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OSCILLATORY PROPERTIES OF COMPLEX DIFFERENTIAL SYSTEMS

by

Zeev Nehari

Abstract

Let A(z) be an nxn matrix whose elements are analytic func-

tions of a complex variable z in a simply-connected domain D.

The differential equation

is said to be nonoscillatory in D if it does not possess a non-

trivial solution vector w = (w-,. . • ,w ) such that w- (z,) = 0,

k = l,.,.,n, where the z^ are points of D. Ihe equation is

called suborthogonal in D if, for any z, £ e D and any non-

trivial solution w, Re{w(z) w(£) } > 0.

The problem studied in this paper is that of establishing

connections between these properties (or their absence) and cer-

tain simple properties of the coefficient mattix A. A number of

criteria are obtained.
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OSCILLATORY PROPERTIES OF COMPLEX DIFFERENTIAL SYSTEMS

by

Zeev Nehari

1. Ihe systems to be discussed in this paper are of the form

/i 1 \ dw * / \

(1.1) ^ = A(z)w,

where A(z) is an nxn matrix whose elements are analytic func-

tions in a simply-connected domain D in the complex plane,

and w is a vector whose n components are analytic in D.

Tfhe system (1.1) is said to be nonoscillatory in D if every

nontrivial solution vector w has at least one component which

does not vanish in D. Evidently, this property may also be de-

fined by the requirement that, for arbitrary complex constants

a, , . . . ,oc and arbitrary z.. ,. . . ,z in D, (1.1) should have

exactly one solution w = (w-,...,w ) for which w, (z,) = ou,
J_ n KL .K K.

J ^ * — j L , « « « , n *

A related property, which is likewise useful in the study of

the oscillatory behavior of the solutions of (1.1), is that of

suborthogonality. The equation is said to be suborthogonal in D

if, for any nontrivial solution w and for any two points £, r\

in D, Re{w(£)w(rj) } > 0 (where the expression in braces is the

scalar product of the two vectors in question) . For n = 2, sub-

orthogonality evidently implies nonoscillation; for n > 2, the

relation between the two concepts is less obvious.

Work supported by the National Science Foundation under
Grant GP 23112.
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In formulating the nonoscillation condition of this section

we shall assume that the domain D is bounded by a contour dD

and that the coefficient matrix A is analytic in D + SD. This

is done in the interest of more concise formulation and is not an

essential restriction. Our condition will be stated in terms of

the Holder norm ||A|| (p^>l) of the c o e f f i c i e n t ma t r ix A, induced

by t h e norm ||p|| = [ | P 1 | P +. . . + | P n | P ] 1 > / p of the v e c t o r

Theorem JL-JL Let D be a. simply-connected domain in the complex

plane, bounded by a_ contour dD. Ijf the matrix A i£ analytic in

D + dD and
1

(1.2) J ||A|| |dz| < 2TT(P-1) P[ P ^ p

then the system (1.1) Jjs, nonoscillatory in D.

For p = 2, (1.2) reduces to the condition

(1.3) J ||A||2 |dz| < ir,

recently obtained by B. Schwarz [9] , who also showed that the con-

stant TT is the best possible (the fact that the system is non-

oscillatory if the left-hand side of (1.3) is bounded by 1 had

previously been proved by W. J. Kim [3]). Whether condition (1.2)

is sharp for other values of p is an open question. It is easily

confirmed that c = c if p" + q" = 1, and that c decreases

from ir to 2 if p increases from 2 to oo . Thus, c > 2

except for p = l,oo. In the two limiting cases, condition (1.2)

is contained in a recent result of Schwarz [8] according to which

the inequality
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(1.4) J HI A||| |dz| < 2,

where ||| A||| is the matrix norm induced by an arbitrary absolute

vector norm, is sufficient to guarantee the nonoscillation of

equation (1.1) in D. A short proof of this result will be found

at the end of this section.

