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Abstract

Functional differential equations of the form

= -A(O)g(u(t)) - A(t-T)g(u(T)) + F(t),
O

on a Hilbert space & , are considered. A(t) is a family of bound-

ed, symmetric, linear operators on M while g can be nonlinear

and unbounded. Solutions are considered when F(t) approaches a

constant F as t tends to infinity. Conditions are given which
o

guarantee that the limits of these solutions will be the same as

those of the problems,

A(O)g(u(t)) + j A(t-T)g(u(T))dT = F(t),
o

u(t) = -A(oo)g(u(t) ) - T(u(t))u(t) + F(t).

The first of these is the abstract statement of the quasi-static

approximation in viscoelasticity. In the second T(u) is to be a

linear map, with domain in &« for each fixed u. This is an ap-

proximation suggested by the Coleman-Noll theory of retardation. A

short discussion of the connections with materials with memory is

included.

This work was supported by NSF Grant GP192O8.
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APPROXIMATIONS FOR A CLASS

OF FUNCTIONAL DIFFERENTIAL EQUATIONS

by

R. C. MacCamy

1. Introduction.

In a recent paper [8] we considered functional differential

equations of the form,

u(t) = -J A(t-T)g(u(T))dT + f(t), (1.1)
o

on a Hilbert space W. A(t) is a family of bounded linear oper-

ators on M while g can be nonlinear and unbounded. The object

was to obtain conditions on A, g and f in order that all solu-

tions decay to zero as t tends to infinity. The results were gen-

eralizations of those of Hannsgen [4] and Levin and Nohel [5].

The present paper is also concerned with equation (1.1) but

from a different point of view. We introduce various equations

which are simpler than (1.1) but have solutions which approximate

those of (1.1). The original motivation for this study came from

the theory of elasticity and is outlined in the last section of the

paper. We wanted to investigate the validity of a procedure called

the quasi-static approximation in the theory of viscoelasticity.

At the same time, we wanted to develop a different kind of approx-

This work was supported by NSF Grant GP19208.
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imation which was suggested in some work of Coleman and Noll [2].

These ideas seemed of sufficient interest to warrant a presentation

of them in the same general setting as in [8].

The functional equations which arise in elasticity theory are

of second order. A certain class of them are of the form obtained

by differentiating (1.1), that is,

ii(t) = -A(O)g(u(t)) - J A(t-T)g(u(T))dr + f(t) . (1.2)
o

The abstract quasi-static approximation amounts to dropping the

"acceleration" term u in (1.2) and considering the equation,

A(O)g(u(t)) + J A(t-T)g(u(T))dT = f(t). (1.3)
o

It is clear that (1.3) is much simpler than (1.2). One has only to

solve a linear Volterra equation and then invert g. In viscoelas-

ticity the latter step will involve solving a static problem.

We call the procedure derived from Coleman and Noll1 s work

the slow-flow approximation. It involves replacing (1.2) by dif-

ferential equations of the form,

ii(t) = -A(co)g(u(t)) - r(u(t))u(t) + f (t) . (1.4)

For each fixed u, T(u) is a linear map with domain in W. In [2]

a particular F is suggested (see section 7). We show that for

our purposes there are many possible P s. What is essential is

the form of the first term on the right of (1.4). This illustrates

the crucial role of the quantity A(oo).
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We show that there is some validity in using (1.3) or (1.4) to

approximate (1.2) if one is concerned with approach to steady state.

We assume that f(t) tends to a constant f as t tends to infin-

ity. Then we give conditions which guarantee that all solutions of

(1.2), (1.3) or (1.4) tend to a common limit.

Our results for (1.2) are minor variations of those of [8].

They depend on the concept of strong positivity of the kernels A(t).

The treatment of (1.3) requires a new property of A(t) which we

call invertibilitv. We feel that the most interesting feature of

our work is the close connection between these two notions. We

show, in fact, that the condition for strong positivity, as given in

[8],also yields invertibility. These ideas are discussed in section

two. Equation (1.2) is considered in section three and the two

kinds of approximations are discussed in sections four and five.

Section six contains some examples.

The importance of the approximate equations is that they can

be handled in cases in which the full functional equations have

proved too difficult. One such example is given in section six.

Thus it is worthwhile to know that in cases where all equations

can be treated the approximations have some validity.
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2, Properties of the Kernels A(t) .

