T-ORTHOGONALITY AND NONLINEAR FUNCTIONALS ON TOPOLOGICAL VECTOR SPACES

by

K. Sundaresan and O. P. Kapoor *

Report 71-42

August, 1971

The research work of the author was in part supported by a Scaife Faculty Grant administered by Carnegie-Mellon University.

** U. S. Aid participant at Carnegie-Melion University while on study leave from I.I.T. Kanpur (India).

17, 63

<u>T-Orthogonality</u> and <u>Nonlinear</u> <u>Functionals</u> <u>on Topological Vector</u> <u>Spaces</u>

K. Sundaresan and O. P. Kapoor

In recent years the problem of concretely representing a class of nonlinear functionals on Banach spaces has received considerable attention. Suppose B is a Banach space equipped with an orthogonality relation i c B x B. Denoting $(x,y) \in i$ by x i y, a real valued function F on B is said to be orthogonally additive if x x y implies F(x+y) = F(x) + F(y). For example when B is a vector lattice^a natural orthogonality relation is the lattice theoretic one: $x \pm y$ if |x| = 0. •the problem of representing orthogonally additive functions on normed vector lattices of measurable functions has been dealt in Drewnowskii and Orlicz [1], Mizel and Sundaresan [2], Friedman and Katz [4], Koshi [5], and several others. If B is the Hilbert space $L_{\sim}[0,1]$ with the usual concept of orthogonality i.e. $x \pm 2Y$ if trie inner product (x,y) = 0* the problem of representing orthogonally additive functionals has been considered by Pinsker [3]. If B is an arbitrary Banach space there are several orthogonality relations which are generalisations of the usual concept of orthogonality when B is a Hilbert space. One such concept of considerable geometric and analytic interest is the following. Let (B, || ||) be a Banach space. If x,yeB, x x^ y if $||x+Ay|| ^ ||x||$

[•]The research work of the author was in part supported by a Scaife Faculty Grant administered by Carnegie-Melion University.

for all real values of A. Thre problem of representing orthogonally additive functionals on B with respect to the relation JL^ has been dealt in Sundaresan [7].

None of the preceding concepts of orthogonality extend to arbitrary topological vector spaces. We introduce here a useful orthogonality concept in an arbitrary topological vector space. Let E be an Hausdorff topological vector space and $T:E \rightarrow E$, where E is the dual of E, be a linear mapping. If x,yeE, then x is T-orthogonal to y if Tx(y), denoted by, (Tx,y) = 0. In the present paper the problem of characterizing T-orthogonally additive functionals on a topological vector space is dealt.

In the next section we recall briefly the basic terminology and establish few results useful in the subsequent discussion. In section 3 we discuss T-orthogonally additive functionals when T-orthogonality is not symmetric. In section 4 we consider the same problem when T-orthogonality is symmetric.

2. Throughout the paper E is a Hausdorff Topological vector space on the real field R_o E is the vector space of continuous linear functionals on E. To avoid trivialities we always assume that dim E ^ 2. If $T : E \longrightarrow E$ is a linear mapping and $x,y \in E$, then x is T-orthogonal to y or briefly x x y, when T is understood, if (Tx,y) = 0. T-orthogonality is said to be symmetric, if (Tx,y) = o implies $(Ty,x) = O_o$ A vector X is said to be T-isotropic or simply isotropic

if (TXjX) = 0, *Tfhe* operator T is said to be symmetric if (Tx,y) = (Ty,x) for all x,yeE. If x,y,z,... are vectors in E, the span of x,y,z,... is denoted by [x,y,z,...].

We conclude this section with a few useful lemmas.

У.

Lemma 1. If $T : E^{+}E$ is a linear mapping such that T-orthogonality is symmetric and if there is a nonisotropic vector⁹ then T is symmetric.

Proof. Let y,zeE. Suppose (Ty,z) f (Tz,y). Since the relation x is symmetric $(Ty_5z) ^ 0 ^ (Tz,y)$. If y Xy it is verified that there is a real number $a ^ 0_9$ such that y i y + az. Hence y + az x y. Thus a(Tz,y) = -(Ty,y) = a(Ty,z). Hence (Ty,z) = (Tz,y). If $z \setminus z$ it is verified similarly that $(Ty,z) = (Tz,y) \cdot$ Let now y J. y and z x z. Let x be a vector such that $x \setminus x$. The preceding observation shows that (Tx,p) = (Tp,x) for all peE. Further since $x \setminus x$ either x + y or x - y is not isotropic. Hence (T(x+y),z) = (Tz,(x+y)) or (T(x-y),z) = (Tz,(x-y)). Thus (Ty,z) = (Tz,y) and T is a symmetric mapping.