If D is transformed into another domain D1 by a confor-

mal mapping z->z!, (1.1) is transformed into an equation of the

same form and the integral on the left-hand side of (1.4) remains

invariant [7]. It is therefore sufficient to prove Theorem 1.1

for the case in which D is the unit disk. THie situation is fur-

ther simplified by a result of W. J. Kim [3] who showed that if

(1.1) is oscillatory in |z| <_ 1, then there exists a solution w

of (1.1) such that every component of w has a zero on a circle

| z | = r

By (1.1), we have

and therefore, if p is a positive continuous function on |z| = r,

J P (||W || ) P I dz I 1 J p ( | |A | | ) P (||w|) ) P I d z I .
| z |=r ^ | z |=r p p

In par t i cu la r , if we set p = (||A|| ) ~"p and introduce a new (real)

variable s by set t ing ds = ||A|| | d z | , we obtain
L LI <llgllp)

pas(j (N|
o ^ oo

w h e r e W(s) = w ( z ( s ) ) ,

( 1 . 6 ) L = J ||A|| | d z | ,
z =r y
z = r
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and, since the analytic vector w is single-valued in the unit

disk, W(s+L) = W(s) .

If W-.,...,W are the components of W and if ak denotes

the zero of W, on |z| = r, the periodicity of W enables us

to write (1.5) in the form

n r a k + L nJ | | s <L B J |w | p d s ,
k=l J

k
 k J

k
 k

where the prime now denotes differentiation with respect to s.

Setting R, = |wk| and observing that |Rk| <^ IW^U we find that

the real functions R, satisfy the inequality

a,+L _ av+ L

n « k n r k p
(1.7) E | RJ | Pas £ E RTds.

k=l J a k ^ k=l J a k
 k

and the conditions R-fou) = R-fcu+L) = 0.

We now use an inequality of Hardy, Littlewood and Polya

[2,Chap.VII], according to which

a a a

(1.8) J fpds ^ [ir~1ap s i n J ] P ( p - l ) " 1 J ( f T ) P d s - (2a c " X ) P J ( f ' ) P d s ,
o p o p o

if f(0) = 0, f is continuous and nondecreasing in [0,a] and

f! eL [0,a]. (In [2], p is an even integer, but the proof given

there is valid for any p > 1) . The monotonicity assumption for

ff is not essential. If this assumption is dropped and ff is

replaced by |ff| on the right-hand side of (1.8), the inequality

remains true, since f may be replaced by the function

s

F(s) = \ j [f (t) + | ft (t) I ]dt,
o

for which f (s) £ F(s) , 0 <^ F1 (s) <̂_ | f! (s) [ , and which satisfies

the conditions under which (1.8) holds.
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Applying this generalized version of (1.8) (with a = -^ to

the functions f (s) = R, (a, +s) and f (s) = R,(L+a,-s) , respec-

tively, and adding the results, we obtain

ak+L o^+L

J R^ds £ (Lc"1)* J |R^|Pds, k = l,....,n,
ak ak

and a comparison with (1.7) shows that Lc" _̂ 1, i.e., by (1.6),

But the norm ||A|| is a subharmonic function in the closed unit

disk [7], and for a subharmonic function S the mean value

I z I = r

is a nondecreasing function of r. Hence, the assumption that

(1.1) possesses an oscillatory solution in |z| £ 1 leads to the

inequality

J c .
p. z|=l

Condition (1.2) is thus sufficient to guarantee the nonoscillation

of (1.1) in D + BD. Ihis establishes Iheorem 1.1.

We end this section with a short proof of the result of

Schwarz, quoted above, according to which (1.4) guarantees the non-

oscillation of equation (1.1) in D if ||| A||| is the matrix norm

induced by an arbitrary absolute vector norm ||| u ||| , i.e., a norm

f o r which III u ||| < III v ||| i f u = (u, , . . . , u ) , v = (v . , . . . , v ) and
• • - * - • « " i n l n

