-

MAY 24 =¢

/ps --

APPROXI MATI ONS FORA QLASS-. OF
FUNCTI ONAL DI FFERENTI AL EQUATI ONS

by
R C WMacCany

Report 71-24

May 1971

5/12/ 71

RUNT UBRARy -

CARNEGIE-HLy oy

RSITY




APPROXI MATI ONS FOR A CLASS
OF FUNCTI ONAL DI FFERENTI AL EQUATI ONS

by

R C MacCany

Abstract

Functional differential equations of the form

t
() = -AOg(u(t)) - [ A(t-Tg(u(T) + (1),
¢!

on a Hilbert space &, are considered. A(t) is a famly of bound-
ed, symmetric, linear operators on M while g can be nonlinear
and unbounded. Solutions are considered when F(t) approaches a
const ant F0 as t tends to infinity. Conditions are given which
guarantee that the limts of these solutions will be the sane as

t hose of the problens,

tl
A(Qg(u(t)) +j A(t-T)g(u(T))dT = F(t),
0

U(t) =-A(oo)g(u(t)) - T(u(t))u(t) +F(t).

The first of these is the abstract statenent of the quasi-static
approxi mation in viscoelasticity. In the second T(u) is to be a
l'inear map, with domain in &« for each fixed u. This is an ap-
proxi mati on suggested by the Col eman-Nol| theory of retardétion. A
short di scussion of the connections with materials with nmenory is

i ncl uded.

This work was supported by NSF G ant GP192C8.




APPROXI MATI ONS FOR A CLASS
OF FUNCTI ONAL DI FFERENTI AL EQUATI ONS

by
R C thCany*

1. | nt r oducti on.

In a recent paper [8 we considered functional differentia

equations of the form

t
a(t) = -3 A(t-T)g(u(T))dT + f(t), (1.1
o

on a Hilbert space W A(t) is a famly of bounded |inear oper-
ators on M while g can be nonlinear and unbounded. The object
was to obtain conditions on A g and f in order that all solu-
tions decay to zero as t tends to infinity. The results were gen-’
eral i zations of those of Hannsgen [4] and Levin and Nohel [5].

The present paper is also concerned with equation (1.1) but
froma different point of view W introduce various equations
which are sinpler than (1.1) but have sol utions which approxi nate
those of (1.1). The original notivation for this study cane from
the theory of elasticity and is outlined in the last section of the
paper. W wanted to investigate the validity of a procedure called

t he quasi--stati-c approxinat+on in the theory of viscoelasticity.

At the sane tine, we wanted to develop a different kind of approx-

This work was supported by NSF Grant GP19208.




I mati on whi ch was suggested in sone work of Coleman and Noll [2].
These ideas seened of sufficient interest to warrant a presentation
of themin the sanme general setting as in [8].

| The functional equations which arise in elasticity theory are
of second order. A certain class of themare of the form obtained

by differentiating (1.1), that is,

li(t) = -AOg(u(t)) - J A(t-T)g(u(T))dr + F(t) . (1.2)
(0]

The abstract quasi-static approxi mation anmounts to dropping the

"acceleration" term u in (1.2) and considering the equation,

A(Og(u(t)) +J A(t-T)g(u(T))dT = f(t). (1.3)
(0]

It is clear that (1.3) is nuch sinpler than (1.2). One has only to
solve a linear Volterra equation and then invert g. In viscoelas-
ticity the latter step will involve solving a static problem

We call the procedure derived from Coleman and Noll's work
t he shew How apprexiwatienr It involves replacing (1.2) by dif-

ferential equations of the form
li(t) =-A(co)g(u(t)) - r(u(t))u(t) +f(t). (1.4)

For each fixed wu, T(u) is a linear map with domain in W In [2]
a particular F is suggested (see section 7). W show that for
our purposes there are nany possible Ps. \What is essential is
the formof the first termon the right of (1.4). This illustrates

the crucial role of the quantity A(o00).




W show that there is some validity inusing (1.3) or (1.4) to
approximate (1.2) if one is concerned with approach to steady state
W assune that f(t) tends to a constant fo as t tends to infin-
ity. Then we give conditions which guarantee that all solutions.of
(1.2), (1.3) or (1.4) tend to a comon limt.

Qur results for (1.2) are mnor variations of those of [8].

They depend on the concept of strong positivity of the kernels A(t).

