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Abstr act

It is shown by a purely syntactic argunent how the conpl et e-
ness of resolution in type theory inplies the consistency of type
theory with axions of extensionality, descriptions, and infinity.
In this systemthe natural numbers are defined, and Peano’s
Post ul ates proved; indeed, classical analysis and nuch nore can
" be formalized here. Nevertheless, Gbodel's results show that the
conpl eteness of resolution in type theory cannot be proved in

this system
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Resol ution and the Consistency of Analysis

Peter B. Andrews *

81. Introduction

In [2] we fornulated a system ft, called a Resolution
system for refuting finite sets of sentences of type theory,
and proved that ft is conplete in the (weak) sense that every
set of sentences which can be refuted in the system 3 of type
theory due to Church [5] <can also be refuted in ft. The state-
ment that ft is in this sense conplete is a purely syntactic
one concerning finite sequences of wffs. However, it is clear
that there can be no purely syntactic proof of the conpl eteness
of ft, since the conpleteness of ft is closely related to
Takeuti's conjecture [9] (since proved by Takahashi [8] and
Pravitz [7]) concerning cut-elimnation in type theory. As
Takeuti pointed out in [9] and [10], <cut-elimnation in
type theory inplies the consistency of analysis. | ndeed,
Takeuti's conjecture inplies the consistency of. a formulation
of type theory with an axiomof infinity; in such a system
cl assical analysis and nuch nore can be formalized. Hence, to
avoid a conflict with Gddel 's theorem any proof of the conplete-.
ness of resolution in type theory nust involve argunments which
cannot be formalized in type theory with an axiomof infinity.

I ndeed, the proof in [2] does involve a semantic argunent.

*This research was partially supported by NSF G ant GJ-28457X



Neverthel ess,, it nust be admtted that anyone who does not
find the line of reasoning sketched above conpletely clear w |
have difficulty finding a unified and coherent exposition of the
entire argunment in the published literature. W propose to
remedy this situation here.

W presuppose famliarity with 82 (The System 3) and
Definitions 4.1 and 5.1 (The Resolution System ft) of [2],
and follow the notation used there. In particular,, Q stands
for the contradictory sentence Vpopo. To di stinguish between
formulations of JJ wth different sets of paraneters,, we hence-
forth assume |IT has no paraneters, and denote by 3(A~31. . gA__r)‘
a fornmulation of the systemw th parameters A_,*. . .3A". If H
is a set of sentences”™ )i {;-, B shall nean that B is derivable
from some finite subset of W in system S. The deduction
theoremis proved in 85 of [5] .

W shall incorporate into our argument Gandy's results
in 8 of [6] wth some mnor nodifications. W also w sh
to thank Professor Gandy for the basic idea (attributed by him
to Turing) used below in showing the relative consistency of
t he axi om of descriptions. (This idea is nmentioned briefly at
the top of page 48 of [6].)

We shall have occasion to refer to the following wfs:



The set 8 of axions of extensionality;

B vp¥d, . Po * qo=>. Pg= go-
E(GB) : quﬁvgaﬁ' . VXB[fanB = ganB] o. qu = gas
The axiom of descriptions for type a:
D*: v oa’ 3'1)(a]c o a3 f oa{E a( oa)’ foaj
An axiomof infinity for type a:
J% M oaa™ a¥aV%a: M baa ¥ A
~Toaa®d a® T baa &a vV T bear%la V' oax’a?a-

W |let G denote the system obtained when one adds to
?(i ,/q,)) the axioms £,0, and J'. (Description operators
and axions for higher types are not needed, since Church showed
[5] that they can be introduced by definition. This matter is
al so discussed in [3]) .

In 84 we shall show how the natural nunbers can be defined,
and Peano's Postul ates can be proved, in G The basic ideas here
go back to Russell and Witehead [11]¢9 of course, but our si rrple
axiomof infinity is not that of Principia Mathematica, but is
due to Bernays and Schonfinkel [4]. The natural nunbers can be
treated in a variety of ways in type theory (e.g., as in [5]),
but we believe that the treatnment given here has certain advantages

of sinplicity and natural ness. The sinplicity of the axi om of



infinity J' is essential to our programin §3.

