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Abstract

It is shown by a purely syntactic argument how the complete-

ness of resolution in type theory implies the consistency of type

theory with axioms of extensionality, descriptions, and infinity.

In this system the natural numbers are defined, and Peano1s

Postulates proved; indeed, classical analysis and much more can

be formalized here. Nevertheless, GodelTs results show that the

completeness of resolution in type theory cannot be proved in

this system.

Mathematical Offprint Service classification numbers:

O2B15 Higher order predicate calculus

O2G99 Methodology of deductive systems

68A40 Theorem proving

This research was partially supported by NSF Grant GJ-28457X.



Resolution and the Consistency of Analysis

Peter B. Andrews

§1. Introduction.

In [2] we formulated a system ft, called a Resolution

system, for refuting finite sets of sentences of type theory,

and proved that ft is complete in the (weak) sense that every

set of sentences which can be refuted in the system 3 of type

theory due to Church [5] can also be refuted in ft. The state-

ment that ft is in this sense complete is a purely syntactic

one concerning finite sequences of wffs. However, it is clear

that there can be no purely syntactic proof of the completeness

of ft, since the completeness of ft is closely related to

Takeuti1s conjecture [9] (since proved by Takahashi [8] and

Pravitz [7]) concerning cut-elimination in type theory. As

Takeuti pointed out in [9] and [10], cut-elimination in

type theory implies the consistency of analysis. Indeed,

Takeuti1 s conjecture implies the consistency of. a formulation

of type theory with an axiom of infinity; in such a system

classical analysis and much more can be formalized. Hence, to

avoid a conflict with GodelTs theorem, any proof of the complete-

ness of resolution in type theory must involve arguments which

cannot be formalized in type theory with an axiom of infinity.

Indeed, the proof in [2] does involve a semantic argument.

This research was partially supported by NSF Grant GJ-28457X.



Nevertheless,, it must be admitted that anyone who does not

find the line of reasoning sketched above completely clear will

have difficulty finding a unified and coherent exposition of the

entire argument in the published literature. We propose to

remedy this situation here.

We presuppose familiarity with §2 (The System 3) and

Definitions 4.1 and 5.1 (The Resolution System ft) of [2],

and follow the notation used there. In particular,, Q stands

for the contradictory sentence Vp p . To distinguish between

formulations of JJ with different sets of parameters,, we hence-

forth assume IT has no parameters, and denote by 3 (A 3 . . . 9A )

a formulation of the system with parameters A , . . . 3A . If H

is a set of sentences^ )i {- B shall mean that B is derivable

from some finite subset of W in system S. The deduction

theorem is proved in §5 of [5] .

We shall incorporate into our argument GandyT s results

in §3 of [6] with some minor modifications. We also wish

to thank Professor Gandy for the basic idea (attributed by him

to Turing) used below in showing the relative consistency of

the axiom of descriptions. (This idea is mentioned briefly at

the top of page 48 of [6].)

We shall have occasion to refer to the following wffs:



The set 8 of axioms of extensionality;

. Po * qQ => . PQ = qQ

The axiom of descriptions for type a:

Da: Vf . 3.x f x 3 f [t , v f ]oa 1 a oa a oaL a(oa) oaJ

An axiom of infinity for type a:

JQ: 3r Vx Vy Vz . Sw r x w Aoaa a Ja a a oaa a a

r x x A. — r x y V ~ r y z Vr x zoaa a a oaa or a oaa-* a a oaa a a

We let G denote the system obtained when one adds to

?(i /Q \) the axioms £,Dl, and Jl. (Description operators

and axioms for higher types are not needed, since Church showed

[5] that they can be introduced by definition. This matter is

also discussed in [3]) .

In §4 we shall show how the natural numbers can be defined,

and Peano1s Postulates can be proved, in G. The basic ideas here

go back to Russell and Whitehead [11]9 of course, but our simple

axiom of infinity is not that of Principia Mathematica, but is

due to Bernays and Schonfinkel [4]. The natural numbers can be

treated in a variety of ways in type theory (e.g., as in [5]),

but we believe that the treatment given here has certain advantages

of simplicity and naturalness. The simplicity of the axiom of



infinity J1 is essential to our program in §3.

