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Abstract

Of concern is a network in which the conductance of cer-

tain branches are variable. The problem posed is the maximi-

zation of the joint conductance subject to a bound on the

<t norm of the variable conductances. It is shown that at
P

an optimum state the conductance of a variable branch is

proportional to the 2/(p+l) power of the current through the

branch. l*his relation together with a dual variational prin-

ciple leads to a "duality inequality11 giving sharp upper and

lower estimates of the maximum joint conductance. Such a

network serves as a discrete model for a cooling fin subject

to a weight limitation. Thus the model shows what analogous

properties should hold for the cooling fin.
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1. Introduction.

A common problem of heat transfer is the design of machin-

ery so that the structure can dissipate excess heat. For exam-

ple, cooling fins are used on the cylinders of air cooled engines.

Suppose in this example that the fin is not permitted to ex-

ceed a given weight. Then an optimum design problem is to

find how the thickness of the fin should taper so that the

rate of heat dissipation is a maximum.

The cooling fin design problem was solved for circular

cylinders by R. J. Duffin in [3] and for convex cylinders by

R. J. Duffin and D. K. McLain in [4]. They employed the cal-

culus of variations to recast the question into a max-max

problem in [3] and a saddle point problem in [4]. Such varia-

tional principles led to the following key lemma -- for an

optimum fin the magnitude of the temperature gradient is con-

stant. Using this lemma it is then easy to obtain explicit

expressions for the thickness function of the optimum fin.

In this paper an electrical network model for such cooling

devices is formulated and studied. Thus consider a lumped net-

work having a finite number of conducting branches. Certain

branches, termed set B, are allowed to vary their conductance

but the total conductance is limited by the following t norm

type constraint
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(i) ? 1 / o

Here g is the conductance of branch s and K and p
s

are positive constants. Then the design problem is to maxim-

ize the joint conductance of the network between two specified

input points. Thus it is desired to find T, the maximum con-

ductance subject to constraint I.

By a variational argument we establish the following key lem-

ma -- for an optimum network the branch voltages v satisfy

flzl
(II) | vg| = M g s )

 2 , s € B.

Here \ is a constant and g ^ 0.
s

Our network question may be characterized as a maximizing

problem of mathematical programming. This suggests that there

is a dual minimizing problem. Pursuing this idea leads to the

following duality inequality if p > 1,

(in) Mi2 a ;> r1/2 ^ i/l|y||2 .

Here || \\0 and || || are certain dual norms. The vec-

tor v is an arbitrary normalized voltage distribution satis-

fying Kirchhoff's voltage law. The vector y is an arbitrary

normalized current distribution satisfying Kirchhofffs current

law. Inhere is no "duality gap", in other words the duality

inequality could be used to give a sharp estimate of r.

In a previous paper [1] R. J. Duff in empolyed the same net-

work model but confined attention to the linear constraint ex-

pressed by I with p = 1. In that paper relations were obtained

corresponding to II and III when p is given the value 1.
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Presumably there are analogous results for more general non-

linear constraints. However we feel that the I constraint

P

is sufficiently important to be singled out for special treat-

ment.

In Section 6 we return to the cooling fin problem and in-

troduce a L constraint analogous to I. Then reasoning by

analogy suggests the form of the key lemma II and the duality

inequality III for the cooling fin.
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2. Some network definitions and properties.

An electrical network may be depicted as a graph diagram

with m nodes and n arcs, each arc connecting two distinct

nodes. An 'arc1 corresponds to a 'branch1 of the network.

Let the nodes be designated by 1,2,...,in and let the arcs

be designated by l,2,...,n. A direction is assigned to each

arc. Suppose arc s connects nodes i and j and that the

positive direction is from i to j. If u. and u. are

the potentials of node i and node j then the branch voltage

v of branch s is defined as the potential difference
s

(1) v s = u i " U j '

Thus, assigning potentials to the nodes automatically assigns

voltages to the branches.

Let currents y-,,.,,y be assigned to the branches.

