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by
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ABSTRACT
Under consideration is a differential equation (pu")" = qu
of the SturmLiouvilie type where the function q(x) >0 is
gi ven. The problemis to find a function p(x) >0 in 0 £ x < b,
a constant b and a solution u(x) of the corresponding differential

equation such that the energy functional

rP 2 2
J [P(u') +qu]dx
0
b - 0
is maxim zed when p(x) is subject to the constraint |4 pPdx <£ K
0
and u is subject to the boundary conditions u=1 at x =0

du=0 at x = b. Here K> 0 and p]> 1 are constants*

and P 3

A key relation j g§+ = Ap2 , Where A is apositive const.ant, IS
found. This criterion leads to explicit solution of the problem
A further consequence of this criterion together with a pair
of dual extremumprinciples is a "duality inequality" giving
sharp upper and |ower estimtes of the maxi num val ue of the

energy functional.

*Prepared under Research Grant DA-ARO D-31-124-71-GL7, Arny
Research O fice (Durham.




This study is a sequel to previous studies on the opti-
mization of cooling fins by R. J. Duffin and D. K. McLain
[Jour. Math. and Mech. 8(1959), 47-56 and 17(1968), 769-784.]
In those papers p = 1. However, the latter deals with fins
on convex cylinders and thus the Sturm-Liouville equation they

study is a partial differential equation.




DUAL EXTREMUM PRINCIPLES RELATING TO COOLING FINS

1. Introduction

In reference [l], R. J. Duffin studied the maximization of

the functional

b
o= J g(x)u(x)dx
o

where g(x) > O 1is a given continuous function in x > O and
u(x) is a differentiable function satisfying the Sturm-Liouville

differential equation

d du, _ .
a;(p(x) dX) = g(x)u in 0 x<b

and satisfying the boundary conditions

u=1 at x=0 and P gﬁ =0 at x=0>»

and where p(x) is a continuous function subject to the constraints

p(x) >0 in 0 x<K b
and

b
I p(x)dx = K > 0, a given constant.
o

In order to find the unknown constant b > O and the unknown
functions p(x) and u(x) having the above properties, he

" eliminated the differential equation and the boundary conditions
and studied an equivalent maxmax problem. By a variational

argument it was shown that -- the optimal function u(x) should




satisfy the condition

quﬂ = constant in O <x <b.

(1)

This criterion led to explicit solution for the unknowns b,
p(x), and u(x) maxim zing the functional &

In this study we have considered the problem of maxim zi ng
the functional & u) subjecting p(x) to a nore general type of

constraint, nanely an inequality constraint of the L norm
P
type
b
JPdx £K°, p~r1, K>0.
0

Wth a viewto find upper and |ower estimates for the maxi num

value H, a "duality inequality" is obtained, nanely:

(ID Hu||2-;kH1’2*||Y| ",
j ]

Here || W and || 1| o are certain dual norns, u(x) and y(Xx)
are arbitrary functions except that they satisfy certain snoothness
and normalized boundary conditions.

The problemof maxim zing the functional Ji is recast into
a mnimx or saddle point problemrather than a nmaxmax probl em
This together with (Il1) facilitates the fornulation of a pair

of dual extremumprinciples for the maxi numvalue H, nanely
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1/2 - maxHYH;}B'

Y

(II1) minHull2 o = H
u 3’

This is proved taking g(x) as a constant and in that case it is
shown that the optimal functions p(x) and u(x) satisfy the

condition

o1
(V) 1 = aee)) ? in o< x<b

where A 1is a positive constant. This criterion leads to
explicit solution for the unknowns b, p(x), and u(x) which
maximize H(u).

The paper [1] by Duffin,mentioned above, concerns the optimum
design of a cooling fin of limited weight K so as to dissipate
the most heat H. The thickness of the fin, p(x), of the
optimum fin is determined by the criterion (I). Previously,

E. Schmidt [5] had proposed the criterion (I) but he based his
argument on a fallacious physical assumption.

Previous authors, among which R. J. Duffin and D. K. McLain
(2], J. E. wilkins, Jr. [6,7], C. Y. Liu [8,9], F. C. Appl and
H. M. Hung [10] and R. Focke [ll] are some, have given several
developments of the cooling fin problem. But they have not
considered the generalization treated here. Moreover, the duality

inequality (II) can be suitably employed to obtain upper and lower
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bounds for the maximum conductance H of the cooling fin.
Several ramifications of duality inequality are given in

references [3,4].