Lemma 2. If $T : E \rightarrow E$ is a linear mapping and if the rank of T is an odd integer, then there is at least one non-isotropic vector.

Proof. Suppose every vector is isotropic.

The hypothesis of the lemma implies there exists a (2K+1)-dimensional subspace E^{2K+1} of E, for some positive integer K, such that $T(E^{2K+1})$ is also (2K+1)-dimensional. Thus if T_{1} is the restriction of T to $E^{2K+1} > {}^{T}i$ roight be considered as a linear isomorphism on E^{2K+1} to E^{2K-1} such that the innerproduct $(T_{1}x,x) = 0$ for all xeE^{2K+1} . Thus there exists continuous nonvanishing tengential vector field on the sphere in E^{2K+1} , contradicting Poincar[^] -Brouwer theorem, Dugundji [t].

Lemma 3. If T : E - *E is a 1-dimensional linear mapping then the following two statements are equivalent.

- (1) T-orthogonality is symmetric₄
- (2) There is a nonisotropic vector x such that x J-y implies Ty = 0.

Proof. Let $x \setminus x$. Let $yeTx \stackrel{1}{} (0)$. Then (1) implies y a. x. Since T is 1-dimensional and $Tx \land 0$, Tye [Tx]. Let Ty = ATx. Then since $y \pm x$ it is verified that either, A = 0 or (Tx,x) = 0. Since $x X x_5 A = 0$. Hence Ty = 0. Thus (1) implies (2). Conversely suppose (2) holds and $X \in E$ such that x i y implies Ty = 0. Since Tx / 0, $Tx \stackrel{1}{=} (0)$ is a subspace of codimension 1. Thus each fee determines uniquely a real number ?\ and a vector h, x J. h, such that f = Ax + h. Thus if $f_1 = A_1 x + h_1$, i = 1, 2, then $f_1 \pm f_2$ if and only if $\stackrel{i}{=} \stackrel{2}{=} \stackrel{\circ}{=}$ since $Th \cdot _1 = 0$. Hence JL is symmetric. Remark 1. From the proof of the preceding lemma it is clear that (2) could as well be replaced by "for every nonisotropic vector x, x i y implies Ty = 0".

Let T : E - E be a linear mapping such that i is not 3. symmetric. Let the rank of T = 1. Then from lemma 2 it is inferred that there is a nonisotropic vector. Let x be one such vector. Let $M = Tx^{-1}(0)$. If y,zeM then since Tx^{-0} and rank T = 1, Ty, Tze[Tx]. Since (Tx, z) =0 it is verified that y j. z. In particular for all yeM, y x y. Now if F is a continuous T-orthogonally additive functional on E then the preceding observation implies that F is homogeneous and additive on M. Thus F|M is a continuous linear functional on M. Since i is not symmetric it is inferred from lemma 3 that there is a vector yeM such that Ty ^ 0. Since M is a subspace and TyG[Tx] we can as well assume that Ty = Tx. •Thus x - y i x. Hence if $F(? \setminus x) = cp(A)$ then since $\sim h(x-y) x \setminus ix$ for all pairs of real numbers A,u it is verified from the orthogonal additivity of F and linearity of F on M that $cp(A+^) = cp(A) + cp(fi)$. Since F is a continuous function, $cp : R \rightarrow R$ is a continuous additive function. Thus cp is linear. Now if $\pounds GE$ and $\pounds = Ax + y$, yeM, then F(Ax+y) = cp(A) + F(y). Since cp is linear on R it follows that FGE . Since every linear functional on E is orthogonally additive it is proved

that under the above hypothesis on T that a continuous function F : E - R is T-orthogonally additive if and only if $F \in E$.

Next we proceed to the case when rank T > 1. First we deal the case of dim E = 2 or 3.

Proposition 1. If dim E = 2 or 3 and if T : E - *E is a linear mapping such that rank T > 1 and T-orthogonality is not symmetric then every continuous orthogonally additive functional on E is linear.

