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Abstract

The structure that we shall describe here is a dual ver-

sion of the Leray spectral sequence of a covering (Cf. [4],

p. 212) but is not extensive enough to satisfy the precise

definition of "spectral sequence." Yet, it does enable one

to derive a functorial spectral sequence that relates the (gen-

eralized) homology sheaf of a space to the homology of the

space. (Cf. [2] for an earlier attempt to obtain such a spec-

tral sequence.)
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Let X be a space with base point * e X. For some finite

set c9 let I = (X |s c J) be a family of subspaces of X,

each containing *. Assume that X is covariayit, i.e.

that an inclusion s c s! implies an inclusion X <= x t . We
* s s

then have the notion of an alternating non-degenerate n-cochain

§ (n̂ >0) of X with coefficients in IT (q>2) : such a ? is any fam-
q

ily {?X*|i = (i ,...,i ) e ̂ n + 1] such that (i) each ?X* e IT (X. ),
•*• o n c[ i#.

(ii) the condition ? * = 0 holds if i = (i .....i ) contains
* o n

a repetition, (iii) the condition 51* = (sign a)-? * holds if

a is any permutation map fo,l,...,n}--»{o,l,...,n} and i =

(i - v 9. . . ,i . . ) . We have also the coboundary 6? of ?, which

is defined as the (n+1)-cochain such that

n

t=0

where î_ e J and \(t) = (i ^ ±_ , . . • , i.

Denote the function group of all n-cochains as C (X;7r ) .
q

f i] c9
In the linear space © 3Rl = IR denote the standard basis

somehow, say as {e . | i e <3] , and for each subset s c <$ denote the
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convex hull of the corresponding set (e. | i e s) as As. Re-

gard Ac9 as a simplicial complex with vertex set (e.|ie c9}.

Each pair (K,L) of subcomplexes of Ac? provides a function space

3S(K,L) = {cp:K->x| <pL = *; for each As c K 5 (pAs c X }•
s

We consider the groups rr I5(K,L) (c£>l) .

Proposition 1. If (K,L,M) is a triple of subcomplexes of

then 3(K,M) is a fibre space over 3(L,M) with fibre 5J(K,L)

Proof. The assertion is that the transformation

6 : 3 (K,M

of each <p€3(K,M) to its restriction tp is a map with the

homotopy lifting property, while the kernel of 9 is 3(K,L).

The latter is obvious, as is continuity of 9. Noŵ  since <J> is

finite, 0 is the composite of the maps

Each has the homotopy lifting property, according to the follow-

ing argument: Suppose Y is any space, together with a map

HQ: Y-*3(KnUL,M) and a homotopy ht: Y -* 5 (K^j^U'L^M) (O^t^l) such

that h = 9 H . Regard these, respectively, as a map

H^ : Y X (KnUL)-*X and homotopy h^ : Y X (Kn__1UL)~>X (O^t^l) .

For each n-simplex As of K not in L there are H? and
°|YXAS

h' (Q^t^l) , which take values in at most X , so by the
r | ^ S

Homotopy Extension Property for (YXAS,YX5AS) they extend to form

a homotopy

H! S : Y X AS-VX (
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Doing this for each n-simplex As in K and not in L, and ex-

tending to agree with {h!}, we define a homotopy

U]t : Y X (K

which is the same as the required

So, 0 , and therefore 6, has the homotopy lifting property.

Corollary 1.1. For each such triple (KjL,M) there is an

exact sequence of base-pointed sets

• • •IT +13(L,M) —>TT 3(K,L)-}7T 3 (K,M) • • • -* TTO^(L,M) .

Corollary 1.2. Ihere is essentially a spectral sequence

K ' d E T E ! ] With E

all r ̂_ 1, all q ̂  2, and with d # defined for all n €
r; q

al l r _̂ 1, a l l q ^ 3. ihe formulas are:

(i) E = the homology subquotient of the half-exactr; q

sequence

(ii) dn^ is induced by the additive relationr; q

\
\
\
\

\
\
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Corollary 1.3. The spectral sequence converges to the set of

homology subquotients E of the half-exact sequences

and these in turn are isomorphic to the subquotients

of ir 3{A<$,0) , where
q

T 3(AJ,0) = Im[Tr 3( AJ,AJ ,) --» TTq q n-1 q

The isomorphism in question is induced by the additive relation

(The Corollaries 1.2-1.3 assume familiarity with the often-referred-

to section in [3], p.333.)