Once one has represented the natural nunbers in G one
can easily represent the primtive recursive functions. (Wth
m nor changes in type synbols, the details can be found in
Chapter 3 of [1].) Syntactic statenents about wfs can be
represented in the usual way by wifs of G via the device of
&jdel nunbering. Thus there is a wif Consis of G whose
interpretation is that G is consistent, and by Gbdel's theorem

it is not the case that h- Consis. Nevert hel ess, much of mathe-
G

matics can be formalized in G

The conpl eteness theorem for ft (Theorem 5.3 of [2]) is
al so a purely syntactic statenent, and hence can be represented
by a wif R of G After preparing the ground in 82 wth
some prelimnary results, in 83 we shall show that by using
the conpl eteness of ft we can prove the consistency of G  This
argunment will be purely syntactic, and could be formalized in G
so h,[R3D Consisi . Thus it is not the case that h,R* so any
proof of the conpleteness of resolution in type theory nust trans;
cend the rather considerable neans of proof available in G O
course such a proof can be fornmalized in transfinite type theory

or in Zernelo set theory.

82. Prelimnary Definitions and Lenmmas.

We first establish some prelimnary results which will be

useful in 83. The reader may wi sh to postpone the proofs of



this section and proceed rapidly to 83.

In presenting proofs of theorens of 3 (and extensions
of 3), we shall make extensive use of proofs fromhypot heses
and the deduction theorem Each line of a proof will have a
nunbery which will appear at the left hand margin in parentheses.
For the sake of brevity, this nunber will be used as an abbrevia-
tion for the wff which is asserted in that line. At the right
hand margin we shall |ist the nunber(s) of the line(s) fromwhich
the given line is inferred (unless it is sinply inferred fromthe
preceding line). W use "hyp" to indicate that the wff 1is in-
ferred wwth the aid of one or nore of the hypotheses of the given

[ine. Thus in

() FrA

(9 BhB hyp
(.33 BhC .1,.2
(4 DhC .1, hyp

the hypothesis B is introduced in line .2, and £ 1is inferred
from B and the theorem A in line .3; C 1is also inferred
from A and a different hypothesis D_ in line .4. However,, if

the wifs B and C are long, we may wite this proof instead

as foll ows:



() h A

(.2 .2hP hyp
(.3 .2 hC 1, .2
(.4 D h.3 -1 skyp

A generally useful derived rule of inference is that if ft
is a set of hypotheses such that tf t- 3xA and #, AhJB, where
X does not occur free in £ or any wff of it, then Mh B,

We shall indicate applications of this rule in the follow ng

f ashi on:

(.17 Hh SxA
(.200 M .20H A choose x (.17)

(.23) K,20|- B
(.24) Wh B .17, . 23

If the wff A is long, we mght wite step (.17) as foll ows:

(.17) Jt h 3x.20

We shall present only abstracts of proofs,' omtting many
steps and using famliar laws of quantification theory, equality,
and 7\-conversion quite freely. W shall usually omt type
synbol s on occurrences of variables after the first.

DEFI NI TION. For each wif A of 3T(t , , , ) , let #A

- oi (o(oi)) .
be the wif of U which is the result of replacing the primtive




constant t everywhere by the wff

01(0(’01)*)X

Ax 7z ..

AT 0t9™Zi - X - o101 01% i
LEMVA 1, E°, E°V ¢ # D°'.
Proof: First note that # D° conv Vf / _x . 3,x_ fx =)
o|01) Y ot
f[Az,. 3x_ . fx A xz]
t o1
(.1 .1 h 3-x f , X hyp
lot o(ot) oi **x
«.2) .1,.2 hé(bt)fxoi AV%i . fu3u=x choose x( *1)
(.3) ']7‘"2hxotzi '=3xot . of(’ot)XXAXZ .2
o . — o
(.4) E° .5b,.21 VF' %t 3 S)6t' fo(oi\)x A XZ 3 E
° o
(.5) E°,E°',.1,.2 h xoi = [AZ" 3Xo. fo(o 1)* A xz] 4 ,B°°
(.6) E°,E®', .1,.2 h fown [Azr axgi. fx A xz] 2,.5
(.7) E°,E°',.l H .6 .1,.6
(.8) E°,E°'h # D . 7

LeMMA 2. JF h J°!
Proof: We assume J*.

