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ABSTRACT

Tl ME- REVERSAL AND SYMVETRY | N THE THERMODYNAM CS
CF MATERI ALS W TH MEMORY
by

Morton E. Qurtin

W here study, within the framework of the thernodynam cs
of materials with menory, the notion of invariance under timne-
reversal. In particular, we establish conditions that are
bot h necessary and sufficient for the infinitesmal entropy

production to display such invariance.



Introduction.

In continuum thermodynamics the entropy production rate

is defined through the relationl

3
y =7 + div(3) -

s

ol

where 7 1is the entropy, © the temperature, q the heat flux,

and r the heat supply. In view of the energy equation

£ =S*F - divg + r,

where € is the internal energy, S the (Piola-Kirchhoff)

stress, and F the deformation gradient, we can write

* l ° b3 l
Y=m+3Z[S*E-£]-""F5a-9,
) 2 I X
9
with
g = V6

the temperature gradient.

In this paper we study materials with memory, for which

~

€,m,S, and g are functionals of the histories of F,0, and g.

lHere div is the material divergence, V the material gradient.



For such materials the (total) entropy production

I = f” y(t)dt

-Q0

is a functional of the underlying process

A’(t) = [E(t),e(t) 9%(1:)] (-a) < t< oo).

We consider processes of the form

a (8) = [1,8.,0] + alH(£),25(8),g(0)] (-® < £< ),

where the underlying site .xbo = [l,eo,o] is natural,
and show that to within an error of o(az) as a—>0 the
entropy production FLAJQ} is approximated by a2 times a quantity

Q{H,~9-9}, which we call the infinitesmal entropy production

in the infinitesmal process [H,Z%;g].

As our main result we prove that the infinitesmal entropy

production in each infinitesmal closed process from ‘yo is

. . . 1 . .
invariant under time-reversal 1if and only if:
. 2
(a) Both the stress relaxation function and the heat

relaxation function are symmetric.

(b) The energy-strain relaxation function is equal to -6
times the stress-temperature relaxation function.

One should be able to determine within the framework of kinetic theory
whether or not the infinitesmal entropy production is invariant; I
conjecture that it is.

Here the relaxation functions correspond to the derivatives of the
constitutive functionals at xLB.



(c¢) The four remaining relaxation functions (i.e. those
relating heat flux and strain, heat flux and temperature, stress
and temperature gradient, energy and temperature gradient)
satisfy certain symmetry conditions similar to (D).

We show that the second conclusion in (a) implies the
following important result:

(d) The equilibrium conductivity tensor, Eaﬂ is symmetric.
The classical theory of heat conduction, with 500 the underlying
conductivity tensor, can be shown to be the appropriate linearized
first-order approximation for slow processes. Thus (d) affords
a rational basis for the standard assumption that the conductivity
tensor in the classical theory be symmetric.l

We also prove that (b) is equivalent to the following
requirement:

(e) The entropy-strain relaxation function is equal to
the negative of the stress-temperature relaxation function.

Apparently the first person to study the invariance of functionals

under time-reversal was Day [l]. Working in the linearized (isothe}mal)
theory of viscoelastic materials, Day proved that the work done in every

1Cf. Day and Gurtin [2], who introduce a notion of thermal stability

which implies the symmetry of the conductivity tensor. See also
the discussion of the Onsager relations given by Truesdell [3],
Lecture 7.



closed strain path starting from zero is invariant under time-
reversal if and only if the stress relaxation function is symmetric.
Day's result motivated -- and to some extent served as a basis

for -- the work presented here.



1. Preliminary definitions. Day's lemma.

Throughout this section U and W denote finite-dimensional
inner product spaces. We write £(u,W) for the space of all
linear transformations from WU into W, and A[u] for the action

of Aef(u,W) on ueU. We designate the transpose of ée&(u,w)

by AT: AT is the unique transformation in £(W,U) with the

~

following property:
T
%-é[g] = u-A [%] for every Egu, Eew.

Here the dot on the left denotes the inner product in W, the
dot on the right the inner product in W. The inner product in

£(u,w) is defined by A*B = trace (A ET). Finally, we say that

~

Aef(u,u) is gymgsgﬁig if A= AT.