Then the current source w. at node i is defined as

(2) w. = L l y s - S 2y s.

Here £- denotes summation over the arcs starting at node i,

and X52 denotes summation over the arcs terminating at node i.

Thus, assigning currents to the branches uniquely assigns current

sources to the nodes.

In the remaining part of this section we state a number

of lemmas whose proofs are either simple or can be found in

reference [1].

Lemma 1. Let {u.} be an arbitrary assignment of node potentials
l . ' ' • • — — — — — • — . '

and let {y.} b£ aii arbitrary assignment of branch currents. Then



(3) ^w.u. = Ljysvs.

The common value is termed power,

PROOF; A direct consequence of equations (1) and (2) .

Lemma 2. Let the voltages (v. ,vo,. . • ,v ) of the branches arise
_ _ — — — ± z n ——— — - .
from arbitrary assignment of the node potentials (u-,...,u ).
_ _ _ _ _ • — — i — — — — j^ xri

Let the current sources (w-,.. . ,w ) a_t the nodes arise from an

arbitrary assignment of currents (y^...,y ) through the bran-

ches. Then

(4) fe^Vs ^s
where (g-,. .. ,g ) _is. sL set of positive constants. This is an

equality if and only if y and g v are proportional. More
_ _ _ g _ g g _ _ -

over some of the g can be allowed to vanish in (4) provided

corresponding y also vanish.
s — —

PROOF; See Lemma 2 of reference [1] or it is enough to observe

that an application of Cauchy inequality to (3) yields (4).

The constants {g } are termed branch conductances, Ohmfs
S ———————— '

law is satisfied if

If this relation holds for all branches we shall say that there

is an equilibrium state. In an equilibrium state it is seen that

relation (4) is an equality rather than an inequality. Moreover,

it is a corollary of Lemma 1 that

(6) ifw.u. = L?g v2 = Z?g"V
1 1 1 l̂ S S l̂ S ^S

at equilibrium.
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A situation of central interest in this work arises when

the potential of nodes 1 and m are given by u 1 = 1, u^ = 0

and all other nodes are insulated, A node i is said to be in-

sulated if the current source w. there vanishes. Then the

input conductance between nodes 1 and in is defined as

Y = w.. It then follows from (6) that

(7) Y = Ejgsvf.

The solution of the input conductance problem can be obtained

from a minimum principle of Maxwell which is stated here as a

lemma.

Lemma 3. Suppose some of the nodes of ji network have prescribed

potentials and the others are insulated. Ihen there is an equi-

librium state in which the potentials of the insulated nodes

take on values to minimize the power function

(8) E = LjgsvJ.
2

Moreover, the branch power g v jus uniquely determined for

each branch.

PROOF; See Lemma 3 of reference [1], for example.

Lemma 4« The input conductance y(9") ML sL function of the branch

conductance g . ijs continuous, concave, non-decreasing and homo-

geneous of degree 1.

PROOF; This is a consequence of Maxwell's principle and is

proved in Lemma 4 of reference [1].
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Two nodes of a network are said to be positively connected

if it is possible to traverse from one to the other along a

chain of branches with positive conductance. A network is said

to be positively connected if any two nodes are positively con-

nected.

Lemma 5. JTf a. network is positively connected, then

(9) *%&• . T2
s

where v JLS_ an equilibrium voltage corresponding to unit in-

put voltage.

PROOF; This is yet another consequence of Maxwell's principle.

See Lemma 5 of reference [1].
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3. The concept of a. duality inequality.

The developments in this treatment evolve from a scalar

product inequality stated in the following lemma.

Lemma 6. Let v and y for s = 1,2,. .. ,n be, real numbers.

Let the terms of the scalar product sum be partitioned into two

sets A and B. Thus

(10) S^ 8y 8 = SAvsys + SBvsys.

- 1 - 1

Let a and p be positive constants such that a + p = 1

and let

(ID |lv|la = (EB |v s | ||p B | s |

Then a. scalar product inequality is

(12) H^.y.1 i ||v||2>a ||y||2>s.

