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Abstract
O concern is a network in which the conductance of cer-
tain branches are variable. The problemposed is the maxim -
zation of the joint conductance subject to a bound on the

<tP norm of the vari abl e conduct ances. It is shown that at

an optimum state the conductance of a variable branch is
proportional to the 2/(p+l) power of the current through the
branch. |*his relation together with a dual variational prin-
ciple leads to a "duality inequality! giving sharp upper and
| ower estimates of the maxi mum joint conductance. Such a
network serves as a discrete nodel for a cooling fin subject
to a weight limtation. Thus the nodel shows what anal ogous

properties should hold for the cooling fin.
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NETWORK MODELS FOR MAXIMIZATION OF
HEAT TRANSFER UNDER WEIGHT CONSTRAINTS
by

S. Bhargava and R. J. Duffin

1. Introduction.

A common problem of heat transfer is the design of machin-
ery so that the structure can dissipate excess heat, For exam-
ple, cooling fins are used on the cylinders of air cooled engines,
Suppose in this example that the fin is not permitted to ex-
ceed a given weight. Then an optimum design problem is to
find how the thickness of the fin should taper so that the
rate of heat dissipation is a maximum.

The cooling fin design problem was solved for circular
cylinders by R. J. Duffin in [3] and for convex cylinders by
R. J. Duffin and D. K. MclLain in [4]. They employed the cal-
culus of variations to recast the question into a max-max
problem in [3] and a saddle point problem in [4]. Such varia-
tional principles led to the following key lemma -- for an

optimum fin the magnitude of the temperature gradient is con-

stant. Using this lemma it is then easy to obtain explicit
expressions for the thickness function of the optimum fin.

In this paper an electrical network model for such cooling
devices is formulated and studied. Thus consider a lumped net-
work having a finite number of conducting branches. Certain
branches, termed set B, are allowed to vary their conductance
but the total conductance is limited by the following Lp norm

type constraint



(1) (5,90 10 ¢ k.

Here gg is the conductance of branch s and K and p

are positive constants. Then the design problem is to maxim-
ize the joint conductance of the network between two specified
input points. Thus it is desired to find T, the maximum con-
ductance subject to constraint I.

By a variational argument we establish the following key lem-

ma -- for an optimum network the branch voltages Vs satisfy
o-1
2

(11) | vl = Ngy) , S€B.

Here A 1is a constant and 9 # 0.

Our network question may be characterized as a maximizing
problem of mathematical programming. This suggests that there
is a dual minimizing problem. Pursuing this idea leads to the

following duality inequality if p > 1,

/

(111) Ivlly o 2 7% 2 109l

Here and

H H2,a I ”2,8 are certain dual norms. The vec-
tor v 1is an arbitrary normalized voltage distribution satis-
fying Kirchhoff's voltage law. The vector y 1is an arbitrary
normalized current distribution satisfying Kirchhoff'!s current
law. There is no "duality gap", in other words the duality
inequality could be used to give a sharp estimate of T.

In a previous paper [1l] R. J. Duffin empolyed the same net-
work model but confined attention to the linear constraint ex-

pressed by I with p = 1. 1In that paper relations were obtained

corresponding to II and III when p is given the value 1.
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Presumably there are anal ogous results for nore general non-

| i near constraints. However we feel that the | constraint
P

is sufficiently inportant to be singled out for special treat-

ment .

In Section 6 we return to the cooling fin problem and in-
troduce a Lp constraint analogous to |. Then reasoning by
anal ogy suggests the formof the key lemma Il and the duality

inequality II'l for the cooling fin.



2. Some network definitions and properties.

An electrical network may be depicted as a graph diagram

with m nodes and n arcs, each arc connecting two distinct

nodes. An 'arc! corresponds to a 'branch® of the network.

Let the nodes be designated by 1,2,...,in and let the arcs

be designated by [|,2,...,n. A direction is assigned to each
arc. Suppose arc s connects nodes i and | and that the
positive direction is from i to . | f Uy and u:l are

the potentials of node i and node | then the branch voltage

Vg of branch s is defined as the potential difference

(1) Vs TUi o Y
Thus, assigning potentials to the nodes automatically assigns

voltages to the branches.

Let currents Yy Y g be assigned to the branches.
Then the current source W, at node | is defined as
(2) W!I. = Llys - SZys-

Her e £1 denotes summation over the arcs starting at node i,
and ﬂ@ denotes summation over the arcs termnating at node i
Thus, assigning currents to the branches uniqdely assigns current
sources to the nodes.

