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ABSTRACT

If T is a partially ordered set and the components of

a = (a-,...,a ) e Tn are totally ordered, then a is called

a chain and we let a* = (a*,...,a*) [a1 = (a* . ..,,af)] be
r^> x n **** JL n

the vector obtained by rearranging the components of a in de-

creasing [increasing] order. If cp : T-, X T~ G where T, , T~

are partially ordered sets and G is a partially ordered abelian

group, then a necessary and sufficient condition on cp is given

so that

I cp(a* bf) < E cp(a.,b ) £ S cp(a* b U

for all chains aeT.. , beT^ . Also a necessary and sufficient

condition on cp is given so that equality holds on the right

[left] iff a and b are oppositely [similarly] ordered. A

sufficient condition is given so that

cp(a*,b*) « cp(a,b) «cp(a*,bf),

where « denotes a preorder relation of Hardy, Littlewood and

^Supported by NSF Grant GU-2056.



Polya. Similar results to these are given when cp is a function

of m variables. All these results are generalized for real

valued essentially bounded measurable functions on a finite

measure space. For specific choices of cp the inequalities

are shown to hold for even larger classes of functions. The

concept of "similarly ordered" is generalized for measurable

functions to give a necessary and sufficient condition for

equality.



REARRANGEMENT INEQUALITIES

by

Peter W. Day

1. Introduction.

In recent years a number of inequalities have appeared

which involve rearrangements of vectors in H and measurable

functions on a finite measure space. T*he most famous one was

proved by Hardy, Littlewood and Polya [5, Theorem 368]. If

a= (a r ...,an) e Mn let a* = (aj,...,a*) [a' = (a^, . . . ,a^) ]

denote the vector obtained from a by rearranging the components

of a in decreasing [increasing] order. Then the inequality

they proved is

n n n
I a*b' < £ a b < r a*bf (1.1)

for all a, be ]Rn. Equality obtains on the right [left] iff

a and b are similarly [oppositely] ordered.

Recently, Mine [11] has given the following product version:

If a. + b. > 0 (i = 1,...,n) then

n n n
n (a^+bf) < II (a +b ) < n (af+bl). (1.2)
=l x 1 i=l x 1 i=l x 1



Motivated by these two inequalities, London [7] has proved a

result which can be stated as follows:

(1.3) Let a and b have non-negative components. Then:

n n n
(i) L f(l+a*bl) < L f(l+a.b.) < T f(l+a*b*)

i=l 1 1 i=l x x i=l X 1

whenever f (ex) is convex for x ;> 0 and f (1) < f (x) for

x > 1.

n n n
(ii) S f(a*bt) < T f(a.b ) £ E f(a*b*)

i=l x x i=l x x i=l x x

whenever f _is convex for x J> 0 and f (0) <, f (x) for x ̂ > 0.

If f is strictly convex, then in either case we have equality

on the left iff (ab)* = (a*b!)*; we have equality on the right

iff (ab)* =

The choice f(x) = x in (ii) gives (1.1). To get (1.2)

when b has positive components, use f(x) = log x in (i)

and l/b! = (1/b)*.

A rearrangement inequality which is not a special case of

London1s theorem is the following one of Ruderman [13], which

generalizes the left-hand inequality of (1.2):

p n p n

n r a > n £ a * u.4)
s=l k=l K's s=l k=l K^s

whenever ak s > °
 a n d ^ = ^ak, 1J * * ' ̂ k.p^



This inequality motivated G. G. Lorentz [8] to prove a general

rearrangement theorem for non-negative bounded measurable func-

tions on ]0,l[. To state his theorem, we need the concept of

decreasing rearrangement, which can be defined rather generally

as follows.

Let (X,A, JLI) be a finite measure space (m.s), and let

M = M(X,ji) denote the extended real-valued measurable functions

on X. If feM then the decreasing rearrangement 6^ of f is

defined by

6f (t) = inf {s : JU((X : f (x) > s}) £ t) 0< t < a = ju(X) .

Also, if EeA we let 1- denote the characteristic function

ili

of E.

Let cp(x,u.., . . . , u ) be a continuous function on ]0, l[x [O,oo[n

Following Lorentz, in any inequality involving cp we will omit

those variables which are the same for all occurrences of cp in

the inequality. Thus

cp(x,u1, . . . ,s k, . . .,un) > cpfx,^, . . -,rk, . . . ,un)

would simply be written cp(s. ) >^ cp (r, ) .



(1.5) THEOREM (Lorentz) . .Iri order that we have

P 1 r 1

cp(x, f, (x) , . . .,f (x))dx < cp(x, 6. (x),....,6- (x))dx
0 L 0 El n

for all non-negative bounded measurable functions f,,..., f

on ] 0,, 1 [ it _Ls necessary and sufficient that the following

two conditions be satisfied;

(1) cp(u. +h,u .+h) - cp(u.+h,u.) - cp(u.,u.+h) + cp(u.,u.
1 D !D X D X D

(2) cp(x-t,u.+h) + cpCx+t^u.) - cp(x+t,,u.+h)
0 X 1 1

- cp(x-t,ui)]dt 2 0

for a l l 0 < x < 1, uk > 0 (k = 1 , . . . , n ) , h > 0, 0 < 6 < x,

6 < 1 - X, and i ^ j. JEH add i t i on , if cp has continuous

p a r t i a l d e r i v a t i v e s , then (1) and (2) a re equ iva len t , respec-

t i v e l y , t o

Ruderman's inequality (1.4) follows by taking cp(u,, ...,u )

1+...+un) and f fc = E a^ g l} (s
S~~ 1



Actually, Ruderman!s inequality can be deduced without

(1.5), using some theorems introduced by Hardy, Littlewood and

Polya to handle inequalities involving rearrangements and con-

vex functions. We may define them rather generally as follows.

Let (X,, A^, jLi-i) also be a finite m.s. such that

a = M1(
x
1) = Ji(X).

