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Peter W. Day¥*
ABSTRACT

If T 1is a partially ordered set and the components of

a = (al,...,an) e TV are totally ordered, then a is called

a chain and we let a* = (ai,...,a;) [a' = (a',...,ag)] be

the vector obtained by rearranging the components of a in de-

creasing [increasing] order. If ¢ : T, x T G where T T

1 2 1’ "2

are partially ordered sets and G is a partially ordered abelian
group, then a necessary and sufficient condition on ¢ is given

so that

n

Cp(aj,bj) <z cp(a’jf,b'.)

n
z
= 3=1 J

p(a¥,b¥) <
1 J° ] i

IREE

J 1

for all chains aeTln, beTzn. Also a necessary and sufficient
condition on ¢ 1is given so that equality holds on the right
[left] 4iff a and b are oppositely [similarly] ordered. A

sufficient condition is given so that
p(a*,b¥) << p(a,b) << op(a*,b'),

where << denotes a preorder relation of Hardy, Littlewood and

*
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Polya. Similar results to these are given when ¢ is a function
of m variables. All these results are generalized for real
valued essentially bounded measurable functions on a finite
measure space. For specific choices of ¢ the inequalities

are shown to hold for even larger classes of functions. The
concept of "similarly ordered" is generalized for measurable
functions to give a necessary and sufficient condition for

equality.



REARRANGEMENT | NEQUALI TI ES
by
Peter W Day

1. | nt r oducti on.

In recent years a nunber of inequalities have appeared
whi ch involve rearrangenents of vectors in H' and neasurabl e
functions on a finite neasure space. The nost fanous one was
proved by Hardy, Littlewod and Polya [5 Theorem368]. If

a= (ar...,a) e M let a* = (aj,...,a") ,[a = (a", ... ,a"]

n
denote the vector obtained from a by rearranging the conponents
of a in decreasing [increasing] order. Then the inequality

they proved is

= =
: >
>

3 a*b'* < £ a'b < r a*bf (1.1)

for all a, Qe]R“. Equal ity obtains on the right [left] iff

a and b are simlarly [oppositely] ordered.

Pt

Recently, Mne [11] has given the follow ng product version:

If a. +b, >0 (i =1,...,n) then
1 1

n n n
n (aMbf) < Il (a +b )_< n (af+bl). (1.2
iz x 1 i= *x ! iz x !



Motivated by these two inequalities, London [7] has proved a

result which can be stated as follows:

(L.3) Let a and b have non-negative components. [Then:

n n n
. *
(i) iflf(ua{b'i) < iflf(1+aibi) < izlf(uaeiebi)

whenever f(ex) is convex for x > O and f£f(1) £ f(x) for

x> 1.

n n
E»f(aibi) < T f(afb¥)

n
(ii) T f(a¥b!) <
. 171 Nt io1

i=1 1

whenever f is convex for x > O and f£f(0) £ f(x) for x > O.

If f 4is strictly convex, then in either case we have equality

on the left iff (ab)* = (a*b')*; we have equality on the right

iff (ab) * = a*b*.

The choice £(x) = x in (ii) gives (1.1). To get (1.2)
when E has positive components, use £f(x) = log x in (i)

and 1/b' = (1/b)*.

A rearrangement inequality which is not a special case of
London's theorem is the following one of Ruderman [13], which

generalizes the left-hand inequality of (1.2):

P n Pp n
1 ¥ a, > 1 T ax (1.4)
s=1 k=1 XS 7 g=1 k=1 XS

whenever a s > 0 and a

3 = (ak,l,...,a

X, x,p




This inequality notivated G G Lorentz [8 to prove a general
rearrangenment theorem for non-negative bounded neasurabl e func-
tions on ]0,I[. To state his theorem we need the concept of
decreasi ng rearrangenent, which can be defined rather generally

as follows.

Let (XA M) be afinite neasure space (ms), and |et

M= MXji) denote the extended real -val ued neasurabl e functions

on X If feM then the decreasing rearrangenent 6" of f is
defi ned by
6:(t) =inf {s: Ju(x: f(x) >s}) £1) 0<t <a=juX .

Also, if EeA we let 1- denote the characteristic function

of E.
1 n
Let cp(X,u.., ...,u) beacontinuous functionon ]0,I[x [OQ oo["
Foll owi ng Lorentz, in any inequality involving cp we will omt

t hose vari abl es which are the sane for all occurrences of cp in

the inequality. Thus

Cp(X, Uz, -« vy Sky ooy Up)>CpiX, ™, . .-, Ik, ..., Up)

K - K
woul d sinply bewritten cp(s. ) > cp(r, ) .



(1.5) THEOREM (Lorentz) . _ri _order _that we have
Pl rt
J cp(x, f, (x), .. .nf (x))dY<J cp(x, 6. (X),...., & (x))dx
0] - 0] E n
for all non-negative bounded neasur able functions foyo.., o

on ]G0, 1[ _it:_Ls necessary_and_sufficient that the follow ng

two conditions be satisfied;

(1) cp(u. +h,u .+h) - cp(u.+h,u.) - cp(u.,u.+h) + cp(u.,u.} 2 O
1 D ID *“D *D

&
(02) _[ [cp(x—t,u.+h) + cpCx+t™u.) - cp(x+t,,u.+h)
0] X 1 1
- cp(x-t,u)]dt 2 O

for all 0<x<1, w=>0 (k=1,..., n), h>00< 6 < X,

6 <1- X, _and i1 " j. X _addition, [if cp _has_continuous

partial derivatives, then (1) and (2) are equivalent, respec-

tively, to

(1) 2o >0

(2) 2.0 < o.

axaui

Ruderman's inequality (1.4) follows by taking cp(u,i, o, u) =
B
¥ -log(u,,...+u, and f;.= E

a"g |}(5 , k=1,...
o=1 1)/p, s/pl




Actually, Ruderman's inequality can be deduced without
(1.5), using some theorems introduced by Hardy, Littlewood and
Polya to handle inequalities involving rearrangements and con-

vex functions. We may define them rather generally as follows.