In the remaining part of this section we state a nunber
of | emmas whose proofs are either sinple or can be found in

reference [1].

.} be an arbitrary assignment of node potentials

{u
and le {yi} bf ai arbitrary assignment of branch currents. Then




(3) Smwiu. =y v .

The common value is termed power.

PROOF: A direct consequence of equations (1) and (2).

Lemma 2. Let the voltages (Vl’v2”"’vn) of the branches arise

from arbitrary assignment of the node potentials (ul,...,um).

Let the current sources (wl,...,wm) at the nodes arise from an

arbitrary assignment of currents (Yl""’yn) through the bran-

ches. Then

2 2 n -1 2
(4) (iTwiui) < Z?gsvs E1gs Y

where (gl,...,gn) is a set of positive constants. This is an

— e Cem— ——

equality if and only if vy and gV, are proportional. More-

S

over some of the g, <can be allowed to vanish in (4) provided

corresponding Y also vanish.

PROOF: See Lemma 2 of reference [1l] or it is enough to observe
that an application of Cauchy inequality to (3) yields (4).

The constants {gs} are termed branch conductances. Ohm's

law is satisfied if
(5) y. . =g.v._.

If this relation holds for all branches we shall say that there

is an equilibrium state. In an equilibrium state it is seen that

relation (4) is an equality rather than an inequality. Moreover,

it is a corollary of Lemma 1 that

_ <N 2 -1 2
(6) Z:IITLIWiui - z;lgsvs - Z?gs Yg

at equilibrium,
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A situation of central interest in this work arises when
the potential of nodes 1 and m are given by u; = 1, u = o
and all other nodes are insulated. A node i is said to be in-

sulated if the current source W there vanishes. Then the

input conductance between nodes 1 and m is defined as

Y = Wy It then follows from (6) that
_ 2
(7) Y = Z39.vE,
The solution of the input conductance problem can be obtained

from a minimum principle of Maxwell which is stated here as 2

lemma.

Lemma 3. Suppose some of the nodes of a network have prescribed

potentials and the others are insulated. Then there is an equi-

librium state in which the potentials of the insulated nodes

take on values to minimize the power function

_ «n 2
(8) E - ElgSvS'

2 . . .
Moreover, the branch power I Ve is uniquely determined for

each branch.

PROOF: See Lemma 3 of reference [l], for example.

Lemma 4, The input conductance v(g) as a function of the branch

conductance gj is continuous, concave, non-decreasing and homo-

geneous of degree 1.

PROOF: This is a consequence of Maxwell's principle and is

proved in Lemma 4 of reference [1].
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Two nodes of a network are said to be positively connected

if it is possible to traverse fromone to the other along a
chain of branches with positive conductance. A network is said
to be positively connected if any two nodes are positively con-

nect ed.

Lenma 5. JIi_ a. _network is positively connected, then

* O/Re
(9) gs/& - TR

where Vv JEifaﬂ~equ%++b++*ﬁn~%#+a@e-{%ﬁ+{&ﬁxﬂﬁﬁ+ﬁ}{+}tﬁ#4—44+
P veoage
PROOF; This is yet another consequence of Maxwell's principle.

See Lemma 5 of reference [1].



f a duality inequality.

3. The concept

The developments in this treatment evolve from a scalar

product inequality stated in the following lemma.

Lemma 6. Let Vg and Yg for s =1,2,...,n be real numbers.

Let the terms of the scalar product sum be partitioned into two

sets A and B. Thus

n
(10) Z1VeYs = TpVe¥e * TpVeYs-
et o and B be positive constants such that a—l + B—l =1
and let
1/a 1
(11) vl = Bglvg 1Y%, Dyl = 3lv,1H 5.
Then a scalar product inequality is
(12) [Zpvey ] < vlly o livlly g
Here, | || and || || are mixed norms defined in terms of
2,a' Z,B S —

positive numbers g, and K as

1/2

il

(13) Wl o = (Zaggve+ Kiivld)

(14) Ivlly, g = (Spogty? + & vl /2.

PROOF: 1In relation (10) apply Cauchy's inequality to 2A and

Holder's inequality to L, to obtain

2,1/2 2
1Byl < EvA Y @y ol el
Then apply Cauchy inequality here to obtain
|Zvevel < B+ v T2 (zy2 + lvlld) 2.

To obtain more generality let Ig for s =1,2,...,n be

positive constants such that gy = K in the set B. Then
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replacing Vg and Vg by 9g Vg and yglgg

/2

gives
the desired inequality. Hie m xed norns appearing in this
inequality seem somewhat artificial; however it will now be
shown that they have a natural application to a class of op-
timzation problenms.