This study is a sequel to a study on heat transfer in
networks [13]. There a network model for the cooling fin was
treated. These studies complement each other; the present
treatment is more specific and the network treatment is more
general. A later study [14] will treat, in an analogous way,

a problem in the design of an elastically supported beam for

maximum strength.



2. Statement of the Maxim zation Problem and an Equival ent

For mul ati on

In this section we state a maxi m zation problem and anal yze
it heuristically to obtain an equival ent m nimax problem Rigorous

devel opments are given in later sections.

PROBLEMJL To find two functions u(x) and p(x) and a

positive nunber b which have the follow ng properties; u(x)

is differentiable in the interval 0<£€ x£b and p(x) is

continuous in the sane interval and the two satisfy the Sturm

Liouville differential equation for u:

(1) Grlr0 8l = S(x)u(x) ln 0 £xE£b

where q(x) _j3 positive and continuous in x " 0; and u |Ls

to satisfy the boundary conditions

(2) u=1 at x =0

and

(3) p(x) =0 at x =b.
ax —

Moreover p(x) has to satisfy the conditions

(4) p(x) >0 in O". x<b

an
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o o
(5) jpdxgx
(@)

where p > 1 and K > O are given constants. Under these

conditions on p(x) and u(x) we seek to maximize the functional

b
(6) H(u) = J g(x)u(x)dx.
o

Introducing the functional

b 2 2
(7) E(p,u) = | [puw'” + qu®ldx,  ()' = d/dx
(0]

enables us to recast the problem into a minimax problem. This
change is motivated by the following heuristic analysis.

Let p(x) and u(x) be functions satisfying conditions (1)-
(4) for some positive number b and be sufficiently smooth in
0 x< b so that integration by parts below is valid. Let

v be an arbitrary smooth function in 0 < x < b. Then
b

(8) E(p,u+v) = E(p,u) + E(p,v) + ZI [pu' v! + quv]dx.
o

Integration by parts gives
b

b b
(9) _f [pu'v' + quv]dx = f viqu - (pu')']dx + [(pu )VJO-
(o] (@]

The first integral on the right side vanishes by (1). If we

impose v = 0 at x = 0 then the boundary term at x = 0O



vani shes and the other boundary termvani shes because of (3).
Moreover u + v satisfies the boundary condition (2). Thus

(8) becones
(10) E(p,u+v) = E(p,u) + E(p,v) " E(p,u).

It follows that if E(p,LT) is mnimzed for the class of functions
U satisfying (2) but not necessarily (1) then the minimmis
achieved by a function u satisfying (1) and (3). This is a
standard result of the Calculus of Variations where (3) is terned
a natural boundary condition because it is necessarily satisfied
by the m nim zing function.

Now, choosing v =u in (9) gives

(1D E(p,u) = - [p» Jo

On the other hand, choosing v =1 in (9 gives
(12) J qudx = - [pu« ] o
o]

LEMVA JL  JEf _the function u satisfies the Euler differential

equation (1) corresponding to the saddle functional E(p,u) and

if p and u satisfy the boundary conditions (2) and (3) and

the condition (4), then-

(13) Hu) = E(p,u)
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where # and E are given by (6) and (7).

Proof: The lemma is an immediate consequence of (11) and
(12).

In view of relations (10) and (13) the following problem

is presumably equivalent to Problem 1.
PROBLEM 2. Find
(14) H = max min E(p,u)

P u

subject to the following conditions: p > O and p has a

finite support which is an interval with O for left-hand end

point, p is continuous in the closure of its support; the region

P

of integration is the support of p, and the integral of p

over the support is not to exceed a given positive constant Kp:

the function u is continuous, has a piecewise continuous first

derivative and takes value 1 at x = 0. Here g(x) occuring

in the expression for E 1is a positive continuous function in

X>0 and p>1 is a given constant.

We continue with the heuristic analysis and investigate

this problem.