The treatnent of (1.3) requires a new property of A(t) which we

call invertibilitv. W feel that the nost interesting feature of
our work is the close connection between these two notions. W
show, in fact, that the condition for strong positivity, as given in
[8],also yields invertibility. These ideas are discussed in section
two. Equation (1.2) is considered in section three and the two
ki nds of approximations are discussed in sections four and five.
Section six contains sone exanpl es.

The inportance of the approximte equations is that they can
be handled in cases in which the full functional equations have
proved too difficult. One such exanple is given in section six.
Thus it is worthwhile to know that in cases where all equations

can be treated the approximtions have sone validity.




2, Properties of the Kernels A(t) .

We first review sonme notions from [8]. W denote by Cy[O0, 00)
t he space of continuous functions from [0,00) into & Let
A= fA(t) : t ~0) be a strongly continuous, one paraneter fanily
of bounded, symmetric, linear transformations on W For any

veC'[ 0, 00) we set,

Q‘i[v;ﬂ =J (v(t), J At-T)v(T)dT)dt. (2.1)
o] o]

W say that A is poestt+ve if Q%v;T] is always non-negative and
that A is strongty posttive if,

QIViTl " QI[V;T] (2.2)

for some M constructed as follows. M is to be a sem - group gen-
erated by a symmetric linear operator M having dense domain fi |,

M
and such that,

(MB,8) 1 m|?[|2 m>0 for all 5e*>y (2.3)

W call veGJO0,00) weakly stable if it is weakly bounded and

weakly uniformy continuous on [0,00). The basic result of [8 was

the followi ng theoremwhich was called the weak stability principle.

Theorem 2.1. If * i8 strongly positi've,_ v is weakly stabl e and

Q[v;T] is bounded independently of T, then v(t) tends weakly to

zero as t tends to infinity.

Sufficient conditions for strong positivity were discussed at

length in [8]. The best results concern the Laplace transform of

A




and are closely related to our needs for the quasi-static approxi-
mation. We say that A is invertible if it has a Laplace trans-

form A%s) which exists in Re s > Q and satisfies,

As) = §-9 + BA(s), | (2.4),
As) = s*Q + 0(|s|?) as |s|-*co, <9,
where P and Q are bounded, symetric, linear transformations,

whi ch have bounded inverses P~]' and Q- % and B*(s) is continuous
in & s ;>0 and regular in & s > 0.

W meke the follow ng basic assunption throughout the paper.
This provides the necessary technical conditions for both strong

positivity and invertibility.

(i) A(t)GCH0,00) ,
(ii) AW (t)€L,]0,00), k= 1,2,
(iii) A(t) = A(oo) +B(t), B(t)EL.[0,00), (A)
Giv) ((-*A™ (0)5,5) ~oc|!5]||?, a > o,
k = 0,1, for all 5e»,

(v) (A(00)2,5) > p||5||>, p > 0 for all B5e».

Renark 2.1. (1) The existence of A(o0) as a uniformlimt of A(t)
is inpliedby (ii) .
(2) Conditions (iv) and (v) inply that A(O0) , A(0) and A(o00)

have bounded i nverses.

The integral here, and all subsequent ones, are in the Bochner
sense.




(3) Conditions (A inply all the properties of invertibility

save for the existence of AA(s)~1. In particular (2.4)" and (2.4),
hold with P = A(oo), Q= A(O0). In fact, (2.4).2 can be sharpened to
ANs) = sAAFO) + s"2A(O + o] s|") as | sHoo. (2.5)

It is shown in [8 that A will be strongly positive, with
M= cl for some constant ¢, provided that A" satisfies the con-
dition,

(5,Re BAiT)S) ~ > [|9]?> for all ?€» and TeR (2.6)
C +T

It is easy to see from (2.5 and (A (iv) (k=l) that (2.6) w Il hold,
for some c, provided that \r\ ;> T, T sufficiently large. Thus we

have the following result.

Theorem 2.2. A sufficient condition for strong positivity is:

Gven any M there exists £> 0 such that

(5,8 BA(iT)5) ;> tlU!? for all ?e» and \r\ £ M (P

The main newresult in this section is contained in the foll ow

ing:

Theorem?2. 3. (P) JLS a" sufficient_condition for invertibility.

