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ABSTRACT

TIME-REVERSAL AND SYMMETRY IN THE THERMODYNAMICS

OF MATERIALS WITH MEMORY

by

Morton E. Gurtin

We here study, within the framework of the thermodynamics

of materials with memory, the notion of invariance under time-

reversal. In particular, we establish conditions that are

both necessary and sufficient for the infinitesmal entropy

production to display such invariance.



Introduction,

In continuum thermodynamics the entropy production rate

is defined through the relation

q r

Y = 17 + div(~) - ~ ,

where 77 is the entropy, 9 the temperature, q the heat flux,

and r the heat supply* In view of the energy equation

k = S • F - divg + r,

where £ is the internal energy, S the (Piola-Kirchhoff)

stress 9 and F the deformation gradient^ we can write

Y = 17 + T[S • F - e ] - ~ q. g,

e ~
with

g = 79

the temperature gradient.

In this paper we study materials with memory, for which

€,n,S, and q are functionals of the histories of F,9, and g.

Here div is the material divergence, 7 the material gradient.



For such materials the (total) entropy production

T = J Y(t)dt
-oo

is a functional of the underlying process

Mt) = [F(t) , 9(t) ,g(t) ] (-00 < t < oo) .

We consider processes of the form

-4/ (t) = [1, QQ,0] + cc[H(t) ,79-(t) ,g(t) ] (-ao < t < co ) ,

where the underlying site . ^ = [1,0 Q,O] is natural,

2
and show that to within an error of o(a ) as a—*-0 the

2
entropy production Y[AJ } is approximated by a times a quantity

^{H,^~, g ) , which we call the infinitesmal entropy production

in the infinitesmal process [H,^, g ] .

As our main result we prove that the infinitesmal entropy

production in each infinitesmal closed process from ^ is

invariant under time-reversal if and only if:

2
(a) Both the stress relaxation function and the heat

relaxation function are symmetric.

(b) The energy-strain relaxation function is equal to -0

times the stress-temperature relaxation function.

One should be able to determine within the framework of kinetic theory
whether or not the infinitesmal entropy production is invariant; I
conjecture that it is.

Here the relaxation functions correspond to the derivatives of the

constitutive functionals at



(c) The four remaining relaxation functions (i.e. those

relating heat flux and strain, heat flux and temperature, stress

and temperature gradient, energy and temperature gradient)

satisfy certain symmetry conditions similar to (b).

We show that the second conclusion in (a) implies the

following important result:

(d) The equilibrium conductivity tensor, K . is symmetric.

The classical theory of heat conduction, with K the underlying

conductivity tensor, can be shown to be the appropriate linearized

first-order approximation for slow processes. Thus (d) affords

a rational basis for the standard assumption that the conductivity

tensor in the classical theory be symmetric.

We also prove that (b) is equivalent to the following

requirement:

(e) The entropy-strain relaxation function is equal to

the negative of the stress-temperature relaxation function.

Apparently the first person to study the invariance of functionals

under time-reversal was Day [1]. Working in the linearized (isothermal)
theory of viscoelastic materials, Day proved that the work done in every

Cf. Day and Gurtin [2], who introduce a notion of thermal stability
which implies the symmetry of the conductivity tensor. See also
the discussion of the Onsager relations given by Truesdell [3],
Lecture 7.



closed strain path starting from zero is invariant under time-

reversal if and only if the stress relaxation function is symmetric.

Day1 s result motivated -- and to some extent served as a basis

for -- the work presented here.



1. Preliminary definitions. Day* s lemma.

Throughout this section U and to denote finite-dimensional

inner product spaces. We write £(U,to) for the space of all

linear transformations from U into to, and A[u] for the action

of A€<£(U, to) on ueU. We designate the transpose of Ae£(U, to)

T Tby A ; A is the unique transformation in £(to, U) with the

following property:

T
w*A[u] = u-A [w] for every UGU, we to.

Here the dot on the left denotes the inner product in to, the

dot on the right the inner product in W The inner product in

T
£(U,to) is defined by A*B = trace (A B ). Finally, we say that

T
Ae£(U, U) is symmetric if A = A .

We use the following notation throughout this paper:

R = the reals,

ft = the strictly-positive reals,

1/ = a finite-dimensional inner product space,

JT = £(lr,V),

?+ = {Fe£|detF > 0} ,

JT = [F€3|F i s symmetric}.

