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Abstract
Let A(z) be an nxn matrix whose elements are analytic func-
tions of a complex variable =z in a simply-connected domain D.

The differential equation

dw _
az = A(z)w

is said to be nonoscillatory in D if it does not possess a non-

trivial solution vector w = (wl,...,wn) such that wk(z = 0,

W)
k=1,...,n, where the z, are points of D. The equation is
called suborthogonal in D if, for any z, {e€ D and any non-
trivial solution w, Re{w(z)w({)]} > O.

The problem studied in this paper is that of establishing
connections between these properties (or their absence) and cer-

tain simple properties of the coefficient matkrix A. A number of

criteria are obtained.
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1. | he systens to be discussed in this paper are of the form
li 1\ dw  */ \
(1.12) N= A(Z)w,

where A(z) is an nxn matri x whose elenents are analytic func-
tions in a sinply-connected domain D in the conplex plane,

and w is a vector whose n conponents are analytic in D.
Tfhe system (1.1) is said to be nonoscillatory in D if every
nontrivial solution vector w has at |east one conponent which
does not vanish in D. Evidently, this property nay al so be de-

fined by the requirenment that, for arbitrary conplex constants

a,, ...y andarbitrary z, .. - nZ in D (1.1) should have
exéctly one solution w= (w,...,w) for which w, (z,) = ou,
J n Ko .K K

L] L]

INF— L, <, N

A related property, which is |likew se useful in the study of
the oscillatory behavior of the solutions of (1:1), is that of
suborthogonality. The equation is said to be suborthogonal in D
if, for any nontrivial solution w and for any two points £, r\
in D R{WE)Wrj) } > 0 (where the expression in braces is the
scal ar product of the two vectors in question) . For n = 2, sub-
orthogonality evidently inplies nonoscillation; for n > 2, the -

rel ati on between the two concepts is |ess obvious.

Work supported by the National Science Foundation under
Grant GP 23112.



2.

In formul ating the nonoscillation condition of this section
we shall assune that the domain D is bounded by a contour dD
and that the coefficient matrix A is analytic in D+ SD. This
is done in the interest of nore concise fornmulation and is not an
essential restriction. Qur conditionwl|l be stated in terns of
the Holder norm [|A]L, (>) of the coefficient matrix A, induced
by the norm |pll, = [[P:]” +. ..+ |P,|P1*”'" of the vector
B = (Byse.esBy).

TheoremJL-JL Let D be_a. _sinply-connected domain in the conplex

pl ane, bounded by a contour dD. _lif _the matrix A 1£ analytic i

D+ dd and
1
(1.2) I Al |dz] < 2TT(P-1)"[s sin 1"} = ¢, (p>1),
ap P !

then the system (1.1) Jjs, nonoscillatory in D

For p =2, (1.2) reduces to the condition

(1.3) I IAllzldz| < ir,

recently obtained by B. Schwarz [9] , who al so showed that the con-
stant TT is the best possible (the fact that the systemis non-
oscillatory if the left-hand side o.f (1.3) is bounded by 1 had
previously been proved by W J. Kim [3]). Wet he-r condition (1.2)

is sharp for other values of p is an open question. It is easily
confirmed that cp = cq if p" 1y q"l = 1, and that cp decr eases
from ir to 2 if p increases from 2 to oo. Thus, cp>2
except for p =1,00. Inthe two Iimting cases, condition (1.2)

is contained in a recent result of Schwarz [8 according to which

the inequality



(1.4) J, Wall faz] < 2,

where ||| &l is the matrix norm induced by an arbitrary absolute
vector norm, is sufficient to guarantee the nonoscillation of

equation (1.1) in D. A short proof of this result will be found

at the end of this section.

If D is transformed into another domain D' by a confor-
mal mapping z-2z', (1l.1) is transformed into an equation of the

same form and the integral on the left-hand side of (1.4) remains
invariant [7]. It is therefore sufficient to prove Theorem 1.1

for the case in which D is the unit disk. The situation is fur-

ther simplified by a result of W. J. Kim [3] who showed that if

(1.1) is oscillatory in |z| < 1, then there exists a solution w

of (1.1) such that every component of w has a zero on a circle
lz] = r (KxL1).