(.1) ,1hYx ‘L\/ytVzt, 8Ntr0t)1(w A ~rxx A. -rxy V —ryz V rxz

choose r
ott



Let Kog(ot)(ot) P¢ [AYg/Vot- aVotS ?' ~ 3stYotSt V
3V uotst A VV votfct 3 rottsttt]-

We shall establish in lines (.11), (.16) and (.31) that

K has the properties necessary to establish J°'.  To attack
(.11) we consider two cases, (.2) and (.5).

(.2) .2 h ~ ?,sztxg.L hyp (case 1)
(3) 2H Kx, TAt. . t =1t] 2, def. of K

Ol X 1 X
(.49 ,21F 3wWiKXqgW .3
(.5 .5 (- 3siXotSt hyp (case 2)
(.6) ,5,.6h Xqgis choose s (.5
(.7 .1,.5,.6,.7hr- -sw ch9ose w (.1
oli 1 X \
(.8 .1,.5,.6,.7 h Kx_ [A ,. w. =1t] .6,.1, def. of K
UX u X X

(9 .1 .5 .6 .7 1- 3wy KX"W .8
(.100 .1,.5 H .9 9.1,-5
(ii) .1V 3w Kx w 4, .10
| o ot oi A

Next we attack (.16). The proof is by contradiction.

0t Ot _
(.12 .12 h Kx x hyp
(.13 .12 1- 3s . x s AVt . xt 3, st .12, def. of K
v Ot t Ot t
(.14) .12 h 3s r Ss .13 (instantiate t with s)

X »J XX




(.15)

(.16)

(.17)

(.18)

(.19)

(. 20)
(.21)

(.22)

(.23)

(.24)

(.26)

(.28)

.ll-Vst ~ Ty, S8 1
.1 h "‘KXQiXOi .14, .15
Finally we attack (.31).
. 17H Kx_ .y, AKyOtzC” hyp
17 - Ettymt Atz t 17, def. of K
17 v ~ﬂstths v Est. xs A Vqt. Yotq:’rottSq
.17, def. of K
(.200 and (.21) we consider the two possibilities set forth
(.19).
.17, ~3s x..s h Kx_ z .18, hyp, def. of K
1t o1 01701
.17, .21 h 3s™. XaxS A vqt. Y,,d 2 ¥, Sq hyp
.17,.21,.22 H X’:"ts1 A‘b’qt. oquro”sq
choose s (.21
.17 h 3q1.24 .17,.18, def. of K
217,.24 h yoqr A Vt,. z, t > rouq.t choose qg (-23
.17,.21,.22,.24, z .t hr,. sq. Arqt, hyp, . 22, .24
\J1 1 V- 1 X 1 X
21, .17, .21, .22, .24, z t hr st .1,.25
ot t oti t t
.1, .17, .21, .22, .24 H Wt z tIDr. st .26
If OX ot 1 X
.1,.17,.21,.22,.24 h Kx_.z .18,.22,.27, def. of K

o1 O1




(.29 A, .17,.21h .28
(.30) .1,.17 h .28
(.3 . 1h ~mey0’b V - Kya)t V Kxz

(.32 .1hJe!

(.33 J* hJe!

W next repeat Gandy’s definitions in

nmodi fi cati ons.

DEFINITION. By induction on y, we define wfs Nbd07

and N%yy for each type synbol .

bz

Ay B stands for M. A B .
- =y Oyy=v=y

Mod stands for [A,., 3pp ] for K =o.

oK iv (O]
MOOO stands for [APOAqO_ pO S qo].
M stands for [Ax Ay . x =y ].