For AeJI we write Au in place of A[u].



By a closed path in U starting from u€li we mean a smooth

(continuously differentiable) function f : ft—>-U such that

f(t) = u whenever t < - t or t > t
r*4 r*J O O

for some t > 0. The time-reversal of f is the function

1 : ft—>U defined by

f(t) = f(-t)

for every teft; clearly, ? is also a closed path in U starting

from u. The history up to time t of a closed path f in U

is the function f : [O,oo) ^U defined by

^(s) = f(t-s)

for every s ̂ > 0. For convenience, we write

P(U,u) = the set of all closed paths in U starting

from ue U,

»(U,u) = {h: [O,oo) —•• U | h = ft for some f€P(U,u)

and some t€ R},

so that H(U,u) is the set of all histories of paths in P(U.u).

Given a vector ueU, we will also write u for the constant

closed path in U with value u and, in addition, for the

history of this path up to any time t. The precise meaning

will be clear from the context.



Let U€U be fixed, and let $ : &(U,u) >-to. We say that:

(i) $ is smooth in time if given any feP(U.u) the function

t>—^-3>(f ) is smooth.

has a derivative S<S> at u if given any feP(U,o)(ii)

the limit

*(u
5*(f ) = lim

exists uniformly for teft, and if the function ti—>-6$(f ) is

continuous. Clearly, 6$, if it exists, is a mapping of H(U,o)

into UD.

(iii) $ has the relaxation property at u if given any

feP(li,u)

*(u) = lim ^(f 1).
t—voo

The following three lemmas will be of use in the sequel.

The first of these is due to Day [1]; we omit its proof, which

can be found in [1].



8

Lemma 1 (Day). Let A : [0,oo)—>£(U, U) be continuous and

bounded, and, for every f€P(U,O), let

3(f) = I I f(t) -A(t-s) [f(s) ]dsdt.
-oo -oo

Then

3(£) =

for every f€P(U,O) j__f and only if A(s) jj3 symmetric for every

s ̂> 0.

Lemma 2. Let B : [O,oo)—^«E(U, U) be continuous, and,

for every geP(U^O)^ let

-OO -00

r° r
3(g) = g(t)-B(t-s) [g(s)]dsdt.

Then

(1)

for every geP(U,O) if and only if B(s) is symmetric for every

s ^ 0.

Proof. In view of the definition of the time-reversal

a of v
The boundedness hypothesis is necessary. Indeed, if A(s) = sW,

with We£(U,U), W = -WT, then 3(f) = 3(f) = 0 for every feP(U,O)



= g(-t)-B(t-s) [g(-s) ]dsdt,
«J 4) /•*/ ' V '"*«'f
-oo -oo

-oo t

.00 00

= f I gft'J'Bfs'-t'

and if we interchange the order of integration, we find that

= J J
-oo -oo

-oo -oo

Thus

g(s)-B(t-s) [g(t) ]dsdt,
-oo -oo

J 9,(t)-B(t-s)i[g;(s)]dsdt.

g(t)-W(t-s) [g(s)]dsdt, (2)
-OO -CD

where

T
W = B-B .

Clearly^ if B(s) is symmetric, then W = O and (1) holds.

Conversely, suppose that (1) holds. Since B is continuous,

and since each of the (smooth) functions gGP(U,o) has compact

support, (1) must hold for every piecewise continuous function

g : & — ^ U with compact support. Let £,?\€ft with £< A,
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le t a,belt, and let g : ft—?-U be defined as follows: g(t) = 0

for t < 0, g(t) = a for 0 £ t £ C , g(t) = 0 for e< t < A,

g(t) = b for A £ t £ A +e , g(t) = 0 for t > A + £ . For

this choice of g, (1) and (2) imply that

e t A+e t
0 = f F a-W(t-s) [a]dsdt + f | b-W(t-s) [b]dsdt

O O A A

+ f f b-W(t-s) [a]dsdt.
A o

TSince W = -W , the first two terms on the right vanish. Thus

2
if we divide through by £ and let £->0, we deduce that

b*W(A)a = 0, and, since a,b, and A were chosen arbitrarily,

T
W = 0. This yields the desired result: B(s) = B(s) for all

s ;> o. •

Lemma 3. Let C : [0,oo) >~<£(U,lb) and D : [0,oo)—>£(toj

be continuous, and, for every feP(U,O), geP(UD,O) , let

3(f,g) = J J (f(t)-D(t-s) [g;(s)] + g(t) -c(t-s) [f (s) ]}dsdt.
^ ^ -CO -CD ~ ~ ~

Then

5(f,g) = 3(f,g) (3)

for every feP(U,o) , g€P(lb,o) if and only if

C(s) = -D(s)T + constant (4)

for every s > 0.