We first review some notions from [8]. We denote by Cy[0,oo)

the space of continuous functions from [0,oo) into &. Let

A = fA(t) : t ̂  0) be a strongly continuous, one parameter family

of bounded, symmetric, linear transformations on W. For any

veC^[o,oo) we set,

Q~[v;T] = J (v(t), J A(t-T)v(T)dT)dt. (2.1)
o o

We say that A is positive if Q~[v;T] is always non-negative and

that A is strongly positive if,

Q-[v;T] ^ QJJ[V;T] (2.2)

for some M constructed as follows. M is to be a semi-group gen-

erated by a symmetric linear operator M, having dense domain fi ,
M

and such that,

(M§,§) 1 m||?||2, m > 0 for all 5e*>M. (2.3)

We call veCK[0,oo) weakly stable if it is weakly bounded and

weakly uniformly continuous on [0,oo). The basic result of [8] was

the following theorem which was called the weak stability principle.

Theorem 2.1. I_f A i§. strongly positive, v _is weakly stable and

Q,[v;T] is bounded independently of T, then v(t) tends weakly to

zero as t tends to infinity.

Sufficient conditions for strong positivity were discussed at

length in [8]. The best results concern the Laplace transform of A
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and are closely related to our needs for the quasi-static approxi

mation. We say that A is invertible if it has a Laplace trans-

form AA(s) which exists in Re s > Q and satisfies,

AA(s) = s'-S? + BA(s), (2.4)

AA(s) = s^Q + 0(|s|2) as |s|-*co, <2'4)

where P and Q are bounded, symmetric, linear transformations,

which have bounded inverses P~ and Q~ , and BA(s) is continuous

in &e s ;> 0 and regular in &e s > 0.

We make the following basic assumption throughout the paper.

This provides the necessary technical conditions for both strong

positivity and invertibility.

(i) A(t)GC2[0,oo) ,

(ii) A ( k ) (t)€L1[0,oo), k= 1,2,

( i i i ) A ( t ) = A(oo) + B ( t ) , B ( t ) € L 1 [ 0 , O o ) , (A)

( iv) ( ( - l ) k A ( k ) (0)5 ,5) ^oc | !5 | | 2 , a > o,

k = 0 , 1 , for a l l 5e»,

(v) (A(oo)?,5) > p | | 5 | | 2 , p > 0 for a l l 5e».

Remark 2.1. (1) The existence of A(oo) as a uniform limit of A(t)

is implied by (ii) .

(2) Conditions (iv) and (v) imply that A(0) , A(0) and A(oo)

have bounded inverses.

The integral here, and all subsequent ones, are in the Bochner
sense.
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(3) Conditions (A) imply all the properties of invertibility

save for the existence of AA(s)~ . In particular (2.4)^ and (2.4)

hold with P = A(oo), Q = A(0). In fact, (2.4)2 can be sharpened to

AA(s) = s^AfO) + s"2A(O) + o(| s|"2) as I s H o o . (2.5)

It is shown in [8] that A will be strongly positive, with

M = cl for some constant c, provided that A^ satisfies the con-

dition,

(5,Re BA(iT)S) ^ 2° ||S||2 for all ?€» and TeR. (2.6)
C +T

It is easy to see from (2.5) and (A) (iv) (k=l) that (2.6) will hold,

for some c, provided that \r\ ;> T, T sufficiently large. Thus we

have the following result.

Theorem 2.2. A sufficient condition for strong positivity is:

Given any M there exists £ > 0 such that

(5,&e BA(iT)5) ;> tlUi!2 for all ?e» and \r\ £ M. (P)

The main new result in this section is contained in the follow-

ing:

Theorem 2. 3. (P) JLS a^ sufficient condition for invertibility.

Proof. We observe first that it follows from (2.4) and (2.4) , and

successive approximations, that AA(s) exists for &e s ^ 0,

| s| > R and Be s ^_ 0, 0 < |s| <p for R sufficiently large and
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p sufficiently small. Moreover we have,

A A(s)" 1 = sA(O)"1(I+O(s"1)) for large | s| , (2.7^

AA(s)""1 = sA(oo)"1(I+O(s)) for small | s| . <2-7)2

(Recall P = A(oo) and Q = A(0) ) .