Iukl ^ lvk^ k = 1^---^n- A s before, it is sufficient to consider

the unit disk and to show that, if (1.4) holds, (1.1) cannot have

a nontrivial solution w = (w,,. . . ,w ) such that wv (a.) = 0, where
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| a, | =..,= | a | = r < 1. Suppose, then, there exists such a

solution, and denote by G(z,£) the Green1s matrix with the fol-
it islowing properties: G(z,£) is diagonal; if z = re , £ = re

i BTcand p, is the solution of a, = e p such that p^ £ s < p-̂  +.2TT,

then the diagonal elements G-. of G are G, = 1 if p. <^ t < s

and G, = -1 if s <L t <^ £, + 2TT. It follows from this defini-

tion (and the fact that wv( a>) = °) that, on the circle |z| = r,

w is a solution of the integral equation

2w(r) = I G(z,C) A(z)w(z) dz.
J|z|=r

By the triangle inequality,

2HI w ( C ) III = III j G A w d z l l l 1 J | | | GAw| | | | d z | .

Since ||| ||| is an absolute vector norm, we have ||| G||| <[_ ||| l||| = 1

and thus III GAw||| ^ ||| A||| ||| W||| . if £ is so chosen that

M = HI w(C) III = max ||| w(z) ||| , it follows t h a t 2M ^ M 11|| A||| | d z | ,
|z|=r

i. e. ,

2 1 J III A HI | d z
|z|=r

Using, in the same manner as before, the fact that a norm of an

analytic vector is subharmonic, we obtain the required contradic-

tion to (1.4) .
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2. In the present section we derive two sufficient conditions

for suborthogonality, the first referring to a general simply-

connected domain and the second to the unit disk.

•Theorem J2.1.. Let D and A have the same meaning as in Theor-

em 1.1, and let ||A|| denote the Euclidean norm of A. JE_f

(2.1) f ||A|||dz| < 7T,

then equation (1.1) is. suborthoqonal in D + 5D. • The constant rr

in (2.1) JLS the best possible.

Theorem 2..^. Let A b£ an analytic nxn matrix in | z| < 1, and

let ||A|| denote the Euclidean norm of A. Let p(r) he_ ji function
2

with the following properties: p(r) _̂ 0 and (1-r )p(r) %s_ non-

increasing on [0,1) ;

(2.2) \ p(r)dr < \.

If
(2.3) ||A(z)|| 1 p(|z|), |z| £ 1,

then equation (1.1) jLs. suborthoqonal in | z| <1 1. Tlie constant

T ill (2.3) jj_£ the best possible.

We begin the proofs of these results with the remark that an

equation (1.1) which fails to be suborthogonal in the closure

D + S D of a (not necessarily simply-connected) domain D must

possess a nontrivial solution vector w such that Re{w(z )w(£ )} = 0 ,

where zQ and £Q are points of dD. Indeed, our assumption im-

plies the existence of points z and £ in D + S D such that

Re{w(z)w(£)} = 0 for a nontrivial solution w. For constant £5

Re(w(z)w(£)} is a harmonic function of z in D + dD, and it
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follows from the maximum principle that there exists a point ZQ

on SD such that Re{w(zQ) w(£) } = 0. Since Re{w(zQ) w(£) } is

a harmonic function of £, a repetition of this argument shows

that there exists a point £Q of SD such that Re{w(zQ) w(£o)} = 0,

as asserted.

We next remark that it is sufficient to consider the case in

which the solution w = (w-,...,w ) just mentioned is such that

wk(zQ) = o, k = l,...,n-l, Im{wn(zQ) } = Re{wn(£Q) } = 0. To es-

tablish the truth of this assertion,, we define the (constant)

unitary matrix Q by QW(Z Q) = (0,0,. . . ,0, ||W(ZQ) ||) and consider

the vector function v = Qw. By (1.1) , v is a solution of the

equation vT = Bv5 where B = QAQ~" . Since ||B|| = ||A||, the con-

ditions imposed on A in Theorems 2.1 and 2.2 apply equally to

B. By the definition of v, v, (z ) = 0, k = l,...,n-l and
ri O

lm{vn(zo)} = 0 . Since V(Z Q)V(C O) = QW(Z Q) • QW(£ Q) = w(zQ-)w(CQ) ,

it follows from Re{w(zQ) W(£ Q) } = 0 that Re(vn(£ ) } = 0. Ihe

solution v of v! = Bv thus has the indicated behavior at the

points z , £o of (3D if (1.1) is not suborthogonal in D + dD.