By (1.1), we have

oty = llawll, < Yl vl

and therefore, if p

J

In particular, if we set p = (HAHp)l—p and introduce a new (real)

is a positive continuous function on |z| = r,

IZ‘-__rP(HW' Hp)pldz' < II Z'=rp(HA“p)p(“w“p)P"dzl )

variable s by setting ds = HAHp[dz|, we obtain

L L
aw, ,p p
.5 .
(1.5) J (g Pas < [ vl Pae,
where W(s) = w(z(s)),
(1.6) =] lal laz],
|z|=xr P



4.
and, since the analytic vector w is single-valued in the unit
di sk, Ws+L) =Ws) .

If W.,...,W, are the conponents of W and if ax denotes

the zero of W on |z| =r, the periodicity of W enables us

towite (1.5 in the form
a. +L

n k n ak+L
r J| ¢ Ps< BI | w|Pds,
k:| J O k - k=1 J ak k -
where the prime rmonv denotes differentiation with respect to s.

Setting R, = |wi| and observing that IRk <~ IWAU Y find that

the real functions Rk satisfy the inequality

a,+L . aV+L
n «| k n; k p
(1.7) E |RIJ|Fas £ E RTds
k=l Yay n k=l Ja, K

and the conditions R—Kf_ou)z = R—Kf_CljJ;L) = 0.
W now use an inequality of Hardy, Littlewood and = ya

[2, Chap. VII], according to which

a a a

(1.8) J fPds A [ir~'ap sin J]P(p-1)"* J (fH)Pds - (2a ¢"*)P J (f')"ds,
o P o P o

if f(0) =0, f 1is continuous and nondecreasing in [0,a] and

f! eLp[O,a]. (In [2], p is an even integer, but the_proof gi ven
there is valid for any p > 1) . The nonotonicity assunption for
f' is not essential. If this assunption is dropped and f' s
replaced by |f'| on the right-hand side of (1.8), the inequality

remains true, since f my be replaced by the function
s

F(s) =\ j [f (1) +][ft(t)!I]dt,
0

for which f(s) £F(s), O<AF' (s) & | f'(s) [, and which satisfies
the conditions under which (1.8) holds.
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Applying this generalized version of (1.8) (with a = %) to

the functions f(é) = Rk(a +s) and f(s) = Rk(L+ak-s), respec-

k
tively, and adding the results, we obtain
ak+L D 1p rak+L .
I des < (Le ™) J le| ds, k = 1,...,n,
o} P o}
k k

and a comparison with (1.7) shows that ch)l > 1, i.e., by (1.6),

J

But the norm HAHP is a subharmonic function in the closed unit

L Rlpleel 2 ey

disk [7], and for a subharmonic function S the mean value

1
3z ), slazl
|z|=r

is a nondecreasing function of r. Hence, the assumption that
(1.1) possesses an oscillatory solution in |z| ¢ 1 1leads to the
inequality

[ lallaz] > e,

lz| =1
Condition (1.2) is thus sufficient to guarantee the nonoscillation
of (1.1) in D + OD. This establishes Theorem 1.1.
We end this section with a short proof of the result of

Schwarz, quoted above, according to which (1.4) guarantees the non-

oscillation of equation (1.1) in D if HIA”| is the matrix norm
induced by an arbitrary absolute vector norm mllnl, i.e., a norm
for which |lulll < vl if u = (Wys-v.5u), v=(vy,...,v ) and
lu | < |vyl, Xk =1,...,n. As before, it is sufficient to consider

the unit disk and to show that, if (1.4) holds, (1.1) cannot have

a nontrivial solution w = (wl,...,wn) such that wk(ak) = 0, where
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|6.‘u | =.,= |I§1 | =r < 1. Suppose, then, there exists such a
solution, and denote by Qz,£) the Green's matrix with the fol-

| owi ng properties: G(z,£) is diagonal; if z :reit, £:ré-S
and o i sthe solutionof a, =l® such that p”™ £s < p-"'+.2TT,

then the diagonal elements G, of G are G =1 if p <Mt <s
and G, =-1 if s<Lt < £ .t 2TL It follows fromthis defini-
tion (and the fact that "w(?®>) ~ °) that, on the circle |z| =71,

w is a solution of the integral equation

*

2wm() = | G(z,C) A(z)w(z) dz.