11

Proof. We proceed as in the proof of Lemma 1:

oo t̂
3(f,g) = -J J (f(-t)-D(t-s) [g(-s)] + g(-1) • C(t-s) [f (-s) ] }dsdt,

-oo -00

-oo -oo

Thus

GO "C

= -J J (f(t)-C(t-s)T[S(s)] + S(t)-D(t-s)
T[f(s)]}dsdt.

t

-00 -00

3(f,g)-3(f,g) = f f [ f (t) -M(t-s) [g(s) ] + g(t) -M(t-s)T [f (s) ]}dsdt,

(5)

where

T
M = D + C .

Assvune first that (4.1) holds, or equivalently that M = constant.

Choose feP(U,O), <jjeP(\t>,0) . Then, since f has compact support,

[ [ g(t)-MT[f(s)]dsdt = f
-OO -OO -OO

Further, an integration by parts confirms that

p r T • p°° T
g(t)-M [f(s)]dsdt= g(t)-M [f(t)]dt.

J J £(t)-M[g(s) ]dsdt = J £(t)#J M[%(s) ]dsdt
-oo -oo^ ~ -oo^ -oo ̂

oo
= -I f (t) #M [g( t) ]dt,

-oo ~ ^ ~

and we conclude from (5) and the last two equations that (3)

holds.
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Conversely, suppose that (3) holds for every £eP(\x,O) ,

,0) • Then, since C and D are continuous, and since

each of the (smooth) functions feP(U,O) and geP(to,o) has

compact support, (3) must hold for every piecewise continuous

function g : ft —Vto with compact support, and each continuous

and piecewise smooth function f : ft—V-U with compact support.

Such a pair of functions is defined as follows: let £,Aeft

with £< A, let aeto, b€U, let g(t) = 0 for t < 0, g(t) = a

for 0 < t < £ , g(t) = 0 for t >e , and let f(t) = h(s)ds
O

for a l l tefc, where h(t) = 0 for t < 0, h(t) = b for 0 ^ t ^ £ ,

h(t) = 0 for 6 < t < A, h(t) = -b for A £ t £ A + e ,

h(t) = 0 for t > A •+ £ . For this choice of g and f,

(3) and (5) yield

0 = b'M(t-s) [a]dsdt - I b-M(t-s) [a]dsdt
" " A oo o

+ j f a.M(t-s)T[b].
o o

2
If we divide this relation by £ and let e —»-0, we arrive

at

b-M(O) [a] = b'M(A) [a],

which implies (4), since aelb, beU^ and Aeft were chosen

arbitrarily.1 I
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2. States. Closed processes.

By a site we mean a triplet of the form

where Fe% is the deformation gradient, 9eR the temperature,

and geV the temperature gradient; if g = o, then ^ is

called an equilibrium site • Throughout this paper 9 is a fixed

temperature, and _^ is the equilibrium site
o

so that -N^ corresponds to holding the body in the reference

configuration at the temperature 9 . By an infinitesmal site we

mean a triplet of the form

where He3 is the displacement gradient, T^GB, the temperature

change, and geV the temperature gradient; we call

E = ^(H + HT) (6)

the infinitesmal strain. For convenience, we write

§ = the set of all sites,

c9 = the set of all infinitesmal sites.

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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A one-parameter family ^(t) = [F(t) , 9(t) ,g(t) ] (-00 < t < 00 )

of sites is called a closed process if *&( •) is a closed path

in S starting from ^y ; i.e., if x^( •) €(P(g, ̂6/ ) . On the other

hand, a one-parameter family ^y(t) = [H(t) , ̂ (t) ,g(t) ] (-00 < t < 00)

of infinitesmal sites is an infinitesmal closed process if -<>(•)

is a closed path in *9 starting from zero; i.e., if ><>(•) €P(c9,£) .

Proposition 1. Tg *&{•) is a closed process, and if

is an infinitesmal closed process, then ^ ( •) + a >d/( •) ĵ s a_

closed process for all sufficiently small a.