“do(a0) stands for [Mgg. Vxa¥yg. Mod ,x, A Mod

x M >, Mod

M
A~ ¥ fap¥g = T

oq[fanB] A

“(a/3)(a,3) ~ands for [Af~Agh. VxM.

LEMMA 3, o b4

Proof: by induction on a.

g%g ag?s

[6]

Mod”" 3. £

I. .

10

.23,.21, .28
.19,.20,.29
.30
.11, .16,.31
.32

with sone m nor

oByB

A
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DEFINITION. For each wif A of 3, A" is the result

of replacing 11 , x by [A . W . Md x 3f x ] -every--
o( ooc) oa a oa a oa or

—

where in A
- n

LEMMA 4. If Ag. .. ,A, and B are sentences of JT such
t hat Kl, .. .,-An hff B, t hen (KL)T, e ey (_An)Thff B'I

Proof: This is an imedi ate consequence of Theorem 3. 26
| F T
of [6], since Gandy!s full translation Q of jQ is C when

C is a sentence. OQur nodifications of Gandy's definitions do

not injure the proof.
LEMMA 5. h ~ Md M 2z 1,.
~—~—a NN __ 0 m Ct

Proof: Md[M,zJ is equivalent to

VxaWyalMed x A Md yo A x iy 3 .Md 1% A

«“baa?a*a "MoaaVal

This is readily proved using the definition of I\/bdc)o and

Lenma 3.

LEMVA 6. \-Jr(l'?)T for each E in 6.
oOT
Proof: (E) is equivalent to
Vpo[l\bd pODVq o Mod q 03 . [poz_ql) r> Vf 00" Mod foo
'foopo > fooqcn]’
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which is easily proved using the definition of Md f .,
(E(?B) T is eQUi vai ent to

VfaB[MOd f => Vgois. Mad g = Vxsz[Mod X => Yhga. Mod h 3. h[fx] z> h.gx]

3 Vko@ay* Mad k = ki = kg]

whi ch we prove as follows:

(.1) .l1t- Md qu A Mod gg 3 hyp
(.2 ,2(- VxB[M)d X => Vhgeq. Md h=> _h[fx] 3 h.gx hyp
(.3) .3 h MdKkgas s _ hyp
(r4) h Mdypg)- “oaa- 'a0*p LenunaS
(5 .2, ModxsV [ M o £.g%g]1 [E gXp] D M. £0%0T .9 0% |

.2,.4 (instantiate hoa with Mfx])

L 3

(.6) F Moaa o8 B] {fqﬁ B emma

(.7) .2, Maod x;3H fgisXs " garsXo .5,.6
, M

<8 .2 5. "a3"Ya|B r7edef_Of - Mg(cO)(a/S)

(.9) .1,.2,.3 h Kogarz)farz -Ko(ao)9as

.3,def. of Mbd k’olas’;'l’ .8

(1100 h (E*®%)T . 9

LEMVA 7. h ~ Mdd r
— 6 Ot t
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Proof: Mdd z is equivalent to
¥x vyrMod x» AMdy , Ax* =y* => Mdzox ] A.zZ2 x sz y]
1 t 1 o1 1 ot

so h Vz Mod z
01 ot

Mod r IS equivalent to
on M

VX Vy [Maod x A Md y Ax=yDModfr X ]
t Tt t Vi t At on i’

A Vw . Mod w z>.r X =r wl
t t ot t %V}/ otty"| ’

which is easily proved.
LEMVA 8. J*H ~ (J5T.
: t\T . :
Proof: (J°) is equivalent to

n[I\/bd Mot t Ath. Mbd Xt:>Vyt' Mod Y, Z

Vz . Mod z 3 .3w [Mod w A r xw 1 A
t t t t t t-

This is easily derived from J' wth the aid of Lemma 1.

