REARRANGEMENT INEQUALITIES
 by
 Peter W. Day
 Research Report 71-47

September, 1971
/elb

REARRANGEMENT INEQUALITIES

by
Peter W. Day*

ABSTRACT

If T is a partially ordered set and the components of $\underset{\sim}{a}=\left(a_{1}, \ldots, a_{n}\right) \in T^{n}$ are totally ordered, then $\underset{\sim}{a}$ is called a chain and we let $\underset{\sim}{a}{ }^{*}=\left(a_{1}^{*}, \ldots, a_{n}^{*}\right) \quad\left[\underset{\sim}{a}{ }^{\prime}=\left(a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right)\right]$ be the vector obtained by rearranging the components of $\underset{\sim}{a}$ in decreasing [increasing] order. If $\varphi: T_{1} \times T_{2} \quad G$ where T_{1}, T_{2} are partially ordered sets and G is a partially ordered abelian group, then a necessary and sufficient condition on φ is given so that

$$
\sum_{j=1}^{n} \varphi\left(a_{j}^{*}, b_{j}^{*}\right) \leq \sum_{j=1}^{n} \varphi\left(a_{j}, b_{j}\right) \leq \sum_{j=1}^{n} \varphi\left(a_{j}^{*}, b_{j}^{\prime}\right)
$$

for all chains $\underset{\sim}{a} \in T_{1}{ }^{n}, \underset{\sim}{b} \in T_{2}{ }^{n}$. Also a necessary and sufficient condition on φ is given so that equality holds on the right [left] iff $\underset{\sim}{a}$ and $\underset{\sim}{b}$ are oppositely [similarly] ordered. A sufficient condition is given so that

$$
\varphi\left({\underset{\sim}{a}}^{*}, \underset{\sim}{b}{ }^{*}\right) \ll \varphi(\underset{\sim}{a}, \underset{\sim}{b}) \ll \varphi\left(\underset{\sim}{a}{ }^{*}, \underset{\sim}{b}{ }^{\prime}\right),
$$

where << denotes a preorder relation of Hardy, Littlewood and

[^0]Polya. Similar results to these are given when φ is a function of m variables. All these results are generalized for real valued essentially bounded measurable functions on a finite measure space. For specific choices of φ the inequalities are shown to hold for even larger classes of functions. The concept of "similarly ordered" is generalized for measurable functions to give a necessary and sufficient condition for equality.

REARRANGEMENT INEQUALITIES

by

Peter W. Day

1. Introduction.

In recent years a number of inequalities have appeared which involve rearrangements of vectors in H^{n} and measurable functions on a finite measure space. T*he most famous one was proved by Hardy, Littlewood and Polya [5, Theorem 368]. If $\underset{\sim}{a}=\left(a_{r} \ldots, a_{n}\right)$ e M^{n} let $\left.a^{*} \underset{\sim}{\sim}\left(a_{j}, \ldots, a^{*}\right) \underset{\mathbf{n}}{\sim}{ }_{\sim}^{\sim}\left(a^{\wedge}, \ldots, a^{\wedge}\right)\right]$ denote the vector obtained from $\underset{\sim}{a}$ by rearranging the components of $\underset{\sim}{a}$ in decreasing [increasing] order. Then the inequality they proved is
for all $\underset{\sim}{a}$, b $\underset{\sim}{r} e R^{n}$. Equality obtains on the right [left] iff $\underset{\sim}{a}$ and $\underset{\sim}{b}$ are similarly [oppositely] ordered.

Recently, Mine [11] has given the following product version: If $a_{\mathbf{i}}+b_{\mathbf{i}}>0 \quad(i=1, \ldots, n)$ then

Motivated by these two inequalities, London [7] has proved a result which can be stated as follows:
(1.3) Let $\underset{\sim}{a}$ and $\underset{\sim}{b}$ have non-negative components. Then:

$$
\text { (i) } \sum_{i=1}^{n} f\left(1+a_{i}^{*} b_{i}^{\prime}\right) \leq \sum_{i=1}^{n} f\left(1+a_{i} b_{i}\right) \leq \sum_{i=1}^{n} f\left(1+a_{i}^{*} b_{i}^{*}\right)
$$

whenever $f\left(e^{x}\right)$ is convex for $x \geq 0$ and $f(1) \leq f(x)$ for $x \geq 1$.

$$
\text { (ii) } \sum_{i=1}^{n} f\left(a_{i}^{*} b_{i}^{\prime}\right) \leq \sum_{i=1}^{n} f\left(a_{i} b_{i}\right) \leq \sum_{i=1}^{n} f\left(a_{i}^{*} b_{i}^{*}\right)
$$

whenever f is convex for $x \geq 0$ and $f(0) \leq f(x)$ for $x \geq 0$. If f is strictly convex, then in either case we have equality on the left iff $(\underset{\sim}{a b}) *=\left(\underset{\sim}{a}{\underset{\sim}{*}}^{\prime}\right) *$; we have equality on the right iff $(\underset{\sim}{a b}) *={\underset{\sim}{a}}^{*}{\underset{\sim}{b}}^{*}$.

The choice $f(x)=x$ in (ii) gives (1.1). To get (1.2) when $\underset{\sim}{b}$ has positive components, use $f(x)=\log x$ in (i) and $1 / \underset{\sim}{b}{ }^{\prime}=(1 / \underset{\sim}{b}) *$.

A rearrangement inequality which is not a special case of London's theorem is the following one of Ruderman [13], which generalizes the left-hand inequality of (1.2):

$$
\begin{equation*}
{\underset{\prod}{\mathrm{M}}=1}_{\mathrm{p}}^{\sum_{k=1}^{n}} \mathrm{a}_{k, s} \geq{\underset{\prod}{\mathrm{M}=1}}_{\mathrm{p}}^{\sum_{k=1}^{n}} a_{k, s}^{*} \tag{1.4}
\end{equation*}
$$

whenever $a_{k, s}>0$ and $\underset{\sim}{a}=\left(a_{k, 1}, \ldots, a_{k, p}\right)$.

This inequality motivated G. G. Lorentz [8] to prove a general rearrangement theorem for non-negative bounded measurable functions on $] 0,1[. \quad$ To state his theorem, we need the concept of decreasing rearrangement, which can be defined rather generally as follows.

Let (X,A, $\mathbb{\pi}$) be a finite measure space (m.s), and let $M=M(X, j i)$ denote the extended real-valued measurable functions on X. If $f e M$ then the decreasing rearrangement 6^ of $^{\wedge}$ is defined by

$$
\sigma_{f}(t)=\inf \{s: J U((x: f(x)>s\}) £ t) \quad 0 \leq t \leq a=j u(X) .
$$

Also, if EeA we let 1- denote the characteristic function
ili
of E.
1 n
 Following Lorentz, in any inequality involving $c p$ we will omit those variables which are the same for all occurrences of cp in the inequality. Thus

$$
\left.\mathrm{cp}\left(x, u_{1}, \ldots, s_{k}, \ldots, u_{n}\right)>\operatorname{cpfx}^{-} \wedge, \ldots-, r_{k}, \ldots, u_{n}\right)
$$

$\boldsymbol{\kappa}$ - к
would simply be written $\mathrm{cp}(\mathrm{s} .)^{\boldsymbol{\kappa}}>^{\wedge} \mathrm{cp}\left(\mathbf{r}_{\boldsymbol{\prime}}\right)$.

(1.5) THEOREM (Lorentz) . .Inri order that we have

for all non-negative bounded measurable functions f,...., $\mathrm{f}_{\text {_ }}$ on] 0, 1 [it: Is necessary and sufficient that the following two conditions be satisfied;

(2) $\int_{0}^{\delta}\left[\operatorname{cp}\left(x-t, u_{x}+h\right)+\operatorname{cpCx}^{\wedge} \mathrm{t}^{\wedge} \mathrm{u}.\right)-1 \mathrm{cp}\left(\mathrm{x}+\mathrm{t},, \mathrm{u}_{\mathbf{1}}+\mathrm{h}\right)$
$\left.-\operatorname{cp}\left(x-t, u_{i}\right)\right] d t 20$
for all $0<x<1, \quad u_{k} \geq 0 \quad(k=1, \ldots, n), \quad h>0,0<6<x$, $6<1-X, \underline{\text { and }} \mathrm{i} \wedge \mathrm{j}$. $\underline{\mathbb{E} H} \underline{\text { addition, }} \underline{\text { if }} \mathrm{cp}$ has continuous partial derivatives, then (1) and (2) are equivalent, respectively, to
(1)

$$
\frac{\partial^{2} \varphi}{\partial u_{i} \partial u_{j}} \geq 0
$$

(2) $\frac{\partial^{2} \varphi}{\partial x \partial u_{i}} \leq 0$.

Ruderman's inequality (1.4) follows by taking $\mathrm{cp}_{\mathrm{p}}\left(\mathrm{u}_{\mathbf{1}_{\mathbf{1}}}, \ldots, \mathrm{u}_{\mathrm{n}}\right)=$ $-\log \left(\mathbf{u}_{1+} \ldots+u_{n}\right) \quad$ and $\quad f_{f c}=\underset{\mathrm{E} \sim \mathrm{i}}{\mathrm{p}} \mathrm{a}^{\wedge}{ }_{\mathrm{g}} \mathrm{l}_{f}(\mathrm{~s}-1) / \mathrm{p}, \quad \mathbf{s} / \mathrm{p}[, \quad \mathbf{k}=\mathbf{1}, \ldots, \mathrm{n}$.

Actually, Ruderman's inequality can be deduced without (1.5), using some theorems introduced by Hardy, Littlewood and Polya to handle inequalities involving rearrangements and convex functions. We may define them rather generally as follows.

Let $\left(X_{1}, \Lambda_{1}, \mu_{1}\right)$ also be a finite mes. such that $\alpha=\mu_{1}\left(X_{1}\right)=\mu(X)$. If $f^{+}, g^{+} \in L^{1}(X, \mu) \cup L^{1}\left(X_{1}, \mu_{2}\right)$ then $g \ll f$ means $\int_{0}^{t} \delta_{g} \leq \int_{0}^{t} \delta_{f}$ for all $0 \leq t \leq \alpha$, while $g<f$ means $g \ll f$ and $\int_{0}^{\alpha} \delta_{g}=\int_{0}^{\alpha} \delta_{f}$. In the discrete case these definitions become: $\underset{\sim}{b} \ll \underset{\sim}{a}$ jiff $\sum_{i=1}^{k} b_{i}^{*} \leq \Sigma_{i=1}^{k} a_{i}^{*}$ for all $k=1, \ldots, n ; b<a$ af in addition we have equality when $k=n$. If we write $f \sim g$ to mean $\delta_{f}=\delta_{g}$ then: $f \ll g$ and $g \ll f$ jiff $f<g$ and $g<f$ eff $f \sim g$.