~

We use the following notation throughout this paper:

® = the reals,
+ . ‘s
® = the strictly-positive reals,
v = a finite-dimensional inner product space,

T o= £(U,Y),

T = (FeT|detF > 0},

cy>
Il

(FeJ|F is symmetric}.

For égS we write Au in place of A[u].



By a closed path in U starting from u€li we nmean a snooth

(continuously differentiable) function f : ft—-U such that
f(t) = u whenever t <-t or t >t

rx4 r*J O (6]

for sone t > 0. The tinme-reversal of f is the function

1: ft—U defined by

f(t) = f(-t)

for every teft; clearly, ? is also a closed path in U starting
from u. The history up to tine t of a closed path f in U

is the function f_F: [Qo0)—~U defined by
"(s) = f(t-9)

for every s ~> 0. For convenience, we wite

P(Uyu) = the set of all closed paths in U starting
from uey,
»(Uyu) = {h: [Qoo) —+ U| h=f" for some fE€P(U, u)

and sone t€R},

so that H(Uu) is the set of all histories of paths in P(U.,u).
G ven a vector wueU, we will also wite u for the constant
closed path in U wth value u and, in addition, for the

history .of this path up to any tine t. The precise neaning

will be clear from the context.



Let UEU be fixed, and let $ : &Uu _—>to W say that:

(i) $ is snooth intime if given any feP(U u) the function

t>2-3>(f%) is snooth.
(ii) @ has a derivative S& at u if given any feP(U, 0)

the limt

*(u + c.gt) - ®¥(u)

5¢(£5 = 1im —
o4

-0

t
exists uniformy for teft, and if the function ti—-6%(f ) is

continuous.  Cearly, 6%, if it exists, is a mapping of HU, 0)

into W

(iiti) $ has the relaxation property at u if given any

feP(li,u)
*(u) = lim A(fh,
t—voo
The following three lemmas will be of use in the sequel.

The first of these is due to Day [1]; we omit its proof, which

can be found in [1].



Lemma 1 (Day). Let A: [0,00)—£(U, U be continuous and

bounded,land, for every f€P(U, Q) | et

3(f) = 1 | f(t) -A(t-s) [f(s) ] dsdt.

-00 -00

Then
3(E) = (D)

for every L€P(U,Q j.f and only if A(s) jj3 symetric for every

s > 0.

Lemma 2. Let B : [ O 00)2«E(U, U be continuous, and,

for every geP(U"Q)" | et

[
3(9) = -o00 -009(t)-B(t-s) [g(s)]dsdt.
Then

Hg) = Y (1)

for every geP(U O if and only if B(s) is symetric for every

s M 0.
Pr oof . In view of the definition of the tine-reversal
a% v
lThe boundedness hypothesis is necessary. I ndeed, if A(s) = sW

wi th WPE(lL U, W= 1yf, t hen 3(1) = 3(?) = 0 for every LeP(U,C».



| ]() o(-1)-B(t-5) [g(-s) Jdsdt,

«J

1
Qe
11

00 00
f-ool-ogft' J'Bfs'-t') [g{s”)1ds’at’,

and if we interchange thgoo[[der of integration, we find that

J J e misr-eglsn1ar e,
-00 -00

3(g)

o t
J .r g(s)-B(t-s) [g(t) ]dsdt,
-00 -00

= .foo J‘ 9,(t)-B(t-s)'[g; (s)]dsdt.

-00 -00

Thus
Mg - P = [ [ o()-Wi-s) [g(s)]dsdt, (2

wher e
w=g8'
Clearly™ if B(s) is symretric, then W= O and (1) holds.
Conversely, suppose that (1) holds. Since B is continuous,
and since each of the (snooth) functions g@( U,g) has conpact
support, (1) nust hold for every piecew se continuous function

g: &*U W th conpact support. Let £,’?\€ft+ with £< A
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let a,beu, and let g : R-—=-U be defined as follows: g(t) =0
for t < 0O, g(t)=i for 0 t<e , (t)=9 for €< t < A,
g(t) =b for ALt AN +e , g(t) =0 for t> AN +& . For
this choice of g, (1) and (2) imply that
e .t Ate t
o= [[awt-s)ralasat + [ [ prw(t-s) plasat
oo A A
A+E €
+ ] [ prw(t-s) (alasat.
A o
Since W = —WT, the first two terms on the right wvanish. Thus

if we divide through by

0, and, since

o’