Let (Xl’ Al, pl) also be a finite m.s. such that

4

+ 1 1
a = pl(xl) = u(X). 1If £, g €L (X,u) UL (Xl’“2) then

t t
g << £ means J 6 < f ) for all 0< t £ a, while
o 9 o f -

a a
g < f means g << £ and J 6 = J Oc. In the discrete
o 9 o f

case these definitions become: b << a iff Zg=lb§ < 2?=1a§

for all k =1,...,n; b <a iff in addition we have equality
when k = n. If we write f ~ g to mean Gf = Gg then:

f << g and g=<x< f iff f£f <g and g < f iff f ~ g.

For example,

2+ B < ax+ b (1.6)

follows easily from (1.1), since there is a permutation ¢ of

{1,...,n} such that (E}E)g = (E+E)g(i) and hence for kX = 1,...,n,

k k k k k

Za ..+ Tb ., L Ta¥+ T b= T (a%+b*)¥ ,
I = I T N e

with equality when k = n.



The preorder relation < was first introduced in [4]

where it was shown that

n n
EH(b.) < EHa.) (1.7)
i =l X i =l !
for every convex function H on an interval | wth a", b"€l
iff b <a Later it was shown that (1.7) holds for all in-

creasing convex H iff bN« a~[12, p. 164] .

A A
Using (1.6) and induction we easily deduce E a, < T> a*
k3% R
where a, = (a .-,...,a ). If every sumis greater than O,
Iy Ky J K, p
we may use H(x) =-log x in (1.7) and get Ruderman's inequality,
In the following section we will give a general theorem

for discrete rearrangenents which includes all of the inequalities
above except (1.5), and which gives a necessary and sufficient
condition for equality in each of these cases. In the final
section these results are extended for real valued nmeasurable

functions on a finite neasure space so that (1.5 is included.



2. The Discrete Case.

Let T Dbe a partially ordered set. If a = (al,...,an) € Tn,
then a will be called a chain if {al,...,an is totally

~

ordered. If a 1is a chain, then a* and a' can be defined

~ ~ ~

as in Section 1. If a and b are chains in a partially

~

ordered abelian group G (written additively) then a << b

~ ~

and a < b can also be defined as in Section 1. It will be

notationally simpler and should cause no confusion to denote

every partial order under consideration by <. A partial order

is understood to be anti-symmetric, and x < y 1is used to mean
x <y and x #vy.

We use the following notation in addition to that established

in Section 1. Let Tl""’T be partially ordered sets, let

m
— n — °

ik = (ak,l""’ak,n) € Tk (k =1,...,m), let cp.Tlx... me—->G,

and let I and J be disjoint subsets of K = {1,...,m} with

L=K- (IuJ). If 1< i,j < n, then cp(aI .,a_ .) 1is the
- - »1°7°J, ]
function defined by cp(aI’i,aJ’j)(uk : kel) = @(cl,...,cm) where

Cp = ak,i for keI, Cx = ak,j for keJ, and Cp = W for

_ n . C
keL. If b, = (bk,l""’bk,n) e Tp and {I,J} 1is a partition

of K, then (aI,bJ) is the sequence of vectors defined by

(EI’EJ)j = (cl,...,cm) where S = ak,j for keI and

Cp = bk i for keJ. We simplify the notation slightly when



I or J is empty or a singleton, writing for example, a

~K
or (31”"’Em) in place of (EK’Eﬁ)'
We say two sequences s = (sl,...,sn) € Tln and
t = (tl,...,tn) € T2n are similarly ordered if for every
1<{{i,j < n, s; < sj implies ti < tj , and ti < tj implies
si‘g Sj’ We say s and E are oppositely ordered if s; < sj

implies t. Lt;, and t, < tj implies o L s;- In either

[

case, if s 1is a chain, it is equivalent to have only the first

implication.

Let {I,J} be a partition of K = {1,...,m}. We consider

the following two conditions on ®: Ty X ..o x'ﬁn-»<3.

(&) [(A"] If x,,y, e T, with x, <y;, and k # i,

then w(yi) - m(xi) is [strictly] increasing in W when
k and i are in the same set I or J, and [strictly] decreas-
ing in N when k and 1 are in different sets I and J,

for all 1< i,k < m.

If G= R, 1if each Tk is an open interval of R, if

the first partials of ¢ are continuous on Ty X.eo XT_, and

if the second partials of © exist on Ty X ... XT_, then
Yy > X implies the difference in (A) is increasing [de-

creasing] in uj (3 # 1) 4iff Y; > X implies %%j(yi) - %%j(xi)

is non-negative [non-positive] iff %% is increasing [decreasing]
J




in u,. Hence condition (aA) 1is equivalent to:
a2
a)! SG—%G— > O when i and j are in same
i~ set I or J
£ O when i and Jj are in different
sets I and J

on Ty X...xT ~ for all 1<1i#3<m.

(A*¥)' denotes the above condition with strict inequality.

Clearly (A*)' implies (A%).

(2.1) THEOREM. Let o :Tl ) S X'Rﬁ-* G, where each

Tk (k = 1,...,m) is a partially ordered set, and G 1is a

partially ordered abelian group. Let (I,J} be a partition

of K= {1,...,m}.

(i) Condition (A) is necessary and sufficient that

n

(1) Z ola,s...,a). < T o(ax,al).
. n

for all chains 25 €Ty (k = 1, ,m)

(ii) Condition (A¥*) is necessary and sufficient for the

following to be equivalent for all chains akeTkn.

(a) Egquality occurs in (1).




10

~

(b) a and gq are similarly ordered whenever p and ¢

are in the same set I or J, and oppositely ordered

when p and g are in different sets I and J, for

all 1< p,g < m.

() olay,...,a) ~olag,ay).

(iii) Suppose the range of ¢ is totally ordered. If o

satisfies condition (A) and is increasing [respectively decreas-

ing] in for keI and decreasing [respectively increasing]
ingl in v, Ior

in u for keJ then

— 'k
(2) o(ay5--.,3) << olaf,al).
. n
for all chains EkETk (k = 1,...,m).