I z| =

By the triangle inequality,

M w(C) Il = I jGAwdzIl 1 J||| GAw|| |dz|.
Since ||| ||| is an absolute vector norm, we have ||| G|| < Il Ill| = 1
and thus Il GAW] ~ ||| Alll IIWII . if £ is so chosen that
M= H wC Il =max [|w@) ]|, it follows that 2M ~ M :11"||' Alll 1dz] ,
i.e., Iz} =
2 1J|ZI|II_,rAH | dz).

Using, in the same manner as before, the fact that a normof an
analytic vector is subharmonic, we obtain the required contradic-

tionto (1.4) .
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2. In the present section we derive two sufficient conditions
for suborthogonality, the first referring to a general simply-

connected domain and the second to the unit disk.

Theorem 2.1. Let D and A have the same meaning as in Theor-

em 1.1, and let |A|| denote the Euclidean norm of A. If

(2.1) faDHAHIdZI <,

then equation (1.1) is suborthogonal in D + O0D. The constant T

in (2.1) is the best possible.

Theorem 2.2. Let A be an analytic nxn matrix in |z| < 1, and

let ||a|| denote the Euclidean norm of A. Let p(r) be a function

with the following properties: p(r) > O and (l—r2)p(r) is non-

increasing on [0,1);

1
(2.2) Iop(r)dr < %.
If
(2.3) lacz)ll < p(lz]), lz| < 1,

then equation (1.1) is suborthogonal in |z| < 1. The constant

% in (2.3) is the best possible.

We begin the proofs of these results with the remark that an
equation (1l.1) which fails to be suborthogonal in the closure
D + OD of a (not necessarily simply-connected) domain D must
possess a nontrivial solution vector w such that Re{w(zo)w(co)} = 0,
where Z and co are points of OD. 1Indeed, our assumption im—‘
plies the existence of points z and ¢ in D + O0D such that
Re{w(z)w(f)} = O for a nontrivial solution w. For constant ¢,

Re{w(z)w(cﬂ is a harmonic function of 2z in D + OD, and it
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follows fromthe maxi mum principle that there exists a point - Zg
on SD such that Re{w(zg WM(£) } = 0. Since Re{wzg W£) } is
a harnonic function of £, a repetition of this argunent shows
that there exists a point £ of SD such that Re{wW(zg W£,)} = 0,
as asserted.

W next remark that it is sufficient to consider the case in
whi ch the solution w = (vv-l,...,wl_) just nentioned is such that
We(zg) =0, k=1,...,n-1, ImMw(zg } = Re{wi(£g } = 0. To es-
tablish the truth of this assertion,, we define the (constant)
unitary matrix Q by owzy = (0,0,. .. ,0, |IWZy ||) and consi der
the vector function v = Qv By (1.1) , v is a solution of the
equation v' = Bvs where B = Q@ 1 Since |[|B] = ||A|. the con-
ditions inposed on A in Theorens 2.1 and 2.2 apply equally to

B. By the definitionof v, v, (z) =0, k=1,...,n-l and
ri O

I mM{va(zo)} =0. Since V(Zo)V(Co) = QWM Zg) * QWM £q) = WZg )WMCY ,
it follows from Re{w(zg) M £g) } =0 that Re(vn(£9 } =0. lhe
solution v of v' = Bv thus has the indicated behavior at the
points z©, £, of (‘3D if (1.1) is not suborthogonal in D + dD.
VW now prove Theorem 2. 1. In view of the preceding remarks

it is sufficient to show that, under the assunptions made, the

equati on cannot have a nontrivial solution w= (w. & . . ,w%) such
that w(zq =0 k=1,...,n-1, ImMw(z,) } = Re{w(£,) ) =0,
where |zo| = || = 1. (Again, we only need consider the case in

which D is the unit disk.) Suppose, then, there exists a solu-
tion with these properties. The points zo and £¢ divide the
circle |z| =1 into tw arcs ClL and C2 one of which -- say