Proof. Let dim E = 2. Suppose that $e_{\overline{I}}, e_2eE$ such that $e_{\underline{I}} \ 1 \ e_{\underline{2}}$ but $e_{\underline{2}} \ e_{\underline{1}}$. Thus $e_{\overline{I}}, e_{\underline{2}}$ are linearly independent* Since the rank T = 2, $Te_{\overline{I}} / 0$. Hence $(Te^{}, e_{2}) = 0$ implies that $(Te_{\underline{I}}je_{\underline{1}}) \ 0$. Thus there is a real number a / 0 such that $ae_{\underline{I}} + e^{A} \ I e_{\underline{I}}^{-}$. Hence if A,u are two real numbers then A($ae_{1}+e_{2}$) i lie^A Hence $F(Aae_{x} + Ae_{2} + lie^{A} = F(A(ae_{1}+e_{2})) + F(|ie_{1})$. Since $e_{\underline{I}} + e_{2}$, $F((I|BL+|i)e_{1}+i|e_{2}) = F^{A}a+t-Oe^{A} + F(Ae_{2})$. Thus $P((>.a+|i)e_{1}) + F(Ae_{2}) = F(A(ae_{1}+e_{2})) + FC^{*}e_{\underline{I}}$. Hence F is additive on $[e_{\underline{I}}]$. Since F is continuous F is homogenous on $[e^{A}]$. Further noting that $ae_{\underline{I}} + e_{2} \times e_{\underline{I}} + e_{\underline{I}} \ Ae_{\underline{I}} + e_{2}$ it is verified as above that F is homogenous on $ae_{\underline{I}} + e_{\underline{I}}$. Since $ae_{\underline{I}} + e_{2}$ i $e_{\underline{I}}$, the T-orthogonal additivity of F at once implies that F is linear.

Next we proceed to the case when dim E = 3. Let the rank T = 2 and $e_1^{e_1}e_E^{e_2}$ such that $e_1 i$. $e_2^{e_2}$ and $e_2^{e_2} \setminus e_1^{e_1}$. If $(Te^{-e_1}) \wedge 0$ or $(Te_2, e_2) / 0 y$ then as in the preceding case it is verified that F is linear on $[e_1^{e_1}e_1^{e_1}] = 0$ and $(Te_2, e_2) = 0$; then F is homogeneous on $[e_1]$ and $[e_{\gamma}]$ • Since $e_1^* \ge e_2$ is linear on the subspace $[e_{\gamma}, e_p]$. Thus in either case F is linear on $f^{e_1^{e_2^{\bullet}}} \cdot {}^{N \circ W} \cdot {}^{f}$ Te[^], Te² are linearly independent then since the rank T = 2 there exists a vector $e_3^{(e_1,e_2)}$ such that $Te_3 = 0$. Since $e_3 \ge e_3$ F is homogenous on [e₃]. Further since e_3 JL [e₁, e_2] and F is linear on [e^e^ it is verified that F is a linear functional. If Te_1, Te_2 are linearly dependent then either $Te_1 = 0$ or $Te_1 = {}^{ATe_2} > ^ / 0$. Since ($Te^e_.^ ^ 0$ there is a vector $x \in [e_1, e_2]$ such that $e_2 J \perp X$. Thus if $Te^{**} = 0$ then e, x x. If $x \setminus e_{j}$ or x X e_{1} then as in the case of dim E = 2 it is verified that F is homogenous in [x]. Since $[e_{-},e_2] \ge x \ge F$ is a linear functional. If $\ge JL = e_2$ and $x \times e_{\mathbf{i}}$, then, since $e_2 \times e_{\mathbf{i}}$, $x + e_2 + e_2$. However since el x e2' el x x + e2^m Once a 9^{ain F} is verified to be homogenous on $[x+e_2]$. Since $x \ x \ e_2$ and F is homogenous on $[e_2]$ it is verified that F is homogenous on [x]. Thus F is linear. Next suppose Te, 0 . Then since Te, = ATe₂ for some A ^ 0, and $e_2 X e_1$ there is a vector $x^{[e_5e_2]}$ such $[e_1, e_2]$ x x. If x X $[e_1, e_2]$ then once again F is that homogenous on [x] and F is a linear functional. If $x \propto [e^{,e_2}]$ since the rank T = 2, (Tx,x) ^ 0. Further since Te[^] / 0, and $e_{1} \times [x, e_{2}]$ it follows that $(Te^{e_{1}}) / 0$. Since $e_{1} \times x$, $x x e_1$ and (Te_1, e_1) ^ 0 ^ (Tx, x) it is verified that (*) there is a real number a ^ 0, such that $x + ae_x x x + ae_y$ or $x + ae_1 x x - ae_1$. In the case of the first alternative, F is homogenous on $[x+ae_{f}]$. Then since $x \ x \ e_{1}$ and F is homogenous