For example,

$$
\begin{equation*}
\underset{\sim}{a}+\underset{\sim}{b}<\underset{\sim}{a} *+\underset{\sim}{b}{ }^{*} \tag{1.6}
\end{equation*}
$$

follows easily from (1.1), since there is a permutation σ of $\{1, \ldots, n\}$ such that $\underset{\sim}{a}+\underset{\sim}{b}) \underset{i}{*}=(\underset{\sim}{a}+\underset{\sim}{b})(i)$ and hence for $k=1, \ldots, n$,

$$
\sum_{i=1}^{k}(\underset{\sim}{a}+\underset{\sim}{b}) \underset{i}{*}=\sum_{i=1}^{k} a_{\sigma(i)}+\sum_{i=1}^{k} b \sigma(i) \leq \sum_{i=1}^{k} a_{i}^{*}+\sum_{i=1}^{k} b_{i}^{*}=\sum_{i=1}^{k}\left(\underset{\sim}{a}{\underset{\sim}{*}}_{\sim}^{b}\right)_{i}^{*},
$$

with equality when $k=n$.

The preorder relation < was first introduced in where it was shown that
for every convex function H on an interval I with a^{\wedge}, $b^{\wedge} € 1$ iff $b<a . \quad$ Later it was shown that (1.7) holds for all increasing convex H iff ${\underset{\sim}{\sim}}^{*} a_{\sim}$ [12, p. 164].

where $a_{,}=\left(a_{1} .-, \ldots, a_{v}\right) . \quad$ If every sum is greater than 0 , we may use $H(x)=-\log x$ in (1.7) and get Ruderman ${ }^{1}$ s inequality,

In the following section we will give a general theorem for discrete rearrangements which includes all of the inequalities above except (1.5), and which gives a necessary and sufficient condition for equality in each of these cases. In the final section these results are extended for real valued measurable functions on a finite measure space so that (1:5) is included.

2. The Discrete Case.

Let T be a partially ordered set. If $\underset{\sim}{a}=\left(a_{1}, \ldots, a_{n}\right) \in T^{n}$, then $\underset{\sim}{a}$ will be called a chain if $\left\{a_{1}, \ldots, a_{n}\right\}$ is totally ordered. If $\underset{\sim}{a}$ is a chain, then $\underset{\sim}{a}{ }^{*}$ and $\underset{\sim}{a}$ can be defined as in Section 1. If $\underset{\sim}{a}$ and $\underset{\sim}{b}$ are chains in a partially ordered abelian group G (written additively) then $\underset{\sim}{a} \ll \underset{\sim}{b}$ and $\underset{\sim}{a}<\underset{\sim}{b}$ can also be defined as in Section 1 . It will be notationally simpler and should cause no confusion to denote every partial order under consideration by \leq. A partial order is understood to be anti-symmetric, and $x<y$ is used to mean $\mathrm{x} \leq \mathrm{y}$ and $\mathrm{x} \neq \mathrm{y}$.

We use the following notation in addition to that established in Section 1. Let T_{1}, \ldots, T_{m} be partially ordered sets, let $\underset{\sim}{a}{ }_{k}=\left(a_{k, 1}, \ldots, a_{k, n}\right) \in T_{k}^{n} \quad(k=1, \ldots, m), \quad$ let $\varphi: T_{1} \times \ldots \times T_{m} \rightarrow G$, and let I and J be disjoint subsets of $K=\{1, \ldots, m\}$ with $L=K-(I U J)$. If $1 \leq i, j \leq n$, then $\varphi\left(a_{I, i}, a_{J, j}\right) \quad$ is the function defined by $\varphi\left(a_{I, i}, a_{J, j}\right)\left(u_{k}: k \in L\right)=\varphi\left(c_{1}, \ldots, c_{m}\right)$ where $c_{k}=a_{k, i}$ for $k \in I, \quad c_{k}=a_{k, j}$ for $k \in J$, and $c_{k}=u_{k}$ for $\mathrm{k} \in \mathrm{L}$. If $\underset{\sim}{\mathrm{b}}{ }_{\mathrm{k}}=\left(\mathrm{b}_{\mathrm{k}, 1}, \ldots, \mathrm{~b}_{\mathrm{k}, \mathrm{n}}\right) \in \mathrm{T}_{\mathrm{k}}^{\mathrm{n}}$ and $\{\mathrm{I}, \mathrm{J}\}$ is a partition of K, then $\left(\underset{\sim}{a},{\underset{\sim}{b}}_{J}\right)$ is the sequence of vectors defined by $\left(\underset{\sim}{a},{\underset{\sim}{b}}_{J}^{b_{j}}\right)_{j}=\left(c_{1}, \ldots, c_{m}\right)$ where $c_{k}=a_{k, j}$ for $k \in I$ and $c_{k}=b_{k, j}$ for $k \in J$. We simplify the notation slightly when

I or J is empty or a singleton, writing for example, $\underset{\sim}{a} K$ or $\left(\underset{\sim}{a}, \ldots,{\underset{\sim}{m}}^{a}\right)$ in place of $\left(\underset{\sim}{a},{ }_{\sim}^{b}{ }_{\sim}^{b}\right)$.

We say two sequences $\underset{\sim}{s}=\left(s_{1}, \ldots, s_{n}\right) \in T_{1}{ }^{n}$ and $\underset{\sim}{t}=\left(t_{1}, \ldots, t_{n}\right) \in T_{2}^{n}$ are similarly ordered if for every $l \leq i, j \leq n, \quad s_{i}<s_{j}$ implies $t_{i} \leq t_{j}$, and $t_{i}<t_{j}$ implies $\mathbf{s}_{\mathbf{i}} \leq \mathbf{s}_{\mathbf{j}}$. We say $\underset{\sim}{s}$ and $\underset{\sim}{t}$ are oppositely ordered if $\mathbf{s}_{\mathbf{i}}<\mathbf{s}_{\mathbf{j}}$ implies $t_{j} \leq t_{i}$, and $t_{i}<t_{j}$ implies $s_{j} \leq s_{i}$. In either case, if $\underset{\sim}{s}$ is a chain, it is equivalent to have only the first implication.

Let $\{I, J\}$ be a partition of $K=\{1, \ldots, m\}$. We consider the following two conditions on $\varphi: T_{1} \times \ldots \times T_{m} \rightarrow G$.
(A) $\left[\left(A^{*}\right)\right]$ If $x_{i}, y_{i} \in T_{i}$ with $x_{i}<y_{i}$, and $k \neq i$, then $\varphi\left(y_{i}\right)-\varphi\left(x_{i}\right)$ is [strictly] increasing in u_{k} when k and i are in the same set I or J, and [strictly] decreasing in u_{k} when k and i are in different sets I and J, for all $1 \leq i, k \leq m$.

If $G=\mathbb{R}$, if each T_{k} is an open interval of \mathbb{R}, if the first partials of φ are continuous on $T_{1} \times \ldots \times T_{m}$, and if the second partials of φ exist on $T_{1} \times \ldots \times T_{m}$, then $Y_{i}>x_{i}$ implies the difference in (A) is increasing [decreasing] in $u_{j}(j \neq i)$ iff $y_{i}>x_{i}$ implies $\frac{\partial \varphi}{\partial u_{j}}\left(y_{i}\right)-\frac{\partial \varphi}{\partial u_{j}}\left(x_{i}\right)$ is non-negative [non-positive] iff $\frac{\partial \varphi}{\partial u_{j}}$ is increasing [decreasing]
in u_{i}. Hence condition (A) is equivalent to:
(A)' $\quad \frac{\partial^{2} \varphi}{\partial u_{i} \partial u_{j}} \geq 0 \operatorname{when~}_{\text {set } I} \quad \underset{\text { ord }}{ } j$ are in same

$$
\leq O \text { when } \begin{aligned}
& i \\
& \text { sets and } j \\
& I
\end{aligned} \text { and } J \text { are in different }
$$

on $T_{1} \times \ldots \times T_{m} \quad$ for all $1 \leq i \neq j \leq m$.
(A*)' denotes the above condition with strict inequality. Clearly (A^{*})' implies (A^{*}).
(2.1) THEOREM. Let $\varphi: T_{1} \times \ldots \times T_{m} \rightarrow G$, where each $\mathrm{T}_{\mathrm{k}} \quad(\mathrm{k}=1, \ldots, \mathrm{~m})$ is a partially ordered set, and G is a partially ordered abelian group. Let $\{I, J\}$ be a partition of $K=\{1, \ldots, m\}$.
(i) Condition (A) is necessary and sufficient that

$$
\begin{equation*}
\sum_{j=1}^{n} \varphi\left(\underset{\sim}{a}, \ldots,{\underset{\sim}{m}}^{a}\right)_{j} \leq \sum_{j=1}^{n} \varphi(\underset{\sim}{a} \underset{\sim}{*}, \underset{\sim}{a})_{j} \tag{1}
\end{equation*}
$$

for all chains $\quad \underset{\sim}{a} \in_{k} \mathrm{~T}_{\mathrm{k}}^{\mathrm{n}} \quad(\mathrm{k}=1, \ldots, \mathrm{~m})$.
(ii) Condition (A*) is necessary and sufficient for the following to be equivalent for all chains ${\underset{\sim}{k}}^{a_{k}} \mathrm{~T}_{\mathrm{k}}{ }^{n}$.
(a) Equality occurs in (1).
(b) $\underset{\sim}{p}$ and $\underset{\sim}{a}$ are similarly ordered whenever p and q are in the same set I or J, and oppositely ordered when p and q are in different sets I and J, for all $1 \leq \mathrm{p}, \mathrm{q} \leq \mathrm{m}$.
(c) $\varphi(\underset{\sim}{a}, \ldots, \underset{\sim}{a}) \sim \varphi(\underset{\sim}{a} \underset{\sim}{*}, \underset{\sim}{a})$.
(iii) Suppose the range of φ is totally ordered. If φ satisfies condition (A) and is increasing [respectively decreasing] in u_{k} for $k \in I$ and decreasing [respectively increasing] in u_{k} for $k \in J$ then

$$
\begin{equation*}
\varphi(\underset{\sim}{a} 1, \ldots, \underset{\sim}{a}) \ll \varphi(\underset{\sim}{a} \underset{I}{*}, \underset{\sim}{a}) . \tag{2}
\end{equation*}
$$

for all chains $\underset{\sim}{a}{ }_{k} \in T_{k}^{n} \quad(k=1, \ldots, m)$.