Proof. To prove necessity of (A) for (1), 1let 1<k,i<m,

let X;,y; € Ty with X < Yy let a, = (xi,yi,...,yi),
let Uy sV € Ty with u, < Vs and for j # i,k let ujeTj
and ij = (uj,...,uj). Case 1l: k,i are in the same set I

or J. Let a;= (vk,uk,...,uk). After cancelling terms in (1)

we obtain m(xi,vk) + @(yi,uk) < @(yi,vk) + m(xi,uk), SO

w(yi,uk) - e(xw) < o(y;,vy) - o(x;

l,vk), and hence (A) is

true in this case. Case 2: k,i are in different sets I and J.



11

Let a,

e (u,Kv,K, C ,Jg~) . The proof is simlar to Case 1.

This conpl etes the proof of necessity.

Bef ore continuing we introduce sone notation. For chains
a, eT," wite h.=S .a, if |_<i <j <n are such that

for P={k€l : a, . <a..), Q={keJ : a._..>a. .} and

L = PUQ we have: b for keL 1is the sequence obtained from

~k
a, by interchanging a. . and a, a While b, = a, for
ot her k.
Assume by, =S .ary wth P and Q as above, and let
B Afa o <k<met
b = m(aP,i’aQ,i) - m(ap,j’ao,j)' Also NS
p =PO [0, ... ,k} and Q =Q(1{0, ... ,k}. Then
"5 [opta. ) - ol )]
p = L |cpla. 1,80 Ao A~ ) - CP(@n i, B ., a .
k=0 ~ “ Q10 Qpyq-d
m"l ]
* B Llo@ap 02 ,50%,5) © ®Cep a0 L0 %0, )
is a sumof differences like that in (A , so
3 ¥l p,i235.q,i) £ ¥ p 52259, 4

On writing it out, this is the same as

(4) cp(ﬁaK)i + cplan); £ tp(EK)i + qF’(__p}<):l'-’ SO
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n
(5 oS op(an) —< PR -

If (A) holds, inequality (3) and hence (5) will be strict

unless PUQ=0 or a . =a.. forall ke (I-P) U (J-Q .
There are b(1), ... ,b(q) such that b(l) = ar pb(a) = (a}+23
and for each 1 <k < m1l there are i and | such that

b(k+l) = S. .b(k). Hence

o~ l,JN

n , .
Zymy o) < - < H cop(b(a))i

whi ch proves (1).

In (ii) it is clear that (b)) => (¢c) => (a) al ways. W
begin by assum ng (A*) holds and show that (a) =*> (b) . Suppose
(b) does not hold. Then an exam nation of cases shows there
are 1 <i <j < n such that for P and Q as above we have

PUQ/ ~ and there is a ke (I-P) U (J-Q Such that

a. . M~a. .. Hence letting b =S .a_ w have
n n n n
N * 1 - * 1
rE:>|cp(at~TW)r < rETO,(bATk)rr-i rE|C|0(Ab 00), r:FT CD(~<'X:1 A)
since b*;{: a*i‘ , k=1,...,m Conversely if (a) => (b) - then

the arguments used in proving necessity of (A for (1) show

that (A*) holds.
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We turn now to the proof of (iii). Since w(g;,i&)"m(ii,i3),

it suffices to prove (2) assuming ¢ 1is increasing in the
I-variables and decreasing in the J-variables. In this case

let EK =S Then

1,33k

(6) (By) 5 < @)y, @(ap) 5 < ol

J

"
We call m(iK)i and m(gK)j the "old terms", and m(EK)i
and cp(bK)j the "new terms". These are the only terms where

v(a,) and m(EK) differ

Let 1 < k < n, define sequences

o= (0(ag)y : 1<r<k), B = (k¥ : 1<r<k),
k
let ZTa = T ol(a )§ and define LB similarly. We show

that Ta < T8 .

If exactly one of the old terms occurs in a, then (6)
implies that the only new term in B is @(bK)i. For if
m(EK)j is in B, then (6) 'implies that B contains both

new terms, so there are n-k terms of m(aK) which are <
m(EK)j, in which case (6) implies that both old terms occur

in x Hence 8 is obtained from a by replacing an old

-~ HUNT LIBRARY
CARNEGIE-MELLN eMiVERSITY
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termby the larger term cp(NtR i Thus Ta <. EE .
|f both old terms occur in a* then (4 implies their

sumis < the sumof the newterms, which is <* the sum of

cp(b..) . and any term ;> cp(b.) . , in case cp(b.) . is not
in /3. Hence Ea < E£

I'f none of the old ternms occur in a, then either
a= £, or )3 s obtained from a by replacing one term

of a by the larger term cp( Thus la "~ E3 . The

g0 1 -
proof of (iii) is finished as in (i). This conpletes the

proof of the theorem

When cp is a function of two variables, conditions (A
and (A*) sinplify, and the arguments proving (2.1) have a

symmetry which shows how small the sums can get.

(2.2) COROLLARY. Let cp : T, X To—*G.

(i) _A necessary and sufficient condition that

n n n
(1) _lj.___'(]:-p(a/\gb-,}' < jllcp(a:], b.j) < j=Slcp(ag , bf)
for all chains aGT,", beT," is that the difference
(2) | cp(d,y) - cp(c,y)

be increasing in yeT, whenever d > c, d,ceT,. A necessary
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and sufficient condition that for all chains a and Db the

~ A e——

inequality (1) _is strict on the left [right] unless a and

~

b are oppositely [similarly] ordered ig_that the difference

(2) is strictly increasing.

(ii) Suppose the range of o is totally ordered. If

in addition to (i) ¢ 1is increasing (or decreasing) in both

variables, then

p(a*,b') << p(a,b) << o(a*,b*).

If (2) holds with ¢ replaced by -9, and o 1is increasing

in one variable and decreasing in the other, then

p(a¥*,b*) << p(a,b) << p(a*,b').