Once one has represented the natural numbers in G, one

can easily represent the primitive recursive functions. (With

minor changes in type symbols, the details can be found in

Chapter 3 of [1].) Syntactic statements about wffs can be

represented in the usual way by wffs of G via the device of

Godel numbering. Thus there is a wff Consis of G whose

interpretation is that G is consistent, and by Godel1s theorem

it is not the case that h Consis. Nevertheless, much of mathe-
G

matics can be formalized in G.

The completeness theorem for ft (Theorem 5.3 of [2]) is

also a purely syntactic statement, and hence can be represented

by a wff R of G. After preparing the ground in §2 with

some preliminary results, in §3 we shall show that by using

the completeness of ft we can prove the consistency of G. This

argument will be purely syntactic, and could be formalized in G,

so h n [R 3D Consisi . Thus it is not the case that hrR^ so any

proof of the completeness of resolution in type theory must trans-

cend the rather considerable means of proof available in G. Of

course such a proof can be formalized in transfinite type theory

or in Zermelo set theory.

§2. Preliminary Definitions and Lemmas.

We first establish some preliminary results which will be

useful in §3. The reader may wish to postpone the proofs of



this section and proceed rapidly to §3.

In presenting proofs of theorems of 3 (and extensions

of 3), we shall make extensive use of proofs from hypotheses

and the deduction theorem. Each line of a proof will have a

number9 which will appear at the left hand margin in parentheses.

For the sake of brevity, this number will be used as an abbrevia-

tion for the wff which is asserted in that line. At the right

hand margin we shall list the number(s) of the line(s) from which

the given line is inferred (unless it is simply inferred from the

preceding line). We use "hyp" to indicate that the wff is in-

ferred with the aid of one or more of the hypotheses of the given

line. Thus in

(.1)

(.2) B h B

(.3) B h C

(.4) D h C

hyp

.l,hyp

the hypothesis B is introduced in line .2, and £ is inferred

from B and the theorem A in line .3; C is also inferred

from A and a different hypothesis D in line .4. However,, if

the wffs B and C are long, we may write this proof instead

as follows:



(.1) h A

(.2) .2 h P hyp

(.3) .2 h C .1, .2

(.4) D h.3 -l

A generally useful derived rule of inference is that if ft

is a set of hypotheses such that tf t- 3xA and #, AhJBj, where

x does not occur free in £ or any wff of it, then M h B,

We shall indicate applications of this rule in the following

fashion:

(.17) H h SxA

(.20) M, .20 H A choose x (.17)

(.23) K v20|- B

(.24) W h B .17,.23

If the wff A is long, we might write step (.17) as follows:

(.17) Jt h 3x.20

We shall present only abstracts of proofs, omitting many

steps and using familiar laws of quantification theory, equality,

and 7\-conversion quite freely. We shall usually omit type

symbols on occurrences of variables after the first.

DEFINITION. For each wff A of 3T (t , , , , ) , let #A
- oi(o(oi)) ~

be the wff of U which is the result of replacing the primitive



constant t , , * x everywhere by the wf f
01(0(01)) * J

[Af , x Az . 3x . f , Nx A x z ] .L o ( o t ) i 01 0 ( 0 1 ) 01 01 iJ

LEMMA 1, E°, E ° V ff # D° l.

Proof: F i r s t note t ha t # DOt conv Vf / x . 3,x fx =)

f [Az 3x . fx A xz]

(.1) . 1 h 3-x f , Nx hyp
l o t o (o t ) oi **

( . 2 ) . 1 , .2 h f , , x A Vu . fu 3 u = xv ' ' o ( o t ) o i o i

( . 3 ) . 1 . . 2 h x z = 3 x . f , x x A x z
^ o t i o t o ( o t )

( . 4 ) E ° , . 1 , . 2 I- Vz . x z = Sx . f , N9 9 1 t ot i ot o(ot )

(.5) E ° , E O t , . l , . 2 h x Q i = [Az^ 3 x o t .