Proof. To prove necessity of (A) for (1), let $1 \leq k, i \leq m$,
let $x_{i}, y_{i} \in T_{i}$ with $x_{i}<y_{i}$, let $\underset{\sim}{a}=\left(x_{i}, y_{i}, \ldots, y_{i}\right)$,
let $u_{k}, v_{k} \in T_{k}$ with $u_{k}<v_{k}$, and for $j \neq i, k$ let $u_{j} \in T_{j}$ and $\underset{\sim}{a}=\left(u_{j}, \ldots, u_{j}\right)$. Case $1: k, i$ are in the same set I or J. Let $\underset{\sim}{a}=\left(v_{k}, u_{k}, \ldots, u_{k}\right)$. After cancelling terms in we obtain $\varphi\left(\mathrm{x}_{\mathrm{i}}, \mathrm{v}_{\mathrm{k}}\right)+\varphi\left(\mathrm{y}_{\mathrm{i}}, \mathrm{u}_{\mathrm{k}}\right) \leq \varphi\left(\mathrm{y}_{\mathrm{i}}, \mathrm{v}_{\mathrm{k}}\right)+\varphi\left(\mathrm{x}_{\mathrm{i}}, \mathrm{u}_{\mathrm{k}}\right)$, so $\varphi\left(y_{i}, u_{k}\right)-\varphi\left(x_{i}, u_{k}\right) \leq \varphi\left(y_{i}, v_{k}\right)-\varphi\left(x_{i}, v_{k}\right)$, and hence (A) is true in this case. Case $2: \mathrm{k}, \mathrm{i}$ are in different sets I and J .
 This completes the proof of necessity.

Before continuing we introduce some notation. For chains a, e T, ${ }^{n}$ write $b_{-}=S . a_{v}$ if $l_{_}<i<j \leq n$ are such that for $P=\left\{k € 1: a_{v} .<a ..\right), Q=\left\{k e J: a_{1} . . .>a_{1 . .}\right.$. $\}$ and $\mathrm{L}=\mathrm{PUQ}$ we have: ${\underset{\sim}{\mathrm{b}}}_{\mathrm{k}}$ for keL is the sequence obtained from a, by interchanging $a_{\text {. . . and }} a_{\text {, }}{ }_{\text {Ag }}$ while $b_{v}=a_{v}$ for other k.

Assume $\mathrm{b}_{\mathrm{T}},=S$. a_{Tr} with P and Q as above, and let
 $\mathbf{P}_{\mathrm{k}}=\mathrm{P} 0[0, \ldots, k\}$ and $\mathrm{Q}_{\mathrm{k}}=\mathrm{Q}(1 \quad\{0, \ldots, \mathrm{k}\}$. Then

$$
\begin{aligned}
& \psi=\sum_{k=0}^{m-1}\left[\operatorname{cp}\left(a_{n} i, a_{n}, \quad, a_{n} .\right)-c p\left(a_{n} \pm, a_{n} Q_{k_{k+1}}, i, a_{Q_{k+1}, j}\right)\right] \\
& +\underset{k=0}{\boldsymbol{m}-1}\left[\varphi\left(a_{P-P_{k}}, i, a_{P_{k}, j}, a_{Q, j}\right)-\varphi\left(a_{P-P_{k+1}}, i, a_{P_{k+1}},{ }^{i}{ }^{a} Q, j\right)\right]
\end{aligned}
$$

is a sum of differences like that in (A), so
$\left\langle^{3}\right\rangle \quad \psi\left(a_{I-P, i}, a_{J-Q, i}\right) \leq \psi\left(a_{I-P, j}, a_{J-Q, j}\right)$.

On writing it out, this is the same as

$$
\begin{equation*}
\mathrm{cp}\left({\underset{\sim}{\mathrm{a}}}_{\mathrm{K}}\right)_{\mathrm{i}}+\mathrm{cp}\left(\mathrm{a}_{\mathrm{K}}\right)_{\mathrm{j}} \leq \varphi\left({\underset{\sim}{b}}_{\mathrm{b}}^{\mathrm{K}}\right)_{\mathbf{i}}+\varphi\left({\underset{\sim}{\mathrm{b}}}_{\mathrm{K}}\right)_{\mathbf{j}}, \tag{4}
\end{equation*}
$$

If (A*) holds, inequality (3) and hence (5) will be strict unless $P \mathrm{U} Q=0$ or $a_{v} .=a$. . for all k (I-P) $U(J-Q)$.
 and for each $1 \leq k \leq m-1$ there are i and j such that $\underset{\sim}{\mathrm{b}}(\mathrm{k}+\mathrm{l})=\mathrm{S}_{\mathbf{i}, \mathbf{j}}^{\boldsymbol{j}} \underset{\sim}{\mathrm{b}}(\mathrm{k})$. Hence

$$
\Sigma_{j=1}^{n} \varphi(\underset{\sim}{b}(1))_{j} \leq \ldots \leq E_{j} c p(b(q)) j
$$

which proves (1).

In (ii) it is clear that (b) $=* \geqslant$ (c) $=*>$ (a) always. We begin by assuming (A^{*}) holds and show that (a) $=* \geqslant$, (b) . Suppose
(b) does not hold. Then an examination of cases shows there are $1 \leq i<j \leq!n$ such that for P and Q as above we have $P \mathrm{U} Q / \wedge$ and there is $\mathrm{a} k e(I-P) \mathrm{U}$ (J-Q) such that a.. . ^ a.. .. Hence letting b_ = S. .a_ we have
 the arguments used in proving necessity of (A) for (1) show that (A*) holds.

We turn now to the proof of (iii). Since $\varphi(\underset{\sim}{a} \underset{\sim}{*}, \underset{\sim}{a}) \sim \varphi(\underset{\sim}{a} \underset{\sim}{\prime}, \underset{\sim}{a})$, it suffices to prove (2) assuming φ is increasing in the I-variables and decreasing in the J-variables. In this case let ${\underset{\sim}{\sim}}_{\sim}^{K}=S_{i, j} \underset{\sim}{a}$. Then

$$
\begin{equation*}
\varphi\left({\underset{\sim}{b}}_{K}\right)_{j} \leq \varphi\left({\underset{\sim}{a}}_{K}\right)_{i}, \quad \varphi\left({\underset{\sim}{a}}^{a_{j}}\right)_{j} \leq \varphi\left({\underset{\sim}{b}}_{K}\right)_{i} . \tag{6}
\end{equation*}
$$

We call $\varphi(\underset{\sim}{a})_{i}$ and $\varphi(\underset{\sim}{a})_{j}$ the "old terms", and $\varphi(\underset{\sim}{b})_{i}$ and $\varphi(\underset{\sim}{b})_{j}$ the "new terms". These are the only terms where $\varphi(\underset{\sim}{a})$ and $\varphi(\underset{\sim}{b})$ differ

Let $1 \leq k \leq n$, define sequences

$$
\left.\left.\underset{\sim}{\alpha}=\left(\varphi(\underset{\sim}{a})_{r}\right)_{r}^{*}: l \leq r \leq k\right), \quad \underset{\sim}{\beta}=\left(\varphi(\underset{\sim}{b})_{K}\right)_{r}^{*}: l \leq r \leq k\right),
$$

let $\Sigma \underset{\sim}{\alpha}=\sum_{r=1}^{k} \varphi(\underset{\sim}{a})_{r}^{*}$ and define $\Sigma \beta$ similarly. We show that $\Sigma \underset{\sim}{\alpha} \leq \Sigma \underset{\sim}{\beta}$.

If exactly one of the old terms occurs in $\underset{\sim}{\alpha}$, then implies that the only new term in $\underset{\sim}{\mathcal{\beta}}$ is $\varphi(\underset{\sim}{b})_{i}$. For if $\varphi\left({\underset{\sim}{b}}_{K}\right) j$ is in $\underset{\sim}{\beta}$, then (6) implies that $\underset{\sim}{\beta}$ contains both new terms, so there are $n-k$ terms of $\varphi\left({\underset{\sim}{K}}^{(}\right)$which are \leq $\varphi\left({\underset{\sim}{K}}^{K}\right)_{j}$, in which case (6) implies that both old terms occur in $\underset{\sim}{\alpha}$. Hence $\underset{\sim}{\beta}$ is obtained from $\underset{\sim}{\alpha}$ by replacing an old

If both old terms occur in $\underset{\sim}{a}$ then (4) implies their sum is \leq the sum of the new terms, which is \leq^{\wedge} the sum of $\mathrm{cp}\left(\mathrm{b}_{. .}\right)$. and any term ;> $\mathrm{cp}\left(\mathrm{b}_{\boldsymbol{\sim}}\right)$. , in case $\mathrm{cp}\left(\mathrm{b}_{\boldsymbol{\sim}}\right)$. . is not in $/ 3$. Hence $\underset{\sim}{E a} \leq \mathrm{Ef}_{\sim}$.

If none of the old terms occur in $\underset{\sim}{a}$, then either $\underset{\sim}{a}=\underset{\sim}{£}$, or ${\underset{\sim}{~}}^{3}$ is obtained from \sim_{\sim}^{a} by replacing one term
 proof of (iii) is finished as in (i). This completes the proof of the theorem.