Thus we need only establish that AA(s)~ exists in the semi-annulus

r , Re s ̂  0, p £ | s| <£ R. For any fixed s, a sufficient condition
pR

for the existence of AA(s) is the inequality

(5,Re AA(s) 5) ^ k||?||2, k > o. (2.8)

Condition (P) clearly implies that (2.8) holds on the portion Re s = 0

of T . Suppose seT , s = rj + ir, rj > 0. Then we have, by (A) (v) ,
pR PR

(§-,Re A A ( s ) ? ) ^ - ^ - r | | 5 | | 2 + (§ ,Re B A ( s ) ?) .

Hence ( 2 . 8 ) h o l d s for any s w i t h Re s > 0 prov ided t h a t (5,&e B A ( s )

is non-negative for any 5e& and any seF with Re s > 0. But

for any fixed 5 (%,&& B^(s) ?) is a harmonic function of (77,T) .

It is continuous in r\ ̂ > 0 and tends to zero as |s|-»oo. Moreover

it is positive on rj = 0 by (P) and (2.5). Hence by the maximum

principle it is positive in 77 > 0. This completes the proof of

Theorem 2.3.

Remark 2.2. Equation (2.4) shows that we may consider sAA(s) as

defined on Re s ;> 0, with the value A(oo) at s = 0. We may then

interpret Theorem (2.3) as stating that sAA(s) has a bounded inverse
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A (s) on Re s^ 0, with,

A(s) = A " 1 ^ ) + 0(s"1) as |s|-»oo, (2.9)

) = A(oo)" 1 + O(s) as | s|—> 0 . (2.9)

1

Moreover A(s) is continuous in Re s ^ O and regular in Re s > 0.

It is shown in [8] that the following result holds:

Theorem 2.4. JIf dim # < oo sufficient conditions for (P) are

(P' ) (-l)kA(k) (t) positive definite for t ̂  0, k = 0,1,2,

Remark 2.3. (A ) was the condition given by Hannsgen in R1 . We

show in [8] that (P) is more general than (P T).

3. The Functional Differential Equation.

We consider the equation

u(t) = -A(0)g(u(t)) - J A(t-T)g(u(T))dT + P ( t ) . (3.1)
o

We make the following assumptions on F:

(i) FeC [0,oo), |F ( k )(t)| £ M < oo for te[0,oo) k = 0,l

(ii) F(t) = F(oo) + R(t), ReL [O,oo) (F)

(iii) J R(r)dr = L + p(t), peL [O,oo).

Remark 3.1. Most of conditions (F) are technical. The crucial fact

is the presence of the term F(oo). Condition (i) (k=l) implies that
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F is uniformly continuous on [O,oo) and hence the fact that

ReL1[0,oo) implies that R(t)-» 0 as t-»oo.

Integration of (3.1) yields the equation,

t t
u(t) = -| A(t-r)g(u(T))dr + f(t) , f(t) = u(0) + | F(T)dr. (3.2)

o o

Conditions (F) imply that:

(i) feC2[0,oo), |f ( k )(t)| £ M, k = 1,2,

(f)
(ii) f(t) = F(oo)t + K + p(t),

Equation (3.2) was considered in [8] in the special case F(oo) = 0.

The assumptions on g were that there exists a functional G(u),

defined on & , such that we have ,
g

d G(u(t)) = (g(u(t)),u(t)), (3.3)
dt

for any u(t) which is differentiable on [0,oo) with u(t)e$ for

all t: Moreover G is to satisfy the condition,

(G)

for some M < oo and for all U G $ . (Note that (G) implies that G
g

has an infinum which is greater than minus infinity).

It was shown in [8] that if (G) is satisfied, (f) is satisfied

with F(oo) = 0, A is strongly positive and u is a solution of

(3.2) such that g(u(t)) is weakly stable5then g(u(t)) tends weakly

Note that (3.3) is satisfied if g(u) is the gradient of a func-
tional G.
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to zero as t tends to infinity. In order to modify this result

when F(oo) ^ 0 we need two additional assumptions. These are:

G(u) ;> <P(||u||) ||u|| where <p(p)-»oo as p-»oo, for large ||u||,

r°°
j B(T)dT € L.^0,00) .

Remark 3.2. Condition (G ) seems to be essential. We do not know

whether (A ) is essential or not. It arose also in some consider-

ations in [8 ].

