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Abstract

The structure that we shall describe here is a dual ver-
sion of the Leray spectral sequence of a covering (Cf. [4],
p. 212) but is not extensive enough to satisfy the precise
definition of "spectral sequence." Yet, it does enable one
to derive a functorial spectral sequence that relates the (genn
eralized) honol ogy sheaf of a space to the honol ogy of the
space. (C. [2] for an earlier attenpt to obtain such a spec-

tral sequence.)
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Let X be a space with base point * e X. For sone finite

set c9 let | = (X |s cJ) be afamly of subspaces of X

each containing *. Assume that X 1is covariayit, i.e.

that an inclusion s c¢cs' inplies aninclusion X <=xt . W
* s S

then have the notion of an alternating non-degenerate n-cochain
§ (M0 of X with coefficients in IT (g>2) : such a ? is any fam.

. q .
. f)X* . — . . n+1 . f)X*
ity {?™]i .= (i R 2]e’\ ] such that (i) each ~ el'g[‘(xi#_),

(ii) the condition 2% =0 holds if i = (i ,....i ) contains
1 * (@) n

a repetition, (iii) the condition 5% = (sign &@-? * holds if

1
a is any permutation map fo,l,...,n}--»{o,1,...,n} and i* =
(i9N,. .. 5 )y W have al so the coboundary 6?2 of ?, which

is defined as the (n+l)-cochain such that

(5%)1* _ n (_1)t gl*(t),
.4
t =0 Tx
, n+2 “ . . .
where i* elJ and \(t) = (i Ai-'O’ = "'t-1’1t+1""’ln+1)‘
Denote the function group of all n-cochains as C?X?r ) .
: q
In the linear space ©3F\‘f L] I@ denote the standard basis

ied
somehow, say as {e.l| i e<3d], and for each subset s c <$ denote the




convex hull of the corresponding set (e. 1 i es) as As. Re-
gard A9 as a sinplicial conplex with vertex set (e.l| I e c9}.

Each pair (K L) of subconpl exes of A? provides a function space
3K L) = {cp:K> <pL=*; for each As ¢ Ks (pAss ¢ X }e

S
W consi der the groups rr &5“(’ L) (ceA) .

Proposition 1. If (KL,M is a triple of subconpl exes of

&d, then 3(K,M is a fibre space over 3(L,M wth fibre 5J(KL).

Pr oof . The assertion is that the transfornation
of each <p€3(K,M to its restriction tp is amp with the

honmot opy lifting property, while the kernel of 9 is 3(K,L).
The latter is obvious, as is contin'uity of 9. Now since < is

finite, 0O is the conposite of the maps

8, : F(K UL,M—F(K__,UL,M).

Each has the honotopy lifting property, according to the follow
ing argunent: Suppose Y is any space, together with a map
Ho: Y-*3(K,UL,M and a honmotopy h:: Y-*5(Kjy*ULN (OC‘t”l) such
t hat ho: 9nHO. Regard these, respectively, as a map

H' : Y X (K,UL)-*X and honmotopy h”" @ Y X (K__U)~>X (Ot"™l) .

For each n-sinplex As of K not in L there are H and
°| YXAS

h'. (Qt™) , which take values in at nost X, so by the

r _,|Y><\_.As S

Honot opy Extension Property for (YXAS, YX5AS) they extend to form
a honot opy

H!tS DY X AS-VX_ (XK1 .




3.

Doing this for each n-simplex As in K and not in L, and ex-

tending to agree with {hé], we define a homotopy

He : ¥ x (R UD) =X (0KtK1),

which is the same as the required

Hy : Y-F(K UL,M) (0<t<d) .

So, en’ and therefore 6, has the homotopy lifting property.

Corollary 1l.1. For each such triple (K,L,M) there is an

exact sequence of base-pointed sets

)
° e 'vq+13 (L,M) —-—)qu(K:L) —?Trqg (RyM) e 00 — TTO:;(L,M) .

Corollary 1.2. There is essentially a spectral sequence

{ n n . En ___’En+r

;d ] with EO defined for all ne Z,
r;q’ r;q r;q r;g-1 r;q

all r> 1, all g > 2, and with d?_q defined for all ne Z,

all r > 1, all g > 3. The formulas are:

(1) Er-q = the homology subquotient of the half-exact
sequence
T 15 (Ad LS ) 9 T _F(AS_,AI ) —awr F(nd A ) s
g+l n-1""“n-r’ 7 "gq n’~“n-1 g-1° n+r-1°“n’’
(ii) dﬁ.q is induced by the additive relation

J
vq5(A3n,AJn_ ) = 7 133, sa8))