When $c p$ is a function of two variables, conditions (A) and (A*) simplify, and the arguments proving (2.1) have a symmetry which shows how small the sums can get.
(2.2) COROLLARY. Let $c p: T, X T_{\circ}$-* $^{\text {G. }}$
(i) A necessary and sufficient condition that

$$
\begin{align*}
& \mathrm{n} \text { n } \mathrm{n} \tag{1}
\end{align*}
$$

for all chains $\operatorname{aGT}^{n}{ }^{n}$, beTo ${ }^{n}$ is that the difference
(2)

$$
c p(d, y)-c p(c, y)
$$

be increasing in yeT。 whenever $d>c, d, c e T$, A necessary
and sufficient condition that for $\underset{\sim}{a l l}$ chains $\underset{\sim}{a} \underset{\sim}{b}$ the inequality (1) is strict on the left [right] unless $\underset{\sim}{a}$ and $\underset{\sim}{b}$ are oppositely [similarly] ordered is that the difference
(2) is strictly increasing.
(ii) Suppose the range of φ is totally ordered. If in addition to (i) φ is increasing (or decreasing) in both variables, then

$$
\varphi\left({\underset{\sim}{a}}^{*},{\underset{\sim}{b}}^{\prime}\right) \ll \varphi(\underset{\sim}{a}, \underset{\sim}{b}) \ll \varphi(\underset{\sim}{a} *, \underset{\sim}{b}) .
$$

If (2) holds with φ replaced by $-\varphi$, and φ is increasing in one variable and decreasing in the other, then

$$
\varphi\left({\underset{\sim}{a}}^{*}, \underset{\sim}{b}{ }^{*}\right) \ll \varphi(\underset{\sim}{a}, \underset{\sim}{b}) \ll \varphi\left(\underset{\sim}{a}{ }^{*},{\underset{\sim}{b}}^{\prime}\right) .
$$

(2.3) REMARKS. (i) The condition (2.2.i.2) is equivalent to having $\varphi(x, d)-\varphi(x, c)$ increasing in $x \in T_{I}$ whenever $d>c$ and $d, c \in T_{2}$.
(ii) Since $\varphi\left(\underset{\sim}{a}{ }^{*}, \underset{\sim}{b}{ }^{*}\right) \sim \varphi\left({\underset{\sim}{a}}^{\prime},{\underset{\sim}{b}}^{\prime}\right)$ and $\varphi(\underset{\sim}{a} *, \underset{\sim}{b}) \sim \varphi\left(\underset{\sim}{a},{\underset{\sim}{x}}^{\prime}\right)$, the relations (2.2.ii) may be rewritten:

$$
\varphi\left({\underset{\sim}{a}}^{\prime},{\underset{\sim}{b}}^{b}\right) \ll \varphi(\underset{\sim}{a}, \underset{\sim}{b}) \ll \varphi\left({\underset{\sim}{a}}^{\prime},{\underset{\sim}{c}}^{\prime}\right),
$$

and similarly for the other.
(2.4) EXAMPLES. Let $G=\mathbb{R}$.

$$
\begin{align*}
& T_{1}=T_{2}=\mathbb{R} \text { and } \varphi(x, y)=x+y: \tag{i}\\
& \underset{\sim}{a} *+\underset{\sim}{b}{ }^{\prime}<\underset{\sim}{a}+\underset{\sim}{b}<\underset{\sim}{a}{ }^{*}+\underset{\sim}{b} \text {. } \\
& T_{1}=T_{2}=\mathbb{R} \text { and } \varphi(x, y)=x-y: \tag{ii}\\
& {\underset{\sim}{a}}^{*}-\underset{\sim}{b}{ }^{*}<\underset{\sim}{a}-\underset{\sim}{b}<\underset{\sim}{a}{ }^{*}-\underset{\sim}{b}{ }^{1} . \\
& \varphi(\mathrm{x}, \mathrm{y})=\mathrm{xy}: \text { For } \mathrm{T}_{1}=\mathrm{T}_{2}=\mathbb{R} \tag{iii}
\end{align*}
$$

we obtain (1.1) with the indicated condition for equality.

For $T_{1}=T_{2}=\left[0, \infty\left[\right.\right.$ or $\left.\left.T_{1}=T_{2}=\right]-\infty, 0\right]$ we obtain $\underset{\sim}{a * b}{\underset{\sim}{r}}^{\prime} \ll \underset{\sim}{a b} \ll \underset{\sim}{a}{ }_{\sim}^{*}{ }_{\sim}^{*}$ whenever $\underset{\sim}{a}, \underset{\sim}{b} \in\left[0, \infty\left[^{n} \text { or } a, b \in\right]-\infty, 0\right]^{n}$. When $T_{k}=[0, \infty[\quad(\mathrm{k}=1, \ldots, \mathrm{~m}), \quad \mathrm{I}=\{1, \ldots, \mathrm{~m}\}$ and $\mathrm{J}=\varnothing$ then $\varphi\left(u_{1}, \ldots, u_{m}\right)=u_{1} \ldots u_{m}$ satisfies $\left(A^{*}\right)$ and we obtain a companion to (1.4), also proved by Ruderman:

$$
\sum_{j=1}^{n} \prod_{i=1}^{m} a_{i, j} \leq \sum_{j=1}^{n} \prod_{i=1}^{m} a_{i, j}^{*}
$$

The inequality is strict unless all of the sequences $\underset{\sim}{a}=\left(a_{k, l}, \ldots, a_{k, n}\right)$ are similarly ordered.
(iv) $\varphi(\mathrm{x}, \mathrm{y})=\log (1+\mathrm{xy})$ satisfies $\left(\mathrm{A}^{*}\right)$ with $\mathrm{I}=\{1,2\}$, $J=\varnothing$ whenever $\mathrm{T}_{1} \times \mathrm{T}_{2} \subset\{(\mathrm{x}, \mathrm{y}): \mathrm{xy}>-1\}$. Thus

$$
\prod_{i=1}^{n}\left(1+a_{i}^{* b} b_{i}^{\prime}\right) \leq \prod_{i=1}^{n}\left(1+a_{i} b_{i}\right) \leq \prod_{i=1}^{n}\left(1+a_{i}^{*} b_{i}^{*}\right)
$$

whenever $a_{i}^{*} b_{i}^{\prime}>-1$ for $i=1$ and $i=n$. The inequality is strict except as indicated in (2.2.i). The choice $\mathrm{T}_{1}=\mathrm{T}_{2}=[0, \infty[$ or $]-\infty, 0]$ gives:

$$
\log \left(1+\underset{\sim}{a}{\underset{\sim}{b}}^{\prime}\right) \ll \log (1+\underset{\sim}{a b}) \ll \log \left(1+\underset{\sim}{a}{\underset{\sim}{x}}^{*}{ }^{*}\right)
$$

whenever $\underset{\sim}{a}, \underset{\sim}{b} \in\left[0, \infty\left[{ }^{n} \text { or }\right]-\infty, 0\right]^{n}$.
(v)

$$
\begin{aligned}
\varphi(x, y) & =-\log (x+y), \quad T_{1} \times T_{2} \subset\{(x, y): x+y>0\}: \\
-\log \left(\underset{\sim}{a} *+{\underset{\sim}{b}}^{\prime}\right) & \ll-\log (\underset{\sim}{a}+\underset{\sim}{b}) \ll-\log ({\underset{\sim}{c}}^{a} \underbrace{b}_{\sim}{\underset{\sim}{*}}^{*})
\end{aligned}
$$

whenever $a_{n}^{*}+b_{n}^{*}>0$, and in particular we get (1.2) with the inequality strict except as indicated by (2.2.i). The example $\underset{\sim}{a}=(6,5,2,1) \underset{\sim}{b}=(-3,-4,-2,1)$ shows that (1.2) may fail under the condition $a_{i}+b_{i} \geq 0$ for all i.
(vi) Suppose φ satisfies the hypotheses of (2.1.iii) and H is increasing and convex on an interval containing the range of φ. Then $\varphi_{1}=H \circ \varphi$ satisfies condition (A). In
this way (1.7) and (2.1.i) may be used to prove (2.1.iii). If in addition, φ satisfies (A^{*}) and H is strictly convex, then φ_{1} satisfies (A^{*}).

We prove the first statement. Since H is convex, if $r_{1}<s_{1}, \quad r_{2}<s_{2}, \quad r_{1} \neq r_{2}, \quad s_{1} \neq s_{2}, \quad$ then

$$
\begin{equation*}
\frac{H\left(r_{2}\right)-H\left(r_{1}\right)}{r_{2}-r_{1}} \leq \frac{H\left(s_{2}\right)-H\left(s_{1}\right)}{s_{2}-s_{1}} \tag{1}
\end{equation*}
$$

Assume φ is increasing in its I-variables and decreasing in its J-variables. Let $i, k \in I, y_{i}>x_{i}, v_{k}>u_{k}$. We wish to prove

$$
\begin{equation*}
H\left(\varphi\left(y_{i}, u_{k}\right)\right)-H\left(\varphi\left(x_{i}, u_{k}\right)\right) \leq H\left(\varphi\left(y_{i} v_{k}\right)\right)-H\left(\varphi\left(x_{i}, v_{k}\right)\right) . \tag{2}
\end{equation*}
$$

Let $\quad r_{1}=\varphi\left(x_{i}, u_{k}\right), \quad r_{2}=\varphi\left(y_{i}, u_{k}\right), \quad s_{1}=\varphi\left(x_{i}, v_{k}\right), \quad s_{2}=\varphi\left(y_{i}, v_{k}\right)$.
Now $r_{2}-r_{1} \leq s_{2}-s_{1}$ and H is increasing, so (2) is obviously true if $r_{2}=r_{1}$ or $s_{2}=s_{1}$. Otherwise, we have $0<r_{2}-r_{1}<s_{2}-s_{1}$ and both terms in (1) are 20 ; multiplying, we obtain (2). The other cases are similar. When H is strictly convex, the same proof works except that all inequalities are strict.
(vii) London's Theorem follows from (2.2.i) and the previous example as follows. The conditions on f in (1.3) are equivalent to saying that in
f and in
(i) $f\left(e^{\wedge}\right)$ is convex and increasing on [0, $\Subset>$ [. We now use the previous example with $H=f$ and $C p(x, y)=x y$ for (ii) and $H(x)=f\left(e^{x}\right)$ and $\mathrm{cp}(\mathrm{x}, \mathrm{y})=\log (1+\mathrm{xy})$ for (i). If H is strictly convex, we also obtain the conditions for equality.
(viii) Ruderman [13] has observed that (1.4) generalizes the inequality between the arithmetic and geometric means. Using (2.1) we may obtain the following inequality for certain quasiarithmetic symmetric means. Let U be an open interval of H, let f, g : U-* H be strictly monotone and let $f \circ g^{1}$ be convex on g[U]. If f is increasing then

$$
g^{11}\left(\frac{9\left(*!>+\cdots \cdots+9\left(x_{n}\right)\right.}{n}\right) \leq r^{r 1 .}\left(\frac{\left.f t r^{\wedge}+.-.+f 0:,,\right)}{n}\right)
$$

for all $r_{\dot{I}^{\prime}}, \ldots, r_{n} e U$, while if f is decreasing, the inequality reverses. If $f \odot g^{-1}$ is strictly convex, the inequality is strict unless $r_{\neq}=\ldots=r_{n}$. To prove this, in (2.1.i.l)

${\underset{\sim}{n}}=\left(r_{n}, r_{1}, \ldots, r_{n-2}, r_{n-1}\right)$ and note that
satisfies (A) with $I=\{1, \ldots, n\}$. If $f \circ g^{-1}$ is strictly convex, then φ satisfies $\left(A^{*}\right)$, and the inequality is strict unless all the $\underset{\sim}{a} \underset{k}{ }$ are similarly ordered, in which case $r_{1}=\ldots=r_{n}$.