LEMMA 2. f p(x) is non-negative and continuous in 0< x< Db

and satisfies (5) and u(x) is continuous with piecewise continuous
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derivative in 0 < x < b then, for E given by (7)

b 2y
r a a 2
(15) B(p,w < K(] |w|%x0)® + [ quiax
(@] o

where the positive constant a is given by

(16) P + 2a = 1.

b
(17) j pPax = &P
(@]
and
J
(18) u = -2p™

where A 1is a positive constant.

Proof: 1In

(7) E(p,u) = J [pu'2 + qu2]dx
o

applying the Holder's inequality gives

rb 2 P % P o % P a i
(19) [ pw ®ax < (] pPax) P([ |u|%an® < k(] |u [%a0® ,
o o o o
where o 1is given by (16). Here (5) has been used. Substituting

(19) in (7) gives (15).

If p and u satisfy (17) and (18), there is equality



clo

throughout (19) and hence (15) also becomes an equality. This
completes the proof of the lemma. We regard the relation (18)
as a key result because it enables us to obtain explicit

expressions for the solution.

Problem la where Problem la is stated as Problem 1 with
a(x) = g > 0, a constant, and this particular case is our main
interest from now on. Similarly, Problem 2a is stated as

Problem 2 with g(x) = q.

LEMMA 3. A pair b =D and A = A of positive constants

- o

o
and a solution u = u, P =Py of the system of equations

d . du

(1) dx[p dx

]

qu(x) in 0 x<b

p
(18) u' = -%pa in 0< x<KDb

under the boundary conditions

(2) u=1 at x =0
du

3 —_— = =

(3) Py =0 a x b

and satisfying

(4) P>0 in 0< x< b



al

b p
(17) J pTdx = K°
o
are given by
= X 0
o
X ,2
(21) Py = 0, (1 = 7}
O
wher e
2
ab
(22) 50 = p(p+l)
1
p Ip/ (1 +2p)
(23) b = [—&(9—*1”2“”) ]
o d
ana
S * B
(24) Ab - b 6P/<X :
00

Proof; Miltiplying (1) by 2u and integrating gives

2 2 2
(25) _Ji:p- ul dx + pu! = qu .

Here the boundary condition (3) has been used and an additiona
condition u =0 at x = b has been inposed. Substituting (18)

in (25 and integrating gives
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N

2
0 (p+l)pp = qu .

(26)

Here p(x) has been required to satisfy p =0 at x =Db., Elimi-
nating p(x) between (18) and (26) and integrating the result and using
the initial condition (2) gives u(x) and then substituting this

in (26) gives p(x), namely

(27) us=(1-3%5°
and
2
(28) p = 06(1 - %)
where 6,N and b satisfy
= p-1
(29) 1.2 a2
b p(p+1)/29 1+p
(30) 6f = 21—
A (p+l)
Requiring p to satisfy (17) gives
(31) 9eb = &P,

A2 (p+1) (2p+1)

Eliminating A between (29) and (31l) gives b = bo where bo
is as in (23). Eliminating A between (29) and (30) and sub-
stituting b = bo gives 6 = 60 where 60 is as in (22). Now

A = AO where %o is as in (24) follows from (22), (23) and (31).
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It is contained in Lemma 3 that P, and ug satisfy the
differential equation (1) and conditions (2)-(5) for b = bo.

This was enabled by the relations (17) and (18) of Lemma 2 which
render (15) an equality for p = Py, W =uj and b = bo.
Further it will be seen in Section 3 how the inequality (15)

can be used to solve the remaining part of Problem la. 1In fact,

we show rigorously that p = P, u=u,, b = bo is the unique

solution set solving Problem la.

HUNT LIBRARY
CARNEGIE-MELLON URIVERSITY
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3. Compari son Rel ations and the Main Proof

In this section we restate Problem 2a relaxing certain

conditions and show that p = po, u = ug of Lenma 3 provide
the uni que solution of the new problem <called Problem 3, It

is then shown that the solution of Problem 3 is also the unique
solution of Problem 2a and finally that P=R, u =y, b=b°
is the unique solution set having the desired property of

satisfying (1)-(5 and maxim zing & given by (6).
PROBLEM -3* Find
(32) H = sup inf E(p,u)

P wu

subject to the following conditions; p "> 0 andhas ja finite

support which is an interval wwth O for the left-hand end

point, p is continuous in the closure of its support; the

region of integration is the support of p, and the inteagral

of pp over the support is not to exceed a given positive

const ant Kp; the function u JLS continuous, has piecew se

continuous first derivative and takes value 1 at. x = 0.