Proof. W observe first that it follows from (2.4) 1and (2.4) > and
successi ve approxi mations, that AA(S)_l exists for & s ™ O,

| s|] >R and Be s ~_ 0, 0< |s|] <p for R sufficiently large and




p sufficiently small. Moreover we have,
A*(s)"t = sA(O"*(I1+Q(s"Y)) for large | s| , (2.7
AMs)""! = sA(o0)"}(1+Q(s)) for small | s| . <2.712

(Recall P = A(o0) and Q= A(0) ) .
Thus we need only establish that A”(s) L exi sts in the sem -annul us

rpR’ Re s*0, p£|s|] <ER For any fixed s, a sufficient condition

for the existence of A%s) is the inequality
(5, Re A%(s) 5) ~kl|?1]% k > o. (2.8)

Condition (P) clearly inplies that (2.8) holds on the portion Re s =0

of T Suppose seT =rj +ir, rj >0. Then we have, by (A (v) ,

PR PR °

(8-Re A%(5)?) ~ -~ -1 [5]12 + (8,Re BA(S) ?) .

Hence (2.8) holds for any s with Re s > 0 provided that (5,&e B”*(s)§)
IS non-negative for any 5e& and any serR with Re s > 0. But

for any fixed 5 (%&& B"(s) ?) is a harnonic function of (77,7) .

It is continuous in r\ ~> 0 and tends to zero as |s|-»00. Moreover

it is positiveon rj =0 by (P and (2.5). Hence by the maxi mum
principle it is positive in 77 > 0. This conpletes the proof of

Theorem 2. 3.

Remark 2.2. Equation (2. 4)2 shows that we may consider sSA%s) as
defined on Re s ;> 0, with the value A(oo) at s =0. W my then

interpret Theorem (2.3) as stating that sA%s) has a bounded inverse




A(s) on Re s™ 0, wth,

A(s) = A"*7r) +0(s"Y as |s|-»oo, (2.9) 4

A(s) = A(oo)"" + Q) as | s->0. (2.9),

Moreover A(s) is continuous in Re s~O and regular in Re s > 0.

It is shown in [8] that the following result holds:

Theorem 2.4, Jif dim# < oo sufficient conditions for (P) are

(P ) (-1)*A™M (t) positive definite for t ~0, k=0,1,2,.

Remark 2. 3. (Ab) was the condition given by Hannsgen in R'. W

showin [8] that (P) is more general than (P").

3. The Functional Differential Equation.

We consider the equation

(t) = -A(0)g(u(t)) - J A(t-T)g(u(T))dT +P(t). (3.1)
0

We make the follow ng assunptions on F:
(i) FeCl[O,oo), | FC9(t)] £ M< oo for te[0,00) k =0l
(ii) F(t) =F(oo) + R(t), Rely[Q o00) (P

t
(iii) J Rr)dr =L +p(t), peLl[Qoo).

Remark 3.1. Most of conditions (F) are technical. The crucial fact

Is the presence of the term F(oo). Condition (i) (k=l) inplies that




F is uniformy continuous on [Qo0) and hence the fact that
ReL;[0,00) inplies that R(t)-»0 as t-»o0.

Integration of (3.1) yields the equation,

" pt
G(t) =-| A(t-r)g(u(T))dr +f(t), f(t) =0a(0) + ] F(T)dr. (3.2)
0 0

Conditions (F) inply that:

(i) fec?[o,oo), 1F0(t)] £EM k = 1,2

f
(i) f(t) = F(o0)t + K+ p(t), peL,[0,00). )

Equation (3.2) was considered in [8 in the special case F(oo) = 0.
The assunptions on g were that there exists a functional G(u),

defined on & , such that we have |,
g

ﬁG(U(t)) = (g(u(t)),u(t)), (3.3)
for any u(t) which is differentiable on [0,00) with u(t)e$g for

all t: Mreover G is to satisfy the condition,

lgtu}ll < M(1+G(w)), (G

for some M< oo and for all UG$ . (Note that (@ inplies that G

g
has an infinumwhich is greater than mnus infinity).

It was shown in [8] that if (G is satisfied, (f) is satisfied
with F(oo) =0, A is strongly positive and u is a solution of

(3.2) such that g(u(t)) is weakly stablesthen g(u(t)) tends weakly

*

Note that (3.3) is satisfied if g(u) is the gradient of a func-
tional G
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to zero as t tends to infinity. |In order to nodify this result

when F(oo) ~ 0 we need two additional assunptions. These are:

G(u) ;> <P(|lull) [lull where <p(p)-»00 as p-»o0, for large [lu]l, (G;)
rOO
i A (A.)
JtB(T)dT€L., 0, 00) . 1
Remark 3.2. Condition (Gl) seens to be essential. W do not know

whet her (Al) Is essential or not. It arose also in sonme consider-

ations in [8].