3. The Continuous Case.

In this section we show how to generalize Theorems (2.1) and (2.2) for L^{∞} functions on a finite measure space when φ is jointly continuous. Let (X, Λ, μ) be a finite measure space with $\alpha=\mu(X)<\infty$, let R_{f} denote the essential range of $f \in L^{\infty}$ and let $I_{f}=[$ ass. inf f, iss. sup $f]=\left[\delta_{f}(\alpha-), \delta_{f}(0)\right]$. If $f_{1}, \ldots, f_{m} \in L^{\infty}$ and $\varphi: R_{f_{1}} \times \ldots \times R_{f_{m}} \rightarrow \mathbb{R}$ is bounded, then the function $\varphi\left(f_{1}, \ldots, f_{m}\right)$ defined by $x \mapsto \varphi\left(f_{1}(x), \ldots, f_{m}(x)\right)$ is in L^{∞}. If $f \in M(X, \mu)$ then ${ }^{1_{f}}$ denotes the increasing rearrangement of f which is defined by ${ }^{{ }^{\imath}} f(t)=\delta_{f}((\alpha-t)-)$ for all $0 \leq t \leq \alpha$. If $\{I, J\}$ is a partition of $\{1, \ldots, m\}$ then $\left(\delta_{\underset{\sim}{f}},{ }^{q} \underset{\sim}{f}\right)$ denotes $\left(g_{I}, \ldots, g_{m}\right)$ where $g_{i}=\delta_{f}$ for $i \in I$ and $g_{i}={ }^{\imath} f_{i}$ for $i \in J$.

We will say that $f, g \in M$ are similarly [oppositely] ordered if ass. $\sup f|A<e s s . \inf f| B$ implies ass. sup $g \mid A \leq$ ass. inf $g \mid B$ [ess. sup $g \mid B \leq$ ess. inf $g \mid A]$ whenever A, B are disjoint measurable
sets, each of positive measure. In particular, if f and g are similarly ordered, then for all $t \in \mathbb{R}$,
ess. $\sup g \mid\{f<t\}=\lim _{n \rightarrow \infty}$ ens. $\sup g \left\lvert\,\left\{f<t-\frac{1}{n}\right\} \leq\right.$ ass. inf $g \mid\{f \geq t\}$.

Thus if f and g are similarly [oppositely] ordered, then
ass. sup $g \mid A \leq$ ass. inf $g \mid B \quad$ [ass. sup $g \mid B \leq$ ass. inf $g \mid A]$
whenever $A \subset\{f<t\}$ and $B \subset\{f \geq t\}$. The numbers involved in these inequalities may be extended real numbers.
(3.1) THEOREM. Let $\varphi: T_{1} \times \ldots \times T_{m} \rightarrow \mathbb{R}$ be continuous, where T_{1}, \ldots, T_{m} are intervals of \mathbb{R}, and let $\{I, J\}$ be a partition of $\{1, \ldots, m\}$.
(i) If φ satisifes condition (A) then

$$
\begin{equation*}
\int \varphi\left(f_{1}, \ldots, f_{m}\right) d \mu \leq \int_{0}^{\alpha} \varphi\left(\delta_{\underset{\sim}{f}},{ }_{\underset{\sim}{f}}^{f}\right) \tag{1}
\end{equation*}
$$

for all $f_{i} \in L^{\infty} \quad \underline{\text { such that }} I_{f_{i}} \subset T_{i}, \quad i=1, \ldots, n$ If (X, \wedge, μ) is non-atomic, then (A) is necessary for (1).
(ii) If φ satisfies (A^{*}) then the following are equivalent:
(a) Equality holds in (1).
(b) f_{i} and f_{j} are similarly ordered whenever
i and j are in the same set I or J, and oppositely ordered whenever i and j are in different sets I and J for all $1 \mathbb{C} i j j £ m$.
(c) $\mathrm{cp}\left(\mathrm{f}_{\boldsymbol{\prime}}, \ldots \cdot \mathrm{E}_{-}\right) \sim \mathrm{cp}\left(6^{\wedge}, \mathrm{t}=\right.$, $)$.
(iii) Ide cp satisfies (A) and _i^ increasing [respectively decreasing] in u_{i} for tel and decreasing [respectively increaseing] for ied^ then for all f_{i} as in (i) we have
(3.2) COROLLARY. Let $c p: T, x T_{0}$-» IR be continuous, where T_{1} and T_{0} are intervals of M, and let $\mathbf{f}, \boldsymbol{g} \in \mathbb{L}^{Q D}$ with $R_{f} \Leftrightarrow T_{1} \quad$ and $R_{g} \quad$ c $\mathbf{T}_{\mathbf{2}}$.
(i) $\underset{\sim}{\mathbb{E P}}(1): c p\left(d^{\wedge} y\right)-c p\left(c^{\wedge} y\right)$ is increasing in $y \in T_{2}$
whenever $d>c$ and $d^{\wedge} c e T, 1^{\prime}$ then
(2)

$$
J_{0}^{\alpha} c p\left(\sigma_{f}, t_{g}\right) \leq J c p(f, g) d j i i 1 J_{0}^{\alpha} c p\left(\sigma_{f}, \sigma_{g}\right)
$$

If the monotonicity in (1) JS strict, then the inequality is strict on the left [right] unless f and g are oppositely [similarly] ordered.
(ii) If in addition to (i) φ is increasing in both variables or decreasing in both variables, then

$$
\varphi\left(\delta_{f}, \imath_{g}\right) \ll \varphi(f, g) \ll \varphi\left(\delta_{f}, \delta_{g}\right) .
$$

(3.3) REMARK. If (*) $\varphi(\mathrm{d}, \mathrm{y})-\varphi(\mathrm{c}, \mathrm{y})$ is decreasing in $\mathrm{y} \in \mathrm{T}_{2}$ whenever $\mathrm{d}>\mathrm{c}$ and $\mathrm{d}, \mathrm{c} \in \mathrm{T}_{1}$, or in addition φ is increasing in one variable and decreasing in the other, then apply (3.2) to $\varphi_{1}(x, y)=\varphi(x, r+s-y), f$ and $g_{1}=r+s-g$ where $I_{g}=[r, s]$. The result is that the inequalities reverse:

$$
\begin{align*}
& \int_{0}^{\alpha} \varphi\left(\delta_{f}, \delta_{g}\right) \leq \int \varphi(f, g) d \mu \leq \int_{0}^{\alpha} \varphi\left(\delta_{f},{ }^{\imath} g\right) \tag{i}\\
& \varphi\left(\delta_{f}, \delta_{g}\right) \ll \varphi(f, g) \ll \varphi\left(\delta_{f}, \imath_{g}\right)
\end{align*}
$$

If the monotonicity in (*) is strict, the inequality on the left [right] is strict iff f and g are similarly [oppositely] ordered.

We begin by showing that it sufficies to prove (3.1) and (3.2) for non-atomic measure spaces by embedding (X, Λ, μ) in a non-atomic measure space $\left(X^{\#}, \Lambda^{\#}, \mu^{\#}\right)$, which we define as follows. Now $\mathrm{X}=\mathrm{X}_{\mathrm{O}} \cup \underset{\mathrm{n} \in \mathrm{P}}{ } \mathrm{A}_{\mathrm{n}}$, where X_{o} is non-atomic, each A_{n} is an atom, $\mu\left(A_{i} \cap A_{j}\right)=0$ when $i \neq j$, and $P=\{1, \ldots, p\}$ or $\{1,2,3, \ldots\}$. Let $I\left[a_{n}, b_{n}\right] \quad n \in P$ be disjoint intervals of \mathbb{R}
with end points a_{n} and b_{n} such that $b_{n}-a_{n}=\mu\left(A_{n}\right)$, and define $\left(x^{\#}, \Lambda^{\#}, \mu^{\#}\right)$ to be the direct sum of $\left(X_{0}, \Lambda \cap X_{0}, \mu\right)$ and ($I\left[a_{n}, b_{n}\right], \lambda$), $n \in P$, where λ is Lebesgue measure. If $f \in M(X, \mu)$ then f is constant μ-a.e. on each atom, and we define $f^{\#}=f l_{X_{0}}+\sum_{n \in P}\left(f \mid A_{n}\right) l_{I\left[a_{n}, b_{n}\right]}$. Then $f^{\#} \sim f$ so $\delta_{f^{\#}}=\delta_{f}$ and

$$
{ }^{\imath} f^{\#}={ }^{\imath} f .
$$

Let $\varphi: T_{1} \times \ldots \times T_{m} \rightarrow \mathbb{R}$ and let $f_{i} \in M(X, \mu)$ with $R_{f_{i}} \subset T_{i}$ $(i=1, \ldots, m)$. Then

$$
\begin{aligned}
\varphi\left(f_{1}^{\#}, \ldots, f_{n}^{\# \#}\right) & \left.=\varphi\left(f_{1}, \ldots, f_{n}\right) 1_{X_{0}}+\sum_{n \in P}\left[\varphi\left(f_{1}, \ldots, f_{n}\right) \mid A_{n}\right] 1_{I\left[a_{n}, b_{n}\right]}\right] \\
& =\varphi\left(f_{1}, \ldots, f_{n}\right)^{*} \sim \varphi\left(f_{1}, \ldots, f_{n}\right) .
\end{aligned}
$$

In addition it is not hard to see that f and g are similarly [oppositely] ordered of $f^{\#}$ and $g^{\#}$ are similarly [oppositely] ordered. Thus if (3.1) and (3.2) are true when (X, Λ, μ) is non-atomic, then they are true for any finite mos.

Before proceeding with the proof when (X, Λ, μ) is non-atomic, we require some lemmas.
(3.4) LEMMA. The following three statements are equivalent.
(i) (X, Λ, μ) is non-atomic.
(ii) There is a measure preserving map $\sigma: X \rightarrow[0, \mu(X)]$. (iii) There is a map $\varnothing:[0, \mu(X)] \rightarrow \Lambda \quad$ such that $\mu(\phi(t))=t$ and $t \leq u$ implies $\phi(t) \subset \phi(u)$.