(2.3) REMARKS. (i) The condition (2.2.i.2) is equivalent

to having o(x,d) - ow(x,c) increasing in XxeT whenever d > c

1
and d,ceT,. ’

(1) Ssince ©(a*,b*) ~ o(a',b') and g(axb') ~ o(a',b*),
the relations (2.2.ii) may be rewritten:

w(a',b*) << w(a,b) << p(a',b'),

and similarly for the other.
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(2.4) EXAMPLES. Let G =R.

(1) T, =T, = R and o(x,y) = X + y:

(ii) T, = T

5 R and o(x,y) = x-y:

a¥ - b¥* <a - b < a¥ - b'.

(iii) w(x,y) = xy : For Tl = T2 = R

we obtain (1.1) with the indicated condition for equality.

For T =T

[0, ®[ or T T2 = ]-a ,0] we obtain

1 2 7 1
g*b' << ab << a*g* whenever g,g e [0, co[n or a,bel-m ,O]n
When Tk= [0, [ (k=1,...,m), I =({1,...,m} and JT =6
then cp(ul, ... ,um) = Uj...up satisfies (A*) and we obtain

a companion to (1.4), also proved by Ruderman:

m
I a¥

a. . < .
- 1 i=1 o)

1 1,]

n~Ms
(= =]
s

1 i j

The inequality is strict unless all of the sequences

ay = (ak,l’ v ’ak,n) are similarly ordered.
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(iv) o(x,y) = log (l+xy) satisfies (A¥) with I = (1,2},

J = @ whenever T, X Ty © {(x,y): xy > -1}. Thus

n n n
.ﬁ (l-+a;bi) < ' (l-faibi) < .n (l-+a§b{)
i=1 i=1 i=1

whenever a;bi >-1 for i=1 and i = n. The inequality
is strict except as indicated in (2.2.i). The choice

Tl = T2 = [0, @[ or ]-a,0] gives:
log (1+a*b') << log (1 +ab) << log (l-+i*g*)

whenever i,g € [O,cn[n or ]—a>,0]n.

(v) o(x,y) = -log(x+y), T,y x T, C {((x,y) :x+y > 0}:

-log (a*+b') << -log (a+b) << -log (a*+b¥)

whenever a; + b; > 0, and in particular we get (1.2) with

the inequality strict except as indicated by (2.2.i). The
example a = (6,5,2,1) b = (-3,-4,-2,1) shows that (1.2)

may fail under the condition a; + bi > 0 for all i.

(vi) Suppose ¢ satisfies the hypotheses of (2.1.iii)
and H is increasing and convex on an interval containing the

range of o. Then Py = Ho o satisfies condition (A). 1In
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this way (1.7) and (2.1.i) may be used to prove (2.1.iii).
If in addition, ¢ satisfies (A¥) and H is strictly convex,

then ®y satisfies (A¥%).

We prove the first statement. Since H 1is convex, if

r, < Sy T, < sy, Iry # r,, s; # s,, then

H(rz)"H(rl) H(Sz)-H(Sl)

< -
| Sy T 81

(1)

)

Assume ¢ 1is increasing in its I-variables and decreasing

in its J-variables. Let 1i,keI, Yy > Xis Vi > u -

We wish to prove

(2) Hp(y,,w)) - Ho(x,w)) < Hply;v)) - Hlolx,v)).

Let rl = Cp(xi,‘lk), r2 = CD(Yi;uk), sl = CD(Xi:V-k); 52=Cp(Yi,Vk)-

Now r, - ry L8y - S, and H 1is increasing, so (2) is

obviously true if r, =r or s, = s,. Otherwise, we have

1

0 < r, - ry < S, - sl and both terms in (1) are > O;

multiplying, we obtain (2). The other cases are similar.
When H 1is strictly convex, the same proof works except that

all inequalities are strict.
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(vii) London's Theoremfollows from (2.2.i) and the
previous exanple as follows. The conditions on f in (1.3) are
equi val ent to saying that in (ii) f and in (i) f(e®) s
convex and increasing on [0, &[. W now use the previous
exanple with H=f and cp(x,y) = xy for (ii) and H(x) = f (e
and cp(x,y) = log (1l+xy) for (i) . If H is strictly convex,

we also obtain the conditions for equality.

(viii) Ruderman [13] has observed that (1.4) generalizes
the inequality between the arithnetic and geonetric neans. Using

(2.1) we may obtain the followi ng inequality for certain quasi-

arithnmetic symetric neans. Let U be an open interval of H,
let f,g : U—=x H be strictly nonotone and | et fog"1 be
convex on g[U]. If f is increasing then

[ 9(*1>teeet9 (1 )\ [ ftro+ - +Q,,) \
"t | a /< \ 5 /

for all oo rrclaU, while if f is decreasing, the inequality
reverses. |If f ©g_:L Is strictly convex, the inequality is
strict unless Fy, = 0 =T, To prove this, in (2.1.i.l)

| et a, = (r,l, Fro, . .. hr__*n,rn), Ha‘l_g(rug,r:a,...,rn,rl),...,

a8, = (rnry,...,r 2 r -) and note that

-1/ g(u-)+...+g(u ) \
@(Up, ...,u) =fog" | = S )
w3 Yoo n /I
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satisfies (A) with I = {1,...,n}. If f o g-l is strictly
convex, then ¢ satisfies (A¥*), and the inequality is strict
unless all the a, are similarly ordered, in which case

r. = ... = .
1 rn

3. The Continuous Case.

In this section we show how to generalize Theorems (2.1)
and (2.2) for L® functions on a finite measure space when
¢ 1is jointly continuous. Let (X,A,u) Dbe a finite measure
space with a = p(X) <@, let Rf denote the essential range

of f e 1L® and let Ig= [ess. inf f, ess. sup f] = [Gf(a-),éf(o)].

a

If £ .,fmeL and o : Re X...X Re — R is bounded, then

1 1 m

the function m(fl,...,fm) defined by }{kocp(fl(x),...,fm(x))

is in 1.®. 1f feM(X, u) then denotes the increasing

te

rearrangement of £ which is defined by 1f(t) = bf((a-t)—)

for all 0 t < a. If (1,3} is a partition of ({1,...,m}

then (Gf s lg ) denotes (gl,...,gm) where g; = éf. for iel
and g; = tfi for ied.