Theorem 3.1. Suppose (F), (9, (%) and (é) are satisfied and A

is strongly positive. Let wu be a solution of (3.1) such that

g(u(t)) is weakly uniformy continuous. Then g(u(t)) tends weakly

to A(oo0)~ lF(oo) .

Proof. W reduce to the case studied in [8]. Let p = A(oo)~1F(oo)

and write,
pt r00 .00
foot = J MAtTATm g BMAT + (3 B(T)dT)p,
(0] (0] 0]

g(u) =g(u - P

Then (3.2) can be rewitten as,

t
G(t) = -3 A(t-T)Qu(T))dT + ipd +<p(t), (3.4)

0

wher e, -

O T (K"J B(T)dTP)' /\(t) = P(t) +J tB(T)dTp (35)
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We can now apply the results of [8] provided that we show that a
satisfies condition (G . W choose as a G functional for g

the quantity u) = Qu) - (P,u). Thenit is easy to see from

(G and (Ci) that "G satisfies G The proof of the result in [§]

i nvol ves an energy integral obtained by nultiplying (3.2) by g(u(t))
and integrating. This yields then the boundedness of 'Qﬂg(u) ;T
and also that of G(u). But in the present case this neans that

®(u) is bounded which, by (G, inplies that Ef(u) i s bounded. Thus
the result of [8] inplies that g(u) tends weakly to zero which is

t he conclusion of Theorem 3. 1.

Theorem 3.1, like those of [8], is a conditional result. In
section six we give sone exanples in which the weak uniform contin-
uity can be verified.

The fact that g(u(t)) has a weak Iimt need not inply that

u(t) has a limt. However, we do have the follow ng obvious result:

Corollary 3.1. Tgdim # < oo and_ g0~ %u) exists as _c* continuous

operator on & then the hypotheses of Theorem 3. 1 inply that

u(t)-"g"*(A(00)~'F(00)).

4, The Quasi-Static Approxi mati on.

We consi der the equation,

A(Og(u(t)) +J At-T)g(u(T))dT = F(t). (4.1)
o
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Theorem4.1. Suppose condition (F) jLs satisfied and A JIS invert-

i ble. Then any solution of (4.1) satisfies g(u(t))-*A~l(oo)F(oo).

Proof. If wu is a solution of (4.1) then the function £(t) =

g(u(t)) is a solution of the linear Volterra equation,

A(OE(t) +J A(t-T)(T)dT = F(t). (4.2)
. o :

It is a standard result that (4.2) has a unique solution. W wll
prove Theorem 4.1 by constructing this solution and show ng that it

satisfies

limQt) = Af oor Mco) . (4.3)

t- 00

We begin by formally taking the Laplace transformof (4.2).
Thi s yi el ds,

sANs) £A(s) = FA(s). (4.4)
FromRemark (3.2), equation (4.4) yields,
CNs) = A(s)FA(s). (4.5)

W note that conditions (f) inply that FA(s) exists in fte s ~ 0,

s 0, isregular in Re s >0 and satisfies,
FA(s) = s' Mo) + s"2F(O +0(|s|?) as |s]|”oo, (4.6) 4
FA(s) = s' ‘F(eo0) + RN8), (4.6) 2

where R s) is continuous in Be s ” O,
We now define a function £%s) by the right side of (4.5).

W see that it exists in Be s~0, s/ 0 and is regular in Be s > 0-,
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Moreover, by (2.9) and (4.6), it satisfies,
CAs) = s""'A(O"'F(O +0(s~2%), as |s|-*co, (4.7)
CNs) = s”hioo”Fioo) + MY(s), n4T) 2

where Ji(®) i° continuous in & s ~> 0. Wth the information above

we can formthe inversion integral,

1 . .t00 L
(2t ~"e J  elEA(c+ir)dT, (4.8)
-00

for any ¢ > 0. The conditions given yield the fact that this inte
gral is independent of ¢ in ¢ >0 and that is represents a func™
tion C(t) whose transformis £+ From (4.7) we can wite this

function as,

. ~00 .
C(t) = A(co)~TF(o0) + (2t te®™ T e EiAcH ) dT. (4.9)
-00

In the integral termof (4.9) we can pass to the limt ¢ = 0.
Then the Ri emann-Lebesgue |emma shows that this termtends to zero
as t tends to infinity. This yields (4.3). The fact that £ s

a solution of (4.2) follows from (4.4) and the convol ution theorem

5. Sl ow Fl ow Appr oxi mati ons.

We consider differential equations of the form

U(t) = -A(oo)g(u(t)) - T(u(t))d(t) +F(t). (5.1)