Theorem 3.1. Suppose (F), (G) , (G.) and (A ) are satisfied and A

is strongly positive. Let u be a solution of (3.1) such that

g(u(t)) is weakly uniformly continuous. Then g(u(t)) tends weakly

to A(oo)~ F(oo) .

Proof. We reduce to the case studied in [8]. Let p = A(oo)~ F(oo)

and w r i t e ,

p t roo oo
J A^t'T^dT " J B(T)dTf3 + (J B(T)dT)p,FOO t =

o o o

g(u) = g(u) - P.

Then (3.2) can be rewritten as,

r t
u ( t ) = -J A ( t - T ) g ( u ( T ) ) d T + ip^ + < p ( t ) , ( 3 .4 )

o

where ,

ÔO = (K"J B ( T ) d T P ) ' ^ ( t ) = P ( t ) +J B(T)dTp. ( 3 .5 )
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We can now apply the results of [8] provided that we show that g

satisfies condition (G). We choose as a G functional for g

the quantity G(u) = G(u) - (P,u) . Then it is easy to see from

(G) and (G ) that G satisfies G. The proof of the result in [8]

involves an energy integral obtained by multiplying (3.2) by g(u(t))

and integrating. This yields then the boundedness of Q~[g(u) ;T]

and also that of G(u). But in the present case this means that

G(u) is bounded which, by (G), implies that g(u) is bounded. Thus

the result of [8] implies that g(u) tends weakly to zero which is

the conclusion of Theorem 3.1.

Theorem 3.1, like those of [8], is a conditional result. In

section six we give some examples in which the weak uniform contin-

uity can be verified.

The fact that g(u(t)) has a weak limit need not imply that

u(t) has a limit. However, we do have the following obvious result:

Corollary 3.1. Tg dim # < oo and g~ (u) exists as c* continuous

operator on & then the hypotheses of Theorem 3. 1 imply that

u(t)-^g"1(A(oo)~1F(oo)) .

4. The Quasi-Static Approximation.

We consider the equation,

A(O)g(u(t)) + J A(t-T)g(u(T))dT = F(t). (4.1)
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Theorem 4.1. Suppose condition (F) jLs satisfied and A JLS_ invert-

ible. Then any solution of (4.1) satisfies g(u(t))-*A~ (oo)F(oo).

Proof. If u is a solution of (4.1) then the function £(t) =

g(u(t)) is a solution of the linear Volterra equation,

A(O)£(t) + J A(t-T)C(T)dT = F(t). (4.2)
o

It is a standard result that (4.2) has a unique solution. We will

prove Theorem 4.1 by constructing this solution and showing that it

satisfies

lim C(t) = AfoorMco). (4.3)
oo

We begin by formally taking the Laplace transform of (4.2).

This yields,

sAA(s)£A(s) = FA(s). (4.4)

From Remark (3.2), equation (4.4) yields,

CA(s) = A(s)FA(s). (4.5)

We note that conditions (f) imply that FA(s) exists in fte s ^ 0,

s ̂  0, is regular in Re s > 0 and satisfies,

FA(s) = s ' M o ) + s"2F(O) +0(|s|2) as |s|^oo, (4.6)

FA(s) = s' 2

where R^(s) is continuous in Be s ^ 0,

We now define a function £A(s) by the right side of (4.5).

We see that it exists in Be s ^ 0, s / 0 and is regular in Be s > 0-
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Moreover, by (2.9) and (4.6), it satisfies,

CA(s) = s""1A(O)"1F(O) +0(s~ 2), as |s|-*co, (4.7)}

CA(s) = s^hioo^Fioo) + MA(s), ^4-7)2

where Ji(s) is continuous in &e s ^> 0. With the information above

we can form the inversion integral,

+oo .
(2TT)~ e C t J e 1 t£A(c+ir)dT, (4.8)

-oo

for any c > 0. The conditions given yield the fact that this inte

gral is independent of c in c > 0 and that is represents a func

tion C(t) whose transform is £A • From (4.7) we can write this

function as,

_ . ~+oo .
C(t) = A(co)~ F(oo) + (2TT)" e C J e 1 /iA(c+ir)dT. (4.9)

-oo

In the integral term of (4.9) we can pass to the limit c = 0.