We will say that £f,geM are similarly [oppositely] ordered

if ess. sup f|A < ess. inf f|B implies ess. sup g|A < ess. inf g|B

[ess. sup g|B < ess. inf g|A] whenever A,B are disjoint measurable
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sets, each of positive measure. In particular, if £ and g

are similarly ordered, then for all te R,

ess. sup g|{f<t} = lim ess. sup gl{f(t—%ﬂ}g ess. inf g|{f>t}.
n ~@

Thus if £ and g are similarly [oppositely] ordered, then

ess. sup g|A £ ess. inf g|B [ess. sup g|B { ess. inf g|A]

whenever A c {f<t} and B c {£>t}. The numbers involved in

these inequalities may be extended real numbers.

(3.1) THEOREM. Let o : Tlx...x Tm—*]R be continuous,

where T .,T, ~are intervals of R, and let {I,J} be a

17 -
partition of {1,...,m}.

(i) If o _satisifes condition (A) _then

a
(1) [otgy, ot rap< [ oo, 1)
1 " o i1 Ly
for all f,eL® such that I, < T, i=1,...,n. If (X,A,p)
1

is non-atomic, then (A) _is necessary for (1).

(ii) f ¢ _satisfies (A¥) _then the following are

equivalent:
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(a) Equality holds in (1).
are simlarly ordered whenever

(b) fl. and f:j

i and | are in the same set | or J, _and oppositely
ordered whenever i and | are in different sets | and
J forall 1 <ijj £Em

(c) cop(f,, .. .3f) ~cp(6", t-).

and i increasing [respectively

lJE cp _satisfies (A
and decreasing [respectively increas--

(iii)
decreasing] in
ingl] for ieJ* then for all f'1 as in (i) we have

u. for el
1

V(f,...,f] « cp(6 , t¢ }.
~L T

(3.2) COROLLARY. Let cp : T, x T, —->» IR be continuous,

where T; and T, are intervals of M and | et f,geLQD with
Ri < 14 _a_n_g_ Rg (o T2.

s _increasing in yeTy

(i) B/P (1): cop(dty) - cp(cty)

whenever d > ¢ gﬂd_ d*ceT, o t hen
a a
(2) JO ep(6r, tg) <3 ep(f,g)djii 1 Jo cp(6f,g).

then the inequality (2)

(1) JLS strict,
f and g are oppositely

If the nmonotonicity in

[right] unless

is strict on the |eft

[siml|arly] ordered.
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(ii) If in addition to (i) o 4is increasing in both

variables or decreasing in both wvariables, then

m(éf,1g) << o(f,g) << m(éf,ég).

(3.3) REMARK. If (*) o(d,y) - ow(c,y) is decreasing
in YeT, whenever d > ¢ and d,ceTl, or in addition ¢ is
increasing in one variable and decreasing in the other, then

apply (3.2) to @l(x,y) = o(x,r+s-y), £ and gy =r+s-g

where I _ = [r,s]. The result is that the inequalities reverse:
(i) [“ o606 < [ otran< | v,
o £’ g ’ =Yy £’ g
(ii) m(ﬁf,ﬁg) << op(f,g) << m(ﬁf,tg)

If the monotonicity in (¥) 1is strict, the inequality on the
left [right] is strict iff f and g are similarly [oppositely]
ordered.

We begin by showing that it sufficies to prove (3.1) and
(3.2) for non-atomic measure spaces by embedding (X, A, p) in
a non-atomic measure space (X#,A#,p#), which we define as

follows. Now X =X U U A,, Wwhere X = is non-atomic, each
neP

A is an atom, p(AiﬂAj) =0 when i # j, and P = (1,...,p)

or {1,2,3,...}. Let I[an,bn] neP be disjoint intervals of R
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with end points a, and bn such that bn— a = ”(An)’ and
define (X#,A#,p#) to be the direct sum of (XO,A n Xo’“) and
(I[an,bn],x), neP, where A is Lebesgue measure. If £eM(X,u)
then f 1is constant p- a.e. on each atom, and we define

f# = fl, + ¥ (fla)1 Then f# ~f so & 4= Gf

Xo neP n I[an’bn]

Let @ ¢ T X...X Tm-OJR and let fieM(X,p) with Rf. c T.

1 i 1

(i =1,...,m). Then

¥ ¥ _
o(f ...,fn) = m(fl,...,fn)l + T [o(f

,E)|A 11
n n
o nebP

X 1’ I[an,bn]

- ¥
= (£, -+, £)" ~0(£y,...,£).

In addition it is not hard to see that £ and g are similarly

t t

[oppositely] ordered iff £ and g are similarly [oppositely]
ordered. Thus if (3.1) and (3.2) are true when (X,A, ) is

non-atomic, then they are true for any finite m.s.

Before proceeding with the proof when (X,A,u) is non-atomic,

we require some lemmas.

(3.4) LEMMA. The following three statements are equivalent.

(1) (X, A,u) 4is non-atomic.
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(ii) There is a measure preserving map o :X-» [O,u(X)].

(iii) There is a map # : [O,u(X)]—» A such that

p(d(t)) =t and t < u implies @B(t) < B(u).

Essentially, if ¢ is given, then ¢ 1is not constant on
any set of positive measure. The maps ¢ and @ are related

by @g(t) = g_l[O,t[ and ¢(x) = inf {t : xeg(t)}. For a con-

struction of ¢ see [1, (3.1)].

(3.5) LEMMA. Let (X,A,u) Dbe non-atomic. Suppose

N
{Dk}k___l is a partition of X by measurable sets. f >0,

— —

f X Dby measurable sets

then there is a partition [Ei]?_

1
such that u(Ei) = u(X)/n (i=1,...,n) and p(U{Ei :Ei

intersects more than one Dk}) < €.