.vj"(')\)’a\; =

This yields the

&
]

o.

s> o. [

Lemma 3.

lada o d

Let C :
- av

be continuous, and, for

82 and let

a,b,
~ o~

desired result:

[0,00) —>=£&£(u,W) and D:

every fefR(u,0),

3(£,g) =

¥(£,9)
Then
for every ggP(u,g),

C(s)

for every s > O.

¥(%,9)

T
= -D(s)  + constant

B(s) =

€ >0, we deduce that

and A were chosen arbitrarily,

E(S)T for all

[0,00) —> £ (W, U)

geP(Ww,0), let

o .t
= f J {£(t) *D(t-s) [g(s)] + g(t)-C(t-s) [£(s)]}dsat.
- -0

(3)

geP(Ww,0) if and only if

(4)
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Proof. We proceed as in the proof of Lemma 1:

35§ =-] | (E-0-D(t-s)[g(-9)] + g(-t)C(t-s) [E(-5) ]}dsdt,
l_m _w ~
-nm t . T T .
==[ | (Ew-ct-9)T1g(s)1 + g(v)-n(t-5) " [£(s) 1} dsat.
“—o0"-00
Thus
. © .t - .
3(£,9)-3(£,9) =J I (£(t) *M(t-s) [g(s)] + g(t)-M(t-s)” [£(s)]}dsdt,
-0 -00
(5)
where
M=D+C.

Assume first that (4.1) holds, or equivalently that M = constant.

Choose fef(u,0), geP(w,g). Then, since f has compact support,

o t QO
[ ] g Miis)iasat = [ g -n’ (£(0) Iat.
-0 - ~ -00 :

Further, an integration by parts confirms that

(e ¢] t © | t
.[ j £(t)-M[g(s) ldsdt = J g(t)-j M[g(s) ldsdt
-00 -00 -0 -Q0
(0 0]
= - £ migoat,
-0

and we conclude from (5) and the last two equations that (3)

holds.
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Conversely, suppose that (3) holds for every EeP(u,g),
geP(lb, 9). Then, since C and D are continuous, and since
each of the (smooth) functions EeP(u,g) and geP(lD,g) has
compact support, (3) must hold for every piecewise continuous
function g : R —>Ww with compact support, and each continuous
and piecewise smooth function f ® —>u with compact support.
Such a pair of functions is defined as follows: let ve,keR-'-

with €< A, let aeWl, bel, let g(t) =0 for t < O, g(t) = a

t
for 0 t<e , g(t) =0 for t >e , and let £(t) =Jh(s)ds
o

for all teR, where E(t) =0 for t< 0, h(t) = ]3 for oL t<Le ,

h(t) = 0 for EL t < A, E(t)=—b for ALt AN+ €,

~

h(t) =0 for t >N+ € . For this choice of g and £,

~

(3) and (5) yield

e t A+E €

0 = J J. R'%(t—s) [E]dsdt - J I E‘l‘j(t-s) [i]dsdt
oo A o
£t '
+ ] [ a9 mI.
oo
If we divide this relation by 62 and let £ -0, we arrive

at

b-M(0) [a] = b M(N) [a],

which implies (4), since geu:, be u, and 7\6R+ were chosen

arbitrarily. E]
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2., States. Closed processes.

By a site we mean a triplet of the form

<V = [E:e,g]:

+ . . . +
where Fed is the deformation gradient, ©6eR the temperature,

and geh the temperature gradient; if g = 0, then ¥ is
called an equilibrium Eite. Throughout this paper 90 is a fixed

temperature, and 4 is the equilibrium site

,é/o = [,]\-': 9039] s

so that «¢b corresponds to holding the body in the reference
configuration at the temperature eo. By an infinitesmal site we

I L NI NI IS IS NN NI NINI S

mean a triplet of the form
= [Ii, 2}’:2] ’

where Hed 1is the displacement gradient, 2#c¢f® the temperature

change, and gel the temperature gradient; we call

(B +H) (6)

N |

E:

the infinitesmal strain. For convenience, we write

8§ = the set of all sites,

Jd = the set of all infinitesmal sites.