 I f f+; g+ £ L1(X,jLt) U L 1(X 1,JU 2) then

g •« f means 6 < 6-. for all 0 < t < a, while
0 g 0 "~

g < f means g « f and J 6 = J 6f. In the discrete

case these definitions become: b « a iff Ev -b? < £v .a*

^ ^ 1—1 1 —' 1==1 1

for all k=l,...,n; b < a iff in addition we have equality

when k = n. If we write f ~ g to mean 6X = 6 then:
f g

f « g and g « f iff f < g and g < f iff f ~ g.
For example,

a + b < a^ + b* (1.6)

follows easily from (1.1), since there is a permutation Q of

{1,...,n) such that (a+b)| = (a+b) .̂ . and hence for k = 1,...,n,

k k k k 1c k
L (a+b)* = Ea_... + E b , , < E af + E b* = L (a*+b*) * ,

with equality when k = n.



The preorder relation < was first introduced in [4]

where it was shown that

n n
E H(b.) < E H(a.) (1.7)
i=l x i=l 1

for every convex function H on an interval I with a^, b^€l

iff b < a. Later it was shown that (1.7) holds for all in-

creasing convex H iff b « a [12, p. 164] .

n nn n
Using (1.6) and induction we easily deduce E av < T> a*

kr* kl~*

where a, = (a, -,..., av ). If every sum is greater than 0,
/^yK Kl y JL K , p

we may use H(x) = -log x in (1.7) and get Ruderman1s inequality,

In the following section we will give a general theorem

for discrete rearrangements which includes all of the inequalities

above except (1.5), and which gives a necessary and sufficient

condition for equality in each of these cases. In the final

section these results are extended for real valued measurable

functions on a finite measure space so that (1.5) is included.



2. The Discrete Case,

Let T be a partially ordered set. If a = (a ,...,a ) € T

then a will be called a chain if (an,...,a } is totally
r*j — — — — — — J_ xi

ordered. If a is a chain, then a* and aT can be defined

as in Section 1. If a and b are chains in a partially

ordered abelian group G (written additively) then a « b

and a < b can also be defined as in Section 1. It will be

notationally simpler and should cause no confusion to denote

every partial order under consideration by <C. A partial order

is understood to be anti-symmetric, and x < y is used to mean

x <L Y
We use the following notation in addition to that established

in Section 1. Let Tp...,T be partially ordered sets, let

ak = *ak I9 ' • # 'ak n^ G ^ ^k = lj # ' ' *m^ ' l e t ^ : Tl X ' # # X Tm

and let I and J be disjoint subsets of K = {1, ...,m} with

L = K - (IUJ) . If 1 < i, j 1 n, then cp(aT .,aT .) is the

function defined by co(aT .,a_ .)(u, : keL) = cp(c,, . . ., c ) where
j . , i u , j i\. i m

ck " ak,i f o r k € l^ ck = ak,j f o r k 6 j j a n d ck = \. f o r

keL. If b. = (b, ^, . . . ,b, ) e T. and {l,J} is a partition

of K, then (a_,b_) is the sequence of vectors defined by

j 8 ^ " - ' ^ w h e r e ck = ak,j f o r k e i a n d

cv = b, . for keJ. We simplify the notation slightly when
K K, J
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I or J is empty or a singleton, writing for example, aT

or (^i'-'-'Sm) i n P l a c e of

We say two sequences s = (sp.-.^s ) e T, and

t = (tn,...,t ) e T n
n are similarly ordered if for every

1 <, i,j ,< n, s. < s. implies t. < t. , and t. < t. implies

s. < s.. We say s and t are oppositely ordered if s. < s.

implies t. <C t., and t. < t. implies s. <C s.. In either

case, if s is a chain, it is equivalent to have only the first

implication.

Let (l,J) be a partition of K = {l,...,m}. We consider

the following two conditions on cp: T-. X . . . X T —• G.

(A) [(A*)] If x.,y. e T. with x. < y., and k ̂  i,

then cp(y.) - cp(x.) is [strictly] increasing in u, when
1 1 iC

k and i are in the same set I or J, and [strictly] decreas-

ing in u, when k and i are in different sets I and J,

for all 1 < i,k £ m.

If G = JR , if each T, is an open interval of ]R, if

the first partials of cp are continuous on T, x . . . X T , and

if the second partials of cp exist on T, x . . . x T , then

yi ^ Xi implies the difference in (A) is increasing [de-

creasing] in u (j ji i) iff y > x. implies |ffi (y ) - |ffi (x )
J 1 1 QU . 1 Q U . 1

is non-negative [non-positive] iff -^ is increasing [decreasing]
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in u.. Hence condition (A) is equivalent to:

2
(A) ! a °P— > 0 when i and j are in same

S ui 5 uj set I or J

<C 0 when i and j are in different
sets I and J

on T 1 X . . . x T m for all 1 < i / j < m.

(A*)! denotes the above condition with strict inequality.

Clearly (A*)! implies (A*).

(2 .1) THEOREM. Let co : T, X ... x T —* G, where each

T- (k = 1, . . . ,m) is a partially ordered set, and G ^s. .̂
K —— —

partially ordered abelian group. Let {i^J} be a partition

of K = {1,...,m}.
(i) Condition (A) ijs necessary and sufficient that

n n
(1) £ cp(a1, .. .,am) . < I (

j=l ^ J j = l

for all chains av
eTi, (k = 1̂  . . . ̂ m) .

(ii) Condition (A*) _is necessary and sufficient for the

following to be equivalent for all chains a.. €T,— — — — — J ^ _ ^ — — _ — _ _ — _ ——««-«»«—« ^^j^ ĵ

(a) Equality occurs in (1).



10

(b) a and a are similarly ordered whenever p and q^yp ..... ^g — — — — . .

are in the same set I or J, and oppositely ordered

when p and q are in different sets I and J, for

-aH 1 < p,q < m.