The quantity g > 0 occuring in the expression for E and

PAL 1 are given constants.
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LEMMA 4. Let p be an arbitrary function satisfying

the conditions of the p-functions of Problem 3. Let P, and

u be the functions given by (20)-(23). Then

(33) E(po,uo) > E(p,uo) .

Proof: By Lemma 3, for b = bo’ the functions pO and uo
satisfy (17) and (18) of Lemma 2 and (15) becomes an equality

for p = po, u = uo and b = bo' Hence

b 2 b

ro a a ° 2
= 1
(34) E(po,uo) K(Jo|uo| dx)~ + fo quodx.

Now let b Dbe the right-hand end point of the support
of p. It is convenient to consider the two cases bo < b and
b0 > b separately:

Case (i) bO < b: Since uo(bo) = 0 by defining u, as
zero for x > bO we have a continuous extension of uo and
thus the extended function has the admissibility properties of

the u-functions of Problem 3. So,
2

b 2 2 oo a a b 2
(35) E(p,uo) = Jo[pug + quo]dx S'K(Jo|ug| dx) = + foquodx.

Here we have applied the HO6lder's inequality

1 2

b 5 b o B b . ©
J pug dx < (I p dx) (J [ug| dx)
o o o
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b
and the property of p that u prdx <A Y. Now since u = 0
0

in x > b0 the right side of the inequality in (35) becones

E(po,uo) on using (34), thus giving (33).

Case (ii) b >Db: Since the restrictionof u to O0<E£ X<£Db
Q Q

satisfies the adm ssibility properties of the wu-functions of
Problem 3, we have also in this case
b , b Z b
(36) E(pu,) =J [pu” + qu]dx £ K(J lur[2dx)? + J qu_dXx
0 0 0
on applying Holder' s inequality as in Case (i) and on using

D
q pPdx) <£ R Now, in the right side of the inequality of (36)
Q

bo

and
b
r

R
o o]

de

since bg”=Db. Using these and (34) in (36) gives (33). This

conpl etes the proof of the | emma.

JHEOREM JL. The pair of functions [po,uo] gi ven by (20) -
Proof; Let p be an arbitrary function satisfying the

adm ssibility conditions of the p-functions of Problem 3 and u
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be an arbitrary function satisfying the admissibility conditions
of the wu-functions of Problem 3. Then, since both the restriction
of u to any 0 x< b with b g_bo and extension of ug
as zero beyond x = bo are admissible,

inf E(p,u) < E(p,u,) < E(p_,u) by (33)

u

and therefore

(37) sup inf E(p,u) < E(p_,u).
jo) u
Also,
(38) sup inf E(p,u) > inf E(po,u) = E(po,uo).
P u u

The last equality in (38) is true because ug satisfies the Euler
differential equation, (1) with p = Py of the positive definite
quadratic functional E(po,u) and the boundary conditions (2)

and (3). The relations (37) and (38) now imply the desired

result that

(39) E(po,uo) = sup inf E(p,u).
P u
The relation (39) is the same as (32) of Problem 3 and

shows that H of (32) equals E(po,uo).

THEOREM 2. The pair of functions [po,uo] given by (20)-

(23) is the unique solution of Problem 3.
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Proof; A proof of uniqueness can be given in essentially
the sane manner as the uni queness proof given by R J. Duffin
and D. K MLain in Theorem 2 of reference [2]. W delay

giving this proof until Section 5.

THEOREM 3. _Probl em 2a _and Problem 3 are equivalent and the

pair of functions [po,uo] given by (20)-(23) is the only solution

of Problem 2a.
Proof; By Theorem 1, the sup inf of (32) of Problem 3
Is actually assunmed for functions p = P and u = Ug and hence

t he sol ution [po,uo] of Problem 3 is also a solution of Problem 2a.

Here we have also used the fact that the functionals being
optimzed in the two problens are the sane. This shows the

equi val ence of two problens and that the m ni max val ues of the
two problens are equal. Now the solution of Problem 2a is

uni que. For, otherwise it would nmean that Problem 3 has anot her
sol ution besides [py,U,]. But this contradicts Theorem 2 and

the proof is conplete.