DEEI NI T1 ON, Let 9 be the substitution

S o i.e.™ the simltaneous substitution of A+ for all

s

GAHNEEIL ﬂita.lJH U“I'WEHS Iy
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free occurrences of ‘§l for 1< i< n, where ‘gl,...kg are
distinct variables and él has the same type as 31 for
1<<i<n. If B is any wff, we let ©6 % B denote

1

nlixt.. . A" BIat...A"]. 1f 6 is the null substitution

(i.e., n=0), then 6 * B denotes nB.
Note that if p- 38 and Yg are distinct variables,
[[KKGXXB gl@agﬁ conv [[A¥Bx§q.§lggéq]’ so the definition

above is unambiguous. Clearly, if there are no conflicts of
bound variables, 6 * B is simply 7 6 B, the mn-normal form

of the result of applying the substitution 6 to B.

From the definition it is evident that if B conv C,

then 6 x B = 6 * C.

§3. The Consistency of (.

THEOREM. (G is consistent.

Proof: The proof is by contradiction, so we suppose G is

inconsistent. Thus

(1) Jgt, e, D

(2) J°', e, Dt (1.
g(toz(o(ot)))
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Pr oof : Repl ace the type synbol t by the type synbol (ot)
everywhere in the sequence of wfs which constitutes a proof

of Q whose existence is assertgad in step 1. By checking the
axions and rules of inference ofl JT one easily sees that a

proof of (@ satisfying the requirenents of step 2 is obtained.

(3) 3°t, e, # 0% U

Pr oof : The replacenent of A by # A everywhere in the
proof whose existence is asserted in step 2 yields a proof
satisfying step 3, possibly after the insertion of a few appli-

cations of the rule of al phabetic change of bound vari abl es.

(4 Je°\ el-SD by Lemma 1,
(5 N ery I by Lemma 2,

(6) (3H7T, (&Nt | Y ¢ ) H3D

Proof: by Lemma 4, since I—.JDT sE],
(7) (JHYT1-jD by Lenma 6..
(8) J'h o D ' by Lenmma 8.
W next introduce parameters T and g

ot t
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xtlgllxiL, VX -1 X X VxlyytVzt.

© Ph 37 g >e-
ot i1

[0 by (8, ad ~ H ~r~-.J.

. | _
Proof: J H ytngrt

a(r,g¥

do) ~1-gD

Proof: This follows from (9) by the conpl eteness of resolution
in type theory, i.e. Theorem5.3 of [2]. The proof of this
theoremis the one non-syntactic step in our present proof of

the consistency of G

(11) It is not the case that § howEl;

Proof: An 77-wif of the form _r'o”At_Bt will be called positive

i f the nunber of occurrences of 9., in QA1 is strictly |less

than the nunber of occurrences of '611 in 513 and otherw se

negative. An  77-wf of the form -~ TOttAtBt will be called

positive iff r AB is negative,, and negative iff T A B
¢ oll~t~t 01lm
IS positive.

Let # be the set of wifs G having one of the follow ng

six forns:
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(@ Mx*r x[g x]

(b) Vx ~TXxX

...*| AN

(c) VxVyVz [ ATxy v~ryzvrxz] where x , y, and
AtD -t ~—~ ~- -0
z are distinct variables.
ot

(d) \ﬂ/_ytv_z1 [~r,§_¥_V~rym§_VrA“zvl where Yy, and z_  are

- - 1

distinct from one another and from the free variables of At.

(e Vz I ~_r__AVI§ \Y :r,_%_z V"r_At__z] where _z s distinct

fromthe free variables of A and of B .
-t -

(f) G is adisjunction of wffs, each of the form rj\ B,

or ~T ABy at least one of which is positive.

Let C be the set of wifs C such that for each substitu-

tion 6, O0*¢c isin 3.

W assert that if p\-g G then C€ C Cearly pcC
so it suffices to showthat C is closed under the rules of in-
ference of SlI. For each rule of inference of ft and any substi-
tution 0, we showthat 0 * Ee 5 for any wif E derived
from wif(s) of C by that rule.

