

b b ~ b -
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and the property of p that I p^dx <^ K . Now since u = 0
o

in x > b the right side of the inequality in (35) becomes
o

E(p ,u ) on using (34), thus giving (33).

Case (ii) b > b: Since the restriction of u to 0 <£ X <£ b
Q Q

satisfies the admissibility properties of the u-functions of

Problem 3, we have also in this case

b b — b
(36) E(p,u ) = J [pu^2 + qu2]dx £ K(J |u^ | a dx) a + J qu2dx

o o o

on applying Holder' s inequality as in Case (i) and on using

b
(I pPdx) <£ K . Now, in the right side of the inequality of (36)

rb, ,ot r b°, .a
u! dx < u! dx

J ' o' -̂  J ' o1
o o

and

br 2 r ° 2u dx < u dxJ o -*• J o
o

since b ^> b. Using these and (34) in (36) gives (33). This

completes the proof of the lemma.

THEOREM JL. The pair of functions [p ,u ] given by (20)-

(23) jLj3 a. solution of Problem 3.

Proof; Let p be an arbitrary function satisfying the

admissibility conditions of the p-functions of Problem 3 and u
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be an arbitrary function satisfying the admissibility conditions

of the u-functions of Problem 3. Then, since both the restriction

of u to any 0 < x < b with b < b and extension of u
o o o

as zero beyond x = b are admissible,

inf E(p,u) £ E(p,uQ) £ E(po,UQ) by (33)
u

and therefore

(37) sup inf E(p,u) £ E(p ,u ).
p u

Also,

(38) sup inf E(p,u) ;> inf E(p ,u) = E(p ,u ).

p u u

The last equality in (38) is true because u satisfies the Euler

differential equation, (1) with p = p , of the positive definite

quadratic functional E(p ,u) and the boundary conditions (2)

and (3). The relations (37) and (38) now imply the desired

result that

(39) E(p ,u ) = sup inf E(p,u).

p u

The relation (39) is the same as (32) of Problem 3 and

shows that H of (32) equals E(p ,u ).

THEOREM 2. The pair of functions [p ,u ] given by (20)-
J. o o —

(23) ±s_ the unique solution of Problem 3.
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Proof; A proof of uniqueness can be given in essentially

the same manner as the uniqueness proof given by R. J. Duffin

and D. K. McLain in Theorem 2 of reference [2]. We delay

giving this proof until Section 5.

THEOREM _3. Problem 2a and Problem 3 are equivalent and the

pair of functions [p ,u ] given by (20)-(23) is the only solution

of Problem 2a.

Proof; By Theorem 1, the sup inf of (32) of Problem 3

is actually assumed for functions p = p and u = u and hence

the solution [p ,u ] of Problem 3 is also a solution of Problem 2a.
o o

Here we have also used the fact that the functionals being

optimized in the two problems are the same. This shows the

equivalence of two problems and that the minimax values of the

two problems are equal. Now the solution of Problem 2a is

unique. For, otherwise it would mean that Problem 3 has another

solution besides [p ,u ]. But this contradicts Theorem 2 and

the proof is complete.

THEOREM 4_. Problem la i^ equivalent to Problem 2a and

Problem 3 and the pair of functions [p ,u ] given by (20) -(23)

is the unique solution of Problem 1. Summarizing: Problem la

has the unique solution p = p , u = u , b = b given by
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(20)

(21)

where

(22) 6 =
o p(p+l)

(23)

and the maximum value H of the functional

(6) M(u) = qj u(x)dx

is

(40) H = »(»o) = E(po,uo) =

where b jij3 given by (23) above,

Proof: Since p is continuous in 0 <£ x ^ b and

u , u! and (p u! ) ! are also continuous in 0 <£ x ^ b , these

conditions are sufficient to justify the integration by parts

in (9) for b = b 9 p = p and u = u • Thus the relation

(13) with b = b , p = p and u = u shows that the maximum

value of Problem la cannot exceed the minimax value H of

Problem 2a, Here the result of Lemma 3, that the pair of functions
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[p ,u ] satisfies the differential equation (1) and the side

conditions (2)-(5), with b = b , of Problem la, has also been

used. By (13) with b = b , p = p and u = u we have

(41) H = M(U Q) = E(pQ,uo).

These considerations show that [p ,u ] is a solution of Problem la

and the maximum value of Problem la equals the minimax value

of Problem 2a. The solution of Problem la is unique. For,

otherwise Problem 2a would have another solution apart from [p ,u ]

But this contradicts Theorem 3, To complete the proof of the

theorem, it is now enough to see that by (11) with p = p ,

u = u , b = b relation (41) becomes
o o

H = H(uo) = E(po,uo) = -tP ou;] x = 0.

Substituting (2O)-(23) in this gives (40) .
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4. A Dual Variational Approach to Problem 1 and the Duality

Inecruality

In this section we give a different approach to the solution

of Problem 1 and derive a pair of sharp upper and lower estimates

for the maximum value H of Problem la. The proof of the

following theorem does not depend on the results of the previous

sections.

