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1. Introduction

Recently much interest has been shown in the notion of

Gowurin measures (for example see [3J,[4],[5], and [6]) . They

have been used to give a neat integral representation for

bounded linear operators on the space of continuous functions

defined on a compact Hausdorff space with values in a normed

linear space (see [3],[4],[8]). In [3] there was obtained an

integration theory with respect to such measures for functions

defined on compact spaces with values in a normed linear space.

In [6] there was obtained a generalization of a Riesz representation

theorem contained in [2]. The main purpose of our paper is to

further the study of Gowurin measures by developing a Fubini

type theorem for such measures.

It must be emphasized that in our Fubini type theorem

for Gowurin measures the so-called iterated integrals cannot be

interchanged. In other words9 the order of integration may not

be reversed which is definitely not the case with the usual

Fubini Theorem. Also we want to emphasize that we are talking

about finitely additive set functions whose functional values

are bounded linear operators.

Our first step will be to define a product measure. Then

we will obtain some results similar to the usual results for

the cross product of two measures.



Let X,Y and Z be normed linear spaces> let H be a

compact Hausdorff space and let f be a scalar valued function

on H x H. We will represent elements in H x H by pairs

(s,t) and elements in X by x. Let K^ and K2 be Gowurin

measures defined on the Borel field of H. The range of K,

is to be in B(X,Y ) and the range of K2 is to be in
y y y y

B(Y 5Z ) where B(S-.,S2) denotes all bounded linear operators

from S-ĵ  to S2 (X is the bidual of X) . Assuming that the scalar

valued function f is continuous the first theorem shows that

f d K 9 ( t ) f d K 1 ( s ) ( f ( s , t ) - x ) = J d ( K n x K ) ( f ( s , t ) - x ) .
JH 2 JH 1 JHxH 1 2

Now suppose

J d K 2 ( t ) J d K ( s ) ( f ( s , t ) . x ) = J d ( K x K ) ( f ( s , t ) - x )
J H 2 J H 1 n JHxH 1 2 n

where {f } N denotes some sequence of scalar valued functions

defined on H x H. If f is now in some sense the limit of

the functions f 9 we ask when can we write
n

J dKp(t)J dK (s) (f(s,t)-x) = JJR 2 JH 1 J

A partial answer to this question is given here as described

in the next paragraph.

In [8] the notions of "convergence almost everywhere" and

"convergence in measure" were given. An example was also given

showing that "convergence almost everywhere" does not imply

"convergence in measure" which of course is contrary to the

usual arrangements. We extend results in this area by showing

that the limit case of the Fubini theorem holds if the following



three conditions are satisfied: (1) f converges KjXL a.e.

to f; (2) convergence a.e. implies convergence in measure;

(3) Ko is linearly non-zero relative to K-, .
A — — — — — — — — . jL

2 . Definitions and Notations

As above X,Y,Z will denote normed linear spaces and

X ,Y 5Z will denote the corresponding bidual spaces. Also

H will denote a compact Hausdorff space and £ will denote

the Borel field of H.

If S is any non-empty set then [S] will denote the

collection of finite subsets of S. If S is any normed linear

space then (• |o will denote the norm on S. If X and Y

are any two normed linear spaces9 then B(X,Y) denotes the class

of bounded linear operators from X to Y.

A finite collection P = P = {e..,...,e j of elements of S

is a partition of H if H is the union of the e. and if the

e. are pairwise disjoint. If f maps H to X and if e > 0,

then the partition is called an e-partition of H with respect

to f if the diameter of f(e) is £ e for all e in P.

The partition P is an essential partition of H if for each i

e. ^ 0 and ê . U...U e. is a closed Gg (for some ordering

on t{ie sets in P) .

Let A be a finitely additive set function defined on

the Borel field S of the compact Hausdorff space H, having

its values in some space B(X5Y) (X and Y normed linear

spaces). The X-Gowurin constant for A over H is defined

to be



W(X,A:H) = sup|SA(e)x|y

where the supremum is taken over all (finite) partitions P

of H, P = {e].,...,e j, and for any choice of Fne[X] (where F

is a subset of n elements of X) with eeP , xeF and [x [ < 1

The finitely additive set function A is called a Gowurin

measure if this supremum W(X5A:H) is <£ oo .