Suppose MV A and NVA7MA arein C and MV.N s
obtained fromthemby cut. Then 0 * [MVA] and 0 * [ NV/"A]
must each have form (f) . (For 0 * [NV-A] = [(0* N V~ (0*A)J;
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even if N is null, this cannot have any of the forms (a)-(e),

so 6 * A must have the form ;‘Btgz .) 6 x (MVvA]l = [(6 *M) VB xA]l;
if ® * A is negative, 6 * M must contain a positive wff

(so M cannot be null), so 6 * [MVN] does also. If 6 * A

is positive, then 6 * [~ A] is negative, so 6 * N must contain

a positive wff, so 6 x [MVN] does also, and hence has form (f).

Suppose D is in C, and [7\310(]3]_13(1 is obtained from D by
P2
substitution. Let p Dbe the substitution S a , and let © e p

OB
-

be the substitution which is the composition of 8 with p
(i.e., (B e p) xC=206  (p » C) for each wff (). Then

6 * [[x,DIB,] = 6 % n[[AxDIB,] = 6 * (p *D) = (8 °p) xDc 3

since D € C, so [[7\}50(];],]30(] e C.

Suppose D € C and E 1is derived from D by universal

instantiation. Thus D has the form M Vv I where M

o(oa)i\‘oa ’

may be null. By considering the null substitution we see that

nD e & so D has the form no(oz)éot and _lj_‘._ has the form
’Aor}st' It is easily checked by examining forms (a)-(e) that

if H 1is any wff obtained from a wff of & by universal

instantiation, then (6 x H) ¢ . But (771_\01)§t is obtained

from nD by universal instantiation, so 6 x* E = § * [(‘néo")g{l]

is in ¥&.
The verification that C is closed under the remaining

rules of inference of ® 1is trivial, so our assertion is proved.
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Now [U is not in C so it is not the case that *| -"D.

(12) The contradiction between (10) and (-11) proves

our theorem

84. The Natural Nunbers in G

W shall define the natural nunbers to be equi val ence
cl asses of sets of individuals having the same finite cardinality.
VW let o denote the type synbol (o(ot)). cr is the type of

nat ural nunbers.

DEFI NI TI ONS.

0 stands for [A0 W ~p Xx ]

S stands for [An , NAp . 3x . p x A

&& o(’ot5\|[N O(OII) 0| Alo. ];J(ﬁt t

Nog stands for [Ana Vpoc'. [pogocA ch. poG pcw rch’] 3 Pog's! *
Vx A stands for Vx [ N x ZDA .

kxCT A stands for 3xg[ NoquAA] :

Thus zero is the collection of all sets with zero nenbers, i.e.,

the collection containing just the enpty set [AxtQ] . S repre-

sents the successor function. If n, , «w is a finite cardinal

(o(oi))
(say 2), then a set pot (say [a, b, c}) isin Sn iff there




is an individual (say <c¢) which is in
from P, leaves a set ({a, b})
sents the set of natural numbers, i.e., the

sets which contain O and are closed under

7 below.) In this section

(.1)

(.2)

(.3)

(.4)

- Vpog. [pP. O A ch. js)

1 v NocOc

2 F ¥ x. N_ X DO N
o Oc ¢ o

Proof:

Nxc, Ak pOQO A Vxe.

NXG, 1 F pOch

Nxc, .1 pog.SxG

NxCf - N. ch

o’

B means

o6 ¢

pPxX O p. Sx

The Induction Theorem

Ooc ©

Proof: Let P be
o¢c

X
oo ©

[7\tc

) . S_x
pOG coc C

Nt A pogt].