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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A one-parameter family & (t) = [E(t),e(t),%(t)] (oo € £t < )
of sites is called a closed process if w(+) is a closed path
in 8 starting from i i.e., if A&(-)eP(s,,Ab). Oon the other
hand, a one-parameter family _a(t) = [g(t),??(t),g(t)] (o0 < £t < o0)
of infinitesmal sites is an infinitesmal closed process if ()

INHNIININI INIININI NS (NINIIND NI NI NS NI N

is a closed path in J starting from zero; i.e., if .o(+)eP(3,0).

Proposition 1. If _o(*) is a closed process, and if AL

is an infinitesmal closed process, then .o(-) + a0 (*) is a

closed process for all sufficiently small «.

Proof. Let () = [E(*),0(:),9(*)], /(1) = [H(),V(),g7(-)].
Clearly, o (°) + a,&/(-) is a closed path starting from Aﬁb

with the requisite degree of smoothness. We have only to show that
() + a,¢/(-) has values in 8 for all sufficiently small q,

or equivalently that
det[F(t) + oH(t)] > O, o(t) + a?(t) > 0 (7)

for all teR and all sufficiently small q. Since F(t)e3+,

+
8(t)eR , the result (7) follows from the continuity of the
functions E(-), 8(-), E(-), and 3#(-), and the fact that these

functions are constant outside a compact time interval. E]
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3. Constitutive relations. Time-reversal symmetry.

In this paper we study materials defined by constitutive

relations giving the stress S(t), the internal energy E(t),

the entropy m(t), and the heat flux g(t) at time t when the

. . t .
site-history X is known:

k),

s(t) = 8(ah), £(t)
(8)
), a(t) = Ga).

n(t)

PaS A\
Here the response functionals S, €, 7, and ’% have ﬁ(S,ALb) as

their common domain and J, ®, ®, and U as their respective co-
domains. We assume that:

(A) all four response functionals are smooth in time;

A A A . . A A A
(B) S, &, and q have derivatives &S, 6& , and oq

A
at Abb, and 5é has symmetric values;

b

A

(c) & and ﬁ have the relaxation property at i

(D) Ay is a natural site in the sense that

S(ay) =0 Glay) =0

Let (*) = [E(+),98(*),g(*)] be a closed process. We

define the entropy production I{e/(:)} on _.&(-) by
Pa) . l . b l

()} =] [1+G(8E- &) -~ qggldt, (9)
-00 )

1_. . . . .
Since S 1is the Piola-Kirchhoff stress, its response functional
must satisfy the relation

SeHEmT = r018 DT (%)

in every closed process (see, e.g., Truesdell and Noll [4], Eq.
(43a.8)); this, in turn, leads to our assumption that ©&6S have
symmetric values. Here we do not find it necessary to make the
stronger assumption (¥*).
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s

where S, £, 7/, and q are defined on ft by (8) .

ELgposi'tigpuz. Let_ >0/ (") = [F ), 9(*) .,g(*)]_beaclosed

P il

process. Then

00 o y
Ay =T s E- & $34 (10)
-00

Proof. Since >v(e¢) is a closed process, we conclude from

(O that

Simlarly,

) TR
- 00 - 00 . -o0 8

and these relations, with (9), inply (10). &3
Let XM(") = [H« j ~(")~(")1 be an infinitesmal closed

process, and |et

s(t) =ssfr), eyt) = BE(xv'),  a(t) = Sgtr).
(ID
VW define the infinitesmal entropy productionflf 2 ()} on

() by
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[e.0)
af () J J g,r9)dat,  (12)
0 - 00

where E is the infinitesmal strain (6). The next theorem

noti vates this definition.

Theorem 1. Let “v(') be. .an_infinitesmal closed process’ and let

———.