THEOREM _5. Let u(x) and y(x) be continuous functions

in 0 £ x <£ b with piecewise continuous derivatives there.

Let u and y satisfy the boundary conditions

(42) u(0) = 1

and

(43) y(0) = 1, y(b) = 0.

Let

b

o

Then define dual norms as

b -
(44) ||u' || = (J |u« | a d x ) a and ||y|| = (J

o

b 2 , ,2u« ||̂  + J qu2dx]
o

and
2
dx]

where a and £ are positive constants satisfying
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(45) a"1 + f1 = 1

and K JLS also a. positive constant and q(x) > 0 _iŝ  continuous

in 0 £ x <̂  b. Then the following inequality holds

1

(46) ||n||2fO i H*
2 ;> ||y||-^

where H _is a_ constant independent of u and y.

Proof; Substituting the boundary conditions (42) and (43)

in the identity

b
b r

[(uy)] = (u! y + uy! ) dx
o J

o
gives

- 1 = 1 (u1 y + uy1 )dx

rb rb

J u1 ydx| + | J uy1 dx| .
o

and therefore

o o

Here applying Holder1s inequality to the first term of the

right side and a weighted Schwarz! s inequality to the second

term gives

rD 2 2 r* y« *IkllJyL + (J gu2dx)2(J ^ d x ) 2 .

Applying Cauchy1s inequality to this gives
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l i Hu|l2>ll2>f,

The factors on the right side cannot vanish and therefore division

gives

IWIa,o 2 lbrl£, •

Since the left side is independent of y and the right side is

independent of u relation (46) follows for some constant H

independent of u and y. This completes the proof of the

theorem.

The relation (46) furnishes upper and lower bounds for H

and so we term (46) a "duality inequality". The quantity H

is conceivably non-unique. However, it would seem that under

the constraint

j
# •

relation (46) determines a unique H equal to the maximum

value of Problem 1 (with q(x) not a constant). We do not

pursue, in this study, either this question or the solution of

Problem 1.

However, we show in this section that for a defined by

1 2
-"+ — = 1 and q(x) = constant = q and the usual meaning of

p, K and q -- as in Problem la -- and for b = oo (in fact,
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any b ;> b , b as in Problem la, suffices) (46) determines a

unique H and that H = H the maximum value of Problem la.

In such a case when H is unique we say that there is no gap

in the duality inequality.

THEOREM 5a. Let u(x) and y(x) b£ continuous with piecewise

continuous first derivatives in x ̂  0 so, that the integrals in

(44a) below are convergent. Let u and y satisfy the boundary

conditions

(42a) u(0) = 1, u bounded as x > oo

and

(43a) y(0) = 1, y(x) >O as x >oo.

Let

1 1
OO OO f\ ~~Q

(44a) Hu'll = (J |u'| adx) a, ||y|L = (J \y\Pdx)P.
o . o

Then define dual norms as
1

..2 r°° 2 2
! II + q u dx]

o

where a and /S are positive constants satisfying

(45a) a"1 + 0"1 = 1, p 1 + 2a"1 = 1
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and where p ̂  1, K > 0 and q > 0 are the constants appearing

in Problem la (or Problem 3). Then the following duality in-

equality holds for a. constant H independent of u and y:

1

(46a) ||u||2 a ̂  H*2 ̂  llyll̂ fl"

Proof: This is an immediate consequence of Lemma 5 on

letting b = oo.

THEOREM (3. Let u and y satisfy the hypothesis of

Theorem 5a and H be the maximum value of Problem la. Let u

and y be defined by
o

(
. ^ in 0 < x < b

<47>
in x > b

and

(48) yQ(x) =

( PO(X)U;(X)

-( H
 } i a o i x

0 in x > b .
— o

Then u and y satisfy the admissibility conditions of
o o l

Theorem 5a and

(49) |P O | £ O - H - | |?ol |-^

and hence H .of (46a) iŝ  unique and equals H.
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Proof: Let us define y by

p (x)u^(x)
(50) yQ(x) = - H in 0 £ x £ bQ.

Let us recall for convenience the properties of p and u .
* * *o o

By Lemma 2 and Lemma 3 and (41) of Theorem 4, we have

bo - b

(15a) H = E(po,UQ) = K(J |u^|
adx)a + J qu^dx;

by Lemma 3 and (17) we have

b

(17a) [ ppdx = KP;
«J O

by Lemma 3 and (18) we have

(18a) u! = -A p a in 0 < x < b ;
o o^o ^ ^ o

because u satisfies (1) in 0 £ x £ b and y satisfies

(50) we have

qu
(51) y^ = - -^. in 0 ̂. x

and lastly by (50) and (18a)

(52) Y Q = 5
2 P Q in

Taking norms in (51) and (52) we have
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(53) J qu^dx

(54) ( J ° , y I
o Ho H

by (17a) and (45a). On the other hand, p u'
o o

2
(55) K(J |u^|adx)a = (J

o

Then (48), (53), (54) and (55) show that

Besides,(15a) and (47) show that

2 o
A p p so
o o

by (15a)

by (17a)

by (15a) .