[



Corollary 1.3. The spectral sequence converges to the set of

honol ogy subquotients Ezo-q of the half-exact sequences

i

0
3 =, 3 A
F(ad 1,9 wq’J(A Y

0
Fiad Al
n_l) _)‘n—q'—l (& JA n) »

wq+l
and these in turn are isonorphic to the subquotients

F“qu(AJ,ﬂ)

F“*lqu(AJ,ﬂ)

of ir 3{A<$,0), where
q

n
F 1Tq3(AJ, 0) = IanTrqs( ad, AJ o9 > Trq5(Ac5‘,£5) 1.
The isonorphismin question is induced by the additive relation

F(AS A F(AI,Ad F(ad, D).
T (ad A no1) TS dad o Fa ,8)

*
- - .
o m m ow o o ow we w

(The Corollaries 1.2-1.3 assune famliarity with the often-referred--

to sectionin [3], p.333.)

Proposition 2. There is a natural isonorphism

$ 2 0N ( ;gzﬁgz)quhtra $ds 553 .
l;q

. A=y - o
Proof. First, E q ch‘IJ'(A(\ri‘]nrl) , by definition. But

S(AJn, AL ) T= X T«*(As,dAs) by restriction of the menmbers of
- di m As=n

3(Ar9n,ﬁe9n~n? to each n-sinplex. This neans n ITd’;s(AS.,aAs)

Er o
rrQ -di m AS=n "+

(naturally). Sticking nonentarily to one n-sinplex AS, and put-
ting its indices into a sequence i = (i ,...,i ), we formnext an.

* o] n
i sonor phi sm




~

éi*: T g(AS,aAS)*:L+W' (XS): Its formula entails the set
q

g+n

s(t) = {1 .,in} (0<t<n) via the diagram

t’it+l’°'
T _F(AS,0AS)
a
[}
vqTOPO(As(O),BAS(O):XS)
)]

vq+kT0po(AS(k),5AS(k)7XS)
aT:

Topo(BAs(k),BAS(k)—int As (k+1) ; Xs)

Topo(As(k+l),5AS(k+l);XS)

Ta+k+1

Wq+k+l

«

Wq+nT0po(As(n)’¢7xs)

I

Wq+n(Xs)'

(TopO stands for function space, with base point of XS understood.)

The rest of the proof is exactly as presented in [l1], Lemma 2.5. []

Thus, the groups vq3(A3,¢) for g > 2 are related to the

groups Wj(XS) for j >2 and s < Jd: we have

anq3(AJ,¢)

= a subquotient of I 7 (X))
+
PP 3 (03, 8) oam s
q dim As=n




(where this isomorphism entails both Corollary 1.3 and Proposition 2).

To approximate this subquotient, one forms subquotients E?.q (r>2)

by reference to differentials, with the exception of the case q = 2.

.. . . +
(The d?.z's are missing, since the corresponding E?_i's are not
! I

available to serve as their codomains).

Application to general homology. Before going any further we

N X-—3F(ad,f) which sends each
chg S
xe N X into the constant map which has value x. The map b

note that there is a map b :

is
chﬁ

obviously natural.

Now let h = {hq,BquezZ} be any general homology theory

(Cf. [5]). If h* 1is its polar general cohomology theory, there is

an S-module (syn:spectrum) W = {W{k)|k = 0,1,...} of base-pointed

~

spaces that classifies h*., For compact polyhedral pairs (X,A) we

lim T +k(W(k)/\X,W(k)/\A) for all qge2
k— 0o
(where for any base-pointed space

must then have hq(X,A) =

M one defines M A X to be

(MxX) /({*}xX)) .

Let X be any compact polyhedron without base point and
[(Xi,Ai)lie 4} a finite family of pairs of subpolyhedra of X.

For each %k = 0,1,... define Y(k-1) = QW(k)AX,W(k)AX),

Ys(k—l) = Q(W(k)AXS,W(k)AAS) (scd), where (XS,AS) = (.U X, .U Ai).

ies ies
It follows that Y =({v(k)} and Y = {Ys(k)} are S-modules, with
lim 7 _ . (Y_(k)) (henceforth denoted Wq(zs)) = hq(Xs’As)' The

k= oo




function space &(K,L) for (Y(k);J;{Ys(k)ls c J}) will be denoted
3(K,L) (k). The structure of S-module for Y carries over, so that

there is an S-module &(K,L) =V{3(K,L)(k)|k = 0,1,...}. Returning

now to b, we see that we have a map

b(k) = 0 Y _(k) = 3(ad,0) (k)
sCJ

which commutes with the S-module structure, so that there is an

S-module transformation b : ﬂYS—4>3(A3,¢)-

Proposition 3. vq(b) is an isomorphism

= Y) =
h (N x., N A =m_( L) S T E(89,0) .