For each ue&g, F(u) is to be a linear map but it need not be bound-

fi all contain a commobn set fi ..
1'{a) r

It is to be understood that a solution of (5.1) satisfies U(t)€$,

ed. W suppose that the domains

RARY

mnmﬂ‘-murﬂ

UNIVERSITY
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for all t. W inpose on T the condition,
(A(0O)"r(uwv,v) ~Vvi|v2 Y>0 for all uefig, VE«, (T

The condition (T) guarantees that the term -T(u(t))u(t) provides
a "danpi ng" nechani sm

We first establish a stability result for (5.1).

Theorem 5. 1. Suppose conditions A(v), (©, (G,)), (F and (T) hold.

L
Then any solution of (5.1) satisfies,
(i) Hut) T, T1gCuCt) [, Tlu(t)[] uniformy bounded on [0,o00)

(i) CeL,[0,00).

Proof. W first elimnate the term F(oo) in (5.1) just as we did
in section 3. W rewite the equation as,
li(t) = -A(00)g(u(t)) - T(u(t))u(t) +R(t), (5.2)

where ¢g{u) = g(u) - A(oo)"lF(oo). Now we multiply (5.2) by A(oo)~lU(t)

and obtain, from (G , (F) and the symetry of A(oo)~1,
d 1 . . ~ . -
~§ {~@A(00)"" u(t),u(t))  + Qu(t))} = -(A(00)"'r(u(t))u(t),u(t))

+ (U(t), A(00)"IR()) A -~ [lu(t)]]? +4 || Aloo)""'R(t) || (5.3)
Remark 3.1 and (F)(ii) inply that ReLz[O,oo) thus we infer from
(5.3) that (A(oo)""'d(t) ,a(t)) are bounded and that ||u(t) || bel ongs
to Ll[O,oo). Concl usi on (i) then follows by (Gl)’ (G and A (v)

respectively.
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Qur asynptotic stability result is obtained fromthe follow ng

el ementary proposition.

Lemma 5.1. (i) Let u: I$->W_Q_Q weakly uniformy continuous.

Then uel_zo[O,oo)i and only if u(t) tends weakly to zero.

+ .
(ii) det u: R»M he differentiable.and let u be weakly

uniformdy continuous Then u(t) tends weakly to zero only if

G(t) tends weakly to zera

Theorem 5.1 and Lenmma (5.1) vyield the followi ng conditional result.

Theorem 5.2. Suppose conditions A (v), (G, (Gl) , (F) and (T) hold.

Let u be a solution of (5.1) such that g(u(t)) is weakly uniform-

S—

ly continuous and F(u(t))u(t) is weakly stable. Then u(t) and

U(t) tend weakly to zero.

Proof. Lemmm 5.1 (i) and Theorem (5.1) (ii) show that u(t) tends
to zero weakly provided it is weakly uniformy continuous. But
this follows fromthe fact that ii(t) is weakly bounded as one sees
from (5.2), the boundedness of @ and the weak stability of
F(u(t))t(t). (5.2) and the hypotheses also inply that ii(t) is
weakly uniformy continuous, hence it tends weakly to zero by Lem
ma5. 1(ii).

We conclude from Theorem (5.2) and Lenma 5.1 (i) applied to R

t hat the quanfity, |

A(oo)g(u(t)) +T(u(t))u(t) (5.4)
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tends weakly to zero. If the second termin (5.4) tends to zero

weakly we have the conclusion we want which is that g{u(t)) tends
weakly to zero. In general, however, one cannot expect this even
though (t) tends weakly to zero. Thus we have the followng re-

sult.

Theorem 5. 3. 1f. the hypotheses of Theorem5. 2 hold and, jln addition,

T(u(t))u(t) tends weakly to zero then g(u(t)) tends weakly to

A(00) "*F(00) .

Proof. Theorem (5.1) (i) and the hypothesis inply that the right
side of (5.2) is (strongly) bounded. Hence |[|ii(t) || is bounded and
therefore j|u(t) |f is uniformy continuous. Thus Theorem (5.1)
(i) inplies U(t) tends strongly to zero which in turn inplies

that the second termin (5.4) tends strongly to zero

Remark 5.1. Two inportant special cases in which Theorem (5.3) ap-
plies are:

(1) F(u) =r , aconstant, fi_ dense in W
o r
0]
(2) dimW< oo, F(u) continuous as a function of wu

6. Exanples.

W& present here three kinds of exanples. These are essentially
the same as those in [8] and the reader may find details in that ref-

erence. In all cases it will be seen that the quasi-static
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approximation is trivial and we will not discuss it. In the first
two cases we are able to verify all the hypotheses and hence con-
clude that both the functional equations and fhe sl owf | ow appr ox-
i mati ons have the sane steady state limts. |In the third exanple
we are not able to verify the weak stability condition for the

functional equation but we indicate sone slowflow approxi mations

whi ch can be handl ed.