Thus if A is a Gowurin measure then

<; W(X,,A:H)sup!x|x

for all (finite) partitions Pn of H and for all finite

collections F in [X] where eeP and xeF .

In this paper our finitely additive set functions A will
y y y _y y y

have their functional values in B(X,Y ) and B(Y , Z ) .

Hence we will refer to the Gowurin constants simply as VL.

When we wish to consider a particular EeE9 then by W-,(E)

we will mean sup|EA(e)x| where the supremum is taken over

all (finite) partitions P(E) = P of E by subsets of £
and for all Fn€[XJ with eeP(E) , x^F n and |x | <_ 1. This

W. (E) will be referred to as the Gowurin constant of A <on E.

The space of summable functions relative to A has been

defined in [3]. It has been shown that all continuous functionr

on H are summable,

If h is a function from H to X then h is called

measurable if h" (G) is an element of the Borel field 2

of H for all open sets G in X. The function h is called

summable (integrable) if it is measurable and if it satisfies

the following condition: Suppose for each e > 0 there exists



an G-partition P(e) of H with respect to h by subsets

of 2 (that is, for all eeP(e) c Z, |h(s-)-h(s,J L £ € for
1 2 A —

all s.j and s2 in e) . Suppose also there exists a fixed
y y y ,y

element y of Y such that for any refinement P = {e,,...,e ]

of P(G) then |y** - 2 A(e.)h(t.)| < e where t. is any
i=l x x Y

point in e. for each i. The point y is called the integral

of h relative to A and is denoted by dA'h.

Actually in [3] the definition of summability is restricted

to "essential e-partitions". However, an argument in [7]

demonstrates that the definition can be made in terms of a

partition of H with the subsets from S.

If f is a scalar-valued function defined on H, then

for xeX, f^x will denote the function from H to X defined

by (f*x)(t) = f(t)-x for all teH.

Elementary properties shown in [3] will be used in the

arguments. In particular, we will use for h, a summable

function from H to X,

H

where

|J dA-h| < W(A) |h

= sup|h(t)
t€H

3. The Fubini Theorems

For the compact space H, let K-. and K2 be two Gowurin

measures defined on the Borel field Z of H. The range of K,



-)f-)f
is in B(X,Y ) and the range of K2 is in B(Y ,Z ). Let

A x B be a measurable rectangle in 2 x 2 and let xeX. We

can now define the product measure as

(AxB)x = K2(B) [

Then (K]LxK2)(AxB) is in B(X,Z ).

Let W-. and W2 denote the Gowurin constants of K-, and K2

respectively. Our first step is to extend K.xK2 as a finitely

additive set function to the field 6 generated by measurable

rectangles. Moreover it shall be shown that K,xK2 is Gowurin

on £.

Lemma 1. The product measure KnxKo extends uniquely

to Z, the field generated by the collection of measurable

rectangles.

Proof o Let G be the set of bounded complex valued

functions defined on H x H and let f be in G such that

for each fixed t in H and for each x in X the function

f(s,t)*x is K,-integrable as a function of s and such that

dK., (s) (f (Sjt) *x) is an integrable function of t relative
JH 1

to K2 • Let G^ be all functions g of G such that gof

is in G for all f in G .o o

It is clear that G^ is linear and closed under products.

Let ff be the collection of all subsets of H x H such that

if F€$ then \ is in G where \F is the characteristic

function of F. Since G 1 is closed under products, it follows

that 3 is closed under intersections. It is also immediate

that J5 is closed under complementation. Consequently J? is



a field. It is obvious that every measurable rectangle is

in &, since

J ^ ( s J
HH

and the product of Xr»(t) with any function of t which is Ko

integrable is again K2 integrable.