14.14

Next suppose dim E = 3, and rank T = 3. Since Torthogonality is not symmetric there exist linearly independent vectors $e_1 > e_0$ such that $e_1 JL e_2$ and $e_2 X e_1$. Thus as in the case of dim E = 2 it is verified that F is linear on $[e^{*}, e_{2}]$. Suppose there is a vector $e_{3}^{*}[e_{15}e_{2}]$ such that e3 x , e1'e2", f e1 ^e3 or e2 " ^e3 tlien F ^s homogenous on $[e_{\tilde{3}}]$ and F is a linear functional. Next let e, I e^{*} and e_2 JL e_3 or equivalently $[e^{e_1}, e_2]$ J- e^{e_3} . Since e_3 I $[e_1^*, e_2]$ $e_3^{[e_1,e_2]}$ and rank T = 3, $(Te_3,e_3) / 0$. Similarly since el x e 2 ^ el x e 3 ^t ^s ver ^ f i e d that (Te^^^e,) _1 0. Thus since $e_1 \times e_3$, $e_3 \times e_1$, there is a nonzero real number a such that either $ae_1 + e_3 \times ae_1 + e_3$ or $e_3 + ae_1 \times e_3 - ae_1$. Thus as in the case of (*) in the preceding paragraph it follows that F is homogenous on $[e_3]$. Hence F is a linear functional. Next suppose there is no vector $e_3^{[e_1,e_2]}$ such that $e_3 \times [e_1, e_2]$. Since rank T = 3, there is a vector $x \neq 0$ such that $x \times [e_1, e_2]$ and $x^{[e_1]}$. Since such a vector

 $X \in [e^{*}, e_{2}]$ there are real numbers a,b,b / 0 such that $ae_1 + be_2 x e_2$, and ae_1 , $+ be_2 x e_1$. Thus since $e_j x e_2$? and $e_2 \setminus e_1$ it is verified that $(Te_2, e_2) = 0 = (Te^e^.$ Hence we are in the case e. x e^ e_2 x e_2, e_1 x e_2 and e_2 \setminus e^. Since $e_{\pm} \propto [e^e^J]$, and Te_x, Te_2 axe linearly independent there is a vector $e_3^{e_1^e_2}$ such that $o_2^{xe_3^{\#}}$ Identifying linear functionals f on E with points in E by the mapping f < -> f f(e.)e. it is verified that there are real numbers a_3, b_1, c_1, c_2, f and c_3 such that $Te_1 = a_3e_3, Te_2 = b_1e_1$ $Te_3 = Sc_1e_1$. Since the rank T = 3, a_3 , b_1 , c_3 , c_2 are nonzero i=1 real numbers. Thus e^ X e^ while e^ x e^. Hence F is homogenous on $[e_3]$. Further it is verified that $e_3 \ge c_2e_3 - c_3e_2$ and $^{\circ}o_{a}^{e}3 = ^{\circ}3^{e}9^{*}3^{*}$ Hence F is linear on $t^{e}3^{*}2^{e}3 = ^{'}3^{e}2^{-'}$ Now since $e_{\circ} \propto [e_{\circ}, c_{\circ}e_{\circ} - c^{*}e_{\circ}]$ and F is homogenous on $[e_{\circ}]$ it follows that F is linear on E. •

Next we proceed to the main theorem of this section.

<u>Theorem 1</u>. Let E be a real Hausdorff topological vector space and $T : E \to E^*$ be a linear mapping such that the T-orthogonality is not symmetric. Then every continuous orthogonally additive functional on E is linear.

Proof. In view of the introductory comments in this section we may assume that rank T ^ 2. Since the range of T is of dimension at least 2, and orthogonality is not symmetric we claim that there exist two vectors e_1, e_2eE such that $e_1 \propto e_2$,

 e_{γ} X e_{1} and $-Te_{1}$, Tep are linearly independent. For let x, y be two vectors such that x i y, and y \setminus x. If Tx,Ty are linearly dependent let peE be such that Tp,Ty are linearly independent. If $y \setminus p$ then since $y \setminus x$ there exists a real number a such that y JL p + ax. If p + axiy then since x x y, p i y. Thus y X p and p i y and Tp, Ty are linearly independent. Next if $p + ax \setminus y$, then p + ax, yare vectors of the required type. If y x p, then if $p \setminus y$, p,y have the desired properties. If $p \pm y$ then $p + x \neq y$ and p 4- x,y have the desired properties. Thus there exist vectors ^e-)*^e? ^{as c}l^ai^{raed}- ^{Let now xeE} ~ f^ei^{*}9-'[#] Consider the linear mapping $T | [x_5e_1,e_2]=0^{-1}$. Then applying proposition 1 to T_1 and the function F it follows $F \mid [x, e_1, e_2]$ is linear. Tliis also implies in particular that F is linear on [x] for all xeE. Next let x,y be two linearly independent vectors, ^X*Y^t^ei *^e?]• If x JL y(yJ-x) F is verified to be linear on [x,y] from the preceding observation. Next if $x \setminus y$ and $y \setminus x$, then if $(Tx,x) \land 0$ or $(Ty,y) \land 0$ it is possible to find a real number a such that $x \times x + ay$ or $y \times y + ax$, Then in either case as before F is linear on the span of $[x_3y]$. (Tx,x) = 0 = (Ty,y), then since (Tx,y) / 0 / (Ty,x)Ιf it is verified that there is a real number a such that x + ay x y + x, once again verifying F is linear on [x,y]. Thus in any case F is linear on [x,y]. Hence F is a linear functional.