We now prove Theorem 2.1. In view of the preceding remarks

it is sufficient to show that, under the assumptions made, the

equation cannot have a nontrivial solution w = (w.. ,. . . ,w ) such

that wk(zQ) = O, k = l,...,n-l, Im{wn(zo) } = Re{wn(£o) ) = 0,

where |z | = |^ | = 1. (Again, we only need consider the case in

which D is the unit disk.) Suppose, then, there exists a solu-

tion with these properties. The points z and £ divide the

circle |z| =1 into two arcs CL and C , one of which -- say

C, -- is such that
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(2.4) Y = J N||dz| £± J

By (1.1), ||w'||2 £ | |A||2 | |W||2 , or, if we introduce on |z | = 1 a

real parameter t by dt = ||A|||dz|, ||w|| £ ||w|| , where the dot

denotes differentiat ion with respect to t. Setting t = 0 at

one of the ends of C-, -- say at z - - , we then have

Y -»Y

(2.5) f ||w||2dt £ f ||w||2dt,
o o

or, with wk = uk + ivk (v^, vk real) ,

n r Y . 2 rY 2 n r Y - 2 rY 2
£ [ u, dt - u, dt] + EM v dt - v,dt] £ 0.

k=l o * o K k=l Jo k o K

Hence, there must exist an index "k for which either

r Y . 2 rY 2
(2.6) J^dt ^ J^dt

or
rY 2 rY 2

( 2 . 6 M v.dt ^ v dt.
Jo k Jo k

By assumption, all the functions u.,...,u , v.,...,v vanish

either for t = 0 or for t = y. By classical results [cf.,

e.g.,1] this implies

pY 2 .]_ 2 pY.2

o o

and a similar inequality for v,. Combining this with whichever

of the two inequalities (2.6), (2.6f) is satisfied, we find that

2Y ]> TT« Since y is subject to the inequality (2.4) , this con-

flicts with (2.1). Hence, if (2.1) holds, equation (1.1) is sub-

orthogonal in |z| ^ 1.
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The fact that the constant ir in (2.1) is the best possible

follows from the example used by Schwarz [9] to show that his

nonoscillation criterion is sharp. In this example the left-

hand side of (2.1) has the value ir + £, where £ is an arbi-

trarily small positive number, and it is easily seen that the equa-

tion in question is not only oscillatory but also fails to be sub-

orthogonal.

Turning now to the proof of Theorem 2.2., we note that we

may assume that A is analytic in |z| <̂  1 (replacing z by pz,

where p is in (0,1) and sufficiently close to 1). As before,

we have to show that under the assumptions made, (1.1) cannot

have a nontrivial solution w = (w.,...,w ) such that every one

of the functions Refw, }, Im{w, }, k = l,...,n, vanishes at either

z or £ , where |z I = |£ I = 1. If there is such a solution,

we draw through the points z and £ the (unique), circle which

is orthogonal to |z| = 1, and we denote by C the arc of this

circle which is in \z\ < 1. We may assume (replacing, if neces-

sary, z by pz where | p| = 1 , p constant) that C is symmetric

with respect to the imaginary axis. The transformation

z-» (t+ir) (l-irt)~ (with a suitable real r, -1 < r < 1) carries

C into a section of the real axis in the t-plane and maps |z| <̂  1

onto |tl <̂  1. It is easily confirmed that |zl > |t| if ze C

and that, for all 1 z <

dz
1_ z

: 1 ,

2
d t

t 2
(2.7)

In the t-plane, the system (1.1) becomes

(2.8) &gL = |f A[z(t)]n<t)

= B(t)t)(t) ,
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where r)(t) = w[z(t)]. Since the points z = Z
O * C O

 a r e carried

into the points t = +1, (2.8) has a solution rj = (t)^ • • • **?n)

such that every one of the functions Refrj^}, Imfrj^}, k = l,...,n,

vanishes for either t = 1 or t = -1. By (2.7), (2.8) and (2.3),

we have, for z e C,

where the last inequality follows from |z| > |t| and the assump-

tion that (1-r )p(r) is nonincreasing for re [0,1). Hence,

||B (t) || <. p(|t|), where B(t) is the coefficient matrix of equation

(2.8) and te (-1,1). Accordingly,

l l t l ' l l 1 llBllllflll £ P < | t | ) | | f > | | , t e ( - 1 , 1 ) ,

a n d , w i t h d s = p ( | t | ) d t , s ( - l ) = 0 , r) = | j ,

Y Y
(2.9) J ||n||2ds £ J ||r7||2ds,

o o

where
1 1

(2.10) y = J p ( | t | ) d t = 2j p( t )d t .

