8823'71

*

T- ORTHOGONALI TY AND NONLI NEAR
FUNCTI ONALS ON
TOPOLOG CAL VECTOR SPACES

by

K. Sundaresan and 0. P. Kapoor'*

Report 71-42

August, 1971

The research work of the author was in part supported by a
Scaife Faculty Grant adm ni stered by Carnegie-Mllon University..

*U. S. Ald participant at Carnegi e-Melion University while on
study leave froml.l.T. Kanpur (India).
- CS-

HUNT  LIBRARY
CARNEFIEAMELLCN  messiry



T-Orthogonality and Nonlinear Functional s
on Topol ogi cal Vector Spaces

K. Sundaresan and 0. P. Kapoor

In recent years the problem of concretely representing
a class of nonlinear functionals on Banach spaces has received
consi derable attention. Suppose B is a Banach space equi pped
with an orthogonality relation 1 ¢ B x B. Denoting (X,Y)E€i
by x i y, a real valued function F on B is said to be
orthogonally additive if x x vy inmplies F(x+y) = F(x) + F(y).
For exanple when B is a vector lattice®a natural orthogpnality
relation is the lattice theoretic one: X i.ly it x Ayl =
stfie probl em of representing orthogonally additive functions on
normed vector |attices of neasurable functions has been dealt
in Drewnowskii and Orlicz [lI],Mzel and Sundaresan [2], Friednan
and Katz [4], Koshi [5], and several others. |If B 1is
the Hil bert space L;[Ql] wi th the usual concept of ortho-
gonality i.e. X J_rgY if 'A'® jnner product (x,y) = O*}the
probl em of representing orthogonally additive functionals has
been consi dered by Pinsker [3]. If B is an arbitrary Banach
space there are several orthogonality relations which are
general i sations of the usual concept of orthogonality when B
is a Hilbert space. One such concept of considerable geonetric
and analytic interest is the followng. Let (B]|| |[|]) be a

Banach space. If x,yeB, x x’:y i< N IAH]

*The research work of the author was in part supported by a Scai
Faculty Grant adm nistered by Carnegie-Mlion University.
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for all real values of A  Tre problem
of representing orthogonally additive functionals on B wth
respect to the relation JUE has been deal t in Sundaresan [ 7] .

None of the preceding concepts of orthogonality extend |
to arbitrary topol ogi cal vector spaces. W introduce here a
useful orthogonality concept in an arbitrary topological vector
space. Let E be an Hausdorff topol ogical vector space and
T: E—E, where E is the dual of E, be a |inear mapping.

If x,yeE, then x 1is T-orthogonal to y if Tx(y) ,hb denoted
by, (Tx,y) = 0. 1In the present paper the problemof charac-
terizing T-orthogonally additive functionals on a topol ogical
vector space is dealt.

In the next section we recall briefly the basic term nol ogy
and establish few results useful in the subsequent discussion.
In section 3 we discuss T-orthogonally additive functionals
when T-orthogonality is not symmetric. In section 4 we con-

sider the sanme problemwhen T-orthogonality is symetric.

2. Throughout the paper E is a Hausdorff Topol ogi ca
vector space on the real field R, E is the vector space
of continuous linear functionals on E. To avoid trivialities
we al ways assune that dimE~ 2. If T: E—E is a linear
mappi ng and X, YEE, then x 1is T-orthogonal to y or briefly
X Xy, when T is understood, if (Tx,y) = 0. T-orthogonality.
is said to be symetric, if (Tx,y) = o inplies (Ty,x) = Q

A vector X is said to be T-isotropic or sinply isotropic




if (TXYX) =0 Tfhe operator T is said to be symetric
it (Tx,y) = (Ty,x) for all x,yeE If x,y,z,... are
vectors in E, the span of x,y,z,... is denoted by [X,y,z,...].

We conclude this section with a few useful | emms.

Y.

Lerma 1. If T: E—=XE is a |linear mappi ng such that
T-orthogonal ity is symetric and if there is a nonisotropic

vector’then T is symetric.