4. We discuss here the case when the T-orthogonality is symmetric. We note that if $F : E \to R$ is orthogonally additive then the even and odd parts ${}^{F}i > {}^{F}2$ of F are also orthogonally additive. This is verified from the equations F - x = -j F(x) + F(-x) and $F_2(x) = L[F(X) - F(-X)]$.

As in the preceding sections we assume that dim E ≥ 2 . Further we note that if dim T = 1 then as observed in lemma 2 there is a xeE such that $(Tx,x) \wedge 0$. Now as in the case when T-orthogonality is not symmetric, dim T = 1 (see first paragraph in section 3) it is verified that if F is a orthogonally additive functional on E and M = Tx" 1(0) then F|M is linear. Since E = M © [x] it is verified that F determines a unique continuous function cp : R->R, cp (0) =0 such that F(Ax+y) = cp (A) + I(y) if yeM and F|M = I. Conversely if *IeE* and cp : R-^R is a continuous function, cp(0) =0, then the function F : E-^R defined by F(f) = cp (A) + t(y), if f = Ax + y, yeM, determines a continuous orthogonally additive function. The preceding fact is verified by noting that for y,ZGM, Ax + y JL XK + z if and only if AjJ, = 0 since orthogonality is symmetric and $y \neq z$.

We proceed to discuss the case when rank T ^ 2.

Proposition 2. Let dim E = 2. If $T : E \rightarrow E^*$ is a linear mapping, rank T = 2, and if T-orthogonality is symmetric, then a continuous function $F : E \rightarrow R$ is even and orthogonally additive if and only if F(X) = c(Tx, x) for some real number c. Proof. If (Tx,x) = 0 for all $X \in E$, then since F is even orthogonally additive functional it follows that F(x) = F(-x), and F(x) + F(-x) = F(0) = 0. Thus F(x) = 0 for all $x \in E$.

Next if for some x $(Tx,x) ^ 0$, then from lemma 1 it is inferred that T is a symmetric mapping. Let e. be a vector such that $e^{} \setminus e^{}$ Then there is a vector e_2 , $e_2M^e]_]$ such that e, i e_2. Since T is of rank 2, Te_2 / 0« Thus e_2 J- e_1 , implies $\mathsf{e}_2 \, \setminus \, \mathsf{e}_2$. Hence we can assume that there are real numbers a ^ 0 / h, such that $Te_1 = ae-j^{-1}$ and $Te_2 = be_2$. We can assume without loss of generality that a > 0. It is verified that "i"i + "o"2 + "l"l + "2"2 "*" and on Y "f axlyl + bx2Y2 = • * Now if b > • tl:ien there are vectors $x,y,x \in [e^{,ye}[e_2]]$ such that (Tx,x) = 1 = (Ty,y). If b < 0then there are vectors x,y,as above such that (Tx,x) = 1 = -(Ty,y). For such a pair x,y, for all real numbers K, K(x+y) I K(x-y)or K(x+y) - L K(x+y) according as b > 0 or b < 0. Since F is even and Kx ± Ky, it is verified from the orthogonal additivity of F that F(Kx) = F(Ky) or F(Kx) = -F(Ky). Now it is verified that there is a real number c such that for all K, F(Kz) = c(TKz,Kz) where z = x or z = y, noting that F(Kx) = F(Ky) and F(Kx) = -F(Ky) according as (Tx,x) = (Ty,y) or $(Tx,x) = -(Ty^{y})$. Let now 4 be an arbitrary vector in E. Let f = Ax + |iy|. Then from the orthogonal additivity of F it follows that

 $F(Ax+|-iy) = F(Ax) + F(f-iy) = c(TAx, Ax) + c(T\mu y, \mu y)$ $= c(T(Ax+|jy), \lambda x+\mu y).$

Hence $F(f) = c(T\xi,\xi)$.

<u>Theorem 2</u>. Let dim E ^ 2 and T : $E \rightarrow E$ be a linear mapping such that rank T ^> 2. If T-orthogonality is symmetric^then a continuous real valued function F on E is even and orthogonally additive only if there is a real number c such that for all $\xi \in E$,

$$F(\xi) = c(T\xi,\xi).$$

Proof. If (Tx,x) = 0 for all xeE ^then since $x \pm x$ for all x, F is linear on [x]. Since F is also even F(x) = 0 for all xeE and it follows that F(x) = c(Tx,x) for all x, where c is an arbitrary real number.