THEOREM 4. Problemla i” equivalent to Problem 2a and

Problem 3 and the pair_of functions [po,uo] gi ven by (20) -(23)

is the unique solution of Problem 1. Summarizing: Problemla

has _the _unique _solution P =P, u=u, b:bo given by
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- X .,\p
(20) u, = (-5 )
(o]
X 2
(21) p, = 6,(1 - 37)
o
where
qbi
(22) % = b(p+D)

(23) b = [Kp(p+l)(2p+l)
(o]

l/p] p/ (1+2p)
q

and the maximum value H of the functional

b
(6) H(u) = qj u(x)dx
o
is
, ab,
(40) H = 3"(uo) = E(po,uo) (p+1)

where bo is given by (23) above.
Proof: Since P, is continuous in 0 £ X £ bO and
! 1) i i
u, uo and (pouo) are also continuous in O < x g_bo, these

conditions are sufficient to justify the integration by parts

in (9) for b = bo’ P =P, and u = ug- Thus the relation

(13) with b = bo, P =P, and u ug shows that the maximum
value of Problem la cannot exceed the minimax value H of

Problem 2a. Here the result of Lemma 3, that the pair of functions
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[po,uo] satisfies the differential equation (1) and the side
conditions (2)-(5), with b = bo’ of Problem la, has also been

used. By (13) with b =Db , p = P, and u = uO we have
= H =
(41) H (uo) E(po,uo).

These considerations show that [po’uo] is a solution of Problem la
and the maximum value of Problem la equals the minimax value

of Problem 2a. The solution of Problem la is unique. For,
otherwise Problem 2a would have another solution apart from [po,uol.
But this contradicts Theorem 3. To complete the proof of the
theorem, it is now enough to see that by (11) with p =p ,

o

u=u, b= bO relation (41) becomes

H = N(uo) = E(pysuy) = -[poutl -

Substituting (20)-(23) in this gives (40).
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4. A Dual Variational Approach to Problem1 and the Duality

I necruality

In this section we give a different approach to the solution
of Problem 1 and derive a pair of sharp upper and |ower estinmates
for the maxi numvalue H of Problem|a. The proof of the
followi ng theorem does not depend on the results of the previous

secti ons.

THEOREM 5. _Let u(x) _.and y(x) be continuous functions

in O£ x<Eb wth piecewise continuous derivatives there.

Let u and y satisfy the boundary conditions

(42) u(o) =1
and
(43) y(o) =1, y(b) =0
Let
b 1 J -35
(44) U lly = Q Ju«]?dx)®  and |lyllg = (3 yl"ax) ",
o 0
Then define dual norns as
1
b
lall o = el + 3 qu?
0
and L , 1
Ivly, g = Il + ] ¥ aa®

where a and £ are positive constants satisfying
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(45) a + B =1

and K is also a positive constant and g(x) > O is continuous

in 0 < x < b. Then the following inequality holds
1

(46) lall, o > 8% > vl

*
where H is a constant independent of u and vy.

Proof: Substituting the boundary conditions (42) and (43)

in the identity

b b
[(w) 1) = | (wy + uy')dx
o

gives

1
=
]

b

j (wy + uy')dx
(o)

and therefore

b b
1< IJ u'ydx| + |I uy' dx
o o

Here applying HO6lder's inequality to the first term of the
right side and a weighted Schwarz's inequality to the second

term gives

=

1
) b 2

b
1wl lvllg + (] av’an ([ Y= an? .

Applying Cauchy's inequality to this gives
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1 S. “unz’a“ynz’ B'

The factors on the right side cannot vanish and therefore division

gives

hall, o > vl g -

Since the left side is independent of y and the right side is
*

independent of u relation (46) follows for some constant H

independent of u and y. This completes the proof of the

theorem.

*
The relation (46) furnishes upper and lower bounds for H

and so we term (46) a "duality inequality". The quantity H*

is conceivably non-unigque. However, it would seem that under

the constraint
1 2
JPPax < ¥, S+ 2<1, o2,

relation (46) determines a unique H equal to the maximum
value of Problem 1 (with g(x) not a constant). We do not
pursue, in this study, either this question or the solution of
Problem 1.