Proof. Let vy,zeE. Suppose (Ty,z) £ (Tz,y). Since the
relation x 1is symetric (Tysz) ~ 0" (Tz,y). If y Xy
it is verified that there is a real nunber a ” 09 such that
y i y+az. Hence y +az xy. Thus a(Tz,y) =-(Ty,y) = a(Ty,z).
Hence (Ty,z) = (Tz,y). If z \ z it is verified simlarly
that (Ty,z) = (Tz,y) » Let now y J. vy and z x z. Let x |
be a vector such that x \ x. The precedi ng observation
shows that (Tx,p) = (Tp,x) for all peE. Further

since x \ x either x+y or X -y 1is not isotropic.
Hence (T(x+y) ,2) = (Tz, (x#y) ) or (T(x-y) ,2) = (Tz, (x-y)) .
Thus (Ty,z) = (Tz,y) and T 1is a symmetric mapping.

Lemma 2. If T: E—~E is a linear mapping and if the rank
of T 1is an odd int eger ,t hen there is at |east one non-isotropic

vector.

Proof. Suppose every vector is isotropic.




The hypothesis of the lemma inmplies there exists a (2K+1)-

2K+1

di mensi onal subspace E of E, for some positive

g 2K+ 1)

integer K, such that T( is also (2K+1)-di mensional.

Thus if Tl is the restriction of T to E2K+1>Ti roi ght

be considered as a linear isomorphism on EZKJ”1 to EZK‘]~l

such that the innerproduct (Tlx,x) =0 for all er2K+1.
Thus there exists continuous nonvani shing tengential vector
field on the sphere in E2K+l, contradicting Poincar” -Brouwer

theorem Dugundji [t ].

Lenfra 3. If T:E—*E is a 1-dimensional [inear mappi ng
then the following two statements are equivalent." '

(1) T-orthogonality is symmetricy

(2) There is a nonisotropic vector x such

that x J- y inmplies Ty = 0.

Proof. Let x \ x. Let yeTx" J(O) . Then (1) inmplies y a. X
Since T is 1l-dimensional and Tx ~ 0, Tye[Tx] . Let Ty = ATx.
Then since y £ x it is verified that either, A =0 or

(Tx,x) = 0. Since x Xxs A =0. Hence Ty = 0. Thus (1)
implies (2). Conversely suppose (2) holds and X€E such

that x iy inmplies Ty =0. Since Tx/ 0, Tx" 1(0) is a
subspace of codimension 1. Thus each £eE determ nes uniquely a
real number ?\ and a vector h, x J. h, such that £ = Ax + h.
Thus if £':. = A.l X+h1’ i = 1,2, then £J-_ + £, if and only

i f "iJ_"Z_:" since Th. 1:0' Hence JL is symmetric.




Remark 1. From the proof of the preceding lemma it is clear
that (2) could as well be replaced by "for every nonisotropic

vector x, x iy inplies Ty = 0".

3. Let T: E-"E be a linear mapping such that i is not
symetric. Let the rank of T = 1. Then fromlemma 2 it is
inferred that there is a nonisotropic vector. Let x be one
such vector. Let M= Tx~1(0). If y,zeM then since :Tx N0
and rank T =1, Ty, Tze[Tx]. Since (Tx,z) =0 it is verified
that y j. z. In particular for all yeM y xy. Nowif F

Is a continuous T-orthogonally additive functional on E then
the preceding observation inplies that F is honpbgeneous and
additive on M Thus FM is a continuous |inear functional

on M Since i is not symetric it is inferred fromlemma 3
that there is a vector yeM such that Ty ~ 0. Since M is

a subspace and Tyd Tx] we can as well assune that Ty = Tx.
eThus x - y i Xx. Hence if H?Ax) =cp (A thenlsi nce ~h(x-y) x \ix
for all pairs of real nunbers Au it is verified fromthe

ort hogonal additivity of F and linearity of F on M that
cp(A¥) = cp(A + cp(fi). Since F is a continuous function,

cp : R—R is a continuous additive function. Thus cp is linear.
Nowif £GE and £ = Ax +y, yeM then F(Ax+y) =cp(A + F(y).
Since cp is linear on R it follows that FGE . Since every

linear functional on E is orthogonally additive it is proved




t hat under the above hypothesis on T that a continuous function
F: E—»R is T-orthogonally additive if and only if F€E -«
Next we proceed to the case when rank T > 1. First we

deal the case of dimE = 2 or 3.