(.6) E ° , E O t , . 1 , .2 h fQ(ot) [Az^ a x Q i . fx A xz] .2,. 5

( .7) E ° , E O t , . l H .6 . 1 , . 6

( .8) E ° , E O t h # D O t .7

LEMMA 2. J1 h J ° l

Proof : We assume J X .

( .1) , 1 h Yx Vy Vz , 8w r xw A ~ rxx A. ~rxy V ~ r yz V rxz

choose r
o t t

X

o t ) x

fo(o

A

t ) X

X Z

A

choose

x z ]

x (

. 2

. 3

. 4

• 1 )

,E°
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L e t K o ( o t ) ( o t ) b e [ A u o / V o t - a V o t S A ' ~ 3 s t U o t S t V

3 V u o t s t A V V v o t f c t 3 r o t t s t t t ] '

We s h a l l e s t a b l i s h in l i n e s ( . 11 ) , (.16) and (.31) t h a t

K has the p r o p e r t i e s necessary to e s t a b l i s h J l . To a t t a c k

(.11) we cons ider two cases , (.2) and ( . 5 ) .

(.2) .2 h ~ 3s xs hyp (case 1)

(.3) .2 H Kxo TAt . t = t ] .2, def. of K
O l X 1 X

(.4) ,2 1- 3w K X Q w .3

(.5) .5 (- 3s tx o ts t hyp (case 2)

(.6) ,5,.6h xQis choose s (.5)

(.7) .1,.5,.6,.7 h r sw ch9ose w (.1)
O I i 1 X \

(.8) .1,.5,.6,.7 h Kx [At . w = t ] .6,.1, def. of K
U X u X X

(.9) . 1, .5, .6, .7 1- 3wQ K X Q ^ W .8

(.10) .1,.5 H .9 .9,.1,-5

( ii) .1 V 3w Kx w .4, .10

I • ±±) ot oi ^

Next we attack (.16). The proof is by contradiction.

(.12) .12 h Kx x hyp

(.13) .12 I- 3s . x s A Vt . xt 3 r st .12, def. of K
V I Ot t Ot t

(.14) .12 h 3s r ss .13 (instantiate t with s)
X »J X X



(.15)

(.16) .1 h ~ Kx Q ix o i

.1

.14,.15

Finally we attack (.31).

(.17) .17H A hyp

(.18) .17 A
< o f

(.19) .17 v x s A rottSq

.17, def. of K

In (.20) and (.21) we consider the two possibilities set forth

in (.19).

(.20) .17, ~ 3s x s h Kx z

(.21) .17, .21 h 3s^. XQtS A

(.22) .17,.21,.22 H x^ s A

(.23) .17 h 3q .24

(.24) .17,.24 h yQtqt A Vtt.

.18, hyp, def. of K

sq hyp

choose s (.21)

.17,.18, def. of K

choose q (-23)

(.25) .17,.21,.22,.24, z t h r sq A rqt hyp,.22,.24
\J 1 1 v-' I 1 X 1 X

(.26) .1, .17, .21, .22, .24, z t h r s t
o t t o t i t t

(.27) .1, .17, .21, .22, .24 H Vt . z t ID r s t
If O X O t 1 X

(.28) .1,.17,.21,.22,.24 h Kx z

.1,.25

.26

.18,.22,.27, def. of K
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(.29) .l,.17,.21h .28 .23,.21, .28

(.30) .1,.17 h .28 .19,.20,.29

(.31) . 1 h ~ Kx y V - Kyz V Kxz .30

(.32) .1 h J° l .11,.16,.31

(.33) J* h J°l .32

We next repeat Gandy1s definitions in [6] with some minor

modifications.

DEFINITION. By induction on y, we define wffs Mod

and M for each type symbol y.