Now for any FeJ? and for any x in X define

)Lt(F)x = J dK2(t)[J dK
H H

Clearly u(F) is in B(X,Z**). In fact |||i(F)|| £ W2 -V

It is now necessary to check that \x coincides with

over measurable rectangles A x B . Let x be in X then

|U(AxB)x = J dK2(t)[J dk1(s)xA(s)(xA(s)-(xB(t)-x))]
H H

= J dK2(t)(xB(t)-K1(A)x)

= K2(B) [KjfAJx] = (K^^) (AxB)x.

Of course this holds for all x in X so ji(AxB) = (K^Kj) (AxB)

By elementary properties of the integral, \x is finitely additive

on 3 and hence on the field £ generated by the measurable

rectangles. It remains to show that this extension is unique.

Let J\ be another finitely additive measure which coincides

with KjXK^ on e. Let B be all functions f of G

which are A-integrable and such that

J dMs,t)(f(s,t)-x) = f dKp(t)[J dK..(s)( f(s,t)-x)]dAxB J B Z *A L

for all A x B in S x 2. Let f^ be all functions g of B Q
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such that gof is in BQ for all f in ®Q. Let 3' be

all subsets of H x H such that if F is in 3' then xF

is in R, . Again 3' is a field containing 6. Thus for all

F in 6,

x = f dMs,t)(xJs,t)-3c) = J dK (t)[J dK,(s)(xir(s,t)-x)]
JHxH * H ^ H x *

Thus A = \i on £. This completes the proof of the Lemma.

Lemma 2. The product measure K^xKg _is Gowurin over 6.

Proof. It shall be shown in fact that if W is the Gowurin

constant of KjXKg then W < W^Y^. Let {E1,...,En) be any

partition of H x H and let {x,,...,x ] be a finite collection

of elements of X such that E.eS and |x. L <; 1 for i=l,...,n

Then

n n
S
i=FH

n n „ -
S K..XK (E )-x | ̂  = | S 1 dK-(t)[ dK,(s)
=l L * x x Z i=FH ^ JH x

= |J dK2(t)[J dK^sJf S xE.(s,t)-xi)]

n
^ W9-W sup sup | S xF (s,t)-x |
~ 2 1 t s i=l Ei x C

We are now in a position to show one of our main theorems.

Theorem 1. For every continuous scalar-valued ftmction f

on the compact space H x H,

J dKp(t)[J dK (s)(f(s,t)-x)] = J ld(K1xK-)(s>t)(f(s,t)«x).JH 2 JH X JHxH 1 2

Proof. First it will be shown that f(s,t)*x is an integrable



9

function from H x H to X relative to K,xK2. Let e > 0.

By an argument similar to the corresponding argument used in

[3] it can be shown that for any two e-partitions [e,,...,e }

and fe',...,e!} of H x H into subsets of £1 m

n m
(1) | S (K,xK )(e )(f(s t ).x) - S (KxK)(e')(f(s» t')«x)|

i=l l ^ i 1 1 . -̂  l z 3 3 3 g

£ W m a x | f ( s t ) - f ( s ' t ' ) |- | x |

w h e r e ( s . , t . ) e e . , ( s ! . , t l ) e e 1 . , i = I 5 . . . , n ; j = l , . . . , m a n d W
"*• X X %j U O

is the Gowurin constant of K^xIC (as in Lemma 2). By the

compactness of H and the continuity of f one can find a

finite partition {e^9 ...9e } of H x H, e. in 6, i = l,...,n,

such that |f(s.,t.) - f(u.,v.)| < e if (s.,t.)ee. and

(u.,v.)ee., i = I5...5n. Now let (s.,t.)€e. and let

x. =f(s.,t.)#x for each i = l,...,n. Then as € approaches

zero, S x -x. will approach f(s,t)*x. Since Z is complete,
1~~ 1 n

inequality (1) shows that E (K1xK2)(e.)(f(s.,t.)-x) converges

to some limit say z in Z Inequality (1) also shows that

the limit does not depend on {e.,..«,e ] and the choice of

(s.jt.) in e., i = l,...,n, provided {e,,...,e ] forms an

&-partition. Therefore f(s,t)*x is integrable and

I d(K1xKJ(s,t)(f(s,t).X) = z .