Proposition 1. If dimE=2o0o 3 andif T: E—=2E 1is a
| i near mapping such that rank T > 1 and T-orthogonality is
not symmetri Cat hen every continuous orthogonally additive

functional on E is linear.

Proof. Let dimE = 2. Suppose that el-,ezeE such that

e. | e2 but e. \ e.,. Thus e;.e, are l'i nearly independent*

1 2 1 2
Since the rank T =2, Te; / 0. Hence (Tete;) =0 inplies

t hat (Telj e.l) N'0. Thus there is a real nunberr a/ 0 such

t hat ae., + e_" I e Hence if A u are two real nunbers then
A(ae;te;) 1 lie® Hence F(Aaey + Ae, + lie® = F(A(aer+tey) ) +H|iey.
Since e te, F((I\BL+\i)eit'\ey) =FrAa+t-0e™ + F( Aez)l.

Thus P((>.at|i)e) + F(Ae;) = F(A(ae;+e;)) + FC'ej”™). Hence F

Is additive on [el]. Since F is continuous F is hono-

genous on [e?l . Further noting that ae, +e€;xe e, \ ae, +e

'L
it is verified as above that F is honpbgenous on ae; + e’_:.
Si nce ae., + e [ CRE fhe T-orthogonal additivity of F at
once inplies that F 1is linear.

Next we proceed to the case when dimE = 3. Let the
rank T =2 and e”e”eE such that e._Li. e- and e \ e,.
| f (Te"""el) NO or (Tez,ep) / Oy then as in the preceding

case it is verified that F is linear on [e”e”. |If

(Tey,e;) =0 and (Tez ey = o then F is honpgeneous on [eq]




and [ej « Since ei X e is linear on the subspace [eu:egl.
Thus in either case F is linear on f¢& ~®2n e Now Al Tan Te,
are linearly independent then since the rank T = 2 there

exi sts a vector ej3" [el ,eﬂ such that Tesz = 0. Since e3 X ej
F is honpbgenous on [e3] . Further since e; JL [e, ,e;] and F
is linear on [e”e” it is verified that F is a linear
functional . | f Tej,Teg are linearly dependent then either
Te; =0 or Te, =ATe2> A~ | 0. Since (Tere.” ~ 0 there is

a vector X£ [el,eﬂ such that e, JL X Thus if Te™ =0

t hen 'el X X. If x\ e or Xx X e; then as in the case of
dmE=2 it is verified that F 1is honobgenous in [Xx] .

Si nce [el,eﬂ X X,F is a linear functional. If x JL e;

and X X ei, then, since e, X e, X + e, 1 e;. However since

o x €2t ° xx*epm Onceagain F is yerified to be hono-
genous on [xt+ey] . Since x x e, and F is honbgenous on [e;]
it is verified that F is honbgenous on [x]. Thus F is

l'inear. Next suppose Te, "~ 0. Then since Te, = ATe, for

some AN 0, and e, X e, there is a vector x"[e”se,] such

that [e;,e] x x. If x X [e, ,e;] then once again F is
homogenous on [x] and F is a linear functional. If x x [e" e
since the rank T = 2, (Tx,x) ~ 0. Further since Te®/ O

and GE_ X [x,qz] it follows that (Tefe.l) / 0. Since e, X X,

X x e; and (Tei, e;) ~ 07N (Tx, X) it is verified that (%

there is a real nunber a ™~ 0, such that x + aey X X + ael or

X + ae, Xx X - aex. In the case of the first alternative, F is

honbgenous on [ x+ae Then since x x e; and F is honpgenous

l]'




on [e.l]g it isverified that F is honmbgenous in [X] .