A = B stands for M A B .-y ~y o

stands for [Ax,. 3p p ] for K = o. i
iv O O

Mooo s t a n d s f o r [APo
Aqo- po s qo ]•

M. stands for [?\x Ay . x = y ]

Modo(a0) stands for

A.

Mo(a/3)(a,3) ^ands for [Af^Ag^. Vx^. M o d ^ 3.

= xa A' xa = ^a =' za " xa *' za =

Proof: by induction on a.
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DEFINITION. For each wff A of 3, AT is the result

of replacing II , x by [Af . Vx . Mod x 3 f x ] every-

o(ooc) oa a oa a oa or

where in A.

i

LEMMA 4. If A 9 . . . _, A , and B are sentences of JT such
that A1, .. .,An hff B, then (A1) T, . . . , (An) Th ff B

T.

Proof: This is an immediate consequence of Theorem 3.26

F T

of [6], since Gandy1s full translation Q of jQ is C when

C is a sentence. Our modifications of Gandy1s definitions do

not injure the proof.

LEMMA 5. h ~ Mod[M z 1 .
~ ~ — — • ^ ^ — o OQQ Ct

Proof: Mod[M z ] is equivalent to

VxaVya[Mod x
a A Mod yQ A x i y 3 .Mod 1%^^] A

•Moaazaxa H MoaaVa ]

This is readily proved using the definition of Mod and

Lemma 3.

LEMMA 6. \- rr(E
/) for each Er in 6.

O T
Proof: (E ) is equivalent to

Vp [Mod p D Vq . Mod q 3 . [p = q ] r> Vf . Mod f
o o o o o o oo oo
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which is easily proved using the definition of Mod f

(EQ/3) T is e q U i v a i e n t to

Vf [Mod f => VgQ/3. Mod g =. VX/3 [Mod x => YhQ a . Mod h 3. h [ f x ] z> h.gx]

3 V k o ( a j 3 ) • Mod k =>. kf => kg] ,

which we prove as follows:

(.1) .It- Mod f A Mod gQ/3 hyp

(.2) ,2(- Vx [Mod x => VhoQ. Mod h => .h[fx] 3 h.gx hyp

(.3) .3 h Mod kQ(a/3) hyp

(' 4 ) h Modo(oa)- Moaa- fa0xp LenunaS

(.5) .2, Mod X/3 V- [

2,.4 (instantiate h with M[fx])

( . 7 ) . 2 , Mod X / 3 H f Q / 3 x 3 ^ g a / 3 x 0 . 5 , . 6

<'8> - 2 » • f a 3 " g a | B ' 7 ' d e f - O f Mo(cO)(a/S)

( .9 ) . 1 , . 2 , . 3 h k o ( a / 3 ) f a / 3 - k o ( a 0 ) g a 3

.3,def. of Mod k, , , .1, .8

(.10) h (E a 3) T .9

LEMMA 7. h ~ Mod r
— 6 O t t
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Proof: Mod z is equivalent to

Vy^Mod x^ A Mod y A x^ = y^ => .Mod[zQ x ] A .z x s z y ]

so h Vz Mod z
01 ot

Mod r is equivalent to
o n M

Vx Vy [Mod x A Mod y Ax = y D .Modfr x ]
t J t t J i t ^ t l o n iJ

A Vw . Mod w z>.r x w = r y w ] ,
t t o t t % i o t t i i

which is easily proved.

LEMMA 8. J1 H ^ (J X) T.

t T
Proof: (J ) is equivalent to

3r [Mod r A Vx . Mod x => Vy . Mod y z>
o n o t t t t t t

Vz . Mod z 3 . 3w [Mod w A r x w 1 A
t t t t o t t t t

~ r x x A . ~ r x y v ~ r y z V r x z l .
O t t t t O t t I * t O t t ^ t t O t t t t J

This is easily derived from Jl with the aid of Lemma 1.