CL -- is such that




(2.4) vy =J NJldz| £5J = llaliaz|.
c, lz{=1

By (1.1), [w'|? £ JAIPIW]% or, if we introduce on |z|] = 1 a

real parameter t by dt = ||A]|ldz|, |w]* £ [w]“, where the dot

denotes differentiation with respect to t. Setting t = 0 at

one of the ends of G --ssya z,--, we then have
Y | »Y

(2.5) f ||w|?dt £ f ||w|°dt,
o o

or, with wy = uc + ivg (V», vk real) ,

" rY.2 ry 2 norY-2 rv 2
£ udt-J udt] + EM v dt-J v,dt] £0.
k= o * oKX k=l Jo oK

Hence, there mus exist an index "k for which either

r’.2 ry 2
(2.6) Ndt A Pdt
or
. 'Y, 2 Y 2
(2.6M 'ovudt A v odt.
Jok Jok
By assunption, all the functions Uy Uy Ve, Vg vani sh

either for t =0 or for t =y. By classical results [cf.,

e.g.,1] this inplies

Y 2 . Y.2_ -
Jp wdt (ZY‘]rr_)Z pJ u, at,
o o
and a simlar inequality for v,.. Conbi ning this w th whichever

of the two inequalities (2.6), (2.6") is satisfied, we find that
Y 1> Tl« Since y is subject to the inequality (2.4) , this con-
flictswith (2.1). Hence, if (2.1) holds, equation (1.1) is sub--

orthogonal in |z|] ~ 1.
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The fact that the constant m in (2.1) is the best possible
follows from the example used by Schwarz [9] to show that his
nonoscillation criterion is sharp. In this example the left-
hand side of (2.1) has the value 7 + ¢, where £ 1is an arbi-
trarily small positive number, and it is easily seen that the equa-
tion in question is not only oscillatory but also fails to be sub-
orthogonal.

Turning now to the proof of Theorem 2.2., we note that we
may assume that A is analytic in |z| < 1 (replacing z by pz,
where P is in (0,1) and sufficiently close to 1). As before,

we have to show that under the assumptions made, (1.1l) cannot

have a nontrivial solution w = (wl,...,wn) such that every one
of the functions Re{wk}, Im{ka, k =1,...,n, vanishes at either
z, or (., where |201 = [CO[ = 1. 1If there is such a solution,

we draw through the points z, and Co the (unique) circle which
is orthogonal to |z| = 1, and we denote by C the arc of this
circle which is in |z| < 1. We may assume (replacing, if neces-
sary, z by Bz where |B| = 1, B constant) that C is symmetric
with respect to the imaginary axis. The transformation
z--)(t+ir)(1-irt)’1 (with a suitable real r, -1 < r < 1) carries
C into a section of the real axis in the t-plane and maps |z| < 1
onto |tl ¢ 1. It is easily confirmed that |zl > |[t]| if zecC
and that, for all |z| < 1,
(2.7) dz 5 _ dt -

1-| z| 1- |t

In the t-plane, the system (l.1) becomes

(2.8) Ml - Azt Inw

B(t)n(t),
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where mn(t) = w[z(t)]. Since the points 2z = Zo’co are carried
into the points t = +1, (2.8) has a solution 7 = (nl,...,nn)
such that every one of the functions Re{nk}, Im(nk}, k=1,...,n,
vanishes for either t =1 or t = -1. By (2.7), (2.8) and (2.3),

we have, for ze C,
2 2
(-1t A B || = a-lz1? la@ |l < a-1z1% (2]
2
< (1= p(]t]),
where the last inequality follows from |z| > |t| and the assump-
tion that (l-rz)p(r) is nonincreasing for re [0,1). Hence,