L () = A + o).
a _
Then 1
I{ 4/ ()} = afi{"(-)} +o(a’) as «->o0.
Pr oof , Let

A’(') = [E(')s-‘-g"('):g(')]a

2 (e) = [E (-),8 (-),g (+}] = [1 +al(-),08, *ance) anCye

(13)
By (6), (11)v and (B) ,
If we |et
A t A t A t
§,(8) =8, g8 = Ela)s g = Ela), g (B =G(a)
(14)

and choose ty > 0 such that x*(O =0 outside [-t dto]’ t hen

we conclude from (10), (12), and the above relations that

lBy Proposition 1 J)J (¢) lies in the domain of T for all
a

sufficiently small a.



18

af4()) - 15 T () =

o
t
o S € [e -€ ] q
~ l L]
P B G - & B
-t ¥y 8 0.0 8 0.9
o a o a
£, % %
+—2-J —2 at. (15)
a -t 8
o «
Since Ga(t) = 90 outside [-to,to],
to .G to
r d .1
J —% dat = —J az(‘é—)dt = 0.
-t 6 - a
o

Next, the properties of the infinitesmal closed path .4(*), (B),

(D), (13), and (14) imply that as a-—>0
1
8 (£)—>-18, > 0, o %(t)——>§l(t),
e (v ] —> £ (¢) g (0 (t)
L€, (B) - & — £, (1), . 3, — g, (%),

uniformly for teR. Thus, since g, '2,7?, and g are bounded on
(—to,to), if we take the limit as a-—>O in (15), we are led

to the desired result. D
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Theorem 2. Assume that the entropy production ' is in-

variant under time-reversal; i.e.,

T{ ()} = P{j&(-)} for every closed process _a/(°).

Then the infinitesmal entropy production Q is invariant under

time-reversal; i.e.,

Q ()]} = Q{ a(+)) for every infinitesmal closed process .4(°).
(16)

Proof. Let _&(-) be an infinitesmal closed process, and

let

() =y +aalt).
Then

S (1) =y Fal(t),
and therefore, by hypothesis and Theorem 1,

0fe()) = lim 5 Te (1)) = Lin 45 TLE () = o). [
a—>0 «a a—>0 a
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4., Consequences of invariance under time-reversal.

In this section we establish conditions that are both

necessary and sufficient for the infinitesmal entropy production

——— e

to be invariant under time-reversal.

We call

A= (E,%) (17)

the generalized (infinitesmal) strain,

Y = —
£, = (8,87 &)

the generalized (infinitesmal) stress. In terms of these

quantities the first two relations in (11) take the form

e t
L (8) = 85(v), : (18)
where
~ ~ ~
65 = (eoég,-ée ). (19)

The quantities A and I are both elements of
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if we take the natural inner product in this space, we can rewite

(12) in the form

roo .
Qf o)} _’;;J‘JOO( g4 % g) dt. (20)

We now assume that:

(E) there exist continuous functions

G: [0,00) —>-£U),U>), L : [0,00) —>&(V, W),

J: [0,co) —*-£(to,U) , K: [0,00 )——=Z(\s\s),

—~ ot

with G bounded, such that given any infinitesnmal closed process

'

»0'(') = [I':I_,('): 19'('):9;(')];

t t
55(4%) =J Qt-s) [A(s)]ds +] L(t-s) [g(s)]ds,
-o00" - 00~ ~
(21)
5§(At) :f* J(t-s) [A(s)]ds +rifc K(t-s)g(s)ds,

with A given by (16) and E by (6) .l W call G the generalized

stress rel axati on functi on, 5 the heat relaxation function. Qur

lBy (17) a dependence on A leads to a dependence on H only through
~ **> t N

its symmetric part, E. That, e.g., E (t) = 5£(x* ) should be indepen-

dent of the skewpart of H is a consequence of (D and the principle

of material frame-xndifference (see, e.g., Truesdell and Noll [4],

Eq. (41.23)). It is inportant to note that in our theory §$,(t) and

gl (t) are independent of the_present values A(t) and g(t) of the

generalized strain-rate and the tenperature gradient (see (11), (17),
and: (21)). Thus our theory does not include, as special cases,
(con't on next page)
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main result is

Theorem 3. A necessary and sufficient condition that the

NNt D I NI

infinitesmal entropy production be invariant under time-reversal

is that the following three statements be true for every s > O:

(i) The generalized stress relaxation function g(s) is

symmetric.