Proof. Let o = pu(X). If a =0, the lemma is trivially
true. Otherwise, rename the sets D, so that p(Dk) = 0 for

1{k<p and u(@) >0 for p< k<N. There is a g:[0,a] A

such that pu(g(t)) =t, t<u implies @g(t) < g(u),
g(©) = U D, and g( T (D))= U D for
1<k<p 1<k<a 1<k<q

q=p,...,N. For any n such that a/n < min {p(Dk) : p <k <N}

and for E; = B(ai/n)- B(a(i-1)/n) (i =1,...,n) we have that
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each E. intersects at nost two sets D, of positive neasure,,
1 K
and at nbst NI of these E intersect nore than one D,.
1 K
To finish the proof, choose n so that also a(N1l)/n < e.

(3.6) LEMVA. Suppose_ (X A fx) _is_non-atomc. Let

D . o
{s(k)lo}l-___-J_! (k =1, ... ,mM _be m_sequences of sinple functions.
(o))
Then there are m sequences {t(k)._}._, : (k =1, ...,,m _(_)f_
sinpl e functions such that
(i) _For each i, t(l).l,...,t(m)l. have the sane sets of

constancy, and these sets have equal neasure;

(ii) Eor.each k=1,...,m s(k).l-t(k) .1—*O\x-a.e.

as i —*m?

(iii) PBoreach k=1,... mand_i~1, 11(k) . | < 1.s(k) J
Proof. For clarity of exposition, we prove the lenma in

the case m= 2. The proof for larger m wll ‘be readily apparent,.
n

Bef ore consi dering sequences, let s(l) = S a.IAI and
=l
P
s(2) = 2 b3;|B where (A} and {B} partition X  and
. . | ” s

j =l j

N
| et (I\}k:1={A|-nB.J: 1<i<n 1<j <p}. Let e>0.

r
Then there is a nmeasurable partition {ch q=L @S in Lemma (3.5).
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For each g =1,...,r, if Eq intersects only Ai n Bj then

Eq © 24 n By and for k = 1,2 we define t(k) |Eq=s(k) A, NBys

we define t(k) = O elsewhere. Then [t(k)]| < [s(k)]| and
p({s(k) # t(k)}) < €. Hence given (s(k)i}g_‘ll there are
sequences {t(k).l}c.'l)::L satisfying (i) and (iii) such that
p({s), # k) < 2"1.  Then
( T n U | > 1/q)
({s(k), - t(k),;»0)) =u( U N U {|sk), - tk),|>1/q)})
g * 7 Bl Nel e 1 i
® .
< lim  lim r 271 = o,

g”® N~"m i=N

and the proof is finished.

(3.7) PROPOSITION. Suppose (X,A,u) is non-atomic, let

{I,J} be a partition of (1,...,m} and let fl,...,fmeM(X,p).

Then the following two conditions are equivalent.

(i) £, and fj are similarly ordered if i and Jj are

in the same set I or J, and oppositely ordered if i

and j are in different sets I and J.

(ii) There is a measure preserving ¢ : X - [0,a] such

that ﬁfio c = fi p-a.e. if ieI, and tg. o o=f

. J
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Pr oof , (it) == (i): Let i and | be in the sane set
| or J and let 1 and k be in different sets | and J.
Suppose A and B are disjoint sets of positive neasure such

that ess. sup fi | A< ess. inf fAB.. There are A cA and
B, CB such that U(AA.), =O0=u(B\B ), ess. sup f.||'A:

supf.1|A| and ess. inf fl.|B: I nf fi|Bl. Then te<y[A1] and

UEg[B,J_] inplies 6; (t) < 6f|(u) so u <t and hence
1

- i

6+ (t) < 6¢ (u). Thus
] J

ess. sup fle = ess. sup f.j|Al<_’\ sup f.:]|Al < inf fj|B,J_

< ess. inf fj|Bl = ess. inf fjJB.

Simlarly, we get ess. supf,K|B__< ess. inf fy A which proves

the result.

(i) == _(ii): W introduce sone notation for this

part of the proof. If g,heMXjx), let

|g-h|“: inf {s+fx({\g-h\ >s}) : s >0},

the netric of convergence in fjrneasure [2, p. 102] . W let
[¢|* denote the metric of convergence in Lebesgue neasure on
[0,a].

For each n =1,2,3,... let U = {UY -}-v i A€ @Y enuner a-

tion of the finite collection of intervals
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{[n, +ODJ, [-®,-n[) UTf [(k-1)2" k2" : -n2"41 <k <n2"},
and for each i let u . e U . n 3R. For each heMX u) let
n, | n, | n
h =Eu . 1 . Then h —=* h pointwise u- a.e., SO
n [ o P IR TR n ’
n, I

6. —>» 6 pointwi se. a.e. [14,, p. 508, (18.21)]. The intervals

of Un (being disjoint) are ordered in the.obvious way: - for

any two of them the larger is the one whose points are all

greater than those of the other. Then (U .) .-, and (U _.) - 51
n, I I 1 n,l |

denote as usual these intervals in decreasing and increasing order,

respectively. Cdearly u* . € U* . and ut . e U
n, | n,i n, i n, i

Finally, if A and B are disjoint sets of positive neasure

and s = ess. sup hfA<Cess. inf hfjB=1t, then ess. sup hn|A

<M ess. inf h |B for all n ;> 1. Indeed, we have SE€U_ ., and
£ A X1, 1
i i 7AN A 1 f
teUn, ; for sone i <", so ess. sup hn | A Up i U g <£

< ess. inf h IB

Ve will illustrate the proof of (i) =£> (ii) in the case
m=3, | ={1,2} and J = {3}. The general nethod of proof
will then be evident. For convenience let f = fi’ g = f,,

h = fs, and let sequences (f,)* ~,~ Ahyn Dbedefinedas zhoye,

Let An'i’ —_ fnl/\_!,/\ V| .= g_~_|'[UniTJ and /\i n 11n 1/\! 1_
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4
n
In addition, let s = {D ] be a sequence of partitions

n,i’i=1

of X such that for each n, § is a refinement of sn,

n+l
and p(Dn,i)‘g a/n for all 1< i< 1, - Finally, let
a(i,j;k,é)n = 1g§2i “(An,q) + lgégj “(An,i n Bn,q) +
+ lgé; u(An,i n Bn,j N Cn,q) +
+ 1g§<p p, ; NB S NC oy ND )
let Vn(i,j,k,p) = {a(i,j,k,p)n, a(i,j,k,p+l)n[7 for all