(c) cpta^...

(iii) Suppose the range of cp JLS totally ordered. If cp

satisfies condition (A) and is increasing [respectively decreas-

ing] in u, for kel and decreasing [respectively increasing]

in u, for keJ then

(2) <P<Si"-->2ta>

for all chains av€Tv
n (k = 1,...,m)

Proof, To prove necessity of (A) for (1), let

let xi,yi € T± with xi < y±, let a± = (xi,yi, . . . ,yi) ,

let u, jV, € T, with u, < v,5 and for j 7̂  i^k let U.GT.

and a. = (u.^...^u.)« Case 1: k,i are in the same set I

or J. Let a,= (v,, uu, . . ., u.) . After cancelling terms in (1)

we obtain cpfx^v^ + cpfy^i^) < cp(yi,vk) + ^{x^u^) , so

V f y ^ u ^ - cp(xij>uk) < cp(yi,vk) - cp(xi,vk), and hence (A) is

true in this case. Case 2: k,i are in different sets I and J.
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Let a, = (u, ,v, , . . . ,v~ ) . The proof is similar to Case 1.

This completes the proof of necessity.

Before continuing we introduce some notation. For chains

a, e T, n write b = S. .av if l < i < j < n are such that

for P = {k€l : av . < a . ), Q = {keJ : a. . > a, . } and

L = PUQ we have: b, for keL is the sequence obtained from

a, by interchanging a.. . and a, A9 while bv = av for

other k.

Assume bT, = S. .aTr with P and Q as above, and let

^ for ° < k < m let

= P 0 [0, . . . ,k} and Qk = Q (1 {0, . . . ,k}. Then

k=
cp(a i,a .,a .) - cp(a ±,a

E
k=0

i'a

is a sum of differences like that in (A) , so

<3>

On writing it out, this is the same as

(4) cp(aK)i + cp(aK)j (bK) . so
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n n
(5) S cp(aR)r < ^

If (A*) holds, inequality (3) and hence (5) will be strict

unless P U Q = 0 or av . = a . for all k e (I-P) U (J-Q) .

There are b (1) , . . . ,b (q) such that b(l) = a R, b(q) = (a*:

and for each 1 < k <_ m-1 there are i and j such that

b(k+l) = S. .b(k). Hence

n
Ej cp(b(q))j ,

which proves (1).

In (ii) it is clear that (b) =*> (c) =*> (a) always. We

begin by assuming (A*) holds and show that (a) =*> (b) . Suppose

(b) does not hold. Then an examination of cases shows there

are 1 < i < j <! n such that for P and Q as above we have

P U Q / ^ and there is a k e (I-P) U (J-Q) such that

a.. . ^ a.. .. Hence letting b__ = S. .a__ we have

n n n n
DcP(aT_)^< Eco(bT.)r.< E cp(b*b') = E cp(a*a') ,

r=l ~ K r r=l ^ K r r=l ^ ^ J r r=l ~X ^ J r

since b* = a*; , k = l,...,m. Conversely if (a) ==̂ > (b) then

the arguments used in proving necessity of (A) for (1) show

that (A*) holds.
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We turn now to the proof of (iii) . Since cp(a* a!) ~cp(a* a*),

it suffices to prove (2) assuming cp is increasing in the

I-variables and decreasing in the J-variables. In this case

let b_. = S. .a__. Tiien
^ K 1 y J ~J\

(6) cp(bR) . < y(aK)±, cp(aR) .

We call cp(a ) . and cp(a ) . the "old terms", and cp(b ) .

and cp(b ) . the "new terms". These are the only terms where

cp(a ) and cp(b ) differ

Let 1 <. k <C n, define sequences

let Ea = L cp(a__)̂  and define S3 similarly. We show
r=l ~ K

that Ea < S3 .

If exactly one of the old terms occurs in a , then (6)

implies that the only new term in /3 is cp(b__) . . For if

cp(b ) . is in £, then (6) implies that 0 contains both

new terms, so there are n-k terms of cp(a ) which are <^

cp(bK) ., in which case (6) implies that both old terms occur

in a . Hence 0 is obtained from a by replacing an old

^ HUNT LIBRARY
CARNEGIE-MELLON (IIJIVEHSITY
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term by the larger term cp(b) .. Thus Ta <. E£ .

If both old terms occur in a* t h e n (4) implies their

sum is < the sum of the new terms, which is <^ the sum of

cp(b ) . and any term ;> cp(b ) . , in case cp(b ) . is not

in /3 . Hence Ea < E£ •

If none of the old terms occur in a , then either

a = £ , or )3 is obtained from a by replacing one term

of a by the larger term cp(b ) .. Thus la ^ E3 . The

proof of (iii) is finished as in (i). This completes the

proof of the theorem.

When cp is a function of two variables, conditions (A)

and (A*) simplify, and the arguments proving (2.1) have a

symmetry which shows how small the sums can get.

(2.2) COROLLARY. Let cp : T, X T o — * G .

(i) A necessary and sufficient condition that

n n n
(1) L cp(a^,b!.) <; T cp(a.,b.) j< S cp(af,bf)

for all chains aGT n
n, beT o

n is that the difference

(2) cp(d,y) - cp(c,y)

be increasing in yeT o whenever d > c, d,ceT,. A necessary
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and sufficient condition that for all chains a and b the

inequality (1) JLS strict on the left [right] unless a and

b are oppositely [similarly] ordered is that the difference

is_ strictly increasing.

(ii) Suppose the range of cp i^ totally ordered. If

in addition to (i) cp is. increasing (or decreasing) in both

variables, then

cp(a*,b?) « cp(a,b)

If (2) holds with cp replaced by -cp, and cp is. increasing

in one variable and decreasinq in the other, then

cp(a*,b*) « cp(a,b) « cp(a*,b!).