(1) Equations in R™

Ve recall that in this case condition (P ) is sufficient for
all our needs. W assune here that both g and T are defined
and continuous on all of R™ W assume further that g(u) = VuG(u)
where Qu) satisfies (G and (Gl). For n”~ 2 this is, of course,
a drastic restriction on the formof (3.1), (4.1), and (5.1). The
mai n point here is that the weak stability requirenents can be ver-

ified directly fromthe equations thenselves.

Theorem6.1. Suppose M=R', (F), (G, (Gl) and (Ai) are satisfied

and A is strongly positive. 1f u i g_solution(i(&i) t hen

g(u(t))-*A(00)~lF(oo) as t-"oo.

Pr oof . From Theorem (3.1) we need only show that g(u(t)) is uniform-:
ly continuous. Since g is continuous it suffices to prove that u
is uniformy continuous and this in turnwll follow if we can show

that U is bounded. W differentiate (3.4) and obtain,

u(t) = -A(Og(u(t)) - J A(t-r)g(u(T))dT + ép(t) . (6.1)
- o)
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In the proof of Theorem (3.1) we showed that ¢g{u(t)) is bounded.
Hence (6.1), (A (ii) and (F) inply that U(t) is bounded. Thus
a(t) is uniformy continuous. W assert that the boundedness of u
and the uniformcontinuity of U inplies that U is weakly, and
hence strongly, bounded. Suppose not. Then there exists an mneH
and a sequence t -n> oo such that (u(t )n’ r\) ~>n. By the uniform
continuity of d we can then find a 6 >0 such that

(U(tn) Ij) >n for te [tn-5,tn]. Hence we woul d have, by the

mean-val ue theorem (u(t )-u(t -6,17) > n8 which contradicts the
n n
boundedness of u.

Theorem 6. 2. Suppose H:RnanuAv), (9, (G-l), (F and (F) hold.

1f u is. 5L_solution_of 5*1 then g(u(t))—>A(oo)_1F(oo) a”™ t-»oo0.

Proof. From Theorens (5.1)-(5.3) and the continuity of g and T

we see that it suffices to prove the uniformcontinuity of G and

this follows inmediately from (5.2) which shows that ii is bounded*

(I')y Linear Partial Differential Functional Equations.

The equations considered here have the form

uit(x,t) = a(o)Lu(x,t) - J a(t-r)Lu(x,r)dr +F(x,t). (6.2)

0]
n

The space # is "L%Cft , where R is a bounded regionin R.

L is a strongly elliptic partial differential operator of the form

Lu = S (-1)2D*(a®**(x)Du), (6.3)
| al £Em

| 3km
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where the coefficients aOCR: ZBCX: are snooth functi'ons of x.
a iIs a scalar function so that A(t) = a(t)l. This will be strong-
ly positive in M if a 1is strongly positive in Rl. It is re-

quired that the solution of (6.2) belong to HI(:, t he conpl etion
of C?(O) under the norm
lulm = S J|D%ul?dx.
lal<m o
This is equivalent to zero Dirichlet boundary data.

W assume that Girding's inequality is satisfied with the co-

2
efficient of ||q|o equal to zero. That is if
B(u,v) = !: Luvdx,
t hen Q
B(u,u) > c||um||2 c > 0. (6.4)

Renmark 6. 1. Condition (6.4) inplies that the generalized D richlet
pr obl em
Lu = <p, <pel(O , (6.5)

has a uni que generalized solution UGI—Ln and if <p and the amE3

are snmooth this will be a classical solution.

We assune that F satisfies condition (F (with F(oo) of course

repl aced by F(x,00)). Except for the nodification to account for
the term F(x,o00), the treatnent of (6.2) is the sane as in [8].
The role of Qu) is played by ';;’2’ B(u,u). The weak uniformcontin-

uity is verified by differentiating the equation Wi th respect to t.
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The result is the follow ng:

Theorem 6. 3. Let a _be _strongly positive in R} and a(oo) be

positive. Suppose (F) _and (6.4) _hold. _If wu _isa solution of

(6.2) then Lu(*,t) tends weakly to a(oo)-¥{x,oo).