DEFINITION, Let 9 be the substitution

x 1 xn

S 9 i.e.^ the simultaneous substitution of A for all



free occurrences of x 1 for 1 < i < n, where x * • • • * J?

distinct variables and A 1 has the same type as x 1 for

1 <. i ;< n. If B is any wff, we let 6 * B denote

rjTCAx1. . .Ax11 BlA1. . .An] . If 6 is the null substitution

(i.e.,, n = 0) , then 0 * B denotes 77B.

Note that if x and yfi are distinct variables,

14

a r e

^ A y ^ JB]AQC0 conv [ [Ay07vxa J]^A a] , so the definition

above is unambiguous. Clearly, if there are no conflicts of

bound variables, 0 -* B is simply rj 0 B, the 77-normal form

of the result of applying the substitution 0 to B.

From the definition it is evident that if B conv £,

then 0 * B = 0 * C.

§3. The Consistency of G.

THEOREM. G is consistent.

Proof: The proof is by contradiction, so we suppose G is

inconsistent. Thus

(1) J\ I, D l h V i .•.

iJ(tot(o(ot)))
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Proof: Replace the type symbol t by the type symbol (ot)

everywhere in the sequence of wffs which constitutes a proof

of Q whose existence is asserted in step 1. By checking the

axioms and rules of inference of JT one easily sees that a

proof of Q] satisfying the requirements of step 2 is obtained.

(3) U.

Proof: The replacement of A by # A everywhere in the

proof whose existence is asserted in step 2 yields a proof

satisfying step 3, possibly after the insertion of a few appli-

cations of the rule of alphabetic change of bound variables.

(4) J°\

(5) J\

(6) (J 1) T,

Proof: by Lemma 4, since

(7) (Jl)T 1-jD

(8) Jl h _ D

e)H3D

by Lemma 1,

by Lemma 2,

by Lemma 6.

by Lemma 8.

We next introduce parameters r and g
ot t ^ 11
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Let 5 = {Vx r x [g x ] , Vx - r x x , Vx Vy Vz .
* t o n t L ^ 1 1 i J ' t o t t t. i ' t t t

~ r x y v ~ r y z V r x z } .
Oil I t OHM I Ot t I t

(9) Ph 3(7 }g > • •

Proof: Jl H ~, x [J by (8) , and ^ H ~r~ --. Jl .

do) ^ I - R D

Proof: This follows from (9) by the completeness of resolution

in type theory, i.e. Theorem 5.3 of [2]. The proof of this

theorem is the one non-syntactic step in our present proof of

the consistency of G.

(11) It is not the case that 5 h o F].

Proof: An 77-wff of the form r A B will be called positive

if the number of occurrences of g in ^A is strictly less

than the number of occurrences of g in B 3 and otherwise

negative. An 77-wff of the form ~ r A B will be called

positive iff r A B is negative,, and negative iff r A B
c o 11~ t~ t 01m
is positive.

Let # be the set of wffs G having one of the following

six forms:
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(a) Vx^ r x[g x]

(b) Vx ~ r x x
~* i ^ *~

(c) V x V y V z [ ^ r x y v ~ r y z v r x z ] where x , y
-̂  t - t - t ~~ ~ - - i ~ r

z are distinct variables.
•* t

and

(d) VyVz [ ~ r A y V ~ r y z V r A z ] where y and z are

d i s t i n c t from one another and from the free va r i ab le s of A

(e) Vz [ ~ r A B V ~ r B z V r A z ] where z is d i s t i n c t

from the free variables of A and of B .
- t - i

(f) G is a disjunction of wffs, each of the form r j\ B

or ~ r A B9 at least one of which is positive.

Let C be the set of wffs C such that for each substitu-

tion 6, 0 * c is in 3.

We assert that if p \- R C, then C € C. Clearly p c C,

so it suffices to show that C is closed under the rules of in-

ference of SI. For each rule of inference of ft and any substi-

tution 0, we show that 0 * E e 5 for any wff E derived

from wff(s) of C by that rule.