Proof. Let >4/(-) = [F( •) , 6(.) ,2( •) ] , ^(-) = [H( •) , ̂ ( •) ,%'{•) ]

Clearly, ^(*) + a^&/(*) is a closed path starting from

with the requisite degree of smoothness. We have only to show that

) + a >&/(•) has values in S for all sufficiently small

or equivalently that

det[F(t) + ccH(t) ] > 0, 6(t) + a1?(t) > 0 (7)

for all teft and all sufficiently small a. Since F(t)e3 ,

9(t)€& , the result (7) follows from the continuity of the

functions F(-), $(•), H(-), and T?-(*), and the fact that these

functions are constant outside a compact time interval.
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3. Constitutive relations. Time-reversal symmetry.

In this paper we study materials defined by constitutive

relations giving the stress S(t), the internal energy £(t),

the entropy 77(t) , and the heat flux q(t) at time t when the

site-history & is known:

S(t) = S(^fc), £(t) = 1i}

t
r?(t) = rj(^) , q(t) =

Here the response functionals S, £, , r?, and /q have &(§,/&• ) as

their common domain and 3>, ft, ft, and V as their respective co-

domains. We assume that:

(A) all four response functionals are smooth in time;

A A y\ A A A

(B) S, & 5 and g have derivatives &S, 6£ , and 6q

A 1
at A/ , and 6S has symmetric values;— - o ~

(C) S and 77 have the relaxation property at x2/ ;
,-. » + i Q

(D) ŷ y is, a. natural site in the sense that

Let &(•) = [ F ( • ) , 9 ( • ) , g ( * ) ] be a c losed p r o c e s s . We

def ine the e n t r a g ^ groducti^on T{ /0J{ • ) } on >fc( •) by

| [fj + -£(S/F - £ ) - — g - ^ ] d t , (9)
-oo 9

Since S is the Piola-Kirchhoff stress, its response functional
must satisfy the relation

^ t T A t T
S ( ) F ( t ) ± = F ( t ) S ( ) X

in every closed process (see, e.g., Truesdell and Noll [4], Eq.
(43A.8)); this, in turn, leads to our assumption that 6S have
symmetric values. Here we do not find it necessary to make the
stronger assumption (•*) .
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where S, £, 77, and q are defined on ft by (8) .

Proposition 2. Let >0/(#) = [F( •) , 9( •) ,g( •) ] be a closed

process. Then

r00 1 • ee S#a
rr^(.)} = T(S-F - — - —r-)dt.

-00

Proof. Since >v(•) is a closed process, we conclude from

(C) that

r°° t A

J ^ o
-CD t-*- OO

Similarly,

0 - I <t>dt = J T dt " I -H at'
-oo -oo -oo 8

and these relations, with (9), imply (10). CZ3

Let X^(#) = [H(«) j ̂ (')^(#)1 be an infinitesmal closed

process, and let

sx(t) = ssf^), e1(t) = 5£(xvt), 3l(t) = Sgt^)

(ID

We define the infinitesmal entropy production flf ̂ /( •) } on
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9t J9 -oo
O

where E is the infinitesmal strain (6). The next theorem

motivates this definition.

Theorem 1. Let ^v(') be. .an inf initesmal closed process* and let

Then

a
1

(•)} = a2fi{^(-)} + o(a2) as

Proof, Let

a ̂ (* ) 'a^('} ]

(13)

By (6), (11) v and (B) ,

If we let

(14)

and choose t > 0 such that x^(O =0 outside [-t ,t ], then

we conclude from (10), (12), and the above relations that

By Proposition 1 J)J (•) lies in the domain of T for all
a

sufficiently small a.
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a

e *o e
-a f -^ dt. (15)
a2 -t 62

o a

Since 8 (t) = 6Q outside [-t

t v
o "

I 2
-t 6 "-t "a

o a o

Next, the properties of the infinitesmal closed path <As(9), (B) ,

(D) , (13), and (14) imply that as a — V O

1
—>- 6 > 0,

uniformly for teR. Thus, since H, ^ , and g are bounded on

f-t ,t ) , if we take the limit as a—>- 0 in (15), we are led
v o9 o

to the desired result. LJ
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Theorem 2. Assume that the entropy production T is^ in-

variant under time-reversal; jL.es. ,

T{ x»{ •) } = T[^&/{*) } for every closed process ^6/(*) .