We apply the inequality (12) to the power bal ance equa-

tion
(3) zA"“r:i.u:'i. = E;.lysvs
of Section 2, and this gives
2 2 2 -1 2 -1 2
(15) (Ejwiu) < (Bo v+ Klvil)) (Zor v + K HvllD) .
Here the constant ¢ is interpreted as the conductance of

S
branch s. The constant K has the dimension of conductance
and will be given a definite interpretation later, A duality
inequality results from (15) by specializing boundary conditions,

This main result is stated as a theorem
Theorem 1. Let Vg b5 a. _set _of hranch voltages subject to the

boundary condition u; =1 and u =0. Let vy be a set of

branch currents subject to the boundary condition w., = 0 except

w =1 and ¥, =-1. Ihen
2 L2 -1 -1
(16 vy . Kl farrFN eyl K ivin

The constant [¥ Ls independent of v, and Ygo

PROOF; W<th this choice of boundary conditions we see that

/\Ewiui =W|U| = 1- v I<hus tlle two

norms on the right side of (15)

do not vanish and division gives



1o.
W3 o > lvlz2,.
Since the left side does not depend on y and the right side
does not depend on v it follows that there exists a constant
F* satisfying
I3, 2T 2 vl
and the proof of (16) is complete.

The constant I has the dimension of conductance. Rela-
tion (16) furnishes upper and lower bounds for F* and so we
term (16) a duality inequality. Conceivably the duality inequal-
ity gives a non-unique F*. In that case we say there is a

duality gap. It is desired to show that under the constraint

1 1
(17) (Zng) /p < K, 5 +

Qo

=1, p> 1,

there is no duality gap. In other words F* is uniquely deter-
mined by (16). |

If the set B 1is empty then the duality inequality (16)
reduces to a classical result. 1In that case F* is simply the
input conductance vy. The limiting case, when o = oo, B = 1,

p =1 was treated in detail in a previous work [l]. For other

ramifications of duality inequalities see references [2] and [5].
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4. Maxim zation of the input conductance,

The central network question of this work may be phrased

as foll ows.

Problem!I. Let y(<? j2%¢ _the joint conductance of ja _network with

n branches. Let the branch conductances be fixed for_ a. set of

t he branches denoted by A Let B be the set conplenmentary

to A Find
(18) T = max y(g)

subject to the constraints g _"> 0 and

(17) (Leg”) P £K

where p >0 and K> 0 are given constants.

In the remainder of the treatnment of this question it shall

be assunmed that the network is positively connected by the A

branches alone. This sinplifies the discussion wi thout |oss of

generality because disconnected networks can be treated aposter-

iori by continuity argunent.

Theorem 2. Problem | always has ji_ solution.

PROOE: The constraints of the problem | restrict g to a com

pact set. Now the proof is inmediate by Lemma 4.
Lemma 7. T of probleml| is also given by
F =mx y (<

subject to the constraints g ;>0 and

s
1/p _
[Ebgg} P = x,
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PROOF: A solution of Problem I exists (Theorem 2) and let this
be g'. If deBg;p < Kp, let B = {1,...,4} and define
51 = (K - gvp up}l/p and 5; = g;, s = 2,...54. Then

2-."‘ gL
~ 1
clearly g; > gi and (Eng) /e

= K and by Lemma 4 (non-
decreasing property of v(g)) T > Y(§3 > v(g') =T and the
proof is complete by another application of Theorem 2.

Problem I is said to be degenerate if there is a solution
with g = O for all s in the set B. Otherwise the problem
is said to be nondegenerate. It is seen that the degenerate
case is trivial.

We regard the next result as the "main lemma"” in our anal-

ysis of the problem.

~

Theorem 3. f g 1is a solution in the nondegenerate case then

there exists a constant A such that for the equilibrium voltage

~ p-1
= )gs 2

in the se B if 6 > 0. If p> 1 this also holds for

PROOF: ILet B = {1,...,%)}. Since

T80 =¥ >0

at least one §S in the set B is positive. Say 61 is posi-
tive; then El = (kP - 2'52)1/0 > 0. Here X' is the sum over
the set B in which the 949 term is omitted. Thus by Lemma 7

the function § defined as

(20) V(agseeengy) = V(& - B§YP g ... g,

95 2_0,...,gL > O has a maximum at (55,...,62). Thus, if
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5; > 0 for some s in the set B - {1}, then

~ l_g a
'a—l—' =0 i.e., - ——Z—- gsp'l(Kp-zta-z) P+ -a—%_ =0
ags 99, g,
(21) i.e., oy _ %25 -1 yhere 1% = é%f ~11-p = Gﬁ 311‘9 > 0
855 S agl

i.e., oy _ %25 -1 for §S > O in the set B.
o9
S

on the other hand if §S = 0 for some s in the set B - (1)

and p > 1, then, similarly éf—ﬁoleads to
Bgs
~ ~ p-
o< vi = ——Y—BN < ngsp L
Bgs

But if p > 1 the right side vanishes, i.e.,

, for g_ =0 in the set B - {1}.