Thus F is linear. If x + ae; X x - ae,lthen if ~K\A are

two real nunbers F((AHi)x + Aaey- |-lae® = Ff Mx+ae”) + F(|i(x-aej))

= F(AX) + H|ax) + F(Aaef, - F(|iae1),' si nce A(x+ae!'L X |i(x-ae,J_).,

Since x x e K (Atj)x + Aae:"ae" = F((AHi)x) + FtAaefiae”".

Fromthe preceding equations it is verified that F( (AHa) x) =

= F(AX) + Hp.x) after noting that F is honbgenous on [e.l .

Since F is continuous, F is honbgenous on [x]. Hence F

is a linear functional conpleting the proof in the case rank T = 2.
Next suppose dimE = 3, and rank T = 3. Since T-

orthogonality is not synmetric there exist linearly independent

vectors eifeo‘ such that e, lJL e, and e, Xe Thus as in

"L
the case of dimE =2 it is verified that F is linear on
[eM, e;]. Suppose there is a vector e3™[e;se;] such that

eg x veepregni# I e A eg or ep wpeg tlien F  Aas honogenous

on [e;] and F is a linear functional. Next |et e,l'l e’_‘
and ez_JL es or equi val ently [e"f‘e"] J- ef‘. Since ez | [e*J_,ez]
e ey, ez] and rank T = 3, (Tes e3) [/ O. Simlarly since

e xepn e Xeg At asverafjed tpgr  (Temag) A 0. Thus

since e, X e3, e3x e, there is a nonzero real number a such

t hat either ae, +e3 X a, +e; Or ez + ae, , X e; - ae,,.
Thus as in the case of (*) in the preceding paragraph it follows
that F is honpgenous on [e3]. Hence F is a linear functional.
Next suppose there is no vector e3"[e1, eg] such that

es X [el,,ez]. Since rank T =3, there is a vector x/ O

such that x x [e,,e] and x"[e,]. Since such a vector




XE[eM e there are real nunbers a,b,b/ O such that

ae, + be, x e;, and ae, + be, x g, . Thus since °j X°2

and e, \ e; it is verified that (Tez,e) = 0= (Teren .
Hence we are in the case e, X e e, X e,, €1 X e, and e; \ er.
Since e; X [e’\e"_J, and Tey, Te, axe Iinear'ly i ndependent
there is a vector °©®37[% ~®2~ such that ©, *®3*% Identifying

linear functionals f on E wth points in E by the

mappi ng f<->g f(e.)e).( it is verified that there are real
i =l X

f - — —
nunberi as, bl’ Cy» C2, and 7 such that Tel— azes;, Te, = b.le.l,
Te; = Sc.le.l. Since the rank T = 3, as, b,l, C3, C, are nonzero

i=1

real nunmbers. Thus e X e while e x e*. Hence F is
honmogenous on [e3]. Further it is verified that ez x c,e; - C3®p

and °0°3 " ©3°9 A °®3* Hence F is linear on t®37C283" C3e2."#
Now since e, X [€q Co€o - C €l and F is honpbgenous on [e,]
it follows that F is linear on E

Next we proceed to the main theoremof this section.

Theorem 1. Let E be a real Hausdorff topol ogical vector
space and T : E-»E be a linear mappi ng such that the
T-orthogonality is not symetric. Then every continuous ortho-

gonally additive functional on E is linear.

Pr oof . In view of the introductory comments in this section
we may assune that rank T ~ 2. Since the range of T is of
di mension at least 2, and orthogonality is not symetric we

claimthat there exist two vectors e-l.,ezeE such that e, X €z,
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e X ey and -fﬁi,TeE are linearly independent. For let X,y
be two vectors such that x i y, and y \ x. If Tx,Ty are
linearly dependent let peE be such that Tp,Ty .are linearly
i ndependent . If y \ p then since y \ x there exists a

real nunber a such that y JL p + ax. If p+ axiy .then

since x Xy, piy. Thus y Xp and p iy and Tp, Ty

are linearly independent. Next if p+ ax \ y, then p + ax,y
are vectors of the required type. If y xp, thenif p\ vy,
p,y have the desired properties. If pxty then p+ Xx iy

and p 4- x,y have the desired properties. Thus there exist
vectors ©&)*ep ascpajraed_ Letnow xeE _ feneg + # ° (Congjder
the linear mapping T| [Xsei, e2] =0”*. Then applying proposition 1
to T, and the function F it follows F| [X,e,,e] is linear.