NB_ .NC

i,3,k,p such that v _(i,j,k,p) # g let oy :An,i n,3 "Cn,x

D 5—9 vV, (i,3,k,p) be measure preserving, and let
b

v, = {Vn(i,j,k,p) : i,j,k,p > 1}. Since

c A .- z (a ) z (A ) [
n n,1i lﬁq<3 H n,dq liqgj H n,q

I
(=4

whenever “(An,i) # O we have fn g o © p-a.e.

In view of the remarks preceding (3.1) we have:

ess. su A . inf ala . and
p ol n < ess. 1 T IA n

L i+l = R

ess. sup h{An . N B_ . < ess. inf h|A N B
3

i n,j n,i n,j+l

whenever these sets have non-zero measure, so the same inequalities
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hold with g and h replaced by 9, and hn respectively.

The first inequality implies that g, = Zﬁ u; 5 %A n B
2 n,i

j n,j
for some increasing sequence (ij) having il = 1. Hence as

with £, ng«o °, =9, HM-2a.e. Similarly, thno o, = hy

Now for all g > O we have by construction that Un+

q
refines Bn’ and gn(x) and on+q(x) lie in the same member
o
of YV, . Hence Ign(x) - qn+q(x)| < 3 p-a.e., and thus

there is a ¢ : X-»[0,a] such that o,— © p-a.e. Then

Gg e ﬁc a.e. sO ¢ 1s measure preserving.
n

Let G Dbe the set of points of discontinuity of bf on

[0O,a]. Then G 1is at most countable so y(g-l(G)) = 0, and

hence 6f o qn—+»6f o ¢ pointwise u-a.e. Now for finite
measure spaces, pointwise convergence implies convergence in

measure, and |6f e o, - b0 anlu = |6f - ﬁf,%, S0
n n

|5facn—5foql_<_|5f-6f|-}\+|5f°o‘n~'5f°d‘l—io
n H n H

and hence fn = an °o ¢

n— 5f o @ in measure. Then a subse-

quence of fn converges to Gf o ¢ pointwise a.e. so

f=0_.0 ¢. Similarly, g=68_e ¢ and h = e @ p-a.e.

£ g

completing the proof.

3

We can now prove (3.1) and (3.2). For clarity of expo-

sition we will only present a proof of (3.2). The proof of

(3.1)
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will then be clear. With regard to (3.1.ii) we remark that
(3.7) shows that (b) => (¢) => (a) always. The proof of

(3.2) will illustrate the proof of (a) => (b) when m = 2,

n
PROOF OF (3.2). Recall that a = y(X). Let v = ZTa.l

. E.
j=1 7 %3
n
and w = jzi bj lEj where RV c Tl’ Rw c T2 and p(Ej)==q/n
n
. = l « s o . Th = v ‘X_‘ l . . d
(3 P ,n) en §, jzi % 11 (5_1ya/n, Sa/nl an
6w’ ty? tw have similar expressions. When t = ka/n,
0<k<n we have
jt t n
6 = J * bl .).(. l . .
o @(6ys1y) o) jfl e(a*.k )J [(j-1)a/n, ja/n]
a k
= -!—]- .Z cp(g*’E'):]*
j=1
t t
and similar expressions for fo 6w(v,w) and . 6¢(6 ,5w)' In

particular t = a gives expressions of this type for

a Q
Io w(Gv,tw), J o(v,w)dy and IO m(év,éw). In case (i),

(a4 (o4
(*) fo 0(b,,1,) < I o(v,w)dy < ‘[o @ (6,,0.)
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while in case (ii), (2.2.ii) gives for t = ka/p

t t t
() .fo % (8,1, < IO Op (v, w) < .ro % (5,,5,) "
Now in (*¥) each of the integrands is constant on each of
the intervals [(j-1l)a/n, ja/n[, so the integrals are linear
functions of t on these intervals, and hence (**) holds for
all o< t< a. When |v| < |f] and |w| < |g|, then each of
the integrands in (¥) and (*¥*¥) is bounded by a constant which
depends only on f and g, because o is bounded on If x I

g9
and R, X R, < I X Ig. Using now (3.6) there are sequences

vy and W of simple functions like v and w above such

that v,—> £, w;,—»g, lvi|'g |£| and lw. | < lgl, so

6v£—+ 6f and éwi_*'ég a.e. Taking limits and using the

dominated convergence theorem, we have that (¥*) or (¥¥)

holds with v and w replaced by £ and g respectively.

We now show the condition for equality on the right in
(3.2.i). Assume ¢ satisfies (A¥*), suppose f and g are
not similarly ordered, and we will show that the inequality on
the right is strict. There are disjoint sets A and B of
positive measure. such that ess. sup f|A < ess. inf £|B and
t = ess. sup g|A > ess. inf g|B =r. Let r < s, < s, <t and

let D c {xeA : g(x) > sz} and E c {xeB : g(x) < sl} with

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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O0< u() = p(E) = B. Then let op * D— [0,B[ and op * E-=[0,B]
be measure preserving and define
6f|D e o5 on D Gg]E e oy oOn D
— -
f' = 5f|E o GE on E, g 6ng °o g‘E on E
£ elsewhere g elsewhere