However, we show in this section that for o defined by

+

QN

=1 and g(x) = constant = q and the usual meaning of

oI~

p, K and g -- as in Problem la -- and for b = oo (in fact,
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any b > bo’ bo as in Problem la, suffices) (46) determines a
* *
unique H and that H = H the maximum value of Problem la.
*
In such a case when H is unique we say that there is no gap

in the duality inequality.

THEOREM 5a. Let u(x) and y(x) be continuous with piecewise

continuous first derivatives in x > O so that the integrals in

(44a) below are convergent. Let u and y satisfy the boundary

conditions
(42a) u(0) = 1, u bounded as XxX-—3p @
and
(43a) y(0) =1, y(X)=—— O as X—po00.
Let
co N (e 0] L
(a42) il = (] 1w %% lvllg= (] lvlfaof .
o o
Then define dual norms as
1
oo =
B 2 2. .2
lally, o = Kl 17+ af wax)
1

- 2 1 2. 2
lyll, g = lllyllﬁ + Jfo y' “dx]

where o and B are positive constants satisfying

(45a) a + B " =1, P + 20 T =1
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and where p>1, K> 0 and g > O are the constants appearing

in problem la (or Problem 3). Then the following duality in-

equality holds for a constant H* independent of u and vy:
1
* 2 -1

(46a) hally o 287 2 lvlly g

Proof: This is an immediate consequence of Lemma 5 on

letting b = 0.

THEOREM 6. Let u and y satisfy the hypothesis of

Theorem 5a and H be the maximum value of Problem la. Let ﬁ;

and ;; be defined by

N uo(x) in 0< x <K bo

(47) u_ (%)=

) in x> bO
and

p_(x)u! (x)
. ()  in o< x< b

(48) yo(x) =

o in x > bo'
Then Go and §o satisfy the admissibility conditions of
Theorem 5a and

~ 2 ~ =2

4 = =
(49) g lly o =5 = ¥ 157,

*
and hence H of (46a) is unique and equals H.
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Proof: Let us define A by

P (X UN(X)

(50) yQ(X) = T 1in O£X£bQ

Let us recall for convenience the properties of p and u .
* * *O (6]
By Lemma 2 and Lemma 3 and (41) of Theorem4, we have

2
bo bO

(150  H= E(po, U = K(J |ur|2dx)? +J quids:

o O

by Lemma 3 and (17) we have
b

(&)
(17a) [ pPdx = K*;
p O

by Lemma 3 and (18) we have

el
(18a) u' 5—A826i-n 0 s\x sby

because Ug satisfies (1) in O£x£bo and Yo satisfies

(50) we have

qu
(51) y/\:"/\-inol\-.X Sbo

and lastly by (50) and (18a)

A
(52) YQ:52PQ in OSXSbo.

Taking norms in (51) and (52) we have
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bo y! bo
o -2 2
(53) J o ax = H J qu_dx
o
b 2 2 Db 2 2
o - A o >y A
o) 8 o) +1
(54) 1y | Pax) # = (] pPax) " = 2 x°
(o} 2 o 2
o H o H
2 2.0
by (17a) and (45a). On the other hand, poug = %Opo SO
bo 2 bo
o o _ 2
(55) K(J [t | “ax) * = (j p_u! “ax) by (15a)
o o
= 7\§Kp by (17a).
Then (48), (53), (54) and (55) show that
b_ b_ 2
~ 2 2 2 J 1] Qa0
o115 g = B 0] aulax + k([ Jur|%ax %)
o o
= H'l by (15a).
Besides, (15a) and (47) show that
~ 12
”uollz’a = H .
The last two equations prove (49). It is clear from the

definitions of G; and §6 and (49) that G; and §; satisfy
the convergence, smoothness and boundary conditions of Theorem 5a.