Proposition 2. There is a natural isomorphism

$ * C n ( X ) (2) SUch that $d?
l; q

Proof. First, E^ = IT J?(Â  ,J n ) , by definition. But

,A^ -,) = x «*(As,dAs) by restriction of the members of
dim As=n

,A n) to each n-simplex. This means E = n IT 3(AS
n n~ i _L 7 Q" _. cr

^ dim AS=n

(naturally). Sticking momentarily to one n-simplex A S , and put-

ting its indices into a sequence i = (i ,...,i ), we form next an
* o n

isomorphism



>1*- IT 3(AS,SAS) * IT (X ): Its formula entails the set
q q+n s

s(t) = {it>it+1>-- -^n) (Q£t£n) via the diagram

IT

q

TT Top (As(O) ,SAS(O) ;X )
q o s

ir ̂ vTop (As(k) ,dAs(k) ;X )qC o s
/N ^

IT .^,Top (SAs(k) ,SAs(k)-int As(k+1) ; X )
q+x+L o s

IT + k + 1
T°P o (AS (k+1) ,^As(k+l); Xg)

7T , (X ) .

q+nv s

(Top stands for function space, with base point of X understood.)
o s

The rest of the proof is exactly as presented in [l]t Lemma 2.5. L]

the groups IT 3 ( A ^ 0 ) for q ;> 2 are related to the

groups 7r.(X ) for j ;> 2 and s c J: we have

= a subquotient of II IT (X )
^ S

q dim As=n



(where this isomorphism entails both Corollary 1.3 and Proposition 2).

To approximate this subquotient, one forms subquotients E m (r^2)
r; q

by reference to differentials, with the exception of the case q = 2.

(llie dn 's are missing, since the corresponding En~^fs are not
r * z r 71

available to serve as their codomains).

Application to general homology. Before going any further we

note that there is a map b : 0 X—-^(A^^) which sends each
s

x e (1 X into the constant map which has value x. The map b is
s

obviously natural.

Now let h = {h , d |qeZ} be any general homo logy theory

(Cf. [5]). If h* is its polar general cohomology theory, there is

an S-module (syn:spectrum) W = {W(k)|k = 0,1,...} of base-pointed

spaces that classifies h*. For compact polyhedral pairs (X,A) we

must then have h (X,A) = lim IT (W(k)Ax,W(k)AA) for all q e Z
Cf _ CT"T"K

^ k-* oo
(where for any base-pointed space M one defines M A X to be
(MXX)/({*}XX)).

Let X be any compact polyhedron without base point and

{ (X. ,A.) | i e c9} a finite family of pairs of subpolyhedra of X.

For each k = 0,1,... define Y(k-l) = Q(W(k) Ax,W(k) Ax) ,

Y ( k - 1 ) = O ( W ( k ) A x , W ( k ) A A ) ( s c J ) , w h e r e (X , A ) = ( U X . , U A . ) ,
s s s s s . i . i

1GS 1GS

I t follows that Y ={Y(k)} and Y = {Y (k) } are S-modules, with

lim ir (Y (k) ) (henceforth denoted TT (Y ) ) = h (X ,A ) . The
k->oo q + k S q ~s q s s
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function space 3(K,L) for (Y(k);c5;{Y (k) | s <= S]) will be denoted
s

3(K,,L) (k) . The structure of S-module for Y carries over, so that

there is an S-module 3(K,L) = {3*(K,L)(k)|k = 0,1,...}. Returning

now to b,, we see that we have a map

b(k) : Y (k)
s

M ) (k)

which commutes with the S-module structure, so that there is an

S-module transformation b : flY —* 0

Proposition 3. IT (b) is an isomorphism

h ( n x,, n A J = T T ( n Y ) ̂  7
1'.