Then the Riemann-Lebesgue lemma shows that this term tends to zero

as t tends to infinity. This yields (4.3). The fact that £ is

a solution of (4.2) follows from (4.4) and the convolution theorem.

5. Slow-Flow Approximations.

We consider differential equations of the form,

u ( t ) = - A ( o o ) g ( u ( t ) ) - T ( u ( t ) ) u ( t ) + F ( t ) . ( 5 .1 )

For each ue& , F(u) is to be a linear map but it need not be bound-

ed. We suppose that the domains fi_ all contain a common set fi

It is to be understood that a solution of (5.1) satisfies u(t)€$r

mm ro
UNIVERSITY
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for all t. We impose on T the condition,

(A(oo)"1r(u)v,v) ^ YI|V||2, Y > 0 for all uefi , V€« r (T)

The condition (T) guarantees that the term -T(u(t))u(t) provides

a "damping" mechanism.

We first establish a stability result for (5.1).

Theorem 5.1. Suppose conditions A (v), (G), (G.), (F) and (T) hold.

Then any solution of (5.1) satisfies,

(i) ||u(t)||, ||g(u(t)||, ||u(t)|| uniformly bounded on [0,oo) ,

(ii) u

Proof. We first eliminate the term F(oo) in (5.1) just as we did

in section 3. We rewrite the equation as,

u(t) = -A(oo)g(u(t)) - T(u(t))u(t) +R(t), (5.2)

where g(u) = g(u) - A(oo)" F(oo) . Now we multiply (5.2) by A(oo)~ u(t)

and obtain, from (G) , (F) and the symmetry of A(oo)~ ,

~^ {~(A(oo)"'1u(t),u(t)) + G(u(t))} = -(A(oo)"1r(u(t))u(t),u(t))

+ (u(t),A(oo)"1R(t)) ^ -^ ||u(t)||2 +^ ||A(oo)""1R(t)||2. (5.3)

Remark 3.1 and (F)(ii) imply that ReL [0,oo) thus we infer from

(5.3) that (A(oo)""1u(t) ,u(t) ) are bounded and that ||u(t) || belongs

to L [0,oo). Conclusion (i) then follows by (G-), (G) and A (v)

respectively.
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Our asymptotic stability result is obtained from the following

elementary proposition.

Lemma 5.1. (i) Let u : R-> W be weakly uniformly continuous.

Then ueLo[O,oo)if and only if u(t) tends weakly to zero.
2

(ii) Let u : R-»M be differentiable and let u be weakly

uniformly continuous. Then u(t) tends weakly to zero only if

u(t) tends weakly to zero.

Theorem 5.1 and Lemma (5.1) yield the following conditional result.

Theorem 5.2. Suppose conditions A (v), (G), (G.), (F) and (T) hold.

Let u be a solution of (5.1) such that g(u(t)) is weakly uniform-

ly continuous and F(u(t))u(t) is weakly stable. Then u(t) and

u(t) tend weakly to zero.

Proof. Lemma 5.1 (i) and Theorem (5.1) (ii) show that u(t) tends

to zero weakly provided it is weakly uniformly continuous. But

this follows from the fact that ii(t) is weakly bounded as one sees

from (5.2), the boundedness of g and the weak stability of

F(u(t))u(t). (5.2) and the hypotheses also imply that ii(t) is

weakly uniformly continuous, hence it tends weakly to zero by Lem-

ma 5.1 (ii).

We conclude from Theorem (5.2) and Lemma 5.1 (i) applied to R

that the quantity,

A(oo)g(u(t)) +T(u(t))u(t) (5.4)
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tends weakly to zero. If the second term in (5.4) tends to zero

weakly we have the conclusion we want which is that g(u(t)) tends

weakly to zero. In general, however, one cannot expect this even

though u(t) tends weakly to zero. Thus we have the following re-

sult.

Theorem 5. 3. If. the hypotheses of Theorem 5. 2 hold and, jln addition,

T(u(t))u(t) tends weakly to zero then g(u(t)) tends weakly to

A(oo)"1F(oo) .

Proof. Theorem (5.1) (i) and the hypothesis imply that the right

side of (5.2) is (strongly) bounded. Hence ||ii(t) || is bounded and

therefore j|u(t) || is uniformly continuous. Thus Theorem (5.1)

(ii) implies u(t) tends strongly to zero which in turn implies

that the second term in (5.4) tends strongly to zero.