Since f is a continuous function, f(s,t)*x is integrable

relative to K, (see [3]). Since Kn is Gowurin, | dKn(s)(f(s,t)-x)1 1 JH 1

is a continuous function of t. Hence it is K^-integrable.

Thus all the integrals are well defined.
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The equality holds for all functions of the form XA n(s,t)^

n
and thus for all functions of the form S x<> (Xr> (s,t)-x). We

i=l A ±
 Bi

have seen that f(s,t)*x is the limit in the norm of functions

n
of the form S x© (XD (s,t)-x.)« Thus the equation holds for

i=l A±
 Bi X

all functions f(s5t)*x where f is continuous. This completes

the proof of the theorem.

In [7] the notions of convergence a.e. and convergence in

measure were defined for Gowurin measures. They are stated

here for completeness. Let A be a Gowurin measure defined

on E. Suppose Ee£. Then E is a Gowurin negligible set (or

often times more specifically a A negligible set) if the

Gowurin constant of A on E is zero, that is W. (E) = 0.

A property P(t) holds for almost all t in H if the set of

points for which P(t) is not true is a A negligible set.

Let the sequence ff } XT and the function f be measurable
n neN

functions from H to X. The sequence ff } N converges a.e.

in Gowurin measure (or converges A a.e.) to f if the set

of points s in H for which the sequence ff (s)} does not

converge to f is a A negligible set. The sequence ff } N

converges in Gowurin measure (or converges in A-measure) to f

if for every e > 0 there exists a natural number N such that
for all n ^ N the set E = (S€H : If (s)-f (s) L > 1/n} has— n n A.

Gowurin constant less than e and E e£.
n

An example is given in [7] which shows convergence a.e. in

Gowurin measure does not imply convergence in Gowurin measure.

In this respect we would like to prepare the way for the second
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main result stated in the Introduction. We first give some

elementary results which are helpful and of interest in themselves.

Lemma 3. Assume that A jls a. Gowurin measure from 2

t o B(X,Y ) . _If [A } M, A GS for a l l neN, JLS any sequence
~""~~ n nGJN n

such that the intersection of the sets A is a A negligible

set and for every e > 0 there exists an integer K such that

K
H A has Gowurin constant less than e, then "convergence a.e.

n=l n

in Gowurin measure", implies "convergence in Gowurin measure".

The proof for the above is straightforward. Hence it is

omitted.

Proposition 4. Let K be a, Gowurin measure from E jto

B(X,Y ). Jf K is weakly countably additive _on S (t K is

countably additive for all t GB(X,Y ) ), then ''convergence K

a.e." implies "convergence in K measure?

Proof. Let (E n} n e N be a sequence of sets in S such that
oo

E _̂i_i c E~ f o r a 1 1 n- By Lemma 3 if E = H E and if W_(E) = 0n+± n - n K

it is sufficient to show that for every e > 0 there exists N

such that n ̂  N implies WR(En) < e. By the Pettis Theorem

(see [2]) the weakly countably additive Gowurin measure K is

countably additive on £ • Since W--(E) = 0 it follows that
iv

K(A) = 0 for all A C E and A G S . NOW define the function v^
n K

on S by v^L) = sup £ |K(e.) | where LGE, where the sup
* i=l x

is taken over all finite E partitions {e,,...5e } of L and

**where |K(ei) | is the norm of K(e.) as an element of B(X,Y**).

Following similar arguments to [1] it can be shown that v^ is

a countably additive function on S and also vv(E) = 0. Thus,
K
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00
v (E ) = £ v(E.-E. -,) • Hence for all m large enough
K n i=n

 x 1 + 1

|vK(E ) | < e. Choose such an m and let {©lm5 • • • *
e
nm}

 b e

a S partition of E . Let {x̂ ^ m***-*
x
n m} be a collection

of points in X with |x. „ |v < 1 for i = l,...,n* Then
12 n A

) • v \ / x T ( T ? \ / r -

X . \ V ~~ \ ill ) \ €.

and hence W^(E ) < e for all n sufficiently large. This
& n

completes the proof.