Po

which is

n.. N
(o]

20

and whose deletion

repre-

intersection of all

We now prove Peano's Postulates (Theorems 1, 2, 3, 4, and

is a theorem of (.

by the def. of N.

hyp

.1, hyp,def. of N

.3,

> Vx p_ X

oc o

.1,.2

def. of N.
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(.1) 1 - poco A ng. Nx D. px D p. Sx hyp
(.2) Nyc [P O A de. PX D P. Sx] DO Pyc 4hyp, def. of N
(.3) .1+ PO def. of P, .1, Theorem 1
(.4) 1k ch. Px D P. Sx def. of P, .1, Theorem 2
(.5) .1, Nycy + Pyc .2,.3,.4
(.6) .1 {fygpyc | .5, def. of V¥,pP

4 Vng. Sccnc # OG

Proof by contradiction:

(.1) 1 F Sng =0 hyp
(.2) - Oc[%xl[]] def. of O
(.3)  .1F sn_[x ] .1,.2
(.4 .1Fax O | .3, def. of S
(.5) - Sn_ # 0 .4
(.6) - 9nc. Sn # 0 .5, def. of ¥V

Our first step in proving Theorem 7 is to show that if we
remove any element from a set of cardinality Sn we obtain a set

of cardinality n.




5 F VnGVpol. ~ Py VW, A Sqqng[%tt. tt
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w1 \% pOttl]D ncp01

The proof is by induction on n. First we treat the case
n = 0.
(.1) d - o~ Py VW, A S()[%tt. t =w V pt] hyp
(.2) 1k Ex1.3 .1, def. of s
(.3) .1,.3 F [x1 = wl \Y} pOtx] A O[ktt. t#xX A £t =w V‘pt]
choose x (.2)
(.4) 1,.3 F ~. W, # X, Ao W=WwWVp W .3, def. of O
(.5) .1,.3 F woo=x, .4
(.6) .1,.3 F Vtt. pOtt = .t # X, A. £t = W, VvV pt 1,.5
(.7)  .1,.3 Fp,, = [Mt,. t #x A t=w Vpt] 6,E°,E°"
(.8) .1,.3 O Py, .3,.7
(.92) + Vp01. ~ Pg,W, A S()[)tt. t =wVpt] D0p 2,.8
Next we treat the induction step
(.10) .10 Nn_ A ¥p . ~pw1/\Sn[7\tt. t =wV pt] D np

(inductive) hyp




(.11)

(.12)

(.13)

in

(.14)

(.15)

(.16)

(.17)

(.18)

(.19)

(.20)

(.21)

(.22)

A1l h ~p w A [SSh][At . t =wV pt]
t

ot t 7

11 h 3x%:.13

11,13 h [x =w V p x] A. Snh [At .

t tOl

Fom (.11) we must prove

(14) and (.17).

14 HXt = Wi

.11, .13,.14h p_. = [At..

vl X X

.11,.13,.14 h [ ]p

23

hyp

.11, def. of S

In case 2 we shall use the inductive hypothesis.

A7 h x /[ w
X X

17 h [At . tAx A t=w Vp t] =

X X

X ol

[At . t=w V. t*"x Ap

.11, .13, .17 h Sh [At . t =w V.
O .

1

.10, .11, .13, .17 h n [At .

CT t

111,.13,.17 1- py, |

.10,.11,.13,.17 h [S ],
<? o]

t

X X

t™Mx Ap t]
t OX

t™Mx At = wvpt]
Q I
choose x (.12)
[Sn]p. We consider tvvb cases
hyp (case 1)
trx At =w,V pt]
X X
.11, .14
.13,.15
hyp (case 2)
t] A7
tr"x Ap t] .13, .18
O X
.10, .11, .19
.13,.17
def. of S, .20,.21
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(.23) .10,.11 h [Sn ]p .16,.22,.12
(6]

ot

(.24) A0OH Vp . ~pw A [SSh J[At . t=wV pt] n [Sh]p
ol 1 a | G
.23

This conpl etes the induction step. The theoremnow follows from

.9 and .24 Dby the Induction Theorem

It will be observed that so far in this section we have
not used the axiomof infinity J'. W shall use it in proving
the next theorem, which will also be used to prove Theorem 7.

6 h1Vn .Gn p; 5 :>Ew‘L ~ PV,

(.1 .1 01- W W Vz . 3wr XWA~r1rxXx A. ~rxy V~ryz Vrxz

choose r (J")
Let Poc be [An gp oy NP 2> 3z tit. rouzw3 ~pw .