Remark 6. 2. The concl usi on of Theorem 6.3 and standard enbeddi ng

theorens can be used to show that the hypotheses of Theorem 6.3

i nply that
u.,t)-eC in EE, (6.6)

wher e X is the unique generalized solution of Lu = a(oo)-lF(xLoo).
The argunent is the same as that in [8]. This is an anal og of
Corollary (3.1).

The sl owfl ow approxi mati ons appropriate to (6.2) have the
form

Ut (X, t) = -a(oo)Lu(x,t) - rug(x,t) + F(x,t). (6.7)

W require these to be linear also which neans F is a fixed lin-
ear operator with domain flf; We choose for F another elliptic
operator of the same formas L and also satisfying Gdrding's in-
equality in the form

(M, u) ~ 5[d|~ | (6.8)

Then (F) is satisfied as is condition (1) of Remark (5.1). Once
again the weak stability can be established by differentiating the

equati on and one obtains the follow ng result.
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Theor em 6. 4. Let a be strongly positive in R and a(oo) be

—_—

positive. Suppose (F), (6.4) and (6.8) hold. If wu 1is a solution

of (6.7) then Lu(e,t) _tends weakly to a(oo)"lF(x,oo). (Remark 6.2

agai n hol ds).

(O ANonlinear Partial Differential Functional Equation.

Consi der the equati on,

Uret (X, 1) = a(0)-"- a(ux(x,t)) +J &(t-r)-"- a(u(x, T))dr + F(x,t),

0
(6.9)

with u(Ot) = u(lst) = 0. This equation arises in the next sec-
tion in an elasticity context. The results of [8] are easily nodi-

fied to yield the followng result: Suppose (F) is satisfied and
a is strongly positive in R . Assume that CJ satisfies the con-

ditions,
(i) a(o) =0, a (?) »"m> 0,
(i) la(8)] £nm ?| +K 5" 0<r < 2

Suppose u is a solution of (6.9) such that for any T €®°[OI],

!
JI CJ(KU (x,t)jn (x)dx is uniformy continuous in [0,00) . (6.10)
o X

Then -Q- Nux> tends weakly to a(oo)~lF(x,oo) as t->00.

W are not able to verify condition (6.10) hence the result for
(6.9) remains a conditional one. W note that the quasi -static ap-
proximation is conpletely trivial. One determ nes -fx—a(u}? by sol -

ving a linear Volterra equation and then solves a sinple two-point

boundary-val ue probl emfor u.
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We can al so handl e certain slowflow approximations. The

si nmpl est one is,

o)
u,, =afo)z o(w) +Tu . + F(x,t), (6.11)
u(Ot) =u(l,t), where T is apositive constant. This is an in-
honogeneous version of the equation treated in [3]. By nodifying

t he techni ques there one can showthat if (F) holds and (i) and
(ii) hold for a then (6.11) has a unique classical solution for
any u(x,O), %:(X,O) whi ch are sufficiently snooth and that any

such solution satisfies,

lim-27 a(ux(x,t)) = a(00) *F(x, 00) | (6.12)
t-»o00
poi ntwi se.

Alittle nore conplicated version of (6.11), which arises in

section 7 is the equation,

_ 2 -
utt = a{o) 3% U{ux) + S (I“(ux)uxt) + F, (6.13)
u(Ot) =u(l,t) = 0. The honbgeneous version of this equation is

treated in [7]. Again a nodification of the techniques yields the
same results as for (6.11) provided that T satisfies the condi-

tion,

OKMET(E) <M< .
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7. Materials with Menory,

We consider situations in elasticity in which stress and strain
can be described by scalar functions s and u, respectively, of
time. The theory of materials with nenory nakes the assunption

that s and u are related by the constitutive |aw,
s(t) = "(u*), (7.1)

where u' denotes the history of wu, that is, u ?r) = u(t-T) ,
re[0,00) and 3 is a functional. One obtains various theories
by specifying Banach function spaces B in which the histories
are to lie and then demanding that 3 be cohtinuous.