Here, || |L and \\ |L are mixed norms defined in terms of

positive numbers g and K as
_ — — _ g — — — . • •

(13) | | v | | 2 j O . ( L A g s v s +

H 2 , B - <\9-.1vl + *r1Ml).

PROOF; In relation (10) apply Cauchy's inequality to S and

Holder1s inequality to S to obtain

Then apply Cauchy inequality here to obtain

To obtain more generality let g for s = l,2,...,n be
s

positive constants such that g = K in the set B. Then
s
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replacing v and y by g ' v and y Q/g Q gives

the desired inequality. Hie mixed norms appearing in this

inequality seem somewhat artificial; however it will now be

shown that they have a natural application to a class of op-

timization problems.

We apply the inequality (12) to the power balance equa-

tion

(3) ^

of Section 2, and this gives

(15)

Here the constant g is interpreted as the conductance of

s

branch s. The constant K has the dimension of conductance

and will be given a definite interpretation later, A duality

inequality results from (15) by specializing boundary conditions,

This main result is stated as a theorem.

Theorem 1. Let v b<5 a. set of branch voltages subject to the

boundary condition u1 = 1 and u = 0 . Let y be a set of

branch currents subject to the boundary condition w. = 0 except

wl

(16

The

= 1 and

constant r*

= -l.

+ K||,

is

Then

fa * r* ̂

independent and y

PROOF; With this choice of boundary conditions we see that

^L wi ui = w l u l = 1- '1<hus tlle t w o norms on the right side of (15)

do not vanish and division gives
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Since the left side does not depend on y and the right side

does not depend on v it follows that there exists a constant

T satisfying

and the proof of (16) is complete.

The constant T has the dimension of conductance. Rela-

tion (16) furnishes upper and lower bounds for V and so we

term (16) a duality inequality. Conceivably the duality inequal-

ity gives a non-unique r . In that case we say there is a

duality gap. It is desired to show that under the constraint

there is no duality gap. In other words r is uniquely deter-

mined by (16) .

If the set B is empty then the duality inequality (16)

reduces to a classical result. In that case r is simply the

input conductance y. The limiting case, when a = oo, p = 1,

p = 1 was treated in detail in a previous work [1]. For other

ramifications of duality inequalities see references [2] and [5]«



11.

4. Maximization of the input conductance,

The central network question of this work may be phrased

as follows.

Problem I. Let y (<?) j2i=L the joint conductance of ja network with

n branches. Let the branch conductances be fixed for a_ set of

the branches denoted by A. Let B be the set complementary

to A. Find

(18) T = max y(g)

subject to the constraints g ^> 0 and

(17) (L Bg^)
1 / p £K

where p > 0 and K > 0 are given constants.

In the remainder of the treatment of this question it shall

be assumed that the network is positively connected by the A

branches alone. This simplifies the discussion without loss of

generality because disconnected networks can be treated aposter-

iori by continuity argument.

Theorem 2. Problem I always has ji solution.

PROOF: The constraints of the problem I restrict g to a com-

pact set. Now the proof is immediate by Lemma 4.

Lemma 7. T of problem I is also given by

F = max y (<?)

subject to the constraints g ;> 0 and
s
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PROOF; A solution of Problem I exists (Theorem 2) and let this

be g' . If S <?lp < K^, let B = {1,...,£) and define
SG B S

^ = {K - g!,?.- g ^ P } 1 / p and gg = g ^ s = 2,...,-t. -Then

clearly g. > g' and (SBg^)
 P = R and by Lemma 4 (non-

decreasing property of Y(g)) T ̂  y (g) >̂ y(g!) = F and the

proof is complete by another application of Theorem 2.

Problem I is said to be degenerate if there is a solution
with g = 0 for all s in the set B. Otherwise the problem

s

is said to be nondegenerate. It is seen that the degenerate

case is trivial.