Essentially, if σ is given, then σ is not constant on any set of positive measure. The maps σ and \varnothing are related by $\phi(t)=\sigma^{-1}[0, t[$ and $\sigma(x)=\inf \{t: x \in \phi(t)\}$. For a construction of σ see $[1,(3.1)]$.
(3.5) LEMMA. Let (x, Λ, μ) be non-atomic. Suppose $\left\{D_{k}\right\}_{k=1}^{N} \quad$ is a partition of x by measurable sets. If $\epsilon>0$, then there is a partition $\left\{E_{i}\right\}_{i=1}^{n}$ of X by measurable sets such that $\mu\left(\mathrm{E}_{\mathrm{i}}\right)=\mu(\mathrm{X}) / \mathrm{n} \quad(\mathrm{i}=1, \ldots, \mathrm{n})$ and $\mu\left(U\left\{\mathrm{E}_{\mathrm{i}}: \mathrm{E}_{\mathrm{i}}\right.\right.$ intersects more than one $\left.\left.D_{k}\right\}\right)<\epsilon$.

Proof. Let $\alpha=\mu(X)$. If $\alpha=0$, the lemma is trivially true. Otherwise, rename the sets D_{k} so that $\mu\left(D_{k}\right)=0$ for $1 \leq \mathrm{k}<\mathrm{p}$ and $\mu\left(\mathrm{D}_{\mathrm{k}}\right)>0$ for $\mathrm{p} \leq \mathrm{k} \leq \mathrm{N}$. There is a $\varnothing:[0, \alpha] \quad \Lambda$ such that $\mu(\phi(t))=t, \quad t \leq u$ implies $\phi(t) \subset \phi(u)$, $\phi(0)=\bigcup_{1 \leq k<p}^{U} D_{k}, \quad$ and $\quad \phi\left(\sum_{1 \leq k \leq q} \mu\left(D_{k}\right)\right)=\bigcup_{l \leq k \leq q}^{U} D_{k} \quad$ for $q=p, \ldots, N$. For any n such that $\alpha / n \leq \min \left\{\mu\left(D_{k}\right): p \leq k \leq N\right\}$ and for $E_{i}=\varnothing(\alpha i / n)-\phi(\alpha(i-1) / n) \quad(i=1, \ldots, n)$ we have that
each E. intersects at most two sets D, of positive measure ${ }_{D}$ 1 and at most $\mathrm{N}-\mathrm{l}$ of these E . intersect more than one D .. To finish the proof, choose $\mathrm{n}^{\mathbf{1}}$ so that also $a(N-1) / n<e^{\text {K }}$.
(3.6) LEMMA. Suppose (X, A, f_{X}) is non-atomic. Let $\left\{\mathrm{s}(\mathrm{k})_{\mathbf{i}}{ }^{\mathrm{CD}}\right\}_{\mathbf{i}=\boldsymbol{1}}^{\mathrm{CD}} \quad(\mathrm{k}=1, \ldots, \mathrm{~m})$ be m sequences of simple functions. Then there are m sequences $\{t(k) \cdot\} \cdot{ }_{[-1}, \quad(k=1, \ldots, m) \quad$ of simple functions such that
(i) For each i, $t(1)_{i}, \ldots, t(m)_{i}$ have the same sets of constancy، and these sets have equal measure;
(ii) For each $k=1, \ldots, m, s(k) \cdot I^{-t}(k) I^{-*} 0 \quad$ $x-a . e$.
as i-*CD?

Proof. For clarity of exposition, we prove the lemma in the case $m=2$. The proof for larger m will be readily apparent, Before considering sequences, let $s(l)=\underset{i=1}{n}{\underset{x}{x}}^{a_{A_{i}}} \quad$ and $s(2)=\underset{j=1}{P} \mathrm{~b}_{3} \cdot \frac{1}{B_{j}}$ where $\underset{\mathrm{x}}{\mathrm{A} .\}}$ and $\underset{\sim}{\{B .\}}$ partition X, and let $(I \backslash\}_{k=1}^{N}=\left\{A_{i} n B . j: 1 \leq i \leq n, \quad 1 \leq j \leq p\right\}$. Let $e>0$.

For each $q=1, \ldots, r$, if E_{q} intersects only $A_{i} \cap B_{j}$ then $E_{q} \subset A_{i} \cap B_{j}$, and for $k=1,2$ we define $t(k)\left|E_{q}=s(k)\right| A_{i} \cap B_{j} ;$ we define $t(k)=0$ elsewhere. Then $|t(k)| \leq|s(k)|$ and $\mu(\{s(k) \neq t(k)\})<\epsilon$. Hence given $\{s(k)\}_{i=1}^{\infty}$ there are sequences $\left\{t(k)_{i}\right\}_{i=1}^{\infty}$ satisfying (i) and (iii) such that $\mu\left(\left\{s(k)_{i} \neq t(k)_{i}\right\}\right)<2^{-i}$. Then

$$
\begin{gathered}
\mu\left(\left\{s(k)_{i}-t(k)_{i} \nrightarrow 0\right\}\right)=\mu\left(\bigcup_{q=1}^{\infty} \bigcap_{N=1}^{\infty} \bigcup_{i=N}^{\infty}\left\{\left|s(k)_{i}-t(k)_{i}\right|>1 / q\right\}\right) \\
\leq \lim _{q \rightarrow \infty} \lim _{N \rightarrow \infty} \sum_{i=N}^{\infty} 2^{-i}=0,
\end{gathered}
$$

and the proof is finished.
(3.7) PROPOSITION. Suppose (X, Λ, μ) is non-atomic, let $\{I, J\}$ be a partition of $\{1, \ldots, m\}$ and let $f_{1}, \ldots, f_{m} \in M(X, \mu)$. Then the following two conditions are equivalent.
(i) f_{i} and f_{j} are similarly ordered if i and j are in the same set I or J, and oppositely ordered if i and j are in different sets I and J.
(ii) There is a measure preserving $\sigma: X \rightarrow[0, \alpha]$ such that $\delta_{f_{i}} \circ \sigma=f_{i} \quad \mu$-abe. if $i \in I$, and ${ }^{\imath} f_{j} \circ \sigma=f_{j}$ μ-a.e. if $j \in J$.

Proof, (ii) \Rightarrow (i): Let i and j be in the same set I or J and let i and k be in different sets I and J. Suppose A and B are disjoint sets of positive measure such that iss. $\sup f_{i}\left|A<e s s . \inf f^{\wedge}\right| B$. There are $A^{\wedge} C A$ and $B_{\hat{\mathbf{x}}} C B$ such that $u(A \backslash A .)_{J_{-}}=O=u\left(B \backslash \dot{B}_{1}\right)_{-L^{\prime}}$ ass. sup $f_{._{1}} \mid A=$ $\sup f_{i}\left|A_{-}\right|$and iss. inf $\frac{f}{\mathbf{f}} \cdot\left|B=\inf f_{\mathbf{i}}\right| B_{\mathbf{1}}$. Then $t e<y\left[A_{-}\right]$and $\operatorname{U£g}\left[\mathrm{B}_{\mathbf{I}}\right]$ implies ${\sigma_{\mathbf{f}_{\mathbf{i}}}(\mathrm{t})} \quad \sigma_{\mathbf{f}_{\mathbf{i}}}(\mathrm{u})$ so $u<t$ and hence $\sigma_{\mathbf{f}}(t) \leq \sigma_{\boldsymbol{f}}(u)$. Thus
 \underline{s}^{\wedge} ass. inf $f_{j} \mid B_{1}=$ iss. inf $f_{j} J B$.

Similarly, we get iss. sup $f_{k}\left|B \leq e s s . i n f{\underset{\sim}{k}}^{f_{k}}\right| A$, which proves the result.

$$
\text { (i) } \Rightarrow \text { (ii): We introduce some notation for this }
$$

part of the proof. If $g, h e M(X, j x)$, let

$$
|g-h|_{\mu}=\inf \{s+f x(\{|g-h|>s\}): s>0\},
$$

the metric of convergence in fjrmeasure [2, p. 102]. We let [•|^ denote the metric of convergence in Lebesgue measure on $[0, \alpha]$.

For each $n=1,2,3, \ldots$ let $U_{n}=\left\{U_{n}, I^{-\}_{1} \mathcal{L}_{2}}{ }^{i}\right.$ ^e an enumeration of the finite collection of intervals
$\left\{\left[n,+O D J,\left[-\Phi,-n[) \cup f\left[(k-1) \overline{2}^{n}, k 2^{-n}\left[:-n 2^{n} 4-1 \leq k \leq n 2^{n}\right\}\right.\right.\right.\right.$, and for each i let u. e u. n 3R. For each heM $\left(X, u_{n}\right)$ let
 $\sigma_{\mathbf{n}_{\mathrm{n}}} \rightarrow{ }^{\boldsymbol{h}} \mathrm{h}_{\mathrm{h}}$ pointwise. abe. [14, p. 508, (18.21)]. The intervals of U_{n} (being disjoint) are ordered in the. obvious way: for any two of them, the larger is the one whose points are all
 denote as usual these intervals in decreasing and increasing order, respectively. Clearly u^{*}. € U^{*}. and u^{1}. e $U^{T} .$.

$$
n, i \quad n, i \quad n, i \quad n, i
$$

Finally, if A and B are disjoint sets of positive measure and $s=$ est. $\sup h \mid A \leq C$ ass. inf $h \mid B=t$, then iss. sup $h_{n} \mid A$
 $\operatorname{teU}_{\mathbf{n}, \mathbf{j}}^{T}$ for some $i<\wedge j$, so es. $\sup h_{n} \mid A \wedge u_{n, i}^{1} \leq u_{n, j}^{f}<£$ - ass. inf h IB.

We will illustrate the proof of (i) $=£>$ (ii) in the case $m=3, \quad I=\{1,2\}$ and $J=\{3\}$. The general method of proof will then be evident. For convenience let $f=f_{1}, g=f_{2}$, $h=f_{3}$, and let sequences $\left(f_{n}\right) * \wedge_{n} \wedge \wedge_{n} \wedge$ be defined as above.