IB(t) ]| < p(]t]), where B(t) is the coefficient matrix of equation

(2.8) and te (-1,1). Accordingly,

Intll < lBlilinll < pltD lnll,  te -1,1),

and, with ds = p(|t]|)dt, s(-1) = o, n = g

S’
Y 2 Y 2
(2.9) [ nlPas < | inllas,
(o] O
where
1 1
(2.10) y = f lp(yt[)dt = 2j p(t)dt.
- o :

Treating (2.9) by means of the procedure applied to (2.5), we find
that 2y > A, where vy is the constant (2.10). Since this in-
equality, obtained under the assumption that (1.1) is not subortho-
gonal in |z| < 1, is incompatible with (2.2), this proves the main
assertion of Theorem 2.2.

Examples showing that (2.1) is the best possible constant of
its kind can be constructed in all cases in which p(z) is an even

analytic function in |z| < 1, which is positive for real =z and




12.

and such that [p(z) | <L p(|z|]) (e.g., p wll have these properties

co 2m
if p(z) = Eayw , ap”™ 0) . For even n, we set A=p(z) C
m=0
where C is a constant matrix whose only nonzero elenents ¢
Co s
— — — n/'z ; :
are Cr,r#l =1, r =1,...,n-l, and Chi = (-1) . 1he equation
w = Aw then has a solution all of whose conponents are of the form
Z -
+sin CJ(Z2) or + cos a(z), where a(z) = | p(t)dt. |If thereis
i n_1
. . . T T
equality in (2.2) , i.e., if p(t)dt = -z9 then all conponents
vanish at either z =1 or z =-1. Hence wWI)wW-1) =0, and

the equation is not suborthogonal in |z|] < 1. Atrivial nodifi-
cation of this exanple will produce an equation which fails to be
suborthogonal in |z| < 1. To obtain an exanple for odd n, we

define a matrix A, by adding a row and a colum of zeros to the

matrix A just considered. If w= (w,.,.,wpn was the solution
in the previous case, the equation v' = A,V has the solution
v=(wW,.*. ,%,0 , and we evidently have |[|A]| = ||A] and

v(l)v(-1) =0,
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3. It is natural to conjecture that the assunptions of Theorem
2.2 are also sufficient to guarantee the nonoscillation of (1.1)
in |z|] < 1. However, all that we are able to prove is that the
equation will be nonoscillatory if the constant ~ in (2.2) is

replaced by a suitable smaller constant.

TheoremJ..1 LlLet A be® amanalytic nxn-matrix in | z| < 1,

2
and let p(r) (cxi:<1) bE a positive function such that (1-r )p(r)

is nonincreasing and

X -1
(3.1) sinjp(r)dr< [2(n-1)] 2
0
| |
(3.2) [[A(Z) 1T 1 p(]z])

(I z1 <1) ,_then equation (1.1) _is® nonoscillatory in_the unit disk.

W note that, for n = 2, condition (3.1 is equivalent to
(2.2). For n>2, (3.1 is the nore stringent condition.

| he proof of Theorem 3.1 utilizes the follow ng geonetric

| emma.
Let u’' = (w2 ....4,), k=1...,n n;>2 be (constant)
conplex unit vectors. If u*» =0 for_k =1,. . . ,n, then there

exist integers k,m such that 1 <"k <m” n and

(3.3) lJu®uM| gt
For n =2, (3.3) is trivial since u(l) and u(2) are, in
this case, orthogonal. Suppose that, for n> 2, (3.3) fails for
all permssible pairs k,m i.e.,
n-
WBIT IS8A8Y
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for k #m, 1 L k,m n. Since u, =u =0, this implies
n-2 2 2
2(==%) < T Ju. 7+ Z ju |
p-1 v£k ,m kv vék,m ™V
2 2
=2- !ukm' B Iumk| ’
i.e.,
2 2 2
n-1 -~ |uk |7+ |umk! ’

Adding over all %n(n—l) pairs k,m (and observing that Uy = 0,
k =1,...,n), we obtain
iy 2

n > r |ju_|
k,m=1 X0

= n.

Hence, there must exist a pair k,m for which (3.3) holds.