Treating (2.9) by means of the procedure applied to (2.5), we find

that 2Y ̂ . A, where y is the constant (2.10). Since this in-

equality, obtained under the assumption that (1.1) is not subortho-

gonal in |z| < 1, is incompatible with (2.2), this proves the main

assertion of Theorem 2.2.

Examples showing that (2.1) is the best possible constant of

its kind can be constructed in all cases in which p(z) is an even

analytic function in |z| < 1, which is positive for real z and
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and such that |p(z) | <L p(|z|) (e.g., p will have these properties

co 2 m

if p(z) = E a z , a ^ 0) . For even n, we set A = p (z) C,
m=o

where C is a constant matrix whose only nonzero elements c
r 9 s

are c , = 1, r = l,...,n-l, and c - = (-l)n/ . ihe equation

w = Aw then has a solution all of whose components are of the form

z

+ sin CJ(Z) or + cos a(z), where a(z) = | p(t)dt. If there is

i "-1

equality in (2.2) , i.e., if p(t)dt = -z9 then all components

vanish at either z = l or z = -1. Hence w(l)w(-l) = 0 , and

the equation is not suborthogonal in |z| <^ 1. A trivial modifi-

cation of this example will produce an equation which fails to be

suborthogonal in |z| < 1. To obtain an example for odd n, we

define a matrix A, by adding a row and a column of zeros to the

matrix A just considered. If w = (w-,.,.,w ) was the solution

in the previous case, the equation v! = A-.V has the solution

v = (w^,. • . ,w ,0) , and we evidently have ||A,|| = ||A|| and

v(l)v(-l) = 0.
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3. It is natural to conjecture that the assumptions of Theorem

2.2 are also sufficient to guarantee the nonoscillation of (1.1)

in |z| < 1. However, all that we are able to prove is that the

equation will be nonoscillatory if the constant ^ in (2.2) is

replaced by a suitable smaller constant.

Theorem J3...1. Let A bê  am analytic nxn-matrix in | z| < 1,
2

and let p(r) (CXJ:<1) b£ a. positive function such that (1-r )p(r)

is nonincreas ing and
x -I

(3.1) sin jp(r)dr< [2(n-l)] 2 .
o

II
(3.2) ||A(z) II 1 p(|z|)

(I z I < 1) , then equation (1.1) _iŝ  nonoscillatory in the unit disk.

We note that, for n = 2, condition (3.1) is equivalent to

(2.2). For n > 2, (3.1) is the more stringent condition.

Ihe proof of Theorem 3.1 utilizes the following geometric

lemma.

Let uv ' = (u, ̂ , . . . ,u. ) , k = 1,...,n, n ;> 2 be (constant)

complex unit vectors. If u^ = 0 for k = 1,. . . ,n, then there

exist integers k,m such that 1 <^ k < m ^ n and

(3.3) | u ( k ) u ( m ) | £ ^ f .

For n = 2, (3.3) is trivial since u and u are, in

this case, orthogonal. Suppose that, for n > 2, (3.3) fails for

all permissible pairs k,m, i.e.,

n

< I Z ukv

WBfT IS8A8Y



14.

for k ^ m, 1 < k,m < n. Since u,, = u = 0, this implies
.K.K mill

2
= 2 - I u, I - lu1 km1 '

2I - l u ,m1 ' mk1

i.e. ,

2
:m + umk1

Adding over all -|n(n-l) pairs k,m (and observing that u ^ = 0,

k = l,...,n), we obtain

n 2

k,m=l Km

Hence, there must exist a pair k,m for which (3.3) holds.