In addition, let $\otimes_{n}=\left\{D_{n, i}\right\}_{i=1}^{\ell_{n}}$ be a sequence of partitions of X such that for each n, θ_{n+1} is a refinement of θ_{n}, and $\mu\left(D_{n, i}\right) \leq \alpha / n$ for all $1 \leq i \leq \ell_{n}$. Finally, let

$$
\begin{aligned}
a(i, j, k, p)_{n}=\sum_{1 \leq q<i} \mu\left(A_{n, q}\right) & +\sum_{1 \leq q<j} \mu\left(A_{n, i} \cap B_{n, q}\right)+ \\
& +\sum_{1 \leq q<k} \mu\left(A_{n, i} \cap B_{n, j} \cap C_{n, q}\right)+ \\
& +\sum_{1 \leq q<p} \mu\left(A_{n, i} \cap B_{n, j} \cap C_{n, k} \cap D_{n, q}\right) ;
\end{aligned}
$$

let $V_{n}(i, j, k, p)=\left[a(i, j, k, p)_{n}, a(i, j, k, p+1)_{n}[\right.$ for all i, j, k, p such that $V_{n}(i, j, k, p)_{n} \neq \varnothing$ let $\sigma_{n}: A_{n, i} \cap B_{n, j} \cap C_{n, k} \cap$ $D_{n, p} \longrightarrow V_{n}(i, j, k, p)$ be measure preserving, and let $v_{n}=\left\{v_{n}(i, j, k, p): i, j, k, p \geq l\right\}$. Since

$$
\sigma_{n}: A_{n, i} \rightarrow\left[\sum_{l \leq q<j} \mu\left(A_{n, q}\right), \sum_{1 \leq q \leq j} \mu\left(A_{n, q}\right)[\right.
$$

whenever $\mu\left(A_{n, i}\right) \neq 0$ we have $f_{n}=\delta_{f_{n}} \circ \sigma_{n} \mu-a . e$.
In view of the remarks preceding (3.1) we have:
ass. sup $q \mid A_{n, i+1} \leq$ ess. inf $g \mid A_{n, i}$ and
ass. $\sup h \mid A_{n, i} \cap B_{n, j} \leq$ ass. inf $h \mid A_{n, i} \cap B_{n, j+1}$
whenever these sets have non-zero measure, so the same inequalities
hold with g and h replaced by g_{n} and h_{n} respectively. The first inequality implies that $g_{n}=\Sigma_{j} u_{n, j}^{*}{ }^{l_{A}}{ }_{n, i} \cap B_{n, j}$ for some increasing sequence $\left(i_{j}\right)$ having $i_{1}=1$. Hence as with $f_{n}, \delta_{g_{n}} \circ \sigma_{n}=g_{n} \quad \mu$-a.e. Similarly, ${ }^{l_{h}}{ }_{n} \circ \sigma_{n}=h_{n} \mu$-abe.

Now for all $q \geq 0$ we have by construction that v_{n+q} refines v_{n}, and $\sigma_{n}(x)$ and $\sigma_{n+q}(x)$ lie in the same member of v_{n}. Hence $\left|\sigma_{n}(x)-\sigma_{n+q}(x)\right| \leq \frac{\alpha}{n} \quad \mu-a . e ., \quad$ and thus there is a $\sigma: \mathrm{X} \rightarrow[0, \alpha]$ such that $\sigma_{\mathrm{n}} \rightarrow \sigma \mu$-a.e. Then $\delta_{\sigma_{n}} \rightarrow \delta_{\sigma}$ a.e. so σ is measure preserving.

Let G be the set of points of discontinuity of δ_{f} on $[0, \alpha]$. Then G is at most countable so $\mu\left(\sigma^{-1}(G)\right)=0$, and hence $\delta_{f} \circ \sigma_{n} \rightarrow \delta_{f} \circ \sigma$ pointwise $\mu-a . e . \quad$ Now for finite measure spaces, pointwise convergence implies convergence in measure, and $\left|\delta_{f_{n}} \circ \sigma_{n}-\delta_{f} \cdot \sigma_{n}\right|_{\mu}=\left|\delta_{f_{n}}-\delta_{f}\right|_{\lambda}$, so $\left|\delta_{f_{n}} \bullet \sigma_{n}-\delta_{f} \cdot \sigma\right|_{\mu} \leq\left|\delta_{f_{n}}-\delta_{f}\right|_{\lambda}+\left|\delta_{f} \cdot \sigma_{n}-\delta_{f} \cdot \sigma\right|_{\mu} \rightarrow 0$ and hence $f_{n}=\delta_{f_{n}} \circ \sigma_{n} \rightarrow \delta_{f} \circ \sigma$ in measure. Then a subsquince of f_{n} converges to $\delta_{f} \circ \sigma$ pointwise abe. so $f=\delta_{f} \circ \sigma$. Similarly, $g=\delta_{g} \circ \sigma$ and $h={ }^{q_{h}} \circ \sigma \mu-a . e .$, completing the proof.

We can now prove (3.1) and (3.2). For clarity of exposition we will only present a proof of (3.2). The proof of
will then be clear. With regard to (3.1.ii) we remark that (3.7) shows that $(b) \Longrightarrow(c) \Longrightarrow$ (a) always. The proof of (3.2) will illustrate the proof of $(a) \Rightarrow(b)$ when $m=2$. PROOF OF (3.2). Recall that $\alpha=\mu(X)$. Let $v=\sum_{j=1}^{n} a_{j} l_{E_{j}}$ and $w=\sum_{j=1}^{n} b_{j} I_{E_{j}} \quad$ where $R_{v} \subset T_{1}, \quad R_{w} \subset T_{2}$ and $\mu\left(E_{j}\right)=\alpha / n$ $(j=1, \ldots, n)$. Then $\delta_{v}=\sum_{j=1}^{n} a_{j}^{*} I_{[(j-1) \alpha / n, j \alpha / n[\quad \text { and }}$ $\delta_{w},{ }^{i} v,{ }^{l} w$ have similar expressions. When $t=k \alpha / n$, $0 \leq \mathrm{k} \leq \mathrm{n}$ we have

$$
\begin{aligned}
\int_{0}^{t} \delta_{\varphi\left(\delta_{v}, \imath_{w}\right)} & =\int_{0}^{t} \sum_{j=1}^{n} \varphi\left(\underset{\sim}{a}{ }^{*},{\underset{\sim}{b}}^{\prime}\right){\underset{j}{*}}^{1}[(j-1) \alpha / n, j \alpha / n[\\
& \left.=\frac{\alpha}{n} \sum_{j=1}^{k} \varphi\left(\underset{\sim}{a}{ }^{*}, \underset{\sim}{b}\right)^{\prime}\right) \underset{j}{*}
\end{aligned}
$$

and similar expressions for $\int_{0}^{t} \delta_{\varphi(v, w)}$ and $\int_{0}^{t} \delta_{\varphi\left(\delta_{v}, \delta_{w}\right)}$. In particular $t=\alpha$ gives expressions of this type for $\int_{0}^{\alpha} \varphi\left(\delta_{v},{ }^{1}{ }_{w}\right), \int \varphi(v, w) d \mu$ and $\int_{0}^{\alpha} \varphi\left(\delta_{v}, \delta_{w}\right)$. In case (i), (2.2.i) gives

$$
\begin{equation*}
\int_{0}^{\alpha} \varphi\left(\delta_{v}, \imath_{w}\right) \leq \int \varphi(v, w) d \mu \leq \int_{0}^{\alpha} \varphi\left(\delta_{v}, \delta_{w}\right) \tag{*}
\end{equation*}
$$

while in case (ii), (2.2.ii) gives for $t=k \alpha / p$

$$
\text { (**) } \quad \int_{0}^{t} \delta_{\varphi\left(\delta_{v},{ }^{2} w\right.} \leq \int_{0}^{t} \delta_{\varphi(v, w)} \leq \int_{0}^{t} \delta_{\varphi\left(\delta_{v}, \delta_{w}\right)}
$$

Now in (${ }^{* *}$) each of the integrands is constant on each of the intervals $[(j-1) \alpha / n, j \alpha / n[$, so the integrals are linear functions of t on these intervals, and hence (**) holds for all $0 \leq t \leq \alpha$. When $|v| \leq|f|$ and $|w| \leq|g|$, then each of the integrands in (*) and (**) is bounded by a constant which depends only on f and g, because φ is bounded on $I_{f} \times I_{g}$ and $R_{v} \times R_{W} \subset I_{f} \times I_{g}$. Using now (3.6) there are sequences v_{i} and w_{i} of simple functions like v and w above such that $\quad v_{i} \rightarrow f, \quad w_{i} \rightarrow g, \quad\left|v_{i}\right| \leq|f| \quad$ and $\quad\left|w_{i}\right| \leq|g|, \quad$ so $\delta_{v_{i}} \rightarrow \delta_{f}$ and $\delta_{w_{i}} \rightarrow \delta_{g}$ a.e. Taking limits and using the dominated convergence theorem, we have that (*) or (**) holds with v and w replaced by f and g respectively. We now show the condition for equality on the right in (3.2.i). Assume φ satisfies (A^{*}), suppose f and g are not similarly ordered, and we will show that the inequality on the right is strict. There are disjoint sets A and B of positive measure such that ess. sup $f \mid A<$ ess. inf $f \mid B$ and $t=$ ess. $\sup g \mid A>$ ess. inf $g \mid B=r$. Let $r<s_{1}<s_{2}<t$ and let $D \subset\left\{x \in A: g(x) \geq s_{2}\right\}$ and $E \subset\left\{x \in B: g(x) \leq s_{1}\right\}$ with
$0<\mu(D)=\mu(E)=\beta$. Then let $\sigma_{D}: D \rightarrow\left[0, \beta\left[\right.\right.$ and $\sigma_{E}: E \rightarrow[0, \beta[$ be measure preserving and define

Then $f^{\prime} \sim f, g^{\prime} \sim g$, iss. sup $f \mid D<$ ass. inf $f \mid E$, ess. sup $g \mid E<e s s$. inf $g \mid D$, and for all $O \leq u \leq \beta$ we have

$$
\begin{aligned}
& \delta_{f \mid D}(u)<\delta_{f \mid E}(u) \text { and } \delta_{g \mid E}(u)<\delta_{g \mid D}(u) . \text { Hence } \\
& \int_{D} \varphi(f, g) d \mu+\int_{E} \varphi(f, g) d \mu \leq \int_{O}^{\beta} \varphi\left(\delta_{f \mid D}, \delta_{g \mid D}\right)+\varphi\left(\delta_{f \mid E}, \delta_{g \mid E}\right)< \\
&<\int_{O}^{\beta} \varphi\left(\delta_{f \mid D}, \delta_{g \mid E}\right)+\varphi\left(\delta_{f \mid E}, \delta_{g \mid D}\right)= \\
&=\int_{D} \varphi\left(f^{\prime}, g^{\prime}\right) d \mu+\int_{E} \varphi\left(f^{\prime}, g^{\prime}\right) d \mu .
\end{aligned}
$$

Adding $\int_{X-(D \cup E)} \varphi(f, g) d \mu=\int_{X-(D \cup E)} \varphi\left(f^{\prime}, g^{\prime}\right) d \mu$ we obtain

$$
\int \varphi(f, g) d \mu<\int \varphi\left(f^{\prime}, g^{\prime}\right) d \mu \leq \int_{0}^{\alpha} \varphi\left(\delta_{f^{\prime}}, \delta_{g^{\prime}}\right)=\int_{0}^{\alpha} \varphi\left(\delta_{f}, \delta_{g}\right)
$$

and the proof is finished.