Suppose now that (1.1) has an oscillatory solution

w = (wl,...,wn), i.e., suppose there exist points ZyseeesZy in

|z| < 1 such that wk(z =0, k=1,...,n. If u(z) is defined

X
by w(z) = u(z)Hw(z)H, we then may apply the lemma to the unit vec-

tors u(z Accordingly, there exist subscripts k,m such that

k)‘
-1
lu(zk)u(zm)‘ < (n-2) (n-1) ~.
Next, we subject 2z to a Mobius transformation z-—t which

carries the points into two points tl,t2 on the real axis

2y 02
in the t-plane. As shown in the proof of Theorem 2.2, this can be
done in such a way that the coefficient matrix of the transformed
equation n' = Bn satisfies the inequality |[|B(t)|| < p(|t]) if

(3.2) holds. We note that for the function v defined by
n(t) = v(t) In(e) | we have |v(t)v(t) | = |u(zulz)| < (n-2) (n-1)7 L.

We set n = a+iB, B = By + iB

the real 2n-dimensional vector (a,B) by vy. If the real 2nx2n ma-

5 (OL,B,Bl,B2 real), and denote

trix D 1is defined by
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B,B
oo T 2,
BB%?I>
the equation T} = B is equivalent to the real equation y' = PY;,
and we have [B] = oI, ™I = |lyll. 1f 6 is a constant unit vec-

tor in g2 and a is defined by y = ally|]|, then, as shown in
[5], the function x = 6a is subject to the inequality

16 1 .

[-x*
Since 6a can be written in the fom Re{cv}, where c is a com
plex n-dimensional unit vector, and since [|p|| = IBIl, thi.s IS equiv-
alent to

- | -

JENTIN,
where <p = Re{cv}. Integrating this inequality from t'i to t,
(where the subscripts are so chosen that t'1< ti), and setting

Cc = v(ti), we obtain

to 1 1
|arc cos Refv(t) v(tz) 1] £J [Bldt £J3 [Blldt £ 2J p(t)dt.
t 1 -1 (0]

Since | Re{v(ty) v(tz) }| E£|v(t)v(ta)] ~ (n-2) (n-1) ~', this inplies
1 .

arc cos Ay*A 2j' p(t)dt,
0

o1 1
SIA dp(t)dt ~ [2(n-1) ] 2
(0}

The assunption that (1.1) is oscillatory in |z] < 1 has thus |led
to an inequality which is inconpatible with (3.1), and Theorem 3.1

i's proved.
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4., 1In this final section we derive two necessary conditions for
the suborthogonality of analytic systems (1.1) in the unit disk.
Necessary conditions for the nonoscillation of such systems can

be found in a recent paper by M. Lavie [4].

Theorem 4.1. Let A(A) = max alAo for lall = 1, i.e., let A(A)

be the largest eigenvalue of the Hermitian part of the matrix A.

If the analytic system (1.1) is suborthogonal in |z| < 1, then

1

(4.1) AlA(z)] < 5 .
1-|z]

The inequality is sharp for all |z| < 1.

Theorem 4.2. If (1.1) is suborthogonal in |z| < 1, then

V2
(4.2) laz) || < —=—— .
1-| z]
We begin with the remark that it is sufficient to prove both
(4.1) and (4.2) for z = 0. To see this, we map the unit disk onto
itself by the transformation z-—-t, where 2z = (t+oc)(1+Et)—1 and

a(|a|<l) is a constant. In this mapping, (1l.1) is transformed into

the equation do _ B(t)o, where

dt
2
1- t+
w(z) = o(t), B(t) = ol > A[l+%%]'
(1+8t)
Since B(0) = (1—[&]2)A(a) and the transformation does not affect

the suborthogonality of the equation, this establishes our asser- .
tion.

To prove Theorem 4.1, we observe that it follows from the sub-
orthogonality of the equation that Re{w(Bz)w(Bz)]} > O for any

lz| < 1, |B] = 1. Using the power series expansion of the vector w,
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we have W(pz) =wo) + pzw (o) + 0(22)f and a simlar expression

for wWp'z) . Hence

h(z) =wkz)wkzy = [|wo0)||* + 2zRe{ pw> (0) W(0) } + 0(z?) .