(2.3) REMARKS. (i) The condition (2.2.i.2) is equivalent

to having cp(x,d) - cp(xJ,c) increasing in xeT, whenever d > c

and d

(ii) Since cp(a*,,b*) ~ cpta'^b') and cp(a*jbf) ~ cpfa^b*),

the relations (2.2.ii) may be rewritten:

cp(af,b*) « cp(a,b) «%>(*',&),

and similarly for the other.
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(2.4) EXAMPLES. Let G = TR.

(i) T, = T"2 = ]R and cp(x,y) = x + y:

a* + b1 < a + b < a* + b*.

(ii) T, = T 2 = nR and cp(x,y) = x-y:

a* - b* < a - b < a* - b' .
/-̂/ /^-> r>-> *+-> r*~> r*J

(iii) cp(x,y) = xy : For T1 = T 2 =

we obtain (1.1) with the indicated condition for equality.

For T = T 2 = [0, OD[ or T 1 = T 2 = ] -CD , 0] we obtain

a*bT « ab « a^b^ whenever a,b e [0,, o>[n or a,be ]-ao,O]n

When T, = [0, co [ (k = 1, . . . ̂ m) , I = {1^ . . . ̂ m) and J = 0

then op(u,,...,u ) = u, ...u satisfies (A*) and we obtain

a companion to (1.4), also proved by Ruderman:

n m n m

r n a. . <£ s n at . .

The inequality is strict unless all of the sequences

a^ = (a^ i/--#'av ) a r e similarly ordered.
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(iv) cp(x,y) = log (1+xy) satisfies (A*) with I = {1,2},

J = 0 whenever T^ X T2 c {(x,y): xy > -1}. Thus

n n n
n (l + a*bt) £ n (l + a.b.) £ U (l

1 1 x x

whenever a*bT. > -1 for i = 1 and i = n. The inequality

is strict except as indicated in (2.2.i). The choice

T, = T2 = [0, <x>[ or ]-CD ,0] gives:

log (l + a*b') « log (1 + ab) « log (l + a*b*)

w h e n e v e r a , b e [ 0 , CD [n o r ] - a o , O ] n .

(v) cp(x,y) = -log(x+y), T1 X T2 c ( (x,y) : x+y > 0} :

-log (a*+b>) « -log (a+b) « -log

whenever a^ + b^ > 0̂  and in particular we get (1.2) with

the inequality strict except as indicated by (2.2.i). The

example a = (6,5,2,1) b = (-3,-4,-2,1) shows that (1.2)

may fail under the condition â^ + b̂ ^ ̂  0 for all i.

(vi) Suppose cp satisfies the hypotheses of (2.1.iii)

and H is increasing and convex on an interval containing the

range of cp. Then cp, = H o cp satisfies condition (A) . In
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this way (1.7) and (2.1.i) may be used to prove (2.1.iii).

If in addition, cp satisfies (A*) and H is strictly convex,

then cp, satisfies (A*) .

We prove the first statement. Since H is convex, if

rl "̂  sl' r2 < 32> rl ^ r2> sl ^ S2> t h e n

H(ro)-H(r,) H(so)-H(Sl)

r2 " rl S2 " s

Assume cp is increasing in its I-variables and decreasing

in its J-variables. Let i,kel, y. > x., v, > u, .

We wish to prove

(2) H(cp(yi,uk)) - H(cp(xi,uk)) ^H(cp(yivk)) - H (cp(x±,

Let

Now r2 ~ ri ^ S9 " sl a n d H "̂s increasing^ s o

obviously true if r2 = ri o r S2 = s l # Otherwise,, we have

0 < r 2 - r 1 < s - s and both terms in (1) are >̂ 0;

multiplying,, we obtain (2) . The other cases are similar.

When H is strictly convex, the same proof works except that

all inequalities are strict.
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(vii) London's Theorem follows from (2.2.i) and the

previous example as follows. The conditions on f in (1.3) are

equivalent to saying that in (ii) f and in (i) f(e ) is

convex and increasing on [0, CE> [. We now use the previous

example with H = f and cp(x,y) = xy for (ii) and H(x) = f (eX)

and cp(x,y) = log (1+xy) for (i) . If H is strictly convex,

we also obtain the conditions for equality.

(viii) Ruderman [13] has observed that (1.4) generalizes

the inequality between the arithmetic and geometric means. Using

(2.1) we may obtain the following inequality for certain quasi-

arithmetic symmetric means. Let U be an open interval of H,

let f,g : U —* H be strictly monotone and let f o g " be

convex on g[U]. If f is increasing then

g"1
/ 9 (*!>+•••+9 (rn)\ rl / ftr^+.-.+fO:,,) \

for all r.,,..., reU, while if f is decreasing, the inequality

reverses. If f © g is strictly convex, the inequality is

strict unless r, = ... = r . To prove this, in (2.1.i.l)

let a.. = (r,, r9, . . . ,r n,r ), a9(r9,r ,...,r ,r ) , . . . ,

a = (rn,r,,...,r 2,r -) and note that

-1 / g(u-)+...+g(u ) \
co (un, . . . , u ) = f o g" I = S«- )

1̂  3 n} y \ n /
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satisfies (A) with I = [1, . . ., n). If fog"1 is strictly

convex, then cp satisfies (A*) , and the inequality is strict

unless all the a k are similarly ordered, in which case

r- = . . . = r .1 n

3. The Continuous Case.

In this section we show how to generalize Theorems (2.1)

and (2.2) for L*30 functions on a finite measure space when

cp is jointly continuous. Let (X,A*fx) be a finite measure

space with a = jLt(X) < ao , let Rf denote the essential range

of f e L00 and let I- = [ess. inf f, ess. sup f] = [6f (a-) , 6f (0) ]