One class of history spaces which has been extensively stud-
ied [1] is that obtained by letting B consist of all neasurable
functions <p on [0,00) wth,

»00

[l = \<p(O)\ + (] k(r)|<p(r)|pdrf’p<00- (7.2)
0
In (7.2) k is a positive integrable function. The ++near func-

tionals on such a B are easily described. They have the form,

3cp) = a(O<p(Q + J &(T)<p(T)dT, (7.3)
0
wher e

a(0) > 0; a(t) = kY/PK(T), KeLY with p"! +qg"!=1. (7.4

A related class of nonlinear functionals is obtained by letting,

This is.one formof |inear viscoelasticity.
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.00
F(p) = a(0)a(cp(0)) +J a(Ta(<p(T))dT. (7.9)

0
It is known that functionals of the form (7.5 w | be continuous
and bounded on spaces B, with the nornms (7.2), provided that

g(5) is continuous and that the integral in (7.5 is defined on al

of B ([6]). It follows fromHolder's inequality that the inte-
gral will exist if (7.4) is satisfied and g satisfies,
1%(5) I <LM?|", r<p for large \<p\ . (7.6)

We consider the notion of a unit nmass on a filanent in which
stress and strain are related by a functional of the form (7.5).
We assume there is an applied force F(t). This yields the func-

tional differential equation

oo
u(t) =-s(t) =-a(Oa(u(t)) - J a(r)a(u(t-T))dT + P(t) . (7.7)
0

An appropriate problemfor (7.7) would include the specification

o
of the initial history of u, that is u (T) =u(-T), as an el enent
of B. W specialize to the case where the filanent is initially

at rest, that is u(T) =0 Te(-00,0 . Then equation (7.7) assunes

1
the form (3.1) on # =R, that is,

t
u(t) =-a(Oa(u(t)) - J A(t-r)a(u(r))dr + F(t) . (7.8)
0

Anot her probl emwhi ch can be described within the sanme general
framework is that of one-dinensional elastic notion of a bar. | f
u(x,t) is displacenent at time t of a section which in the equili-

briumconfiguration is at position x, then the strain is given by
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u (x,t). If we assune that stress and strain are related in the
sane way as above and that the bar is at rest up totime t =0

and cl anped at the ends, we obtain the problem (utt: divd + F) *

tt

a = a(o)-A" a<uX> + J]tfi(t_r)n,\-l- o(uX)IdT t F(x>t}> (79
7 o iy

u(gt) =u(l,t) =0, where F is the applied force. Note that

this is equation (6.9).

The quasi-static approximation in elasticity consists of drop-
ping the tine derivatives in (7.8 and (7.9). Qur theorens give
an indication of the validity of this procedure. The idea for the
sl owfl ow approxi mati on arises as follows. Coleman and Noll [2]
di scussed the possibility of expanding the functional <'5 in (7.1)
in a Taylor series. The first two terns of the expansion are ob-
tained as follows. W expand u(t-T) in a Taylor series and keep
two terns; that is we wite

fc

uf® « u(t)xx - U(t)Xo, (7.10)

ere Vv 9 en | as a recne erivative
wh 1 () 1% X(T) =™ Then if 3 h Frechef derivati

we will have,

SAUS = 3(u(t)x) - G(t)83(u(t)xlxz> + 0(]U(t)Xll). (7.11)

Now " (u(t)x.,) aMnd 6'(u(t)\kl|x9) ™nPe functions of u(t) , which
we denote by Mu(t)) and N(u(t)) respectively. Thus if we keep
only the first two terns on the right side of (7.11) we have, approx--

i mately,
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c(t) =Mu(t)) + N(u(t))u(t) . (7.12)
If we substitute this approximation into the functional equation,
u(t) =-a(t) =-~(uS
we obtain the differential equation,
U(t) =-Mu(t)) - NCu(t))a(t). (7.13)

The above procedure when applied to the functional (7.5) is

easily seen to lead to the approxi mation,

t - ree. . .
3(u) ~a(Oa(u(t)) +J [a(T)a(u(t)) - a(T)Ta" (u(t) )u(t) 1dT

0 .
where = a(cO)CT(u(t)) + T(u(t))u(t) (7.14)
T(u(t) = -(i, &MTdNac (u(t)). (7. 15)
0}

Thus we are led to the slowflow approxi mations,

U(t) = -a(co)a(u(t)) + r(u(t))u(t) + F(t) , (7.16)
and

ur = a(00)*~a(u) +-- r(u)du . + P (7.17)

tt v dx Y x dx Y x xt

for (7.8) and (7.9) respectively. Qur work also gives sone indi-
cation of the validity of these equations. In particular it shows

that we may expect correct limting values from (7.17) if we replace
F(ux) by a positive constant. This corresponds to the viscous danp-

ing inwhat is called a Kelvin materi al .
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