The (scalar) function h(z) is analytic in |z| < 1 and has there
a positive real part. By a classical result, this inplies

|h" (0) | £ 2 Refh(0)}. Thus, if arg p is so chosen that
pw (o)w(o) "~ 0, [w (o)w(o)| Il|w(o)|]|? or, by (1.1),

| w(o) ACo)w(o) | £ [[wo) ||
Since w(o) nmay be taken to be an arbitrary non-zero vector, we
obtain AlA(0) ] € 1. As renarked above, this is equivalent to
(4.1). |

To show that the inequality (4.1) is exact, we consider the

equation W = Aw with A= (1-z ?'1I, where | is the nxn unit
matri x. The general solution of this equation is w= f(z)a,

-1 12 tant
where f(z) = [(1+2) (1-2) ] and a 1is an arbitrary cons-

KBEUPE) w 2T SORIPORAS CHPPTEPIOMAL 101 4%kasi 1y cohPHF68u tha
the latter expression is positive for |z| <1, |£ < 1. Since
A2 || =1 12 1* , we have equality in (4.1) for all ze (-1,1).
Theorem 4.2 is a consequence of the following result.
1f Wz) jlis .an analytic vector in | z| < 1 such that

Re{W(z)WE) } >0 for |z|] <1, |£ <1, then

.

(4.3) [W (0) || <¥2 llw(o)

The constant \f2 is the best possible.




18.
Indeed, if (1.1) is suborthogonal in |z| < 1 then (4.3)
shows that, for any nontrivial solution w, ||A(o)w(o) |l <y2 |w(o)]|l.
Since w(o) is arbitrary, we have ||A(o)| < {2, and this is equiva-
lent to (4.2).
To prove (4.3), we note that, for any t in the unit disk,
Re{w(tz)w(tz)} > 0. If w(z) = aj + a;z + ... is the power series

1

expansion of w, we thus have

1 k O —..k
0 < Re{—=— [ Z a,_(zt)" ][ T a,_(zt) "1|daz]}
27 J'|z|=1 k=0 £ k=0 K | az|

- Rel B 2, 2k
Rel % la, %7%)

for |t| < 1. Since the function in braces has a positive real
part, it follows from the result quoted above that HalH2 < 2HaoH2.

Because of a, = w(o), a; = w! (0) , this proves (4.3).

We now construct an example which shows that the inequality
(4.3) is sharp. We denote by P(z) a polynomial of degree n - 1,
and we define the vector w = (wl,...,wn) by Wy = P(wkz),

k =1,...,n, where w = exp(2vin—l). If P(z) = b° + b,z +to..

1
+ bn_lzn'l, it follows from the properties of the roots of unity

that
n-1
w(z)w(f) =n X |bk|2(zf)k.
k=0

Accordingly, we shall have Re{w(z)w(f)} > 0 if the polynomial

|2 2 n-1

R(z) = Ibo + |bl|2z +.. .0+ 'bn—l’ z has a positive real part

for |z| < 1. A polynomial with this property is
n-1

R(z) =1+ 2%
k=1

n-k k
_—z,
n
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Indeed, R(z) is the n-th Fejer mean of the partial sums of the
function f(z) = (1+z) (1-2) "', for which Re(f(z)} >0 in
| z] < 1, and the Fejer means of a function with positive real
part share this property [6]. W thus may set b"[2-2kn_111/2,

k =1,...,n-1, bo = 1. The corresponding vector w will then
satisfy [w() [|Z = n, w» (©) ||? = 2n(-n~Y) , i.e.,
bt (@B =V2(1-]) [w(o)ll
and this shows that the constant VT in (4.3) cannot be repl aced
by a smaller nunber. |
This, of course, does not inply that the constant \f~2 in

(4.2) is also the best possible. Al we can say is that the true

constant is ;> 1, since A(A £ ||A|l and (4.1) is a sharp inequality.
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