Tiis also inplies in particular that F is linear on [X] for al

xeE. Next let X,y be two linearly independent vectors,

Xeynt® *xe2] o |f x JLy(yJ-x) F is verified to be linear on [X,Y]
fromthe precedi ng observation. Next if x \y and y \ x,

then if (Tx,x) ~ 0 or (Ty,y) ~ 0O it is possible to find a

real nunmber a such that x x x + ay or vy X y + ax, Then

in either case as before F is linear on the span of [Xxzy] .

If (Tx,x) =0= (Ty,y), then since (Tx,y) / O/ (Ty,x) it

is verified that there is a real nunber a such that

X + ay Xy + x, once again verifying F is linear on [X,y].

Thus in any case F is linear on [X,Yy]. Hence F is a

| i near functional.
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4. W discuss here the case when the T-orthogonality is
synmetric. W note that if F: E—R is orthogonally additive
then the even and odd parts Ffi>f2 ©°of F arealso grtpggonally
additive. This is verified fromthe equations F-"x) =j f‘F(x) +F(-Xx) ]
and  Fo(x) = IJF(X)-F(-X) ]. |

As in the preceding sections we assune that dimE *> 2.
Further we note that if dimT =1 then as observed in lemma 2
there is a xeE such that (Tx,x) ~ 0. Nowas in the case
when T-orthogonality is not symmetric, dimT = 1 (see first
paragraph in section 3) it is verified that if F is a ortho-
gonal ly additive functional on E and M= Tx" 1(0) then F| M
is linear. Since E=MO [x] it is verified that F de-
term nes a uni que continuous function cp: R—R, cp(0) =0
such that F(Ax+y) =cp(A + 1 (y) if yeM and F|M=1. Con-
versely i'ff 1eE and cp: R—2R is a continuous function, cp(Q =0,
then the function F: E-—2R defined by F(£) =cp(A +1t(y),
if £~ Ax+y, yeM determines a continuous orthogonally additive
function. The preceding fact is verified by noting that fbr
y,ZGM Ax +y JL\XK+ z if and only if AJ = 0 since orthogonality
is symmetric and y + z.

W proceed to discuss the case when rank T " 2,

Proposition2. Let dimE =2 If T: E—>E is a linear mappi ng,
rank T = 2, and if T-orthogonality is symetri c>t hen a conti nuous
function F: E—R 1is even and orthogonally additive if and

only if F(X) =c¢(Tx,x) for sonme real nunber c.




Pr oof . If (Tx,x) =0 for all XE€E, then
orthogonal ly additive functional it foll ows
and F(x) + F(-x) = F0) = 0. Thus F(x)
Next if for sorré x (Tx,x) ~ 0, then
is inferred that T is a symetric mapping.
vector such that e \ e* Then there is a
such that e, i e,. Since T is of rank 2,

e, J- (i’ inplies e, \ e,. Hence we can as
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since ‘F is even
that F(x) = F(-x),.
=0 for all xeE
fromlema 1 it
Let e” be a
vector e,, e,M] ]
Te, /| O« Thus

sune that there are'

real nunbers a ™ 0/ h, such that Te; = aj® and Te, = be,.

We can assune without |oss of generality that a > 0. It is

Verl fl ed that Xi ei + X0e2 £ /\l el + /\292 ngnfe

aX|y|+bX2Y2:o* Now if _b> o tliienthere
X,y,X€E[e” ,ye[ey] such that (Tx,x) =1 =
then there are vectors Xx,y,as above such that

For such a pair x,y, for all real nunbers

and on/\Y Af

are vectors

(Ty,y) . 1f b<O
(TX,x) =1=-(Ty,y) .