The last two equations prove (49). It is clear from the

definitions of u and y and (49) that u and y satisfy

o o o o

the convergence, smoothness and boundary conditions of Theorem 5a.

• * " • # •

That (46a) determines H uniquely and H = H is now seen as
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follows:

Substituting u = u and y = y in (46a) gives

H = l i u o l l 2 ^ a ^ H ^ l l y o l l 2 f j 8
 = H

and hence H = H. This completes the proof of the Theorem.

THEOREM 2- (DUAL EXTREMUM PRINCIPLES. ) Let u and y

satisfy the hypothesis of Theorem 5a. Then the following two

"dual extremum principles" characterizing the maximum value H

of Problem la hold:

2
oo — ro

H = min[K(J |u! | a d x ) a + J qu2dx]
u o

and
2

-1 -1 p . , B B r v'
H = min [K ( y pdx) p + *— dx].

y ^

Proof; This is a direct consequence of Theorem 6 and

Theorem 5a, in particular (46a) and (49).

COROLLARY JL. Theorem 7 shows that (46a) with H replaced

by H, can be used to give sharp estimates of H the maximum

value of Problem la.
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5. Uniqueness Proof

In this section we prove a statement made in Section 3.

THEOREM 2. The pair of functions [p ,u ] given by (20)-
— o o

(23) JLS. the unique solution of Problem 3.

Proof: Assume that P(x) is a function satisfying the

admissibility conditions of the p-functions of Problem 3 and

that U(x) satisfies the admissibility conditions of the u-

functions such that E(P,u) is minimized by U and

(56) E(P,U) = E(pQ,uo).

Then

(57) E(P,U Q) ^ E(P,U).

But by Lemma 4

(58) E(po,UQ) ^ E ( P , U Q ) .

Now (56), (57) and (58) imply that (57) is actually an equality.

Thus

(59) E(P,U Q) = E(P,U) = E(po,UQ).

Considering E(P,u) as a quadric functional in u, by the parallel-

ogram law for quadratic functionals we have

(60) 0 £ E(P,U-u ) = 2E(P,U) + 2E(P,U ) - 4E(P,Z)
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where Z = (U + u )/2. Because Z satisfies the boundary

condition Z = 1 at u = 0, E(P,Z) ;> E(P,U). Now this and

(59) and (60) imply that E(P,U-u ) = 0 and hence

(61) U = u in O £ x £ b

where b is the right-hand end point of Support of P. This

also shows that

(62) E(P,u ) = min E(P,u)
u

since the left side equals E(P,U) and E(P,U) = min E(P,u).
u

Now, it remains to show that P = p and b = b .
*o o

Since P is continuous and u is continuous with piecewise

continuous derivative in 0 £ x £ b, and u has the minimizing

property (62) in the class of continuous functions with piecewise

continuous first derivatives in 0 <1 x £ b and satisfying the

boundary condition u(0) = 1, we may apply the "Second Lemma"

of the Calculus of Variations [12]. The details will be omitted

but it results that P satisfies

r(63) Pu! = constant + qu dx in 0 £ x <£ b,
o Jo

o

and the natural boundary condition

(64) Pu1 = 0 at x = b.
o
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Integrating E(P,u ) by parts and using (63) and (64) gives

(65) E(P,uo) = -

Similarly,

(66) E(p ,u ) = - [p u! ] .
v VJro' o l<to o x=0

It follows from (59), (65) and (66) that

(67) P = p = 5 at x = 0 .

Here we have used (2o) and (21) and 5 is given by (22), Now,

on using the expression for u given by (20) and differentiating,

(63) gives a first order linear equation of the Cauchy-Euler

type in D, namely

(68, ,l.i-,
o

where

(69) D = (Support of P) PI (Support of p ) .

Let B be the right-hand end point of the Support of D.

Then B = min[b,b ]. Now as p satisfies (68) and P and

p satisfy the same initial condition (67) it follows that

(70) P s p in D.

So it is enough to show b = b . Suppose that b < b . Then
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r 2 2
(71) E(P,UQ) = J [Pû  + quQ]dx

r 2 2
= [p u' + qu Jdx
J ^o o ^ o
o
b
o

o
J [po

Here (70) and the fact p ^ O ^ u in b < x < b are used.
o o o

The inequality (71) contradicts (59) and hence b > b is the
o

only other possibility if not b = b . So, if b > b ,

b

b
PPdx) + (J PPdx) > KP.

b
o

(72)

Here

b

I
o

K

o
p

P y

pdxo

A
o

= K

p d x

p
9

r °
o

(70) an

are used. But (72) is absurd and thus b > b is untenable and
o

b = b . Thus the proof of the theorem is complete.
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