If f,,..., f GL 0 0 and cp : R^ X...X R^ —* 1R is bounded, theni m x -• r1 m

the function cp(f1, . . ., fm) defined by x *-* cp(f 1 (x) , . . ., fm(x) )

is in L00 . If f€M(X,jLt) then tf denotes the increasing

rearranqement of f which is defined by tf(t) = 6f((a-t)-)

for all 0<Ct<Ca. If {I, J} is a partition of {1, . . . ,m}

then (6 ,\ ) denotes (g-i^-.-^g ) where g. = 6̂- for iel
£l £j x i

and g. = t_ for ieJ.
i

We will say that f,geM are similarly [oppositely] ordered

if ess. sup f|A < ess. inf f|B implies ess. sup g|A <, ess. inf g|B

[ess. sup g | B <C ess. inf g|A] whenever A,B are disjoint measurable
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sets, each of positive measure. In particular, if f and g

are similarly ordered, then for all te H,

ess. sup g|{f<t} = lim ess. sup g|(f<t---) < ess. inf
n •"'ao

Thus if f and g are similarly [oppositely] ordered, then

ess. sup g|A <̂  ess. inf g|B [ess. sup g|B < ess. inf g|A]

whenever A a {f<t} and B c {f>t}. The numbers involved in

these inequalities may be extended real numbers.

(3.1) THEOREM. Let cp : T,x...X T —* 3R be continuous,

where Tn,...,T are intervals of ]R, and let {l,J} be a

partition of {l,...,m}.

(i) J^ cp satisifes condition (A) then

(1) J cp(f1,...,fm)dj* 1 J cp(6f , i f )
0 '̂ I ~i7

for all fiGL°
D such that I f c T±, i=l,...,n

is non-atomic, then (A) _̂ s necessary for (1).

(ii) JL£ cp satisfies (A*) then the following are

eauivalent;
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(a) Equality holds in (1).

(b) f. and f. are similarly ordered whenever

i and j are in the same set I or J, and oppositely

ordered whenever i and j are in different sets I and

J for all 1 <C ij j £ m.

(c) cp(f,, . . . 3 £ ) ~ cp(6^ , t - ) .

(iii) IjE cp satisfies (A) and i^ increasing [respectively

decreasing] in u. for iel and decreasing [respectively increas-

ing] for ieJ^ then for all f. as in (i) we have

V(fr...,fj « cp(6f , tf

(3.2) COROLLARY. Let cp : T, x To —» IR be continuous,

where T1 and To are intervals of M, and let QD with

R f <= T 1 and R c

(i) JEjP (1): cp(d^y) - cp(c^y) is increasing in

whenever d > c and d^ceT,,, then

J cp(6f, t ) < J cp(f,g)djii 1 J c p ( 6 f , 6 ) .

If the mono ton icity in (1) JLS strict, then the inequality (2)

is strict on the left [right] unless f and g are oppositely

[similarly] ordered.
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(ii) _If _in addition to (i) cp JLS increasing in both

variables or decreasing in both variables, then

cp(6f,tg) « cp(f,g)

(3.3) REMARK. If (*) cp(d,y) - cp(c,y) is decreasing

in YeT2 whenever d > c and d,ceT.., or in addition cp is

increasing in one variable and decreasing in the other,, then

apply (3.2) to cp^x^y) = cp(x, r+s-y) , f and q1 = r + s - g

where I = [r,s]. The result is that the inequalities reverse

"" cp(8f,6g) 1 J cp(f,g)dM < J
Q cp(6f,tg)

cp(6f, 6 ) « cp(f,g) « cp(6f, t )

If the monotonicity in (*) is strict^ the inequality on the

left [right] is strict iff f and g are similarly [oppositelyj

ordered.

We begin by showing that it sufficies to prove (3.1) and

(3.2) for non-atomic measure spaces by embedding (X, Â  /i) in

£ # &
a non-atomic measure space (X , A% JLT) , which we define as

follows. Now X = X u U A where X is non-atomic, each
neP n °

A^ is an atom, jj,(A^f)h.) = 0 when i ̂  j, and P = {1, ...,p}

or {1,2,3,...}. Let I [a ,b ] neP be disjoint intervals of 3R
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with end points a and b such that b - a = jx(A )3 and

define (X*,A , jA to be the direct sum of (XQ, A n XQ, JLI) and

(I [a ,b ] ,7\) , neP, where A is Lebesgue measure. If feM(X,

then f is constant JJ - a.e. on each atom, and we define

f* = flx + E (f|An)lI[a b j. Then f* ~ f so 6 # = 6f

o neP L n' nJ fw

and t | = t.p.

Let cp : T^^x.-.X Tm~+ 3R and let fi€M(Xj>)Lt) with R f c

(i = 1,, ... jin) . Then

In addition it is not hard to see that f and g are similarly

# #[oppositely] ordered iff f and g are similarly [oppositely]

ordered. Thus if (3.1) and (3.2) are true when (X^A^JU) is

non-atomic, then they are true for any finite m.s.

Before proceeding with the proof when (X, A, JU) is non-atomic,

we require some lemmas.

(3.4) LEMMA. The following three statements are equivalent,

(i) (X,A,^) is non-atomic.
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(ii) There is -a measure preserving map a : X—% [O, jbt(X) ] .

(iii) There is a. map fi : [O, fi(X) ] —¥ A such that

) = t and t £ u implies jz*(t) c ̂ (u) .

Essentially, if cr is given, then a is not constant on

any set of positive measure. The maps Q and f6 are related

f6(t) = ̂ ~ [0,t[ and &(x) = inf {t : xef6(t)}. For a con-

struction of e? see [1, (3.1)].

(3.5) LEMMA. Let (X,A,jU) be non-atomic. Suppose

N
(Dv^v-n i§. ̂. partition of X by measurable sets. If e > 0,

then there is a partition [Ei)?==1 ^f X by measurable sets

such that jLl(Ei) = /u(X)/n (i = 1, ...,n) and /i(U{Ei : E i

intersects more than one D, }) < €.