K, K(x+y) | K(x-y)

or K(x+y) -L K(x+y) accordingas b>0 or b<O0.  Since F

is even and Kx = Ky, it is verified fromt

he orthogonal

additivity of F that F(Kx) = F(Ky) or F(Kx) = -F(Ky).

Now it is verified that there is a real nunber ¢ such that

for all K  F(Kz) = c¢(TKz,Kz) where z =
that F(Kx) = F(Ky) and F(Kx) = -F(Ky) a
(Tx,x) = (Ty,y) or (Tx,x) =-(Ty?y). Let
arbitrary vector in E Let £ = Ax + |iy.

X or z =Yy, noting
ccording as
now 4 be an

Then from the

orthogonal additivity of F it follows that

HAH-1y) = F(AX) + F(f-iy) = c(TAX, AX) + c(Tuy,uy)

= c(T(AXHjy) , Ax+uy) .
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Hence F(£) = c(T¢,¢).

Theorem?2. Let dimE”* 2 and T: E—E be a linear napping
such that rank T "> 2. If T-orthogonality is symretric”then

a continuous real valued function F on E is even and ortho-
gonally additive only if there is a real nunber ¢

such that for all €£e¢E,

F(§) = c(T,8).

Pr oof . If (Tx,x) =0 for all xeE “then since x = x for all
X, F is linear on [x] . Since F is also even F(x) =0
for all xeE and it follows that F(x) = c(Tx,x) for all X,

where ¢ is an arbitrary real nunber.

Next let x be a vector such that (Tx,x) ~ 0. Let F
be a continuous orthogonally additive function. Let M= Tx"](O) .
There exists a yeM such that (Ty,y) / 0. For let every
vector in M be isotropic. Since the rank T"> 2 there is
a vector peM such that Tp& Tx] « Thus there exists a zeM
such that p Xz. Now p + zeM Since p +'zi p + z,
(Tp,z) + (Tz,p) =0, since every vector in M is isotropic.
Since the mapping T is symetric the preceding equation inplies
p i z contradicting the choice of z. Thus there is a ve.ctor
yeM with (Ty,y) ™~ 0. Let T,l:T| [x,y]. Since (Ty,y) ~O0
and (Tx,y) = 0, Tiy’TiX are linearly independent and the
r ank Ti = 2. Noting that T-orthogonality coincides with T’_‘-

orthogonality on the plane [x,y] it follows fromthe preceding

HUNT  LIBRARY
CARNEGIE-MELLON  UNIVERSITY
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proposition that F(£) = c(TE,£) for all £et*>y] were c
2

is independent of £. In particular F(Kx) = KF(x) for
all K~ 0. Let now zeE. Let z = AX +r\ where x JL r\

and A is a real nunber. Then
F(z) = F(Ax+TJ) = F(AX) + H7?) = A’*F(x). + F(7) .

If 79 =0 then H?) = 0. If @aran) ~ 0 from the
preceding it follows that H?77) = c(Trj,rj) where c¢ is snch

that F(x) = c(Tx,x). Thus

F(2) = AF(X) + oT77T) = o(T(Ax+i) ,Axe) .

This conpl etes the proof of the theorem

Next we proceed to the case when T-orthogonality is symetric

and F is an odd functional. |In this case if 'xJ_rx, then F
is linear on [x]. Thus,if (Tx,x) =0 for all x, we expect
F to be a linear functional. However we provide an exanple

to show that this need not be the case when every vector x-

in E is isotropic and rank T = 2.

Theorem3. Let T: E~"E be a linear mapping such that T-
orthogonality is symetric and rank T #> 2. Then every odd
conti nuous T-orthogonally additive real valued function on E

is linear, if there is at |east one nonisotropic vector.