(ii) The heat relaxation function K(s) is symmetric.

(iii) L(s) = J(s)T + constant.

Proof. By (19)-(21),

oo t
2al.a()) = | [ (MO -g(t-5) [A=)] + AB) L(t-s) [g(s)]
-00 -00

(22)
- g(t)-g(t-s) [A(s)] - g(t)-K(t-s)g(s)}dsdt,
and we conclude from Lemmas 1-3 that (i)-(iii) imply (16).

Conversely, assume that (16) holds. We consider first only

infinitesmal closed processes with g = 0. For such processes (22)

(con' t)

Fourier heat conductors or Navier-Stokes fluids. Under reasonable
assumptions, however, we recover both of these theories as limiting
cases for slow processes (see, e.g., Coleman and Noll [5]). We do not
allow for a specific dependence on A(t) or g(t), since such a depen-
dence leads to infinite speeds of peragatioﬁ for disturbances (see,

e.g. the discussions given by Gurtin and Pipkin [6] and Truesdell [3],
Lecture 4).




23

and Lemma 1 imply that (i) must hold. Similarly, processes
with A= 0 in conjunction with Lemma 2 lead to (ii). By (i),

(ii) , Lemma 1, Lemma 2, and (22), (16) implies that
 »(:)} = & »(-)} for every infinitesmal process . (+),
where
(e o) t . .
()} = J j {A(t) *L(t-s) [g(s)] - g(t)-J(t-s) [A(s)]}dsdt,
- -00
The result (iii) now follows from this fact and Lemma 3.]:]

We assume for the remainder of the paper that the infinitesmal

entropy production is invariant under time—reversal,l so that (1i)-

(iii) of Theorem 3 hold.

We call

= Jr E(S)ds,
(o)

provided it exists, the equilibrium conductivity tensor. Formally,

dq, = Ebog is the infinitesmal heat flux arising from a temperature
gradient that had always been constant. A direct consequence

of (ii) of Theorem 3 is the following important result:

Corollary 1. The equilibrium conductivity tensor, Ea)’

if it exists, is symmetric.

1 . . .
In view of Theorem 2, this will be true whenever I is invariant

under time-reversal.
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The equations (21) can also be witten in the sonewhat

| ess abbreviated form

t

sg(~) = f G@‘t-s) [Hs)]ds + f G(t-s)?(s)ds +J L™t -s) [s)]ds,
-00 -00 -CO
£t . ! . JA
SE( &) = I Gy(t-s).E(s)ds + | G (t-s)er(s)ds + 2(t-s) -g(s)ds,
-00 -00 -00

t t
8§(<f) =0 Jy(t-s) [Es)]ds +] j,(t-s)D(s)ds + | K(t-s)g(s)ds.
-00 -OD -00

(23)

A
Here, for each s~ 0, G (s)ef£($,8); Go(%)" G(s)€’;\; L, (s)ef(V,3);
G(s)eR "o(s), j_(s)eV; j-(s)e£(£E, U ; K(s)dJT. Inviewof (17),
the relaxation functions in (21) and (23) are related as follows

(using an obvi ous notation):

9 8 G 8 L
G «—> |jo£;l ONZ] s L*—*[()N]z' * jxxwnlgg ool

Gy -Gy -1,

t hus we have

Corollary 2. For every s > O:
(i) G (s) |"8 symmetric,

(1) eofols) =-G(s),

(i) onl(s) :;]l(s)T + const ant ,

(iv) f:z(s) = -j ,(s) + constant.
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Condition (i) asserts that the stress relaxation function is

symmetric; (ii) is the interesting requirenent that the energy-strain

rel axation function be equal _to -6 tinmes the stress-tenperature
Q

rel axati on functi on.