We regard the next result as the "main lemma" in our anal-

ysis of the problem.

Theorem 3. I_f g JLS a. solution in the nondeqenerate case then

there exists a. constant A such that for the equilibrium voltage v

vs

in the set B jLf g > 0. IjE p > 1 this also holds for
S ' ———— ————— ,

9 = 0 , and moreover A > 0.
s —

PROOF; Let B = [l,...,l). Since

P = K" > 0

at least one g in the set B is positive. Say g. is posi-

tive; then g. = (Kp - S?g^) p > 0. Here E1 is the sum over

the set B in which the g. term is omitted. Thus by Lemma 7

the function ~ defined as

(20) Y(g2,...,g^) = Y((KP - s
1 ^

a maximum at (g2^ • • • *9#) • Thus, if
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g > O for some s in the set B - {1}, then
s

l-o
= 0 i.e., - ̂ - g P-^-E'gP) P + ^ - = o

(21) i . e . , ^X_ = T^gP" 1 where A
2 = ^ ^ g , 1 ^ = v2 g X"P ^ 0

^g s dg * x 1

P"i.e., ^ - = A2g P"1 for g > O in the set B.
- ^ S S

On the other hand if g = O for some s in the set B - {1}
s

and o > l j then, similarly —^—S l̂eads to

0 ^- ~ —
Sgs

But if p > 1 the right side vanishes, i.e.,

(22) v2 = A2g p"1, for g = 0 in the set B - {1}.
s s s

Combining (21) and (22) we have (19) . Now A > 0 if p > l . For

otherwise if A = 0 (19) would imply v = 0 in the set B and
s

T = SAg v = y(q}) with g! = 0 in B, contrary to our hypo-
.ASS S

thesis.

We note that the relation (19) of Theorem 3 serves as a

check to see whether an assumed solution is optimal. Moreover

if it is not optimal an iterative procedure is suggested by

{196) to redefine g to come closer to the optimal.

Theorem 4. Let V be the maximum input conductance and let v

be a. voltage resulting from â  potential which is arbitrary ex-

cept for ja unit potential difference at the input. Then

HUNT LIERASY
CARNEGIE-MELLON UNIVERSITY
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(23) r < S,g v +

1 2where n > 1, and — + — = 1, Moreover this becomes an equality
r- p a

for the equilibrium voltage v.

PROOF: Let g be a solution of Problem I and as in Theorem 3,

then, v being equilibrium voltage,

^ A s s B s s 3 )

1 2_

^ S A g s V s + ( S B g s ) P ( 2 5
B l V s l a ) a (Holder)

= Ws + K(SB|vs|
a)-

This proves (23) .

Now, if v = v, by Theorem 3, the right side of (23) becomes

1.2B.

/ + ^^y a

However, by the same Theorem 3

a <^2
= SAgsVs
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This shows that there is equality in (23) if v = v, the equili-

brium voltage.

Corollary JL. Ijf g jj^ an arbitrary set of conductances which

1 2
satisfy the constraints and if p > 1 and — + — = 1, then

p &

(24) ri J2 ^
s s

This is an equality for the optimum solution g oj| Theorem 2L

PROOF; In (23) let v be the equilibrium solution according

to the choice g. Then

(25) Y = LAgsv2 + SBgsv2 and

(26) j
^ s S

Substituting (25), (26) into (23) proves (24).

To study equality, let g = g, then r.h.s. of (24) reduces

2_

to Sag vf + K(ST3|v |
a ) a , and this equals r by Theorem 4,

r\ S S D S

and the proof is complete.
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5. Closing the duality gap.

It follows from Theorem 4 that we can take the constant

r* of the duality inequality equal to the maximum conductance

r. The following theorem is the dual of Theorem 4 and shows

that there is no duality gap.

Theorem 5. Let T l>e the maximum joint conductance in Problem

I. Then

where p > 1, 2p~ = 1 + p~ and {y } jLs any set of branch

currents such that the current source has unit magnitude at

the input nodes and vanishes at other nodes. Moreover this be-

comes an equality for the equilibrium state.