Proof. Since there is a nonisotropic vector and T-orthogonality
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Is symmetric, the linear mapping T is symetric. Further we
note that since F is an odd orthogonally additive function

F is linear on [X] if x is isotropic. W proceed to
verify that F is linear on [x] even if Xx s nonisotropic.
As already noted in the second paragraph of the proof of the
preceding theoremthere is a vector y x x such that (Ty,y) ~O0.
V¢ may even assune that (Ty,y) =;f(Tx,x) . if (Ty,y) = (Tx, x)
then since x x vy, K(xty) JL K(x-y) for all real nunbers K
Thus noting that F 1is an odd function it is verified tﬁat
F(2Kx) = 2F(Kx) and F(2Ky) = 2F(Ky). Further since for any
real nunber m mx+y) x (x-y) it is verified that

F((mtl)x) + F((ml)y) =F(m) + F(x) + Hxny) - F(y) . Nowhby
straightforward induction it is verified that for integers m

F(mx) =nF(x) and F(ny) = nmF(y). Since Xx,y could be re-

placed by rx,ry, r a real nunmber, F(mrx) = nF(rx) for all
real nunbers r and integers m Hence for rationals g}-we
have F(Ex) = %%F(x) . Since F is continuous F is linear
on [x]. If (Tx,x) =-(Ty,y), since xXxy, X+y, X-Y

are isotropic vectors. Thus for any real nunber A,
F(Mx+y)) = MFE(x)+F(y)) and F(A(x-y)) = A[F(X)-F(y) ] .
Hence F(Ax) + F(Ay) = A(F(x) + F(y) ) and F(AX) -F(Ay) =A[F(x) -F(y)].
Thus F(Ax) = AF(x). Hence F is linear on all 1-dinensiona
subspaces of E
We proceed to showthat F is indeed |linear on E. Since F
is linear on each line in E and orthogonally additive it is
enough to show that in any two di nensi onal subspace- [X,V]
there are two linearly independent orghogonal vectors. Let XxX,¥

be two linearly independent vectors. If x xy we have two
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orthogonal vectors in [x,y]. If x Ay, but (Tx,x) # O
((Ty,y) # O0) the pair x, x + ay(y,y+ax) where

a= - %%ﬁfg%- (e = - %%%f%} ) is verified to be a pair of the

required type in the subspace [x,y]. If (Tx,x) = O = (Ty,y)
then the pair x + y, X - y 1is one such since T 1is symmetric.
This completes the proof of linearity of F. Thus FeE*.

Before proceeding to the case when every vector is T-
isotropic let us recall that according to lemma 2 if the rank
of T 1is an odd integer > 3 then there is at least one non-
isotropic vector. We start with a preliminary result dealing

with the case when rank T = 4.

*
Proposition3, If dim E =4 and T :E—5E is a symmetric
linear isomorphism and if every vector is isotropic)then every
odd orthogonally additive continuous real valued function on E

is linear.

Proof. Let e,€E ~ {0}. Since Te, # 0, the subspace
M = Teil(o) is 3-dimensional. Let e, be a vector in Teil(o)
such that e,se, are linearly independent. Since Te2
and Te, are linearly independent there is a vector e, such
that e, L e, and (Te2,e3) = 1 and a vector e, such that

e, L e and (Tel,e4) = 1. It is verified that {el,ez,e3,e4}

is a base for E and representing linear functionals f on E

with vectors in E by the isomorphism fe—#(f(el),f(ez),f(e3),f(e4))
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it is verified from the properties that every vector is isotropic

and orthogonality is symmetric that
Tel =e,, Te, = e3, Teg = -e, and Tey, = -e; .

Since for every xeE, x L x it follows that F is linear
on [x] for every xcE., Thus if x L.y then F 1is linear
on the subspace [x,y]. Since e, & [el,ez,e3], e, 1L [el,ez,e4],
ey ¢ [el,e3,e4], e, L [e2,e3,e4] and [e2,e3] L [el,e4] it
is enough to verify that F is linear on the subspaces [e2,e3]
and [el,e4]. Consider a typical vector, say %ez + Heq
in [e2,e3]. It is verified that e, + %ez L Mes - %ue4 and

ey - %ue4 L %ez + des. Thus

F(e1+ke2+ue3—%ue4) = F(el+Xe2) + F(ueB-Kue4)

Since Le, and e3 L ey,

€1
(1) F(el-%ue4) + F(Ae2+ue3) = F(el) + F(%ez) + F(ue3) - F(%ue4).