Let us assune, for the tine being, that L,Mﬁoo) , |~2(oo),
Jl( GO), and sz (oo) exist. Then the response of the material to
the equilibriumhistory g~(s) = constant will exist only if

Ly (00) =0 and Zg00) =0. Cn the other hand, Coleman and

Qurtin [7] (Theorem 7) have shown that (under the assunption of
fading nenory) the equilibriumheat flux vani shes when the
tenperature gradient vanishes, irrespective of the values of the
ot her equilibriumhistories. It is not difficult to show that

if the equilibriumresponse in our theory is defined appropriately,
then in order for our constitutive assunption to be consistent
with this result we nust have J+(oo) =0 and j.(o0) =0.

These remarks should serve to notivate the hypot heses of

Corollary 3. Assune that L,(oo), £ _(o0), J*(00), and

29(00) exist and are equal to zero. _Then

9 L.(s) = J. (s)T, No(S) = -jo(s) for every s ™ O.

A direct consequence of Corollary 3 is the following result: in

the linéar relations (23) the stress and internal energy are
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independent of the history of the temperature gradient if and only if
the heat flux is independent of the histories of strain and temperature.
We now lay down the following additional hypothesis:

(F) ﬁ has a derivative 5% at Av_; moreover, there

exist continuous functions %l : [0,00) ™3, M2 : [0,00) ™R,
and my s [0,00)—>U such that
t t . t . -t
éﬁ(,o;) = J %l(t—s)-g(s)ds + J M2(t—s)Q9(s)ds + J Q3(t—s)-g(s)ds
-0 -0 -Q0
(24)
for every infinitesmal closed process A4 (+) = [%(-),Q?(-),g(-)]

and every teR. As before, E 1is the infinitesmal strain (6).

If we define the free-energy  through

Yy = € - on,

then it follows from (8) that
ot = deh) = 885 - s(vfie.

In addition, we conclude from (B) and (F) that the functional

@ : ﬂ(s,‘ob)——%>ﬂ has a derivative 5@ at Qi in fact,
t t A t
P(47) = 67 (B9 - 8 N6 - T o) P (E) (25)

for every infinitesmal process A (*).
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In Coleman's thermodynamics of materials with memory (8],
the instantaneous derivative of the free-energy with respect to
strain is the stress, the instantaneous derivative of the free-
energy with respect to temperature is the negative of the entropy,
and, at an equilibrium state, the derivative with respect to
each of the past histories vanishes. The following assumption
is motivated by -- and is completely consistent with -- Coleman's
results:

(G) for every infinitesmal closed process &(+) and every

teR,
A t A N oy
59(40) = (o) HE) - M) 17 (8). (26)

By (D), (25), and (26),

il

., t o, At
SE(a) = 8 07 (AY),

and (ii) and (iv) of Corollary 2 in conjunction with (23) and (24)

yield

Corollary 4. For every s > O

(1) G,(s) = -M (),

(i1) lz(s) = —eog3(s) + constant.

lSee also [7], where a dependence on gt is included.




28

Condition (i) is the assertion that the stress-temperature

relaxation function be equal to the negative of the entropy-

strain relaxation function.

Acknowledgment. I am grateful to W. O. Williams for his helpful

criticism of a previous draft of this manuscript. This research was
supported by the National Science Foundation.

REFERENCES

[l1] Day, W. A., Arch. Rational Mech. Anal. gg, 155 (1971).

[2] Day, W. A. and M. E. Gurtin, Arch. Rational Mech. Anal.
33, 26 (1969).

[3] Truesdell, C., Rational Thermodynamics, New York: McGraw-Hill
(1969) .

[4] Truesdell, C. and W. Noll, The Non-Linear Field Theories of
Mechanics, Handbuch der Physik, Vol. III/3, Berlin: Springer-
Verlag (1965).

[5] Coleman, B. D. and W. Noll, Arch. Rational Mech. Anal. 6,
355 (1960).

[6] Gurtin, M. E. and A. C. Pipkin, Arch. Rational Mech. Anal.
31, 113 (1968).

[7] Coleman, B. D. and M. E. Gurtin, Zeit. angew. Math. Phys.
18, 199 (1967).

[8] Coleman, B. D., Arch. Rational Mech. Anal. 17, 1 (1964).
DEPARTMENT OF MATHEMATICS

CARNEGIE~-MELLON UNIVERSITY
PITTSBURGH, PENNSYLVANIA 15213

/nlc
9/28/71