Suppose now that (1.1) has an oscillatory solution

w = (w.,...,w ), i.e., suppose there exist points z.,...,z in

|z| < 1 such that ^ ( z O = 0, k = l,...,n. If u(z) is defined

by w(z) = u(z) ||w(z) ||, we then may apply the lemma to the unit vec-

tors u(z,). Accordingly, there exist subscripts k,m such that

|u(zv)u(z ) | £ (n-2) (n-ir
1.

jv m

Next, we subject z to a Mobius transformation z-»t which

carries the points z, ,z into two points t.,to on the real axis

in the t-plane. As shown in the proof of Theorem 2.2, this can be

done in such a way that the coefficient matrix of the transformed

equation tj! = Brj satisfies the inequality ||B(t) || <lp(|t|) if

(3.2) holds. We note that for the function v defined by

Tj(t) - v(t) ||n(t) || we have |v(t1)v(t2)| = | u (Z]c) u (zj \ ̂  (n-2) (n-1) "

We set r\ = cc-fip, B = B̂ . + iB2 (a,?>9B19B2 real), and denote

the real 2n-dimensional vector (a,j3) by y. If the real 2nx 2n ma-

trix D is defined by
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B rB2

D = (B B > >B2 B l

the equation TJ1 = B17 is equivalent to the r ea l equation y' = DY;

and we have ||B|| = | |D| | , ||T)|| = ||y||. I f 6 i s a constant uni t vec-

t o r in E n and a is defined by y = a||y||, then, as shown in

[5] , the function x = 6a is subject to the inequal i ty

% 1 ||D||.
[l-x*

Since 6a can be written in the form Re{cv}, where c is a com-

plex n-dimensional unit vector, and since [|p|| = ||B||, this is equiv-

alent to

jr^ i IN,

where <p = Re{cv}. Integrating this inequality from t.. to t2

(where the subscripts are so chosen that t. < t_), and setting

c = v(t ,) , we obtain

t2 1 1

| arc cos Refv(t1) v(t2) ] | £ J ||B||dt £ J ||B||dt £ 2J p(t)dt.
t 1 -1 o

Since | Re{v(t1) v(t2) } | £ |v(t1)v(t2)| ^ (n-2) (n-1) ~
1, this implies

1

arc cos ^y ^ 2j p(t)dt,
o

i.e.,
1 1

in J p(t)dt ̂ _ [2 (n-1) ] 2.sin J
o

The assumption that (1.1) is oscillatory in |z| < 1 has thus led

to an inequality which is incompatible with (3.1), and Theorem 3.1

is proved.
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4. In this final section we derive two necessary conditions for

the suborthogonality of analytic systems (1.1) in the unit disk.

Necessary conditions for the nonoscillation of such systems can

be found in a recent paper by M. Lavie [4].

Theorem ±.1. Let A(A) = max aAa for ||a|| = 1, ju e.. , let A(A)

be the largest eigenvalue of the Hermitian part of the matrix A.

If the analytic system (1.1) is suborthogonal in |z| < 1, then

(4.1) A[A(z) ] £ ^ _ m

The inequality is sharp for all | z| < 1.

Theorem 4.2. If (1.1) is suborthogonal in |z| < 1, then

(4.2) ||A(z)|| 1 -

We begin with the remark that it is sufficient to prove both

(4.1) and (4.2) for z = 0. To see this, we map the unit disk onto

itself by the transformation z-»t, where z = (t+a) (1+at) and

a(|cc|<l) is a constant. In this mapping, (1.1) is transformed into

the equation -rr = B(t)a, where

w(z) =a(t), B(t) =

Since B(0) = (l-|a| )A(a) and the transformation does not affect

the suborthogonality of the equation, this establishes our asser- .

tion.

To prove Theorem 4.1, we observe that it follows from the sub-

orthogonality of the equation that Re{w(pz)w(g"z) } > 0 for any

|z| < 1, |p| = 1 . Using the power series expansion of the vector w,
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2

we have w(pz) = w(o) + pzw! (o) + 0(z ) f and a similar expression

for w(p"z) . Hence

h(z) = w(kz)w(kz) = ||w(o)||2 + 2zRe{ pw» (o) w(o) } + 0(z2) .