~2 2~ -1
NG P <

(22) Vs = s

Combining (21) and (22) we have (19). Now A > O if p > 1. For

otherwise if AN = 0 (19) would imply Gs = 0 in the set B and

~2
r= Z;Agsvs

thesis.

= vy(g') with g; = 0 in B, contrary to our hypo-

We note that the relation (19) of Theorem 3 serves as a
check to see whether an assumed solution is optimal. Moreover
if it is not optimal an iterative procedure is suggested by

)
(#) to redefine g_ to come closer to the optimal.

Theorem 4. Let T Dbe the maximum input conductance and let v

be a voltage resulting from a potential which is arbitrary ex-

cept for a unit potential difference at the input. Then

HUNT LIBRAR
CARNEGIE-MELLON UNIVERSITY
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(23) r < S,gyv, + XEGlvgIH*®

where n > 1, and 1,2: 1, Moreover this becomes an equality

r- p a
for the equilibriumvoltage V.

PROOF: Let § be a solution of Problem | and as in Theorem 3,

then, V being equilibriumuvoltage,

r= 2-‘;Ags s * EBgsvs
T .9 v: 4+ B v? {Lemma
nNEN S s Fds 3)
4 2
2 ~0 v
nSp9sVs v (SBUgIP (25 Vgla)a (Holder)

2
5 =
= Ws N K(Sglvsla)-.

This proves (23) .

Now, if v =V, by Theorem 3, the right side of (23) becones

Q(p 1) 2
~l, 2 AL o
EI&qsvs + KA (r‘Bgs ) =
+ 13
2 /\ /\ =
T/ < y © -
~2 2 P
?JAgSvS + A°K

However, by the sane Theorem 3

a N2 2 ot ~ —
T = spogve + N EgF-9.P !

_ ~2 2
= 'Agsvs + A Kp.
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This shows that there is equality in (23) if v =V, the equili--

bri um vol t age.

Corollary JL.  1Ijf g jj"™_an_arbitrary set of conductances which
1 2

satTsfy the constrarnts amd if p > 1 and —+ —= 1, then

P&

o

(24) ri v - Zgg J-S2+K{E ’\S Rt

This is

e

n equality for the optinum solution ¢~ oj| Theorem 2L

PROOF; In (23) let v be the equilibrium solution according

to the choice g. Then

(25) y = LAgSv2S + SBgsVZS and
(26) S < ]
A g S

Substituting (25), (26) into (23) proves (24).
To study equality, let g =§, then r.h.s. of (24) reduces

2
to S,g VI + K(S|vT ?) *, and this equals r by Theorem4,
D S

n S S
and the proof is conplete.
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5. Closing the duality gap.

It follows from Theorem 4 that we can take the constant
'* of the duality inequality equal to the maximum conductance
I' The following theorem is the dual of Theorem 4 and shows

that there is no duality gap.

Theorem 5. Let T be the maximum joint conductance in Problem

I. Then
2
-1 -1 2 -1 B, B
(27) T2 B9 vs + KT (Glyglh
where p > 1, 25_1 =1+ p—l and {ys] is any set of branch

currents such that the current source has unit magnitude at

the input nodes and vanishes at other nodes. Moreover this be-

comes an equality for the equilibrium state.

PROOF: Let Vs and gs be optimal solutions of Theorem 3.

According to lemma 7, we may assume Hg”p = K. Theorem 3 states

~2 ~ - .
that ve = Azgsp 1 in B. Equilibrium currents satisfy
¥ = g% . Thus

s s s 41
~ ~ 2
(28) ¥l =2g, " .
Taking the norm here gives
2
(29) nynB = N(ZRa) " = MR,
On the other hand I Vs = A Iq soO
(30) K[¥)% = £.§.° = 22P
o3 B°s' s *

Then (29) and (30) showg that
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~2 ~|| 2 -1a -1y~ 2
(31) B + KTl = Do e + xS

Of course ?s may not satisfy the boundary conditions, but

*

Ys

= §;/F does satisfy the boundary conditions and if we sub-
stitute ¥ and y* into the duality inequality (16) it fol-
lows by virtue of (31) that it is actually an equality. This
means the right side of (27) is minimized for y = y* and the
minimum equals F_l and the proof is complete.