Proof. Let a = /i(X) . If 0 = 0, the lemma is trivially

true. Otherwise, rename the sets D. so that /l(Dv) = ° ^ o r

1 <L k < P and |Li(Dk) > O for p <^ k < N. There is a f6 : [0, a] A

such that ju(^(t)) = t, t < u implies ^(t) af6(u),

U D and f6( X JH(DV)) = U D, for
k< K l<k<q K l<k<q K

q = p, . . .,N. For any n such that a/n <C min {^(D.) : p < k < N]

and for E. = jz$(ai/n)- ^(a(i-l)/n) (i = 1, ...,n) we have that
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each E. intersects at most two sets D, of positive measure,
1 K

and at most N-l of these E. intersect more than one D,.
1 .K

To finish the proof, choose n so that also a(N-l)/n < e.

(3.6) LEMMA. Suppose (X, A, fx) is non-atomic. Let
CD

{s (k) •}•_•! (k = 1, . . . ,m) be m sequences of simple functions.

CD

Then there are m sequences {t(k).}._, , (k = 1, ...,,m) of
• — — — — — — — - ^ l—i ' • •

simple functions such that

(i) For each i, t(1).,...,t(m). have the same sets of

constancy, and these sets have equal measure;

(ii) For each k = 1,...,m, s (k) . - t (k) . —* 0 \x - a.e.

as i —* CD ?

(iii) For each k = 1, . . . ,m and i^ 1, 11 (k) . | <: | s (k) . j .

Proof. For clarity of exposition, we prove the lemma in

the case m = 2. The proof for larger m will be readily apparent,
n

Before considering sequences, let s(l) = S a.l and
i=l x i

P
s(2) = 2 b.l where (A.} and {B.} partition X, and

j=l 3 Bj x ^

N
let (I\} k = 1 = {AinB. : 1 < i < n, 1 < j < p}. Let e > 0.

r
Then there is a measurable partition {E ) - as in Lemma (3.5).
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For each q = 1, ...,r, if E intersects only A ± 0 B. then

E c A . H B . , and for k = l , 2 we define t (k) |Eg = s (k) |A± n B.. ?

we define t(k) = 0 elsewhere. Then |t(k)| £ fs(k)| and

H(fs(k) £ t(k)]) < e. Hence given (sfk)^?^ there are

sequences {t(k)i)?L1 satisfying (i) and (iii) such that

ju({s(k)i £ t(k)i}) < 2 ~ \ Then

00 GD 00
y ( { s ( k ) . - t ( k ) . - ^ O ) ) = ix( U n U ( | s ( k ) . - t ( k ) . | > l / q } )

q = l N = l i = N

OD

^ l im l im £ 2 " 1 = 0 ,
q "* OD N "* OD i=N

and the proof is finished.

(3.7) PROPOSITION. Suppose (X,A,jLt) is non-atomic, let

{ijj} be a partition of fl,...,m} and let f-,...^f eM(X9fx) .

Then the following two conditions are equivalent.

(i) f^ and f. are similarly ordered if i and j are

in the same set I jor J, and oppositely ordered if i

and j are in different sets I and J.

(ii) There is a measure preserving ^ : X—> [0,OL] such

that 6f o g = f. n- a.e. if iel, and t- o a = f •
£i — f j ^

IX - a.e. if je J.
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Proof, (ii) =~> (i): Let i and j be in the same set

I or J and let i and k be in different sets I and J.

Suppose A and B are disjoint sets of positive measure such

that ess. sup f. |A < ess. inf f^|B. There are A^ cA and

B, CB such that u(A\A..) = O = u(B\B,), ess. sup f. |A =
x J- -L l

sup f. |A.| and ess. inf f.|B = inf f.|B,. Then te<y[A-] and

U£g[B,] implies 6f (t) < 6 (u) so u < t and hence

6f (t) < 6f (u). Thus
j J

ess. sup f.|A = ess. sup f.|A- <̂  sup f.|A. <̂  inf f.|B,

<̂  ess. inf f.|B, = ess. inf f.JB.

Similarly, we get ess. sup f, |B < ess. inf fk|A, which proves

the result.

(i) =~> (ii): We introduce some notation for this

part of the proof. If g,heM(X,jx), let

|g-h| = inf {s +fx({\g-h\ >s}) : s > 0},

the metric of convergence in fjrmeasure [2, p. 102] . We let

[•|̂  denote the metric of convergence in Lebesgue measure on

For each n = 1,2,3,... let U = {U -}-v i ^e an enumera-

tion of the finite collection of intervals
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{[n, +OD J, [-QD ,-n[) U f [(k-l)2 n, k2 n[ : -n2n 4-1 < k < n2n},

and for each i let u . e U . n 3R . For each heM(X, u) let
n, l n, I n

h = E.u . 1 . Then h —* h pointwise u- a.e., so
n i n,i h - l f u a] n

n, I

6. —» 6, pointwise. a.e. [14,, p. 508, (18.21)]. The intervals
n

of U (being disjoint) are ordered in the.obvious way: for

any two of them, the larger is the one whose points are all

greater than those of the other. Then (U* .) . N -, and (Uf .) .
n,l l / l n,l l

denote as usual these intervals in decreasing and increasing order,

respectively. Clearly u* . € U* . and u1 . e UT ..
n, I n,i n,i n,i

Finally, if A and B are disjoint sets of positive measure

and s = ess. sup h|A <C ess. inf h|B = t, then ess. sup h |A

<^ ess. inf h |B for all n ;> 1. Indeed, we have S€U! . and
* A X I , 1

teUT . for some i <^ j, so ess. sup h |A ̂  u1 . < uf . <£
n, j n n, i n, j

< ess. inf h IB.
-i. n i

We will illustrate the proof of (i) =£> (ii) in the case

m = 3, I = {1,2} and J = {3}. The general method of proof

will then be evident. For convenience let f = f,, g = f2,

h = f3, and let sequences (f
n)* ^ n ^ ^h ^ be d e f i n e d as above.