It is now necessary to define the notion of a section and

to show some of the usual properties of sections. Let E be

in 6. Then for t in H define E. = {seH|(s,t)GE}. If

E = A x B then E t = A if t€B and E t = 0 if t/B. It is

clear from this that for all Ee£, E t is in S.

Proposition 5. _If K1 and K2 are as defined previously

then for every xeX and EeS

J dK2(t)[K1(Et)x] = (KJXKJXEJX.
H

Proof. Let g(t) = K,(E )x for all t in H. We shall

show that the function g from H to Y is integrable

relative to K2. Let E = A x B. Now g(t) = XgC*)(
Ki(A)x)

and 1 dKo(t)g(t) = \ dKo (t) [Kn (A)x] = K^xK^CAxBjx. Now let E
JH 2 JB 2 1 X 2

be a disjoint union of measurable rectangles. The above computations

generalize trivially to E. This completes the proof.

It is now necessary to define a natural property which will

enable one to deduce that if E is a K,xK2 negligible set

then the set of t for which E. is not K1 negligible is a

K2 negligible set. With this property a limit case of the
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Fubini theorem will hold.

Definition, Let K-. and K2 be as defined above.

The measure Ko is said to be linearly non-zero relative to K,
2 n 1

if for every relation E K-(e.)x. / 0 with {e1 ,...,e } and
i = 1 l i I I n

{x,,...5x } such that e.e£; e. are pairwise disjoint; x.eX^

|x. | < 1 for all i; whenever C is in S with W__ (C) ̂  0
1 "" . K2

there exists a partition {c-,...,c } of C and there exist

vectors x. .eX, |x. • | <_ 1, c.e£5 j = I5...,m; i = l*,...,n such

that S K9(c )K, (e.)x. , j£ 0.
x ^ J

To show the designated form of the Fubini Theorem we

need the following lemma and corollary.

Lemma 6. Let K2 J>e linearly non-zero relative to K,.

If E _in £ J^ Ki x K2 negligible then the set C >̂f points t

for which E. is not K7 negligible is Ko negligible.
— — — — — — — - — ^ ___ _______ j^ __,___«_______«_______. _____ _j ____»_«_«_______»_______

Proof. If E is K-|XK2 negligible then the Gowurin

constant of K,xK2 on E is zero. Now let C be the set of

points t for which E, is not K- negligible. Hence for

each t in C there exists a partition {e-,...,e } of E.

and a finite set of points {x,,...,x } of X, |x. | <_ 1 for
n

all i. such that S K-(e.)x. is not equal to zero. By
i=l x x x

hypothesis K2 is assumed to be linearly non-zero relative to

K-̂ . If we assume also the Gowurin constant of K2 on C is

non-zero then there exists a partition [c, ,...,c } and there

exist vectors x. . in X, |x. . | < 1, c .e£, j = 1,...,m,

i = l,...,n, such that 2 K9 (c .)K, (e. )x. . ̂  0. Now for an
X 5 J

elementary set E = A x B we have that the collection

i i ^ i i = l a r e P a i r w i s e disjoint sets contained in E which

contradicts the fact that the Gowurin constant of K.-xK2 on E

HUNT LIBRARY
CARNEGIE-MEUM ';
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is zero. Since the proof generalizes immediately to the union

of disjoint rectangles we have that the Gowurin constant of K~

on C must be zero that is, C is K2 negligible.

Corollary. Let K2 b£ linearly non-zero relative to K-.

If the sequence {f } converges K^xKj a.e. to the function f,

then except for t in a K~ negligible set the sequence

{f (s,t)} converges K-. a.e. jto f(s^t) as a function of s.

Proof. Let E be the set of ordered pairs (s5t) in H x H

for which f (s^t) does not converge to f(s,t). Now E, byn x

definition is the set of points s in H for which f (s.t)

does not converge to f (s,t) . Since E is K-iXK? negligible,

the Lemma says that except for the points t in a K2 negligible

set A5 E. is K-. negligible. But this means that except for

the points t in A, the sequence [f (s,t)} converges K,

a.e. to f(Sjt) as a function of s.