Actually this theorem and the optimal conductance-current
relation (28) remain true for p > O. However we are unable to

prove Theorem 4 in that case.

Corollary 2. If g 1is an arbitrary set of conductances which

satisfies the constraints then

82
-1 -1 - -2 dy -1-2 B Oy 2,8
(32) TV - YT Bg g+ K v(ngs<g§?).

This becomes an equality for the optimum solution 5 of Theor-

em 3.

PROOF: In (27), let y Dbe the equilibrium solution correspond-

ing to the choice of g. Then,

2

-1 -1 -12
(33) y T = EAgs v o+ EBgs Y and

the corresponding branch voltages are related by

1
(34) Yo =5 9eVs

By Lemma 5 and (34) we obtain
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(35) ye =
Substituting (33) and (35) in (27) yields (32). The case of

equality follows as in Corollary 1 under Theorem 4 and the proof

is complete,
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6. Cooling Fins.

The lumped network problems just discussed are analogous
to conduction problems for continuous systems. In particular
this analogy will be developed here for cooling fins. Such
fins are used to conduct heat away from machines to the am-
bient media.

The cooling fin problem is to maximize the conductance

of a fin R of thickness p(x,y) subject to the constraint

jj ppds < &P where p > 1 and K > O are given. This is to
R

be accomplished by suitably tapering the fin. The linear case
of p =1 has been treated rigorously in two previous works
[3] and [4]. Here it is proposed to give a heuristic treatment
based on the network model. Thus we will be 1led to formulate
a duality inequality providing upper and lower bounds for the
conductance of the optimum cooling fins.

For convenience let us adopt electrical rather than ther-
mal terminology and treat the equivalent electrical problem.

The power input to the plate R is
(36) E = IJ (pru|2+qu2)ds
R

where u is the électrical potential, p is the specific con-

ductance, and g 1is the leakage conductance to ground. It is
supposed that ground is at zero potential. The boundary condi-
tions are that u = 1 on the part aRl of the boundary of R
and p %ﬁ~= O on the complementary part 8R2 of the boundary.

Then E is equal to the conductance vy of the plate, it being
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assumed that u is the equilibrium potential satisfying the

differential equation

(37) v, (pvu) = qu.

Problem II. Maximize the conductance vy subject to the con-

straint
(38) {j pPds < K, p> 1, K> 0
R

being given. Without loss of generality it may be assumed that
the variation in p 1is due to a variation in thickness of the
plate. It is assumed that g may be function of position but
is not subject to variation.

Reasoning by analogy from Theorem 3 the optimum plate

should be tapered so that
p-1
(39) ' |vu| = Ap 2

for some constant A. By analogy with Theorems 4 and 5, the

optimum conductance T will have upper and lower bounds given by

r 2
} ads) /a

(40) IJ qu ds + K(j | vu| >T >

2.-1
[JI LR (IJ |y|Bds)BJ .
R
The function u is arbitrary except that u =1 on aRl and
the vector field vy, which corresponds to a current flow, is al-
so arbitrary except that the net flow across boundary BRl is
unity and current flow across 6R2 vanishes at all points. A
similar conjecture for the limiting case, when o = o0, B = 1,

p = 1 was given in reference [l]. Rigorous proofs of this con-

jecture and of (40) are yet to be supplied.



[1]

[2]

[3]

[4]

[5]

21

‘Ref er ences

Duffin, R J., "OptinmmHeat Transfer and Network Pro-
gramm ng", Journ. Math, and Mech. 12(1968), 759-768.

Duffin, R J., "Duality Inequalities of Mathematics
and Science", NonLinear Programm ngs edited by

J. B. Rosen, 0. L. Mangasarian and K. Pitter, Academc
Press Inc., NewYork, 401-423.

Duffin, R J., "AVariational ProblemRelating to Cool -
ing Fins", Jour. Math, and Mech. 18(1959), 47-56.

Duffin, R J., and D K MLain, "Optinmm Shape of a
Cooling Fin on a Convex Cylinder", Jour. Math, and
Mech. 177(1968) ¢ 769- 784.

Duffin, R J., "Network Model s", Proceedings of the
Synposi um on Mat hemati cal Aspects of Electrical Net-
wor k Theory, Amer. Math. Soc., 1969.