REMARK. Depending on the choice of $c p$ and the intervals $\mathrm{T}_{\mathbf{i}}$, Theorems (3.1) and (3.2) may hold for a larger set of functions than $L^{\boldsymbol{\infty}}$. Indeed, in the proof of (3.2), to get inequalities (1) or (2) we only needed to be able to interchange limit and integral in equations (*) and (**) respectively. To get the condition for equality, we only needed to know that if equation (3.2.1) holds for f and g then it also holds for $f \mid A$ and $g \mid A$ whenever A e $A-$
 Now it follows from [10, p. 93] that $|v| \leq .|f|$ implies $\left.\left|\sigma_{\sigma}^{6}\right| _\mathbb{C} 1_{f}\right|_{ \pm} \mid$arachd $\left|\psi_{V}^{t}\right| _\mathbb{C}\left|t_{f}\right|$, so we may use [3] and the dominated convergence theorem to conclude that (3.1.1) and (3.2.1) hold for all $L^{\mathbf{l}}$ functions. Finally since $f_{1}, \ldots, f_{m} e^{\text {l }}$ implies $f_{\perp}\left|A, \ldots, f_{m}\right| A e L^{1}$ the condition for equality also holds for all L^{1} functions. Other illustrations appear in the following examples.
(3.8) EXAMPLES.
(i) $\sigma_{f}+t_{g}<f+g<\sigma_{f}+\sigma_{g}$ for all $f, g e L^{l}$.
(ii) $\quad 6^{\wedge}{ }^{-6} \underset{g}{ }<f-g<6 \cdot p^{-i} g$ for all $f, g e L^{l}$.

The (i) and (ii) are easily seen to be equivalent using
[10,p. 93]. While $\sigma_{f_{\mathbf{g}}}<\sigma_{\mathrm{f}}+\sigma_{\mathrm{g}}$ is well-known (see [10, p. 108]), the fact that $\sigma_{f}-{ }^{6} \mathbf{g}^{\bullet}<\mathrm{f}-\mathrm{g}$ is new. In $[10, \mathrm{p}$. 107]
it is proved that: $g<$ fel 1 implies $|g| \ll|f|$. Hence I6f $-{ }^{6} \mathbf{g}^{I}$ 《 If - $g \backslash$, generalizing [9, Prop. 1, p. 34]. It then follows that $\backslash, \backslash f_{R}-f| |, r=0$ implies $||6--6 j|,-* 0$,

$$
\mathrm{p} \quad \mathrm{~m} \quad \mathrm{r}^{\wedge} \quad \mathrm{r} \mathrm{x}
$$

β
where $\{\mathrm{f}\}$ is a net. Using $[10,(9.1), \mathrm{p} .103]$, the inequality $6_{f}-\sigma^{g}<f-g$ can be written equivalently:

$$
\int_{E}{ }^{6} f+J_{E}^{r}>_{g}(\ll-t) d t i j \sum_{0}^{m(E)} \sigma_{f+g}
$$

for all Lebesgue measurable E c [0,a], where m denotes Lebesgue measure. This is an interesting generalization of [10,(10.1)].

If 0 S. f,geM, we may approximate f and g by non-negative simple functions and use monotone convergence to show that it holds for these f and g also. By decomposing $f, g e M$ into their positive and negative parts, this inequality can, as in [10, p. 102], be shown to hold for all f,geM such that 6iif \mid 6ilg| e L [0,a]. The inequalities are strict except as indi-
 $0 \leq . f, g e M$ or $0 \geq f, g e M$ such that ${ }^{\sigma_{f} 6}{ }_{\mathbf{g}} \in \mathrm{L}^{1}[0, \mathrm{a}]$.
(iv) (1) $\quad J_{0}^{\alpha} \log \left(l+\sigma_{f l_{g}}\right) \leq J \log (l+f g) d_{M} \leq J_{o}^{\alpha} \log \left(l+\sigma_{f} \sigma_{g}\right)$ holds for all $\mathrm{f}^{\wedge} \mathrm{eL}^{00}$ satisfying
(2) both $\sigma_{f}(0) t_{\mathbf{g}}(0)>-1$ and $\sigma_{f}(a-)_{t} g^{(a-)}>-1$,
because (2) is equivalent to: $I_{f} \times I_{g} \subset\{(x, y): x y>-1\}$. In addition, using monotone convergence, (1) can be shown to hold if $0 \leq f, g \in M$ or $0 \geq f, g \in M$. Then (1) can be shown to hold for all $f, g \in M$ satisfying (2) using the following observations. First, $\log (1+f g)=\log \left(1+f^{+} g^{+}\right)+\log \left(1-f^{+} g^{-}\right)+$ $+\log \left(1-\mathrm{f}^{-} \mathrm{g}^{+}\right)+\log \left(1+\mathrm{f}^{-} \mathrm{g}^{-}\right)$. Next, when (2) holds for the pair f, g it also holds for each of the pairs: f^{+}, g^{+}; $\mathrm{f}^{+},-\mathrm{g}^{-} ;-\mathrm{f}^{-}, \mathrm{g}^{+} ;-\mathrm{f}^{-},-\mathrm{g}^{-}$. Finally, when (2) holds, then: f unbounded above implies $g \geq 0 ; f$ unbounded below implies $g \leq 0 ;$ and the same is true when f and g are interchanged. Clearly if $f, g \in M$ satisfy (2) so do $f \mid A$ and $g \mid A$ for any $A \in \Lambda$. Hence the inequalities are strict except as indicated in (3.2).

Similarly, $\quad \log \left(1+\delta_{f} g_{g}\right) \ll \log (1+f g) \ll \log \left(1+\delta_{f} \delta_{g}\right)$ for all $0 \leq f, g \in M$ or $0 \geq f, g \in M$ such that $\log \left(1+\delta_{f} \delta_{g}\right) \in L^{1}[0, \alpha]$.
(v) (1) $\int_{0}^{\alpha} \log \left(\delta_{f}+\delta_{g}\right) \leq \int \log (f+g) d \mu \leq \int_{0}^{\alpha} \log \left(\delta_{f}+q_{g}\right)$
for all $f, g \in L^{\infty}$ such that
(2) $\delta_{f}(\alpha-)+\delta_{g}(\alpha-)>0$,
since (2) is equivalent to $I_{f} \times I_{g} \subset\{(x, y): x+y>0\}$.
Actually, (1) holds for all $f, g \in M$ satisfying (2) since f
and g are then bounded below, so we may approximate them by increasing sequences of bounded functions satisfying (2) and use the B. Levi Monotone Convergence theorem [6, p. 172]. The inequalities are strict except as directed in (3.3). Similarly, if $f, g \in M$ satisfy (2) and $\log \left(\delta_{f}+\imath_{g}\right) \in L^{l}[0, \alpha]$ then $-\log \left(\delta_{f}+{ }_{\mathrm{I}}^{\mathrm{g}} \mathrm{f}\right) \ll-\log (\mathrm{f}+\mathrm{g}) \ll-\log \left(\delta_{\mathrm{f}}+\delta_{\mathrm{g}}\right)$.
(vi) We have the following continuous version of London's Theorem. Suppose $0 \leq f, g \in M$ or $0 \geq f, g \in M$.
(1) If H is convex, increasing and continuous on $[0, \infty$ [then

$$
\int_{0}^{\alpha} H\left(\delta_{f}^{\imath} g\right) \leq \int H(f g) d \mu \leq \int_{0}^{\alpha} H\left(\delta_{f} \delta_{g}\right)
$$

(2) If $H\left(e^{x}\right)$ is convex, increasing and continuous on $[0, \infty$ [then

$$
\int_{0}^{\alpha} H\left(1+\delta_{f}{ }^{1} g\right) \leq \int_{H}(1+f g) d \mu \leq \int_{0}^{\alpha} H\left(1+\delta_{f} \delta_{g}\right) .
$$

In either case, if H is strictly convex, then we have equality on the left [right] iff f and g are oppositely [similarly] ordered iff $\delta_{f}{ }^{2} g \sim \mathrm{fg} \quad\left[\delta_{f} \delta_{g} \sim \mathrm{fg}\right]$.
(vii) Theorem (3.1) gives a necessary and sufficient condition for the inequality in Lorentz' Theorem (1.5) which simplifies his condition (1.5.2). In (3.1) take $x=$] 0 , ll with

Lebesgue measure, $T_{1}=[0,1], \quad T_{i}=[0, \infty[\quad(i=2, \ldots, m)$, $J=\{1\}, \quad I=\{2, \ldots, m\}$ and $f_{1}(x)=x$.

REFERENCES

[l] Day, Peter w., "Decreasing Rearrangements and Doubly Stochastic Operators", (To appear).
[2] Dunford, N. and J. T. Schwartz, Linear Operators, Part I, Interscience, 1966.
[3] Halmos, P. R., "Functions of Integrable Functions", J. Indian Math. Soc. 11 (1947), 81-84.
[4] Hardy, G. H., J. E. Littlewood and G. Polya, "Some Simple Inequalities Satisfied by Convex Functions", Mess. of Math. 58 (1929), 145-152.

Cambridge, 1934.
[6] Hewett, E. and K. Stromberg, Real and Abstract Analysis, Springer-Verlag, 1965.
[7] London, David, "Rearrangement Inequalities Involving Convex Functions", Pac. J. Math. 34 (1970), 749-752.
[8] Lorentz, G. G., "An Inequality for Rearrangements", Am. Math. Monthly 60 (1953), 176-179.
[9] Lorentz, G. G. and T. Shimogaki, "Interpolation Theorems for Operators in Function Spaces", J. Funct. Analysis 2 (1968), 31-51.
[10] Luxemburg, W. A. J., "Rearrangement Invariant Banach Function Spaces", Queen's Papers in Pure and Applied Math. 10 (1967), 83-144.
[11] Minc, Henryk, "Rearrangement Theorems", Notices of AMS 17 (1970), 400.
[12] Mitrinovic, D. S., Analytic Inequalities, Springer-Verlag, 1970.
[13] Ruderman, H. D., "Two New Inequalities", Am. Math. Monthly 59 (1952), 29-32.
[14] Zaanen, A. C., Integration, John Wiley and Sons, 1967.

[^0]: * Supported by NSF Grant GU-2056.