Suppose M V A and N V ^ ̂ A are in C, and M V .N is

obtained from them by cut. Then 0 * [M V A] and 0 * [ N V ^ A ]

must each have form (f) . (For 0 * [ N V - A ] = [(0 * N) V ~ (0*A)J;
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even if N̂ is null, this cannot have any of the forms (a)-(e),

so 0 * A must have the form r B C . ) 0 * [M VA] = [ (0 * M) V 0 * A] ;

if 0 * A is negative, 0 * M must contain a positive wff

(so M cannot be null), so 0 * [M VNj does also. If 0 * A.

is positive, then 0 * [~ A] is negative, so 0 * ̂N must contain

a positive wff, so 0 * [M VN] does also, and hence has form (f) .

Suppose D is in C, and [Ax p]j3 is obtained from D by— -a a g

substitution. Let p be the substitution S o
a , and let 0 * p

be the substitution which is the composition of 0 with p

(i.e., (0 » p) * C = 0 * (p * C) for each wff C) . Then

0 * [[AxaD]Ba] = 0 * T?[[AxaP]Ba] = 0 * (p * D) = (0 ° p) * D e 3?

since D e C, so [[Ax D]B ] e C.

Suppose D e C and E is derived from JD by universal

instantiation. Thus D has the form M V II , XA , where M

~~ ~- o(oa)— oa ' —

may be null. By considering the null substitution we see that

r\ D € 5, so D has the form II , ,A and E has the form

A x . It is easily checked by examining forms (a)-(e) that

if H is any wff obtained from a wff of 3 by universal

instantiation, then (0 * H) G!J. But (r)A ) X is obtained
from r?E) by universal instantiation, so 0 * JE = 0 * [ (rjA )x ]

is in 3.

The verification that C is closed under the remaining

rules of inference of ff. is trivial, so our assertion is proved.
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Now [U is not in C, so it is not the case that ^ | - ^ D .

(12) The contradiction between (10) and (11) proves

our theorem.

§4. The Natural Numbers in G.

We shall define the natural numbers to be equivalence

classes of sets of individuals having the same finite cardinality.

We let o denote the type symbol (o(ot)). cr is the type of

natural numbers.

DEFINITIONS.

0 stands for [Ap Vx ~ p x ] .

S stands for [An , N Ap . 3x . p x A

&& O(Ol) rOl I rOt t
n , N [At . t ^ x A p t ] ] .
o(ot) L i i ^ t ^oi tJ J

N stands for [An Vp [p 0 A Vx . p x D p S x ] 3 p n ]

Vx A stands for Vx [ N x ZD A] .

kx A stands for 3x [ N x A A] .

Thus zero is the collection of all sets with zero members, i.e.,

the collection containing just the empty set [Ax Q ] . S repre-

sents the successor function. If n, , xx is a finite cardinal
(o(oi) )

(say 2), then a set p (say [a, b, c}) is in Sn iff there
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is an individual (say c) which is in p and whose deletion

from p leaves a set (fa, b}) which is in n. N repre-
O t O£f

sents the set of natural numbers, i.e., the intersection of all

sets which contain 0 and are closed under S.

We now prove Peano's Postulates (Theorems 1, 2, 3, 4, and

7 below.) In this section V- B means B is a theorem of G.

1 V- N 0 by the def. of N.

2 h Vx . N x i D N . S x
a ocr a oa era1 0s

Proof:

(.1) Nx , .1 h p 0 A Vx . px D p. Sx hyp
Q O 0 £?

(.2) Nx 9 .1 (- p x .1,hyp,def. of N
& O£f CT

(.3) Nx^, .1 h PQg. Sx^ .1, .2

(.4) Nx h N. Sx .3, def. of N.