N
T ied ied 9 scd
Proof. Assume first that A, = {(*} for all ied , because the
general case will follow from this case (see below). Write Zs(k)

for W(k) A Xs’ to define an S-module gs such that

T Z TY = h (X ). We shall denote N X. as Xs.
a~s a~s g s ies L

Consider the following commutative diagram for some l-simplex
Alj of Ad:
ij ij
o 9 - Q . . v e e
Tq (z;,,277) — Wq(g )-——qu(gl)
l e

T 2, .,2.
a"Zi525) ?

\l‘= N v

.« 3 13 19 e
WqN(Alj,ei) — Wqﬁ(Alj)—équ(ei)

|1}




The indicated isomorphisms are simply the renaming of a parameter,

while e is induced by inclusion and ? 1is given by the same

formula as b. But e is acfually the map h (Xi,xlj)—%h (X

g+l g+l

which is an isomorphism by the general homology excision property
for compact polyhedra. By the diagrammatic 5-lemma it follows that
is an isomorphism.

Now let As be any simplex of Ad and e, some vertex not

[1I¢

in As. Assume that vq(zs) WqE(AS) holds. Form the commutative
diagram
s s
o T UZ.,2.NZ27) —> 1 (2.NZ7) —>> 1 (Z.) -
q ~i'~i ~ q ~i ~ q ~i
| .

S S
T Q(z,Uz°,2%) 7

1

T U (88) 5 (28))

lg y y

.o qu(A(sUi),ei)—»'vqg(a(sUi))—éwqg(ei)-" s

where &% (As) is the same as &(As) but for the system
(X;J;{XiUXSIs c J}). (Thus, F(As) are subspaces of &x(as).)
The map e has again the form of an excision isomorphism

S s s
n . 2" i i -
hq+1(xi’xi X' )—h (XiUx , X)) To prove that is an isomor

g+l

phism, we apply the diagrammatic 5-lemma to the commutative dia-

gram

?

ij’xj) 3




S S S S
. .. . 'U 7 ¢ e
wqﬂ(glUg ) —>» wqﬂ(gl Z2,z2) — Wq(N )

on
.

1

coo §B%(AS) — T _Q3*(As) ,F(As)) o7 _(F(as)) - -
a a q

where the isomorphism at the left is of the same type as the one
at the right. Now that ?" is seen to be an isomorphism, the earl-
ier diagram similarly shows that ?' 1is an isomorphism. This com-
pletes the inductive proof in case A, = {*) for all 1icd.
For the general case recall that
Y_(k-1) = (2. (k) ,Z0 (k)
s s ’Ts ’
1 o} .
where Zs(k) = W(k) A Xs and Zs(k) = W(k) A AS. Write
&JK,L)(k) = {¢ : K92(k)|p(L) = *, and for each As € K ¢(as) C Z:},

(v=0,1). From the definition of F(K,1L) it is evident that

¥ (K,L) (k-1) = Q3 (K,L) (k) , F (K,L) (k)

by rearranging the priority of variables. So, we have the commuta-

tive diagram

3 3 0d R
e 2T 7ozt ,2%) s v (299
.. 3 _
Tqu'd' 1(A ) — Wq3 (A — quo(AJ) s

in which the left and right isomorphisms have just been established,

so that the map Eﬂ@ is an isomorphism by the diagrammatic 5-lemma. [ ]
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Corollary 3.1. For any general homology theory h and finite
famly X = {Xi’Ai)Iie N} of pairs of subpolyhedra of a conpact
pol yhedron X, there is a corr'espondi ng spectral sequence

n . n . n nRt+r H .
]er,;dq, 'r;Eq _r>;Eq r‘]l;n'(‘j-l!lj eZ r 21} such that |
Under this isonorphism dn_ corresponds to the cochain coboundary

1/q

*k/\': n .
= OG-

g J
. Fho X A)
operator, and E, is isomorphic to * _T~ for some

00 A Fn#lhq(xv)

filtration
1]

2 : +i‘ J 3 :
- 1A (X*X) :->Fn h (X'A) =D
a a

L e ch «Q
of h (X ,A) (containing both h (X ,A) and {0}), where
S g q

P R | - .
(X ,A) = (PP X, i&PA.). Moreover, the entire structure is func-
torial in (Xc9l) .

Corollary 3.2. If X 1is a conpact polyhedron and h a gen-

eral honol ogy theory® there is a spectral sequence

n n . n _N n+r . N H N n; n . N
LEr;qd r;'qEr;q Er;q——ll' oL, deZ; r A 2y with Ez;q H,(Xq@'_n
wher e Sq+n stands for the induced sheaf of the general honol ogy pre-
sheaf U»>h (X, X-U) . The group =4 I's isonmorphic to

. q_'_nv 3 * * 00 ; q A
F'h_(X) '

7 for a suitable filtration
n+i
F hq(x)

e - F'h (X) 3F"™h (X) =>+ "' o
q q
of hq(X) (containing both hq(X) and [0}).
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