Then the infinitesmal entropy production Q i^ invariant under

time-reversal; i. e.. ,

^C>^(%)} = 0{>S/(-)} for every infinitesmal closed process

(16)

Proof, Let >^(-) be an infinitesmal closed process, and

let

Then

/ (•) = A/
a o

and therefore, by hypothesis and Theorem 1,

^ ^ -)}. D
a—>0 a a—>0 a a
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4, Consequences of invariance under time-reversal.

In this section we establish conditions that are both

necessary and sufficient for the infinitesmal entropy production

to be invariant under time-reversal.

We call

A = (E97T) (17)

the generalized (infinitesmal) strain,

the generalized (infinitesmal) stress. In terms of these

quantities the first two relations in (11) take the form

Z (t) = dtl^f), (18)

where

SE = (9^6S,-58 ) . (19)

The quantities A and X^ are both elements of
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if we take the natural inner product in this space, we can rewrite

(12) in the form

1 r°°
-^ J (£ - A -

9

^ J
9 -oo
o

We now assume that :

(E) there exis t continuous functions

G: [0,oo) —>-£(U),U>), L : [0,00

J: [0,co) —*-£(to,U) , K: [0,00 ) >Z(\s,\s),

with G bounded, such that given any infinitesmal closed process

?) = J G(t-s) [A (s)]ds + j L(t-s) [g(s)]ds,
- o o " -oo~ ~

(21)

t r* . rfc
) = J(t-s) [A (s)]ds + K(t-s)g(s)ds,

-OO -CD

with A given by (16) and E by (6) . We call G the generalized

stress relaxation function, K the heat relaxation function. Our

By (17) a dependence on A leads to a dependence on H only through
~ **> t ^

its symmetric part, E. That, e.g., E (t) = 5£(x^ ) should be indepen-
dent of the skew part of H is a consequence of (D) and the principle
of material frame-xndifference (see, e.g., Truesdell and Noll [4],
Eq. (41.23)). It is important to note that in our theory S (t) and

CJ; (t) are independent of the present values A(t) and g(t) of the

generalized strain-rate and the temperature gradient (see (11), (17),
and:(21)). Thus our theory does not include, as special cases,
(con1 t on next page)
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main result is

Theorem 3. A necessary and sufficient condition that the

infinitesmal entropy production be invariant under time-reversal

is that the following three statements be true for every s ̂ > 0:

(i) The generalized stress relaxation function G(s) is

symmetric*

(ii) The heat relaxation function K(s) JLS symmetric,

T
(iii) L(s) = J(s) + constant.

Proof. By (19)-(21) ,

(A(t)-G(t-s) [A(s) ] + A(t)-L(t-s)

-oo -oo

(22)

- gjt)-j(t-s) [A(s) ] - gJt)-K(t-s)gJs)}dsdt,

and we conclude from Lemmas 1-3 that (i)-(iii) imply (16).

Conversely, assume that (16) holds. We consider first only

infinitesmal closed processes with g = 0. For such processes (22)

(con' t)
Fourier heat conductors or Navier-Stokes fluids^ Under reasonable
assumptions, however, we recover both of these theories as limiting
cases for slow processes (see, e.g., ̂ Coleman and Noll [5]). We do not
allow for a specific dependence on A(t) or g(t), since such a depen-
dence leads to infinite speeds of propagation for disturbances (see,
e.g. the discussions given by Gurtin and Pipkin [6] and Truesdell [3],
Lecture 4).
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and Lemma 1 imply that (i) must hold. Similarly, processes

with A = 0 in conjunction with Lemma 2 lead to (ii) . By (i) ,

(ii), Lemma 1, Lemma 2, and (22), (16) implies that

)} = <&[^/(')} for every infinitesmal process

where

*f^,(.)) = {A(t)-L(t-s) [g(s) ] - g(t).J(t-s) [A(s)]}dsdt,
-00 -OO

The result (iii) now follows from this fact and Lemma 3. I I

We assume for the remainder of the paper that the infinitesmal

entropy production is invariant under time-reversal9 so that (i)-

(iii) oj[ Theorem 3 hold.

We call

provided it exists, the equilibrium conductivity tensor. Formally,

q = K g is the infinitesmal heat flux arising from a temperature

gradient that had always been constant. A direct consequence

of (ii) of Theorem 3 is the following important result:

Corollary 1. The equilibrium conductivity tensor, K ,

if it exists, is symmetric.