The Induction Theorem

0 A V x . p x D p .S x ] D fx p x

Proof: Let P be [At . Nt A p t] .
oa a og J



2 1

(.1) .1 h p 0 A Vx . Nx D. px D p . Sx hyp

(.2) Ny |~ [P O A Vx . Px 3 P. Sx] 3 Py hyp, def. of N

(.3) .1 h P 0 def. of P, . 1 , Theorem 1

(.4) . 1 V- Vx . Px 3 P. Sx def. of P., . 1 , Theorem 2

(.5) . 1 , Ny V- Py .2, .3, .4

(.6) . l h V y P Y . . 5 , def. of V,P

4 h Vn . S n ^ 0

0 ffcr a a

Proof by c o n t r a d i c t i o n :

(.1) .1 I- Sn = 0 hyp

(.2) I- 0 [Ax n ] def. of 0
c i

(.3) . 1 I- Sn [Ax tQ] . 1 , .2

(.4) .1 h 3x • ' . 3 , def. of S
If

(.5) (• Sn ^ 0 .4
CT

(.6) H Vn^. Sn / 0 . 5 , def. of V

Our first step in proving Theorem 7 is to show that if we

remove any element from a set of cardinality Sn we obtain a set

of cardinality n.
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Vn Vp . ~ p w A S n [At . t = w V p t ] = ) n p _
a roi rot x ere1 0 i t t rot x r o t

The proof is by induction on n. First we treat the case

n = 0.

(.1) .1 h ~ p w A SO [At . t = w V pt] hyp

( . 2 ) . l H S x . 3 . 1 , d e f . o f S

( . 3 ) . 1 , . 3 H [ x = w V p x ] A O [ A t . t ^ x A . t = w V p t ]

x x o x x

c h o o s e x ( . 2 )

( . 4 ) . 1 , . 3 b ~ . w ^ x A. w = w V p w . 3 , def. of 0

(.5) . 1 , .3 h w = x .4

(.6) . 1 , . 3 h Vt . pQ t s . t £ x A. t = w V p t . 1 , . 5

(.7). . 1 , . 3 h p n < = [At . t / x^ A. t = w, V p t ] . 6 ,E° ,E° l

O X X X X

(.8) . 1 , . 3 h O p Q t . 3 , . 7

(.9) h Vp . ~ P r t w A S O [At . t = w V pt] z> Op .2, .8
U X O X X X

Next we treat the induction step

(.10) .10 h Nn^ A VpQ^. - pw A Sn[At . t = w V ptj 3 np

(inductive) hyp
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(.11) .11 h ~ p w A [SSn ] [At . t = w V pt] hyp
O t t (7 t

(.12) .11 h 3x t.13 .11, def. of S

(.13) .11, .13 h [x = w V p x] A. Sn [At . t ^ x A. t = wvpt]
t t O l Q I

choose x (.12)

From (.11) we must prove [Sn]p. We consider two cases

in (.14) and (.17).

(.14) .14 H xt = wt hyp (case 1)

(.15) .11, . 1 3 , . 14 h p = [At . t ^ x A. t = w V pt]
v J X X X X

.11, .14

(.16) .11, .13, .14 h [Sn ]p .13,.15

Cf OX

In case 2 we shal l use the inductive hypothesis.

(.17) .17 h x / w hyp (case 2)

x x
(.18) .17 h [At . t ^ x A. t = w V p t ] =

X X X O I
[At . t = w V. t ^ x A p t] .17

(.19) .11, .13, .17 h Sn [At . t = w V. t ^ x A p t] .13, .18
0 1 X X O X

(.20) .10, .11, .13, .17 h- n [At . t ^ x Ap t] . 10, . 11, . 19
CT t t OX

(.21) .11, .13,.17 I - px .13,.17

(.22) .10, .11, .13, .17 h [Sn ]p def. of S, .20,.21
<? o t
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( .23) . 1 0 , . 1 1 h [Sn ]p . 1 6 , . 2 2 , . 1 2
Cf O t

(.24) .10 H Vp . ~ pw A [SSn ] [At . t = w V pt] n [Sn ] p
O I 1 Cf I G

.23

This completes the induction step. The theorem now follows from

.9 and .24 by the Induction Theorem.

It will be observed that so far in this section we have

not used the axiom of infinity Jl. We shall use it in proving

the next theorem,, which will also be used to prove Theorem 7.