Remark 5.1. Two important special cases in which Theorem (5.3) ap-

plies are:

(1) F(u) = r , a constant, fi_ dense in W.

° ro
(2) dim W < oo, F(u) continuous as a function of u.

6. Examples.

We present here three kinds of examples. These are essentially

the same as those in [8] and the reader may find details in that ref-

erence. In all cases it will be seen that the quasi-static
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approximation is trivial and we will not discuss it. In the first

two cases we are able to verify all the hypotheses and hence con-

clude that both the functional equations and the slow-flow approx-

imations have the same steady state limits. In the third example

we are not able to verify the weak stability condition for the

functional equation but we indicate some slow-flow approximations

which can be handled.

(I) Equations in R .

We recall that in this case condition (P! ) is sufficient for

all our needs. We assume here that both g and T are defined

and continuous on all of R . We assume further that g(u) = V G(u)

where G(u) satisfies (G) and (G ). For n ̂  2 this is, of course,

a drastic restriction on the form of (3.1), (4.1), and (5.1). The

main point here is that the weak stability requirements can be ver-

ified directly from the equations themselves.

Theorem 6.1. Suppose M = Rn, ( F ) , (G), (G ) and (A ) are satisfied

and A is strongly positive. If u is a solution of (3.1) then

g(u(t) )-*A(OO)~ F(oo) as t-^oo.

Proof. From Theorem (3.1) we need only show that g(u(t)) is uniform-

ly continuous. Since g is continuous it suffices to prove that u

is uniformly continuous and this in turn will follow if we can show

that u is bounded. We differentiate (3.4) and obtain,

u(t) = -A(O)g(u(t)) - J A(t-r)g(u(T))dT + cp(t) . (6.1)
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In the proof of Theorem (3.1) we showed that g(u(t)) is bounded.

Hence (6.1), (A) (ii) and (F) imply that u(t) is bounded. Thus

u(t) is uniformly continuous. We assert that the boundedness of u

and the uniform continuity of u implies that u is weakly, and

hence strongly, bounded. Suppose not. Then there exists an

and a sequence t -> oo such that (u(t ) ,r\) ^> n. By the uniform

continuity of u we can then find a 6 > 0 such that

(u(t ) ,rj) > n for te [t -5,t ]. Hence we would have, by the

mean-value theorem, (u(t )-u(t -6,17) > n§ which contradicts the
n n

boundedness of u.

Theorem 6.2. Suppose H = R and (Av), (G), (G-), (F) and (F) hold.

If u is. 5L solution of 5*1 then g(u(t))—>A(oo) F(oo) a^ t-»oo.

Proof. From Theorems (5.1)-(5.3) and the continuity of g and T

we see that it suffices to prove the uniform continuity of u and

this follows immediately from (5.2) which shows that ii is bounded*

(II) Linear Partial Differential Functional Equations.

The equations considered here have the form,

utt(x,t) = a(o)Lu(x,t) - J a(t-r)Lu(x,r)dr +F(x,t). (6.2)

o

The space # is "L {Cft , where R is a bounded region in R .

L is a strongly elliptic partial differential operator of the form,

Lu = S (-l)aDa(aap(x)DPu), (6.3)

|a|£m
I 3km
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OCR ROC
where the coefficients a = a are smooth functions of x.

a is a scalar function so that A(t) = a(t)I. This will be strong-

ly positive in M if a is strongly positive in R . It is re-

quired that the solution of (6.2) belong to H , the completion

of C (0) under the norm,
o

||u||m = S J|Dau|2dx.

This is equivalent to zero Dirichlet boundary data.

We assume that Garding1 s inequality is satisfied with the co-

2
efficient of ||u|| equal to zero. That is if

B(u,v) = I Luvdx,

then

B(u,u) > c||u ||2 c > 0. (6.4)

Remark 6.1. Condition (6.4) implies that the generalized Dirichlet

problem,

Lu = <p, <peL2(O) , (6.5)

has a unique generalized solution U G H and if <p and the a

are smooth this will be a classical solution.

We assume that F satisfies condition (F) (with F(oo) of course

replaced by F(x,oo)). Except for the modification to account for

the term F(x,oo), the treatment of (6.2) is the same as in [8].