Once again since e, + %ez + He, 1 Xez + Xpe4- and e, Lel-%ue4

1
it follows that

F(e1+ue3-%ue4) = F(pe3)+F(e1—%ueQ

F(el+%e2+ue3)—F(%e2+%ue4)

1l

F(el) + F(>\e2+ue3) - [F(?\ez) + F(7\p.e4)]
Thus

(2) F(el—%ue4) - F(%e2+ue3) = F(el) - F(%ue4) - F(%ez) - F(ue3)
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From equations (1) and (2) and fromthe linearity of F on

each line in E it follows that
F(7\e2+ue3) = F(Aey;) + KH]|J.e9 = AF(ep) + |iFKe;) and
F(el-?\p.e4) = F(el) - M.LF(e4).

Thus F is verified to be |inear on the subspaces [e2,e3]

and [e"e.q]. Hence F is a linear functional on E.

Theorem4. Let E be an arbitrary topol ogical vector space
and T: E—>E be a linear mapping such that rank T *> 3
and (Tx,x) =0 for all xeE, and T-orthogonality is
symetri c. If F is a continuous orthogonally additive

functional on E.then F is linear.

Pr oof . Let € € be an arbitrary pair of linearly independent
vectors. If e x e; then since F is linear on [X] for
each xeE, F is linear on the subspace [e, l*e4] . Next

| et e Xeys. Since ®] _ ~°4* e4 i e, and TelloATe4 it
is verified that Te-_’\Te’_‘ are linearly independent. Si nce
xxx for all xeeE and dimT”" 3, it follows fromthe renarks
preceding the proposition 3 that dimT ™ 4. Thus there exists
a vector £, say £ = Aey + h, where heTe" l(O) such that

1

TEx [Te1"Tey]. Now let h = Mel. + e, where e, i e, Then

it is verified that Te, [TeM™, Tey] and e JL e,, es X es.

Now let e” be a vector in Te~ll(0) DTe:}l(O) such
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that e, hN es. It is verified that Te3§[Tel,Te2,Te4].
Further it is verified that the rank of Ty = T]E4 is 4, where
E4 = [el,ez,e3,e4] and the T-orthogonality restricted to E4

coincides with Tl—orthogonality. Thus applying the preceding

proposition, it is inferred that F|E4 is linear. Hence F

is linear on [el,ez] completing the proof of the theorem.
Before summarizing the results we discuss an example

showing that preceding theorem cannot be improved.

2

Example. Consider E = R“. Let {el,ez} be a base of E.

Let T Dbe the operator defined by Teq = e, and Te2 = -e.
Then it is verified that (Tx,x) = 0 for xeR2. Let F: R%—+~R
defined by, F(ael-kbez) = (a3-+b3)l/3. It is verified that F

is a continuous T-orthogonally additive odd functional on R2.

Thus in the preceding theorem rank T > 3 cannot be replaced
by rank T > 2.

Since every orthogonally additive functional F is the
sum of an even and an odd orthogonally additive functional we

can summarize the results of this section as follows.

Theorem 5. Let T : E——)E* be a linear mapping such that

dim E > 2. If T-orthogonality is symmetric and if there is
at leést one non-isotropic vector,then a continuous function
F: E=—»R 1is orthogonally additive only if there are

a real number ¢ and a functional &eE* such that

F(x) = c(Tx,x) + 4(x) for all =xecE. If T is as above except
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that every vector in E is isotropic*then if dimT " 3

every continuous orthogonally additive functional is |inear

In conclusion it mght be remarked that if the quadratic
form associated with the linear mapping T 1is not continuous

on Ev then ¢ =0 in Theorens 2 and 5.
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