In view of Theorem 2, this will be true whenever T is invariant
under time-reversa1.
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The equations (21) can also be written in the somewhat

less abbreviated form:

r
-oo

g(^) = r G^t-s) [E(s)]ds + f G (t-s)^(s)ds + J L^t-s) [S(s)]ds,

-OO

G3(t-s).E(s)ds

f) = J Jx(t-s) [E(s) ]ds + J
-oo

-oo

t
G

-oo

t

-OD

t

-co

t

-oo

-00

J ̂ 2

K(t-s)g(s)ds.

(23)

Here, for each s ^ 0, G. (s) e£ ($,§); G o(
s)^ G,(s)€?; L, (s)

G.(s)eR; ^ o(s), j_(s)eV; j (s) e£(£,U) ; K(s)€JT. In view of (17),

the relaxation functions in (21) and (23) are related as follows

(using an obvious notation):

9 G.
o

L * i** *"[£i i2];

thus we have

Corollary 2. For every s > 0:

(i) G- (s) ĵ §. symmetric,

(ii) eo£2(s) == -G3(s),

T(iii) 9 L (s) = J (s) + constant,

(iv) = -j (s) + constant.
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Condition (i) asserts that the stress relaxation function is

symmetric; (ii) is the interesting requirement that the energy-strain

relaxation function be equal to - 6 times the stress-temperature
Q

relaxation function.

Let us assume, for the time being, that L., (oo ) , I (oo),

J (GO), and j (oo) exist. Then the response of the material to

the equilibrium history g(s) = constant will exist only if

L_ (oo) = 0 and ^O(oo) = 0. On the other hand, Coleman and
~1 ~ ~2 ~

Gurtin [7] (Theorem 7) have shown that (under the assumption of

fading memory) the equilibrium heat flux vanishes when the

temperature gradient vanishes, irrespective of the values of the

other equilibrium histories. It is not difficult to show that

if the equilibrium response in our theory is defined appropriately,

then in order for our constitutive assumption to be consistent

with this result we must have J (oo ) =0 and jo(oo) = 0 .

These remarks should serve to motivate the hypotheses of

Corollary 3. Assume that Ln (oo) , £_(oo), J^(oo), and

29(oo) exist and are equal to zero. Then

T
9 L (s) = J (s) , ^o(s) = -jo(s) for every s ̂  0.

A direct consequence of Corollary 3 is the following result: in

the linear relations (23) the stress and internal energy are
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independent of the history of the temperature gradient if and only if

the heat flux is independent of the histories of strain and temperature.

We now lay down the following additional hypothesis:

(F) 77 has a derivative 67? a± x» ; moreover, there

exist continuous functions M : [0,oo) —>~ 3, M : [0,oo) —>- ft,

and m : [O,oo) >• V such that

A t r1 pfc . P
fc

6f)( ̂  ) = 1 M (t-s) -E(s)ds + J M (t-s) ̂ (s)ds + j m3( t-s) • g;(s) ds
-00 -00 -00

(24)

for every infinitesmal closed process >k(#) = ££(•)*

and every teR. Aŝ  before, E is_ the infinitesmal strain (6) .

If we define the free-energy \j) through

0 = £ - erj,

then it follows from (8) that

4>(t) = }(/) = B(^) - 9(t) rii^).

In addition, we conclude from (B) and (F) that the functional

A /S

*/) : &(g, >o* )—^fo l^as a derivative 6^ at ,^ ; in fact,

^ ^ ^ V()^(t) (25)

for every infinitesmal process
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In Coleman1 s thermodynamics of materials with memory [8],

the instantaneous derivative of the free-energy with respect to

strain is the stress, the instantaneous derivative of the free-

energy with respect to temperature is the negative of the entropy,

and, at an equilibrium state, the derivative with respect to

each of the past histories vanishes. The following assumption

is motivated by -- and is completely consistent with -- Coleman1 s

results:

(G) for every infinitesmal closed process M>{ •) and every

teft,

(26)

By (D), (25), and (26),

and (ii) and (iv) of Corollary 2 in conjunction with (23) and (24)

yield

Corollary 4. For every s > 0:

(i) G_(s) = -M (s) ,

(ii) jo(s) = -9 mo(s) + constant.

See also [7], where a dependence on g is included.
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Condition (i) is the assertion that the stress-temperature

relaxation function be equal to the negative of the entropy-

strain relaxation function.
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