Next let x be a vector such that $(Tx,x) \uparrow 0$. Let F be a continuous orthogonally additive function. Let $M = Tx^{-1}(0)$. There exists a yeM such that (Ty,y) / 0. For let every vector in M be isotropic. Since the rank $T \uparrow 2$ there is a vector peM such that $Tp\&jTx] \bullet$ Thus there exists a zeM such that p X z. Now p + zeM. Since p + zip + z, (Tp,z) + (Tz,p) = 0, since every vector in M is isotropic. Since the mapping T is symmetric the preceding equation implies p i z contradicting the choice of z. Thus there is a vector yeM with $(Ty,y) \uparrow 0$. Let $T,_{1} = T | [x,y]$. Since $(Ty,y) \uparrow 0$ and (Tx,y) = 0, $T_{1}y,T_{1}x$ are linearly independent and the rank $T_{1} = 2$. Noting that T-orthogonality coincides with T^{-} orthogonality on the plane [x,y] it follows from the preceding

> HUNT LIBRARY CARNEGIE-MELLON UNIVERSITY

proposition that F(f) = c(Tf, f) for all $fet^x > y$ where c 2

is independent of f. In particular F(Kx) = K F(x) for all K ^ 0. Let now zeE. Let $z = Ax + r \setminus where x JL r \setminus$ and A is a real number. Then

$$F(z) = F(AX+TJ) = F(Ax) + F(7?) = A^2F(x) + F(77)$$
.

If (TTJ,TJ) = 0 then F(?7) = 0. If (TTJJT) ^ 0 from the preceding it follows that F(?7) = c(Trj,rj) where c is such that F(x) = c(Tx,x). Thus

$$F(z) = A^2F(x) + c(T77,T?) = c(T(Ax+rj), \lambda x+\eta)$$
.

This completes the proof of the theorem

Next we proceed to the case when T-orthogonality is symmetric and F is an odd functional. In this case if $x \pm x$, then F is linear on [x]. Thus, if (Tx,x) = 0 for all x, we expect F to be a linear functional. However we provide an example to show that this need not be the case when every vector x in E is isotropic and rank T = 2.

<u>Theorem 3</u>. Let $T : E \sim E$ be a linear mapping such that Torthogonality is symmetric and rank $T \geq 2$. Then every odd continuous T-orthogonally additive real valued function on E is linear, if there is at least one nonisotropic vector.

Proof. Since there is a nonisotropic vector and T-orthogonality

is symmetric, the linear mapping T is symmetric. Further we note that since F is an odd orthogonally additive function, is linear on [x] if x is isotropic. We proceed to F verify that F is linear on [x] even if x is nonisotropic. As already noted in the second paragraph of the proof of the preceding theorem there is a vector $y \ge x \ge x$ such that $(Ty, y) ^0$. We may even assume that (Ty,y) = if(Tx,x). if (Ty,y) = (Tx,x)then since x x y, K(x+y) JL K(x-y) for all real numbers K. Thus noting that F is an odd function it is verified that F(2Kx) = 2F(Kx) and F(2Ky) = 2F(Ky). Further since for any real number m, $m(x+y) \propto (x-y)$ it is verified that F((m+1)x) + F((m-1)y) = F(mx) + F(x) + F(xny) - F(y). Now by straightforward induction it is verified that for integers m, F(mx) = mF(x) and F(my) = mF(y). Since x,y could be replaced by rx,ry, r a real number, F(mrx) = mF(rx) for all real numbers r and integers m. Hence for rationals $rac{\mathtt{m}}{\mathtt{n}}$ we have $F(\tilde{\mathbf{m}}_{\mathbf{n}}^{\mathbf{m}} \mathbf{x}) = \frac{\mathbf{m}}{\mathbf{n}}F(\mathbf{x})$. Since F is continuous F is linear [x]. If (Tx,x) = -(Ty,y), since xxy, x+y, x-yon are isotropic vectors. Thus for any real number A, F(Mx+y)) = MF(x)+F(y) and F(A(x-y)) = A[F(x)-F(y)]. Hence F(Ax) + F(Ay) = A(F(x) + F(y)) and F(Ax) - F(Ay) = A[F(x) - F(y)]. Thus F(Ax) = AF(x). Hence F is linear on all 1-dimensional subspaces of E.

We proceed to show that F is indeed linear on E. Since F is linear on each line in E and orthogonally additive it is enough to show that in any two dimensional subspace⁷ [x,y] there are two linearly independent orghogonal vectors. Let x_iy be two linearly independent vectors. If x x y we have two

orthogonal vectors in [x,y]. If $x \downarrow y$, but $(Tx,x) \neq 0$ ((Ty,y) $\neq 0$) the pair x, x + ay(y,y+ax) where

a = $-\frac{(Tx,x)}{(Tx,y)}$ $\left(a = -\frac{(Ty,y)}{(Tx,y)}\right)$ is verified to be a pair of the required type in the subspace [x,y]. If (Tx,x) = 0 = (Ty,y) then the pair x + y, x - y is one such since T is symmetric. This completes the proof of linearity of F. Thus $F \in E^*$.