Proof. Assume first that A. = {*} for all i e 3 } because the

general case will follow from this case (see below) . Write Z (k)
s

for W(k) A x , to define an S-module Z such that
s' ~s

IT Z = T T Y = h ( X ) . We shall denote n X. as XS,
q-s Q'-s q s . 1
^ H ^ IGS

Consider the following commutative diagram for some 1-simplex

Aij of Ac9:

IT

IT O(Z. . ,Z.)
q -ID ~J

\/
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The indicated isomorphisms are simply the renaming of a parameter,

while e is induced by inclusion and ? is given by the same

formula as b. But e is actually the map h (X.,X 3

*U<VV'(X.

which is an isomorphism by the general homology excision property

for compact polyhedra. By the diagrammatic 5-lemma it follows that

is an isomorphism.

Now let A S be any simplex of and e. some vertex not

in A S . Assume that w (Z ) = IT 3*(As) holds. Form the commutative

diagram

IT IT

i
7T ( Z )

q ^1

7T

IT 0(3* (AS) , 3 ( A S ) )

q ~ ~

IT 3 (A(sUi) , e .q^ 1 7T

where J?^(AS) is the same as $(As) but for the system

(X;c9;{x.Ux |s c J}). (Thus, 3 (AS) are subspaces of 3* (AS) .)
1 S r^J /^y

The map e has again the form of an excision isomorphism

h (X.,X.nxS)—>h (X.UxS,XS). To prove that ?" is an isomor-

phism, we apply the diagrammatic 5-lemma to the commutative dia-

gram
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. - IT £2(Z.UZ ) 7T IT (Z°) '

g -

9"

TT TT Q(3*(AS),3(AS))-»TT (3(As))
q q

where the isomorphism at the left is of the same type as the one

at the right. Now that ?" is seen to be an isomorphism, the earl-

ier diagram similarly shows that ?f is an isomorphism. This com-

pletes the inductive proof in case A. = {*} for all ie 3.

For the general case recall that

where Z1(k) = W(k) A X and Z°(k) = W(k) A A . Write
s s s s

3fK,L)(k) = {(p : K~>Z(k) \<p(L) = *, and for each As <=• K (p(As)

(V=O,1). From the definition of 3(K,L) it is evident that

O'

3(K,L)(k-l) = , 3»0(K,L)(k))

by rearranging the priority of variables. So, we have the commuta

tive diagram

. . . I T

7T 7T
q 1 q

in which the left and right isomorphisms have just been established,

so that the map jrJb) is an isomorphism by the diagrammatic 5-lemma. •
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Corollary 3.1. For any general homology theory h and finite

family X = {X.,A.)|ie ^} of pairs of subpolyhedra of a compact

polyhedron X, there is a corresponding spectral sequence

n + r J j Z 2 l} h that E* c n

- l
fen ;dn : En — > E n + r Jn,r,j e Z, r 2 l} such that E* ^ = cn(X;h )
I r;q' r;q r;q r;q-l — J l;q q+n

Under this isomorphism d corresponds to the cochain coboundary
1 / q

n ( 3 )
operator, and E is isomorphic to , * T~ for some

00 ̂  F n + 1h q (xV)
filtration

. . - l A ( X * X ) = > F n + i h ( X , A ) = > •••
q q

Q Q n Q

of h (X ,A ) (containing both h (X ,A ) and {0}), where
q q

(X ,A ) = ( Pi X., n A.). Moreover, the entire structure is func-

torial in (X;c9;I) .

Corollary 3.2. If X is a compact polyhedron and h a gen-

eral homology theory^ there is a spectral sequence

( E n , d n : En - ^ E n + r _ | n , r , q e Z ; r ^ 2} w i t h E^ = H n (X;S ^ ),L r ; q ' r ; q r ; q r ; q - l ' 9 ' ̂  ^ y 2 ; q v q+n

where S stands for the induced sheaf of the general homology pre

sheaf U»->h (X,X-U) . The group E is isomorphic to
q+nv 3 * * oo ; q ^

Fnh (X)
7 for a suitable filtration

• - Fnh (X) 3 Fn+1h (X) => • ' •
q q

of h (X) ( c o n t a i n i n g b o t h h (X) and [ 0 } ) .
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