PROOF; Let v and g be optimal solutions of Theorem 3.

According to lemma 7, we may assume ||g|| = K. Theorem 3 states

that v = A g P~ in B. Equilibrium currents satisfy
s s

y = g v . Thus

(28) |y s l = A gfs
 2 .

Taking the norm here gives

(29) ||y||2 = A2(X

2 On

On the other hand g v = A gp so

CC B S S

Then (29) and (3o) showf that
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Of course y may not satisfy the boundary conditions, but
s

y* = y /r does satisfy the boundary conditions and if we sub-

stitute v and y* into the duality inequality (16) it fol-

lows by virtue of (31) that it is actually an equality. Tiiis

means the right side of (27) is minimized for y = y* and the

minimum equals F~ and the proof is complete.

Actually this theorem and the optimal conductance-current

relation (28) remain true for p > 0. However we are unable to

prove Theorem 4 in that case.

Corollary 2. JE_f g JLS. an arbitrary set of conductances which

satisfies the constraints then

(32, i v.£ v! ̂
s s

This becomes an equality for the optimum solution g of Theor-

em 3.

PROOF; In (27), let y be the equilibrium solution correspond-

ing to the choice of g. Then,

(33) Y"1 = z^g^yj + V s ^ s and

the corresponding branch voltages are related by

(34) y = ~ g v .

By Lemma 5 and (34) we obtain
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Substituting (33) and (35) in (27) yields (32) . -The case of

equality follows as in Corollary 1 under Theorem 4 and the proof

is complete.
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6. Cooling Fins.

Ilie lumped network problems just discussed are analogous

to conduction problems for continuous systems. In particular

this analogy will be developed here for cooling fins. Such

fins are used to conduct heat away from machines to the am-

bient media.

The cooling fin problem is to maximize the conductance

of a fin R of thickness p(x,y) subject to the constraint

p^ds < Kp where p > 1 and K > 0 are given. Ihis is to

be accomplished by suitably tapering the fin. The linear case

of p = 1 has been treated rigorously in two previous works

[3] and [4]. Here it is proposed to give a heuristic treatment

based on the network model. Ilius we will be led to formulate

a duality inequality providing upper and lower bounds for the

conductance of the optimum cooling fins.

For convenience let us adopt electrical rather than ther-

mal terminology and treat the equivalent electrical problem.

The power input to the plate R is

(36) E = JJ (p|vu|2+qu2)ds
R

where u is the eLectrical potential, p is the specific con-

ductance, and q is the leakage conductance to ground. It is

supposed that ground is at zero potential. The boundary condi-

tions are that u = 1 on the part dR, of the boundary of R

and p ^~ = 0 on the complementary part S R 2 of the boundary.

Then E is equal to the conductance y of the plate, it being
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assumed that u is the equilibriuin potential satisfying the

differential equation

(37) V. (pvu) = qu.

Problem II. Maximize the conductance y subject to the con-

straint

(38) JJ p^ds £ YP, p > 1, K > 0
R

being given. Without loss of generality it may be assumed that

the variation in p is due to a variation in thickness of the

plate. It is assumed that q may be function of position but

is not subject to variation.

Reasoning by analogy from Theorem 3 the optimum plate

should be tapered so that

(39) |vu| = Ap 2

for some constant A. By analogy with Theorems 4 and 5, the

optimum conductance Y will have upper and lower bounds given by

(40) ff q u 2 d s + K( f f | v u | a d s ) 2 / C C ^ V
R " 'J R

The function u is arbitrary except that u = 1 on c)R.. and

the vector field y, which corresponds to a current flow, is al-

so arbitrary except that the net flow across boundary dR, is

unity and current flow across dR^ vanishes at all points. A

similar conjecture for the limiting case, when a = oo, p = 1,

p = 1 was given in reference [1]. Rigorous proofs of this con-

jecture and of (40) are yet to be supplied.
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