Before proceeding to the case when every vector is Tisotropic let us recall that according to lemma 2 if the rank of T is an odd integer ≥ 3 then there is at least one nonisotropic vector. We start with a preliminary result dealing with the case when rank T = 4.

Proposition 3. If dim E = 4 and $T: E \rightarrow E^*$ is a symmetric linear isomorphism and if every vector is isotropic, then every odd orthogonally additive continuous real valued function on Eis linear.

Proof. Let $e_1 \in E \sim \{0\}$. Since $Te_1 \neq 0$, the subspace $M = Te_1^{-1}(0)$ is 3-dimensional. Let e_2 be a vector in $Te_1^{-1}(0)$ such that e_1, e_2 are linearly independent. Since Te_2 and Te_1 are linearly independent there is a vector e_3 such that $e_1 \perp e_3$ and $(Te_2, e_3) = 1$ and a vector e_4 such that $e_2 \perp e_4$ and $(Te_1, e_4) = 1$. It is verified that $\{e_1, e_2, e_3, e_4\}$ is a base for E and representing linear functionals f on E with vectors in E by the isomorphism $f \leftrightarrow (f(e_1), f(e_2), f(e_3), f(e_4))$ it is verified from the properties that every vector is isotropic and orthogonality is symmetric that

$$Te_1 = e_4$$
, $Te_2 = e_3$, $Te_3 = -e_2$ and $Te_4 = -e_1$.

Since for every $x \in E$, $x \perp x$ it follows that F is linear on [x] for every $x \in E$. Thus if $x \perp y$ then F is linear on the subspace [x,y]. Since $e_1 \perp [e_1, e_2, e_3]$, $e_2 \perp [e_1, e_2, e_4]$, $e_3 \perp [e_1, e_3, e_4]$, $e_4 \perp [e_2, e_3, e_4]$ and $[e_2, e_3] \perp [e_1, e_4]$ it is enough to verify that F is linear on the subspaces $[e_2, e_3]$ and $[e_1, e_4]$. Consider a typical vector, say $\lambda e_2 + \mu e_3$ in $[e_2, e_3]$. It is verified that $e_1 + \lambda e_2 \perp \mu e_3 - \lambda \mu e_4$ and $e_1 - \lambda \mu e_4 \perp \lambda e_2 + \mu e_3$. Thus

$$F(e_1 + \lambda e_2 + \mu e_3 - \lambda \mu e_4) = F(e_1 + \lambda e_2) + F(\mu e_3 - \lambda \mu e_4)$$

Since $e_1 \perp e_2$ and $e_3 \perp e_4$,

(1)
$$F(e_1 - \lambda \mu e_4) + F(\lambda e_2 + \mu e_3) = F(e_1) + F(\lambda e_2) + F(\mu e_3) - F(\lambda \mu e_4).$$

Once again since $e_1 + \lambda e_2 + \mu e_3 + \lambda e_2 + \lambda \mu e_4$ and $e_3 + e_1 - \lambda \mu e_4$ it follows that

$$F(e_1 + \mu e_3 - \lambda \mu e_4) = F(\mu e_3) + F(e_1 - \lambda \mu e_4)$$
$$= F(e_1 + \lambda e_2 + \mu e_3) - F(\lambda e_2 + \lambda \mu e_4)$$
$$= F(e_1) + F(\lambda e_2 + \mu e_3) - [F(\lambda e_2) + F(\lambda \mu e_4)]$$

Thus

(2)
$$F(e_1 - \lambda \mu e_4) - F(\lambda e_2 + \mu e_3) = F(e_1) - F(\lambda \mu e_4) - F(\lambda e_2) - F(\mu e_3)$$

From equations (1) and (2) and from the linearity of F on each line in E it follows that

$$F(\lambda e_2 + \mu e_3) = F(Ae_2) + F(|J.e_3) = AF(e_2) + |iF(e_3)$$
 and

 $\mathbf{F}(\mathbf{e}_1 - \lambda \boldsymbol{\mu} \mathbf{e}_4) = \mathbf{F}(\mathbf{e}_1) - \lambda \boldsymbol{\mu} \mathbf{F}(\mathbf{e}_4).$

Thus F is verified to be linear on the subspaces $[e_2,e_3]$ and $[e^e_4]$. Hence F is a linear functional on E.