The role of G(u) is played by -r B(u,u). The weak uniform contin-

uity is verified by differentiating the equation with respect to t.
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The result is the following:

Theorem 6. 3. Let a be strongly positive in R and a(oo) be

positive. Suppose (F) and (6.4) hold. If u isa solution of

(6.2) then Lu(*,t) tends weakly to a(oo)~ F(x,oo) .

Remark 6.2. The conclusion of Theorem 6.3 and standard embedding

theorems can be used to show that the hypotheses of Theorem 6.3

imply that

u(.,t)—OC in E£, (6.6)

where x is the unique generalized solution of Lu = a(oo) F(xJ,oo)

The argument is the same as that in [8]. This is an analog of

Corollary (3.1).

The slow-flow approximations appropriate to (6.2) have the

form,

ufct(x,t) = -a(oo)Lu(x,t) - rut(x,t) + F(x,t) . (6.7)

We require these to be linear also which means F is a fixed lin-

ear operator with domain fl_. We choose for F another elliptic

operator of the same form as L and also satisfying GardingT s in-

equality in the form,

(Mu,u) ^ 5||u||̂ . (6.8)

Then (F) is satisfied as is condition (1) of Remark (5.1). Once

again the weak stability can be established by differentiating the

equation and one obtains the following result.
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Theorem 6.4. Let a be strongly positive in R! and a(oo) be

positive. Suppose (F), (6.4) and (6.8) hold. If u is a solution

of (6.7) then Lu(•, t) tends weakly to a(oo)" F(x,oo). (Remark 6.2

again holds).

(C) A Nonlinear Partial Differential Functional Equation.

Consider the equation,

ufct(x,t) = a(O)-^- a(ux(x,t)) + J a(t-r)-^- a(ux(x,T))dr + F(x,t),
o

(6.9)

with u(O,t) = u(l5t) = 0. This equation arises in the next sec-

tion in an elasticity context. The results of [8] are easily modi-

fied to yield the following result: Suppose (F) is satisfied and

a is strongly positive in R! . Assume that CJ satisfies the con-

ditions,

(i) a(o) = 0, at (?) ^ m > 0,

(ii) |a(§)| £ m| ?| + K| 5|r, 0 < r < 2.

Suppose u is a solution of (6.9) such that for any Tj€C°°[O,l],

r 1

I CJ(U (x,t))n (x)dx is uniformly continuous in [0,oo) . (6.10)
o x x

Then -^- ̂ (ux> tends weakly to a(oo)~ F(x,oo) as t->oo .

We are not able to verify condition (6.10) hence the result for

(6.9) remains a conditional one. We note that the quasi-static ap-

proximation is completely trivial. One determines -r— a(u ) by sol-

ving a linear Volterra equation and then solves a simple two-point

boundary-value problem for u.
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We can also handle certain slow-flow approximations. The

simplest one is,

u(O,t) = u(l,t) , where T is a positive constant. This is an in-

homogeneous version of the equation treated in [3]. By modifying

the techniques there one can show that if (F) holds and (i) and

(ii) hold for a then (6.11) has a unique classical solution for

any u(x,O), u (x,0) which are sufficiently smooth and that any

such solution satisfies,

lim -J-JJ7 a(ux(x,t)) = a(oo )
 -1F(x,oo) , (6.12)

t-»oo

pointwise.

A little more complicated version of (6.11), which arises in

section 7 is the equation,

u(O,t) = u(l,t) = 0. The homogeneous version of this equation is

treated in [7]. Again a modification of the techniques yields the

same results as for (6.11) provided that T satisfies the condi-

tion,
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7. Materials with Memory,

We consider situations in elasticity in which stress and strain

can be described by scalar functions s and u, respectively, of

time. The theory of materials with memory makes the assumption

that s and u are related by the constitutive law,

s(t) = ^(u*), (7.1)

where u1 denotes the history of u, that is, u (r) = u(t-T) ,

re [0,oo) and 3 is a functional. One obtains various theories

by specifying Banach function spaces B in which the histories

are to lie and then demanding that 3 be continuous.