6 h V n . n p
1 G a Ol

(.1) . 1 I- Vx Vy Vz . 3w r xw A ~ rxx A . ~ rxy V ~ ryz V rxz

choose r (Jl)

Let P be [An Vp . np z> 3z Vw . r zw 3 ~ pw] .

We may informally interpret rzw as meaning that z is below w.

Thus Pn means that if p is in n, then there is an element

z which is below no member of p. We shall prove Vn Pn by

induction on n.

(.2) 0pQt h - Potwt def. of 0

(.3) |- P 0 .2, def. of P
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Next we treat the induction step.

(.4) .4 |- Nn A Pn (inductive) hyp

(.5) .5 h Snopoi hyp

(.6) .5 H 3x .7 .5, def. of S
X

( .7 ) . 5 , . 7 h P x A n [?\t . t ^ x A p t ] choose x ( .6 )
o t t 0 t

( .8) . 4 , . 5 , . 1 h 3z .9 . 4 , de f . of P, . 7

(.9) .4,.5,.7,.9 h Vw^. rQttztw 3. w = x% V - pQiw

choose z (.8)

Thus from the inductive hypothesis we see that there is an

element z which is under nothing in p - {x}. We must show

that there is an element which is under nothing in p. We

consider two cases, (.10) and (.14).

(.10) .10 h ~ r . z x hyp (case 1)
C J 1 1 X X

(.11) .4,.5,.7,.9,.1OH r z w => w ^ x .10
vJ X X v X 1

(.12) .4,.5,.7,.9, .10 H W t . rQttztw = ~ pQtw .9, .11

(.13) .4,.5,.7,.9,.10 H 3z .12 .12

Next we consider case 2, and show that x is under nothing

in p.
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(.14) . 14 \~ r z x hyp (case 2)

(.15) .1, .14,rQttxtwt .14, hyp, .1

(.16) .1, .4,.5,.7,.9, .14,rottxtwtV- V .9,. 15

(.17) fc-w = x 3. r x w 3 rxx

(.18) .1

(.19) .1,.4,.5,.7,.9,.14
Q

=> ~ p Q w ..16,. 17,. 18

(.20) .1,.4,.5,.7,.9,.14

(.21) .1,.4,.5 h .20 .13, .20, .8, .6

(.22) .1 h Nn A Pn 3 P Sn .21, def. of P

(.23) .1 H Vn Pn
C7

.3,.22, Theorem 3

Having finished the inductive proof, we proceed to prove

the main theorem.

(.24) .24 \r Nn A n p
cr ot

hyp

(.25) .1,.24 H 3z Vw . r zw 3 ~ p w 23,.24, def. of P

(.26) .1 h Vz 3w r zw
X X O X \

.1

(.27) .1,.24 h a w ~ p w
X vJ X X

.25,.26
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(.28) .1 |-Vn . np D 3w ~ p Q w .27

(.29) h .28 J*

7 h Vn V m . S n = S m 3 n = m
a & G& a CTCT c c cr

Proof:

(.1) .1 h Nn A Nm A Sn = Sm hyp

(.2) .2 l-n^p^ hyp

(.3) .l,.2,j- 3w ~ p w -1,-2, Theorem 6

(.4) .1,.2,.4|- ^ p w choose w (.3)

(.5) .1,.2,.4 H p = [At . t / w A. t = w V pt]

(.6) . 1, .2,.4 h n [At . t ̂  w A. t = w V p t] .2, .5
0 t t O 1

(.7) .1,.2,.4 h Sn [*t . t = w V p t] .6, def. of S
(T t t O t

(.8) .1,.2,.4 h Sm [At . t = w V p t] .1,.7
0 t t O I

(.9) . 1, .2, .4 [- m p^ . 1, .4, .8, Theorem 5

(.10) ,1|- Yot D V .3,.9

(.11) . 1 H m p^ D n p proof as for .10
Q O t (X
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(.12) .1 \- Vp np = mp .10,.11

(.13) .1 H n^ = m^ .12, E°, E O t
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