<u>Theorem 4</u>. Let E be an arbitrary topological vector space and $T : E \rightarrow E$ be a linear mapping such that rank $T \sim 3$ and (Tx,x) = 0 for all xeE, and T-orthogonality is symmetric. If F is a continuous orthogonally additive functional on E, then F is linear.

Proof. Let e_{1} , e_{4} be an arbitrary pair of linearly independent vectors. If $e_{1} \ge e_{4}$ then since F is linear on [x] for each xeE, F is linear on the subspace $[e_{,1}*e_{4}]$. Next let $e_{\overline{1}} \ge e_{4}$. Since $e_{1} \ ^{e}4* \ e_{4}$ i e_{4} and $Te_{1} / 0 \ ^{T}e_{4}$ it is verified that $Te_{-}Te_{-}^{\circ}$ are linearly independent. Since $\ge x \ge x$ for all xeE and dim T 3 , it follows from the remarks preceding the proposition 3 that dim T 4 . Thus there exists a vector f, say $f = Ae_{4} + h$, where $heTe_{1}^{-1}(0)$ such that $T\xi \in [Te_{1} \ ^{T}e_{4}]$. Now let $h = Me_{1} + e_{2}$ where e_{2} i e_{1} . Then it is verified that $Te_{2} \ [Te^{n}, Te_{4}]$ and e^{n} JL e_{2} , $e_{4} \ge e_{2}$. Now let e_{-}° be a vector in $Te_{1}^{-1}(0) \ge Te_{4}^{-1}(0)$ that $e_2 \land e_3$. It is verified that $Te_3 \land [Te_1, Te_2, Te_4]$. Further it is verified that the rank of $T_1 = T | E^4$ is 4, where $E^4 = [e_1, e_2, e_3, e_4]$ and the T-orthogonality restricted to E^4 coincides with T_1 -orthogonality. Thus applying the preceding proposition, it is inferred that $F | E^4$ is linear. Hence F is linear on $[e_1, e_2]$ completing the proof of the theorem.

Before summarizing the results we discuss an example showing that preceding theorem cannot be improved.

Example. Consider $E = R^2$. Let $\{e_1, e_2\}$ be a base of E. Let T be the operator defined by $Te_1 = e_2$ and $Te_2 = -e_1$. Then it is verified that (Tx,x) = 0 for $x \in R^2$. Let $F : R^2 \rightarrow R$ defined by, $F(ae_1 + be_2) = (a^3 + b^3)^{1/3}$. It is verified that F is a continuous T-orthogonally additive odd functional on R^2 . Thus in the preceding theorem rank $T \ge 3$ cannot be replaced by rank $T \ge 2$.

Since every orthogonally additive functional F is the sum of an even and an odd orthogonally additive functional we can summarize the results of this section as follows.

<u>Theorem 5.</u> Let $T: E \longrightarrow E^*$ be a linear mapping such that dim $E \ge 2$. If T-orthogonality is symmetric and if there is at least one non-isotropic vector, then a continuous function $F: E \longrightarrow R$ is orthogonally additive only if there are a real number c and a functional $\ell \in E^*$ such that $F(x) = c(Tx,x) + \ell(x)$ for all $x \in E$. If T is as above except that every vector in E is isotropic^then if dim T ^ 3 every continuous orthogonally additive functional is linear.

In conclusion it might be remarked that if the quadratic form associated with the linear mapping T is not continuous on E, then c = 0 in Theorems 2 and 5.

<u>References</u>

- Drewnowski, and W. Orlicz, "On Representation of Orthogonally Additive Functionals", Bull. Acad. Polon. Sci. Ser. Math. Astronom. Phys., <u>17</u> (1969), 647-653.
- Mizel, V., and K. Sundaresan, "Representation of Vector Valued Nonlinear Functions", (To appear in Transactions of American Mathematical Society, 1971).
- 3. Pinsker, A. G., "Sur Une Functionelle Dans L-espace de Hilbert", Comples Rendus (Doklady) De l'Academie Des Sciences De l'URSS., XX (1938), 411-414.
- 4. Friedman, and M. Katz, "A Representation Theorem for Additive Functionals", Archive for Rational Mechanics and Analysis, 21 (1966), 49-57.
- 5. Koshi, S., "On Additive Functionals of Measureable Function Spaces", Math. J. of Okayama Univ. <u>13</u> (1968), 119-127.
- 6. Dugundji, J., <u>Topology</u>, Allyn and Bacon, 1966.
- Sundaresan, K., "Orthogonality and Nonlinear Functionals on Banach Spaces", R. R. 71-22 (1971), Department of The Proceedings Mathematics, Carnegie-Mellon University. (To afferr unthroccedings of The American Mathematical Society).

Department of Mathematics CARNEGIE-MELLON UNIVERSITY