One class of history spaces which has been extensively stud-

ied [1] is that obtained by letting B consist of all measurable

functions <p on [0,oo) with,

oo -,
||p|| = \<p(0)\ + (j k(r)|<p(r)|pdr) /p < oo. (7.2)

o

In (7.2) k is a positive integrable function. The linear func-

tionals on such a B are easily described. They have the form ,

3(cp) = a(O)<p(O) + J a(T)<p(T)dT, (7.3)
o

where

a(0) > 0; a(t) = k1//pK(T) , KeLq with p" 1 + q"1 = 1. (7.4)

A related class of nonlinear functionals is obtained by letting,

This is one form of linear viscoelasticity.
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= a(0)a(cp(0)) +J a(T)a(<p(T))dT. (7.5)

o

It is known that functionals of the form (7.5) will be continuous

and bounded on spaces B, with the norms (7.2), provided that

g(5) is continuous and that the integral in (7.5) is defined on all

of B ([6]). It follows from Holder's inequality that the inte-

gral will exist if (7.4) is satisfied and g satisfies,

l a(5) I < L M | ? | r , r < p for large \<p\ . (7.6)

We consider the motion of a unit mass on a filament in which

stress and strain are related by a functional of the form (7.5).

We assume there is an applied force F(t). This yields the func-

tional differential equation

u(t) = -s(t) = -a(O)a(u(t)) - J a(r)a(u(t-T))dT + P(t) . (7.7)
o

An appropriate problem for (7.7) would include the specification

of the initial history of u, that is u (T) = u(-T), as an element

of B. We specialize to the case where the filament is initially

at rest, that is u(T) = 0 Te(-oo,O]. Then equation (7.7) assumes
1

the form (3.1) on # = R , that is,

u(t) = -a(O)a(u(t)) - J a(t-r)a(u(r))dr + F(t) . (7.8)
o

Another problem which can be described within the same general

framework is that of one-dimensional elastic motion of a bar. If

u(x,t) is displacement at time t of a section which in the equili-

brium configuration is at position x, then the strain is given by
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u (x,t). If we assume that stress and strain are related in the

same way as above and that the bar is at rest up to time t = 0

and clamped at the ends, we obtain the problem (u = div a + F) *

^" a<u
x> + J d ( t - r ) "^T ° ( u

x ) d T + F ( x > t } > (7-9)J
vo

u(O,t) = u(l,t) = 0, where F is the applied force. Note that

this is equation (6.9).

The quasi-static approximation in elasticity consists of drop-

ping the time derivatives in (7.8) and (7.9). Our theorems give

an indication of the validity of this procedure. The idea for the

slow-flow approximation arises as follows. Coleman and Noll [2]

discussed the possibility of expanding the functional <5 in (7.1)

in a Taylor series. The first two terms of the expansion are ob-

tained as follows. We expand u(t-T) in a Taylor series and keep

two terms; that is we write

ufc « u(t)xx - u(t)x2, (7.10)

where v (T) s 1* X9(
T) s T* Then if 3 has a Frechet derivative

we will have,

S^uS = 3(u(t)Xl) - u(t)83(u(t)Xllx2> + 0(||u(t)X2ll). (7.11)

Now '(u(t)x..) amd 6'(u(t)v |x9) ™m
 be functions of u(t) , which

we denote by M(u(t)) and N(u(t)) respectively. Thus if we keep

only the first two terms on the right side of (7.11) we have, approx-

imately,
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c(t) = M(u(t)) + N(u(t))u(t) . (7.12)

If we substitute this approximation into the functional equation,

u(t) = -a(t) = -^(uS

we obtain the differential equation,

u(t) = -M(u(t)) - N(u(t))u(t). (7.13)

The above procedure when applied to the functional (7.5) is

easily seen to lead to the approximation,

t r°°
3(u ) ~a(O)a(u(t)) + J [a(T)a(u(t)) - a(T)Ta' (u(t) )u(t) ]dT

o

= a(co)CT(u(t)) + T(u(t))u(t) (7.14)

T(u(t) = -(i a(T)TdT)a« (u(t)). (7.15)

where

o

Thus we are led to the slow-flow approximations,

u(t) = -a(co)a(u(t)) + r(u(t))u(t) + F(t) , (7.16)

and

^ = a(oo)^~ a(u ) + -^- r(u )u . + P, (7.17)

tt v dx v x dx v x xt

for (7.8) and (7.9) respectively. Our work also gives some indi-

cation of the validity of these equations. In particular it shows

that we may expect correct limiting values from (7.17) if we replace
F(u ) by a positive constant. This corresponds to the viscous damp-

x

ing in what is called a Kelvin material.
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