W may informally interpret rzw as neaning that z is below w.

Thus Pn neans that if p is in n, then there is an el enent

z which is below no nenber of p. W shall prove Vnan by

i nduction on n.

(.2 Opat h - Porw def. of 0

(.3 |- PO .2, def. of P
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Next we treat the induction step.

(.4) 4 Nnc A Pn (inductive) hyp
. . h
(.5) 5 F Sncp01 vp
(.6) .5 F E{x1 .7 .5, def. of S
(.7) .5,.7 Po,X, A ng[%tt. t # x A pt] choose x (.6)
(.8)  .4,.5,.7 b 8z .9 .4, def. of P,.7

(.9) .4,.5,.7,.9 th. ro,,2,W > w=x V o~ Py W

choose z (.8)

Thus from the inductive hypothesis we see that there is an
element =z which is under nothing in p - {x}. We must show
that there is an element which is under nothing in p. We

consider two cases, (.1l0) and (.14).

(.10) .10 b ~ royZ,%, hyp (case

(.11) .4,.5,.7,.9,.10 o, 2w, 2V # x,

Z W DO ~ w .9
1 pOt ?

(.12) .4,.5,.7,.9,.10 F th. Toos

(.13) .4,.5,.7,.9,.10 } ¥z .12

.10

.11

Next we consider case 2, and show that x 1is under nothing

in p.




(.14)

(.15)

(.16)

(.17)

(.18)

(.19)

(.20)

(.21)

(.22)

(.23)

26

.14 o, 2.%, hyp (case 2)
.l,.l4,r011x1w1)— o112y | -14, hyp, .1
1,.4,.5,.7,.9, 14,r0t1x1w1}- w,o= X, V ~ Py W .9,.15
- wt = Xt D rOttxw D rxx

A ~ r01txtx .1
:1,.4,.5,.7,.9,.14 b ¥w . r X WD~ p W .16,.17,.18
.1,.4,.5,.7,.9,.14 | Hthwt. To, 29 2~ Py W ' .19
.1,.4,.5 + .20 .13,.20,.8, .6
1 - Nnc A Pn D P Sn .21, def. of P
.1 H}'nopnc .3,.22, Theorem 3

Having finished the inductive proof, we proceed to prove

the main theorem.

(.24)

(.25)

(.26)

(.27)

.24 ¥ Nnc An pg, hyp

1,.24 b dz ¥w . r 2w D ~ p W .23,.24, def. of P
11 ot1 o1

R VztﬁwtrOttzw .1

.1,.24 Ewt ~ Py W, .25,.26




(.28)

(.29)

(.2)
(.3)
(.4)

(.5)

(.6)
(.7)
(.8)
(.9)
(.10)

(.11)

27

.1 \-—\%n@. npg, D [E{wt ~ pOtw1 .27
b .28 gt
7 ?naﬁmc. Sccnq = Sccmc D ng = mc
Proof:
.1 NnG A ng A Sn = Sm hyp
.2 Fn_p_. hyp
1,.2, B, o~ Py W, .1,.2, Theorem 6
.1,.2,.4 l---~p01w1 choose w (.3)
.1,.2,.4 Py, = [%tt. t # W, A t = w VvV pt]
4, g°, g°!
.1,.2,.4 F-nc[Ktt. t # WA t = w\V pozt] .2,.5
.1,.2,.4 + Sng[%tt. t = W, V p01t] .6, def. of S
.1,.2,.4 }-Smc[%tt. t=w Vv pmt] ’ .1,.7
.1,.2,.4 k--mgp01 | .1,.4,.8, Theorem 5
1 ngp01 D mgp .3,.9
1 - m Py, @ NP proof as for .10

o



(.12)

(.13)

[1]

[2]

[31]

[4]

[5]

[6]

[7]

[8]

[9]

28

1k ¥Pg,+ D P .

n
3
‘o

.10, .11

- o o1
1kn_=m .12, E°, E
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