Let Ani = f" 1^!^ Vi = g~ltUni] and ^ i " 1 1 " 1 ^ ! 1 -
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*n
In addition, let & = {D . } .- be a sequence of partitions

xl XI • 1 1 — JL

of X such that for each n. $ ,, is a refinement of fi .
n+l n

and JU(D .) <1 a/n for all 1 <£ i <C £ . Finally, let
n , JL • • n

a(i,j,k,p) = S u(A ) + E /i(An i n B ) +
n 'q n q

Vi

let Vn(i,jj,k,p) = [a(i, j,k,p)n, a(i, jj(k,p+l)n [; for all

i,j,k,p such that V (i,j,k,p) ^ ^ let » : A . nBM . 0C

Dn — ^ V^(i^j^k^p) be measure preserving, and let

Vn = {Vn(i,j,k,p) : i,j,k,p2 1}. Since

: An I

whenever ju(An i) ̂  0 we have fR = 6f o an jU - a.e
n

In view of the remarks preceding (3.1) we have:

ess. sup CT|A . ,- < ess. inf CTIA . and1 n̂  i+l — - n., I

ess. sup h|An^. n B^. < ess. inf h|A^. n Bn^

whenever these sets have non-zero measure, so the same inequalities
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hold with g and h replaced by g and h respectively.

The first inequality implies

for some increasing sequence (i.) having i^ = 1. Hence as

with f , 6 ocr = g u- a.e. Similarly,, i, o a = h u- a.en cr n n ^ n n n-'n n

Now for all q ,> 0 we have by construction that V

refines V 9 and er (x) and a (x) lie in the same membern n n+q

of Vn- Hence lcrn(x) - ^ n + Q (
x ) | < ^ jit- a.e., and thus

there is a cr : X—> [0,a] such that ff —• e n- a.e. Then
n

6 —• A a.e. so & is measure preserving.

Let G be the set of points of discontinuity of 6^ on

[0,a] . Then G is at most countable so jj,(cT (G) ) = 0, and

hence 6- © <? —• 6^ o ^ pointwise a- a.e. Now for finite
i n JL

measure spaces, pointwise convergence implies convergence in

measure, and | 6 f © crn - 6 f © crn | = | 6 f - 6 f | ^ , so
n ^ n

1 f n f ' u f f ^ f n f i i ^n p n P

and hence f = 6f © g —• 6f © a in measure. Then a subse-
n

quence of f converges to 6f © cr pointwise a.e. so

f = 6f o cr. Similarly, g = 6 © a and h = w © g jLi-a.e.,

completing the proof.

We can now prove (3.1) and (3.2). For clarity of expo-

sition we will only present a proof of (3.2). The proof of (3.1)
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will then be clear. With regard to (3.1.ii) we remark that

(3.7) shows that (b) =#> (c) =#• (a) always. The proof of

(3.2) will illustrate the proof of (a) =#> (b) when m = 2.

n
PROOF OF (3.2). Recall that a = u(X) . Let v = L a.l_

j=l 3 Ej
n

and w = r b. 1 where R c T,, R a To and /i(E.) = ot/n

n
(j = l,...,n). Then 6V = ^ aj l [ ( j_ 1 ) q / n, j a / n f and

6 , t , t have similar expressions. When t = ka/n,

0 .< k <̂  n we have

tp(6v, tw)

n
b ' ) ^ 1,/.7D [(:

S ^ cp(a*,b')J

-t .t
and similar expressions for J 6 . } and J 6 .fi g .. In

0 ^ •* 0 ^v v w

particular t = a gives expressions of this type for

J <P( 6
v ^ w

) j J cp(v,w)d^i and J cp (6v , 6W) . I n c a s e ( i ) ,
0

(2 . 2 . i) gives

J cp(6v, tw) < J J
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while in case (ii), (2.2. ii) gives for t = ka/p

, V V V» * t 6*(v'w> * "1*0 '»

Now in (**) each of the integrands is constant on each of

the intervals [(j-l)a/n, ja/n[, so the integrals are linear

functions of t on these intervals, and hence (**) holds for

all 0 < t <£ a. When |v| < |f | and |w| < |g|, then each of

the integrands in (*) and (**) is bounded by a constant which

depends only on f and g, because cp is bounded on I- x I

and R x R c z l - X I . Using now (3.6) there are sequences

v. and w. of simple functions like v and w above such

that vi-> f, w i—* g, |vi| ̂  |f| and | w ± | <. |g|, so

6 —p 6r; and 6 —» 6 a.e. Taking limits and using the
v. r w. q J J

dominated convergence theorem, we have that (*) or (**)

holds with v and w replaced by f and g respectively.

We now show the condition for equality on the right in

(3.2.i). Assume cp satisfies (A*) 9 suppose f and g are

not similarly ordered, and we will show that the inequality on

the right is strict. There are disjoint sets A and B of

positive measure such that ess. sup f|A < ess. inf f|B and

t = ess. sup g|A > ess. inf g|B = r. Let r < s, < s2 < t and

let D c [xeA : g(x) J> s2} and E c {xeB : g(x) <, s1) with

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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0 < /*(D) = n(E) = 3. Then let g D : D

be measure preserving and define

[ and ©E : E-»[0,3[

f|D

f' = < 6 f |E

g|E

6g|D *

elsewhere elsewhere

Then f! ~ £9 gT ^ ĝ  ess . sup f |D < ess, inf f|E,

ess . sup g|E < ess . inf g|D, and for a l l 0 <C u <C )3 we have

6 f |D(u) < 6 f | E(u) and 6g |E(u) < « g |D (u) . Hence

J cp(f,g)d)u + J cp(f, cp(6f ( D , 6 g ( D ) + cp(6f | E , 6 g ( E )