We can now give the limit case of our Fubini Theorem.

Theorem 2. Let K- and Ko be as above. Assume also

the following hypotheses:

(1) Gowurin convergence a.e. implies convergence in Gowurin measure

(2) The measure K2 iŝ  linearly non-zero relative to_ K-..

(3) The sequence {f } of scalar-valued functions on H x H
____ ____»______»«» j^ n^iN — — --_----—--—. ________________ ___________________«__. «____

converges K-.xK2 a.e. t£ the scalar-valued function f

(on H x H) where f iŝ  integrable relative to

and dK-(s)(f(s,t)-x) is Ko integrable as a function
JH ± — z

o£ t.

(4) There exists â  scalar-valued function g (on_ H x H)

integrable relative to K-jXK̂  such that |f -g [ < B
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where B i s some cons tan t and 1 dK-. (s) ( g ( s , t ) *x) jls
H X

K2 i ^ t e g r a b l e sis a, funct ion of t .

(5) For each n,

f d K 9 ( t ) f d K - . ( s ) ( f n ( s , t ) - x ) = J d ( K x L ) ( f ( s , t ) « x ) .
J R 2 J H 1 n JHxH 1 2 n

Under such hypothesis then

f d K 9 ( t ) J d K . . ( s ) ( f ( s , t ) - x ) = f d ^ x K . ) ( f ( s , t ) - x ) .
JH 2 JH 1 JHxH -1 2

Proof. Let E be the set of pairs (s,t) for which the

sequence {f (s5t)} does not converge to f(s5t). Statement

(3) says that E is a K-iXK2 negligible set. Statement (2)

permits the application of the Corollary to Lemma 6, which says

that the sequence {f (s,t)} N converges K1 a.e. as a function

of s for all t in the complement of some K2-negligible

set A. Hence by (1), the sequence [f (s,t)} converges in K,-

measure to f(s,t) for all t in the complement of A. Now

for all x in X we have that |f (s,t)*x - g(s5t)*x| <_ B |x | .

Utilizing a dominated convergence theorem from [8] we can conclude

that the sequence {i dK,(s)(f (s,t)-x)} converges to
v »j» JL 11 1 1 1 Xi

dK, (s) (f (s,t)-x) for all t in the complement of A. Again
JH -1

by (1) it follows that this sequence of integrals converges in

p
Kp-measure to i dK-. (s) (f (s, t) -x) . By properties in [3] we have

J dK^s) (g(s,t) -x) - J dKx(s) (fn(s,t) -x) | ̂ < W1B|x|.

Applying again the dominated convergence theorem from [8] we

have that the sequence N dKo I dKn (f (s.t)-x)} XT converges to
«JTT -^v^ x n n£JN
ri n
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dKoI dKL (f(s,t)-x) . On the other hand, the sequence
JH 2 JH 1

[ d(K.xKo) (s,t) (f (s,t) -x) converges to f dfK-.xIC) (s, t) (f (s, t) -x)
JHxH X 2 n JHxH X ^

Hence by (5), our conclusion holds. This completes the proof of

the theorem.

4. Conclusions and Remarks

One of the conditions in the hypothesis of Theorem 2,

requires that Gowurin convergence a.e. implies convergence in

Gowurin measure. Of course for the usual measure theoretical

considerations this is the case. We have given in Proposition 4

through the assistance of Lemma 3 a condition under which the

above requirement will hold. The Pettis theorem (see [2],

page 318) of course is of fundamental importance here. It

assures that the weakly countably additive Gowurin set function

is countably additive on E.

Proposition 5 is necessary for the calculus of sections.

The notion of one Gowurin measure being linearly non-zero

relative to another is interesting. As seen in the proof of

the theorem it is necessary to relate the Gowurin constants of

the two measures.

It must be emphasized how these theorems are !one sided1.

We cannot interchange the roles of K, and K2. For an

interesting survey of the work being done in vector measures,

the book [1] by N. Dinculeanu is recommended.
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