* *
That (46a) determines H uniquely and H = H is now seen as
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foll ows:
Substituting u = and y =y _ in (46a) gives

* i =2

||ﬁ..| ||2 - H
H = |IUO||2Aa A H A |y0||2f18
and hence H = H This conpl etes the proof of the Theorem

THEOREM 2- (DUAL EXTREMUM PRINCIPLES. ) Let u and vy

satisfy the hypothesis of Theorem 5a. Then the follow ng two

"dual extremum principles" characterizing the naxi num value H

of Problem la hold:

2
(o]0} — I0
H=min[K@ |u' |2dx)?® + J qu’dx]
u 0 o
and
2
-1 1p® B B (P2
H =mnn[K (5, yPdx)? + J *—dx].
y N

Proof; This is a direct consequence of Theorem 6 and

Theorem 5a, in particular (46a) and (49).

COROLLARY J.. _Theorem 7 shows that (46a) wth H repl aced

by H can be used to give sharp estimates of H the nmaxi rum

val ue of Problemla.
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5. Unigueness Proof

In this section we prove a statement made in Section 3.

THEOREM 2., The pair of functions [po,uo] given by (20)-

(23) is the unique solution of Problem 3.

Proof: Assume that P(x) is a function satisfying the
admissibility conditions of the p-functions of Problem 3 and
that U(x) satisfies the admissibility conditions of the u-

functions such that E(P,u) is minimized by U and

(56) E(P,U) = E(po,uo).
Then
(57) E(P,uo) > E(P,U).

But by Lemma 4

(58) E(po,uo) > E(P,uo).

Now (56), (57) and (58) imply that (57) is actually an equality.
Thus

(59) E(P’uo) = E(P,U) = E(pO’uO).

Considering E(P,u) as a quadric functional in u, by the parallel-

ogram law for quadratic functionals we have

(60) 0 < E(P,U-u ) = 2E(P,U) + 2E(P,u ) - 4E(P,Z)
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where Z = (U+uo)/2. Because Z satisfies the boundary
condition Z=1 at u=0, EP2Z2 ;>EPU. Nowthis and

(59) and (60) inply that E(P,U-uo) = 0 and hence

(61)

(e
It
[

in O£ x £Db

where b is the right-hand end point of Support of P. This
al so shows that
(62) E(P,uo) = mn E(P, u)
u
since the left side equals E(P,U and E(P,U = mn E(P,u).
u

Now, it remains to showthat P =p and b =D .
*0 0

Since P is continuous and u°

IS continuous Wi th piecew se
continuous derivative in 0 £ x £b, and u® has the mninizing
property (62) in the class of continuous functions with piecew se
continuous first derivatives in 0<1 x £b and satisfying the
boundary condition u(0) = 1, we may apply the "Second Lemma"

of the Calculus of Variations [12]. The details will be omtted

but it results that P satisfies
X

(63) Pu!O = constant + ' quox in O£ x <£b,
0

and the natural boundary condition

(64) Pul =0 at x = b.
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Integrating E(P,uo) by parts and using (63) and (64) gives

= - ! R
(65) E(P,uo) [Puo]X=o
Similarly,

= - ! .
(66) E(p,,u) P usl.o

It follows from (59), (65) and (66) that
(67) P=p =20 at x = 0.

Here we have used (20) and (21) and 60 is given by (22). Now,
on using the expression for ug given by (20) and differentiating,
(63) gives a first order linear equation of the Cauchy-Euler

type in D, namely

ab
Xy o f{esl) T o,, _ x,2
(68) (L -37)P b P p(l )
o o
where
(69) D = (Support of P) N (Support of po).

Let B Dbe the right-hand end point of the Support of D.
Then B = min[b,bo]. Now as P, satisfies (68) and P and

P, satisfy the same initial condition (67) it follows that

(70) P p, in D.

So it is enough to show b = bo' Suppose that b < bo. Then
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rb 2
(71) E(P,Ugy = J [P + qugdX
[#]

2 .
_Jo[p\ouo QU ax

b
0 2 2
< \]O [pou‘:D + quo]dx = E(po,uo).

Here (70) and the fact p ~O”u in b<x<b are used.
0 0 0

contradicts (59) and hence b >b is the

o
b:bO SO, If b>b01

The inequality (71)

only other possibility if not

b
(72) kPY Apdx = (Jr b
o PPdx) + (J P°dx) > K"
0 bg
by
Here | phdx = kP, (70) and also the fact P # 0 in b, x<b

are usef. But (72) is absurd and thus b >b is untenable and
0

b =Dbgy  Thus the proof of the theoremis conplete.
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