= J cp(f , g ' ) d M + J
"D E

Adding J cp(f,g)d|i = J cp(f ,g')d^i we obtain

X- (DUE) X- (DUE)

J cp(f,g)dM < J c p ( f ' , g ' ) d M £ JQcD(6 f , , 6 ,) = f cp(6 f ,6 ) ,

and the proof i s finished.
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REMARK. Depending on the choice of cp and the intervals

T., Theorems (3.1) and (3.2) may hold for a larger set of

functions than L . Indeed, in the proof of (3.2), to get

inequalities (1) or (2) we only needed to be able to inter-

change limit and integral in equations (*) and (**) respec-

tively. To get the condition for equality, we only needed to

know that if equation (3.2.1) holds for f and g then it

also holds for f|A and g|A whenever A e A-

For example, suppose f.,..., f eh implies cp(f..,..., f) GL «

Now it follows from [10, p. 93] that |v| <. |f| implies

| 6 | <C 16f | and |t | <C |tf|, so we may use [3] and the6 f | and |t

dominated convergence theorem to conclude that (3.1.1) and

(3.2.1) hold for all L functions. Finally since f,,...,f eL

implies f-|A,...,f |AeL the condition for equality also holds

for all L functions. Other illustrations appear in the

following examples.

(3.8) EXAMPLES.

(i) 6f + t < f + g < 6f + 6 for all f,geL .

(ii) 6^-6 < f - g < 6 . p - i for all f,geL .

The (i) and (ii) are easily seen to be equivalent using

[10,p. 93]. While 6f+ < 6f + 6 is well-known (see [10,

p. 108]), the fact that 6f - 6 •< f - g is new. In [10,p. 107]
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it is proved that: g < feL implies |g| -<-< |f|. Hence

I6f - 6 I « If - g\, generalizing [9, Prop. 1, p. 34]. It

then follows that \\fR - f ||,-% 0 implies || 6- - 6j|, -* 0,

p -L r^ r x

where {f } is a net. Using [10, (9.1), p. 103] , the inequality

6f - 6 < f - g can be written equivalently:

E
 6f + JE »g(«-t)dtij 6f+g

for all Lebesgue measurable E c [0,a], where m denotes Lebesgue

measure. This is an interesting generalization of [10,(10.1)].

(iii) f 6.1 < ffg du < \ 6̂ 6 holds for all £
U O

If 0 <. f,geM, we may approximate f and g by non-negative

simple functions and use monotone convergence to show that it

holds for these f and g also. By decomposing f,geM into

their positive and negative parts, this inequality can, as in

[10, p. 102], be shown to hold for all f,geM such that

6if|6i e L [0,a]. The inequalities are strict except as indi-

cated in (3.2). Similarly, 6fi « fg « 6f6 for all

0 <. f,geM or 0 > f,geM such that 6f6 € L1[0,a].

(iv) (1) J log(l + 6fl ) < J log(l + fg)dM < J log(l + 6f6g)

holds for all f^eL00 satisfying

(2) both 6f(0)t (o) > -1 and 6f (a-) t (a-)
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because (2) is equivalent to: I f x I c f(x,y) : xy > -1}.

In addition, using monotone convergence, (1) can be shown to

hold if 0 <̂  f,geM or 0 J> f, geM. Then (1) can be shown to

hold for all f,geM satisfying (2) using the following obser-

vations. First, log(l + fg) = log(l + f+g+) + log(l-f+g~) +

+ log(l- f~g+) + log(l + f~g~) . Next, when (2) holds for the

pair f,g it also holds for each of the pairs: f ,g 7

f , -g~ ; -f~, g ; -f~, -g". Finally, when (2) holds, then:

f unbounded above implies g ̂> 0; f unbounded below implies

g <£ 0? and the same is true when f and g are interchanged.

Clearly if f,geM satisfy (2) so do f|A and g|A for any

A G A . Hence the inequalities are strict except as indicated

in (3.2).

Similarly, log(l + 6fi ) « log(l + fg) « log(l + 6f6 ) for

0 < f,geM or 0 2 f.geM such that log(l + fif6 ) e L
1[0,a]

(v) (1) J log(6f+6 ) < Jlog(f+ g)dM < j log(6f+t )
o y o y

for all ^geL 0 0 such that

(2) 6 f (a-) + 6g(a-) > 0,

since (2) i s equivalent to I f x I c ((x,y) : x + y > 0} .

Actual ly , (1) holds for a l l f,geM sa t i s fy ing (2) since f
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and g are then bounded below, so we may approximate them by

increasing sequences of bounded functions satisfying (2) and

use the B. Levi Monotone Convergence theorem [6, p. 172]. The

inequalities are strict except as directed in (3.3). Similarly,

if f,geM satisfy (2) and log(6f+t ) e L [0,a] then

-log(6f+t ) «-log(f + g) « -log (6f + 6 ) .

(vi) We have the following continuous version of London1s

Theorem. Suppose 0 < f,geM or 0 >, f,geM.

(1) If H is convex, increasing and continuous

on [O,aD f then

J H ( 6f la} £ J H < f 9 ) d ^ £ J
0 g 0

f a J J
0 g 0

(2) If H(e ) is convex, increasing and continuous

on [O,OD [ then

J H(l + 6ft ) < jH(l + fg)dM < J
0 y 0

+ 6f6 ).
0 y 0 y

In either case, if H is strictly convex, then we have equality

on the left [right] iff f and g are oppositely [similarly]

ordered iff 6ft ~ fg [6f6 ~ fg].

(vii) Theorem (3.1) gives a necessary and sufficient con-

dition for the inequality in LorentzT Theorem (1.5) which simpli-

fies his condition (1.5.2). In (3.1) take X = ]0,lf with
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Lebesgue measure, T-. = [0,1], T. = [0,QD [ (i = 2,...,m),

j = {i}, i = {2,...,m} and f-^x) = x.
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