Then f' ~ £, g' ~g, ess. sup f|D < ess. inf f|E,

ess. sup g|E < ess. inf g|D, and for all 0 < u < B we have

Gle(u) < GflE(u) and égIE(u) < GgID(u). Hence

r B
JD o(f,g)du + JE w(f,g)du < IO Cp(ale,ﬁg’D) + cp(ﬁflE,ﬁg]E) <

B

- [ eegnap+ | e ,gnap.
D E
Adding J‘ w(f,g)du = I w(f',g')duy we obtain

X- (DUE) X- (DUE)

r (e (o]
[ otEarap < [ oe,90ap < Ioco<6f,,6g.>= JO ® (b, )

and the proof is finished.
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REMARK. Depending on the choice of cp and the intervals
T, Theorens (3.1) and (3.2) may hold for a larger set of
functions than L®. Indeed, in the proof of (3.2), to get
inequalities (1) or (20 we only needed to be able to inter-
change limt and integral in equations (*) and (*) respec-
tively. To get the condition for equality, we only needed to
know that if equation (3.2.1) holds for f and g then it

also holds for f|A and g|A whenever A e A

For exanpl e, suppose f.l,...,fmeh1 i mpl i es cp(f.l,...,f}nGLl«.
Now it follows from [10, p. 93] that |v|] < |f|] inplies

|@|_<C ]faf|atad1d|11% |[_<C |tf], sowe nmay use [3] and the

dom nat ed convergence theoremto conclude that (3.1.1) and

(3.2.1) hold for all |t functions. Finally since f_l_,,...,fmeL:L
I mplies fl|A...,fm|AeL1 the condition for equality also holds
for all LY functions. Cher illustrations appear in the

foll ow ng exanpl es.

(3.8) EXAMPLES.

(i) 6f+tg<f+g<6f+6g for all f,geLl.

(i) 6"-6_<f-g<6.p-i o for all f geLt.

The (i) and (ii) are easily seen to be equival ent using

[10,p. 93]. Wile 6ft:I <6f+6g is well-known (see [10,

p. 108]), the fact that 6; - Gg-<f - g isnew In [10,p. 107]
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it is proved that: g<feLl inplies |gl -<< |f|. Hence
| 6 - Ggl « If - g\, generalizing [9, Prop. 1, p. 34]. It
then follows that \\fg- f||,-%0 inplies || 6- - 6j|, -*0,
p -L rn r x
wher e {fﬁ} isanet. Using [10, (9.1), p. 103], the inequality

g
6 - 6 <f - g can be witten equivalently:

P __r-Tﬂ(E)
JlE6f T Je »g(«-t)dti] o 6+ +g

for all Lebesgue neasurable E c [0,a], where m denotes Lebesgue
nmeasure. This is an interesting generalization of [10,(10.1)].

s 184

P
(iii) f 61 < ffgdu<\ 66 holds for all £,ger®.
U - -

@]
If 0< f,geM we may approximate f and g by non-negative
simpl e functions and use nonot one convergence to show that it
holds for these f and g also. By deconposing f,geM into
their positive and negative parts, this inequality can, as in

[ 10, p. 102]1, be shown to hold for all f,geM such that
6if|.6i!9'f e L [0,a]. The inequalities are strict- except as indi-
cated in (3.2). Sinmlarly, 6y « fg « 6i6g for all

0< f,geM or 0> f,geM such that 6f6g€ L[ 0, a].
: a a
(iv) (1) J Tog(l +6r,) < J log(l +fg)dus J Tog(l +6:6)
o o
holds for all f~elL® satisfying

(2) both 6((0)t (0) >-1 and 6f(a-)t'g(a-) > -1,
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because (2) 1is equivalent to: Ie X Ig c {((x,y) : xy > -1}.

In addition, using monotone convergence, (1) can be shown to
hold if 0< f,geM or O > f,geM. Then (1) can be shown to
hold for all £f,geM satisfying (2) wusing the following obser-

vations. First, 1log(l+ fg) = log(l-+f+g+) + log (1l - f+g_) +

+1log(l- £g7) + log(l+f g ). Next, when (2) holds for the
pair f,g it also holds for each of the pairs: f+,g+;

£t -g"; -f, g7; -f, -g°. Finally, when (2) holds, then:

f unbounded above implies g > O; f unbounded below implies

g £ 0; and the same is true when f and g are interchanged.

Clearly if £,geM satisfy (2) so do f|A and g|A for any
AceA. Hence the inequalities are strict except as indicated

in (3.2).
Similarly, log(l-+6ftg) << log (1l + fg) << log(l-+5fﬁg) for

all o0 f,geM or O > f,geM such that log(l-+6f5g) € Ll[o,a].

ja jl f d Pal
(v) (%) olog(ﬁf-+ég).g og(f +g)du S_Jo og(ﬁf-+1g)

for all f,geLa) such that

(2) Bglo-) + b, (e-) > O,

since (2) 1is equivalent to Ie X Ig c {(x,y) : x+y > 0}.

Actually, (1) holds for all £f,geM satisfying (2) since £
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and g are then bounded below, so we may approximate them by
increasing sequences of bounded functions satisfying (2) and
use the B. Levi Monotone Convergence theorem [6, p. 172]. The
inequalities are strict except as directed in (3.3). Similarly,

if f,geM satisfy (2) and log(d.+ 1) € Ll[o,a] then
£ g

_1og(5f-+tg) << -log(f+g) << —log(5f4-5g),

(vi) We have the following continuous version of London's

Theorem. Suppose O £ f,geM or 0 > f,geM.

(1) If H is convex, increasing and continuous

on [0, [ then

(g < [ misrap < [uis.s,)
0 f'g 0 £°g’

(2) 1If H(ex) is convex, increasing and continuous

on [0, [ then

(0 (0
IOH(1-+6f1g) < IH(l-+fg)du < IOH(1-+6f6g).

In either case, if H is strictly convex, then we have equality
on the left [right] iff £ and g are oppositely [similarly]

ordered iff 6ftg ~ fg [Gfég ~ fg].

(vii) Theorem (3.1) gives a necessary and sufficient con-
dition for the inequality in Lorentz' Theorem (1.5) which simpli-

fies his condition (1.5.2). In (3.1) take X = 10,1 with
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Lebesgue measure, T, = [O0,1], T, = [0, [ (i =2,...,m),

J= {1}, 1 = {2,...,m} and fl(x) = X.
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