The (scalar) function h(z) is analytic in |z| < 1 and has there

a positive real part. By a classical result, this implies

|hT (o) | £ 2 Refh(o)}. Thus, if arg p is so chosen that

pw'(o)w(o) ^ 0, |w'(o)w(o)| ll|w(o)||2, or, by (1.1),

|w(o)A(o)w(o) | £ ||w(o) ||.

Since w(o) may be taken to be an arbitrary non-zero vector, we

obtain A[A(o) ] <£. 1. As remarked above, this is equivalent to

(4.1).

To show that the inequality (4.1) is exact, we consider the

2-1equation wT = Aw with A = (1-z ) I, where I is the nxn unit

matrix. The general solution of this equation is w = f(z)a,

-1 1/2

where f(z) = [(1+z) (1-z) ] and a is an arbitrary cons-

vector. The equation is suborthogonal in |z| < 1. Indeed,
Re{w(z)w(£)} = ||a|| Re{f(z)f(£)}, and it is easily confirmed that

the latter expression is positive for |z| < 1, |£| < 1. Since

||A(Z) || = | 1-z I" , we have equality in (4.1) for all ze (-1,1).

Theorem 4.2 is a consequence of the following result.

If w(z) jLjs an analytic vector in | z| < 1 such that

Re{w(z)w(£) } > 0 for |z| < 1, |£| < 1, then

(4.3) ||w' (o) |

The constant \f2 is the best possible.
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Indeed, if (1.1) is suborthogonal in |z| < 1 then (4.3)

shows that, for any nontrivial solution w, ||A(O)W(O)|| <^(2 ||w(o) ||.

Since w(o) is arbitrary, we have ||A(O) || <̂  /T, and this is equiva-

lent to (4.2) .

To prove (4.3), we note that, for any t in the unit disk,

Re{w(tz)w(tz) ) > 0. If w(z) = a + a.̂ z + ... is the power series

expansion of w, we thus have

0 < Rel-^r I [ E a,(zt)K] [ £ av(zt)
K]|dz| }

Zjr J |z|=l k=o K k=o K

= Re{ S Ik ||2t2k}
k=o k

for |t| < 1. Since the function in braces has a positive real

part, it follows from the result quoted above that ||a,|| <£ 2||a || .

Because of a = w(o) , a- = wf (o) , this proves (4.3) .

We now construct an example which shows that the inequality

(4.3) is sharp. We denote by P(z) a polynomial of degree n - 1,

and we define the vector w = (w ,. . . ,w ) by w, = P(u) z) ,

k = 1,. . . ,n, where a) = exp (27rin~ ) . If P (z) = b + b, z +. . .

+ b . z ~ , it follows from the properties of the roots of unity

that
n~ 1 2 k

w(z)w(C) = n S |bvr(z£)
K.

k=o K

Accordingly, we shall have Re{w(z)w(£)) > 0 if the polynomial

R(z) = |b I + |b,| z +...+ lb
n_i|

 z ~ has a positive real part

for |z| < 1. A polynomial with this property is

R(z) = 1 + 2 E ^ zk.
n
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Indeed, R(z) is the n-th Fejer mean of the partial sums of the

function f(z) = (1+z) (1-z) " 1, for which Re(f(z)} > 0 in

|z| < 1, and the Fejer means of a function with positive real

-1 1/2
part share this property [6]. We thus may set b^[2-2kn ] ,

k = l , . . . , n - l , b = 1. The corresponding vector w wi l l then

sat is fy ||w(o) | | 2 = n, ||w» (o) | |2 = 2n(l-n~1) , i . e . ,

J = V 2 ( 1 - | ) ||w(o)||,

and this shows that the constant VT in (4.3) cannot be replaced

by a smaller number.

This, of course, does not imply that the constant \f~2 in

(4.2) is also the best possible. All we can say is that the true

constant is ;> 1, since A(A) £ ||A|| and (4.1) is a sharp inequality.
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