T-ORTHOGONALITY AND NONLINEAR
 FUNCTIONALS ON
 TOPOLOGICAL VECTOR SPACES
 by
 K. Sundaresan and 0. P. Kapoor**
 Report 71-42

August, 1971

The research work of the author was in part supported by a Scaife Faculty Grant administered by Carnegie-Mellon University.
U. S. Aid participant at Carnegie-Melion University while on study leave from I.I.T. Kanpur (India).

T-Orthogonality and Nonlinear Functionals on Topological Vector Spaces
 K. Sundaresan* and 0. P. Kapoor

In recent years the problem of concretely representing a class of nonlinear functionals on Banach spaces has received considerable attention. Suppose B is a Banach space equipped with an orthogonality relation i c B x B. Denoting (x,y)€i by x i y, a real valued function F on B is said to be orthogonally additive if $x \quad x \quad y$ implies $F(x+y)=F(x)+F(y)$. For example when B is a vector lattice^a natural orthogonality relation is the lattice theoretic one: $x \pm_{\perp} y$ if $|x| A|y|=0$. -tfie problem of representing orthogonally additive functions on normed vector lattices of measurable functions has been dealt in Drewnowskii and Orlicz [l],Mizel and Sundaresan [2], Friedman and Katz [4], Koshi [5], and several others. If B is the Hilbert space $\mathrm{L} \underset{\mathbf{\sim}}{\sim}[0,1]$ with the usual concept of orthogonality i.e. $x \pm 2 \mathrm{Y}$ if ${ }^{t}{ }^{i e}$ inner product $(x, y)=0 *$, the problem of representing orthogonally additive functionals has been considered by Pinsker [3]. If B is an arbitrary Banach space there are several orthogonality relations which are generalisations of the usual concept of orthogonality when B is a Hilbert space. One such concept of considerable geometric and analytic interest is the following. Let $(\mathrm{B},\| \|)$ be a Banach space. If $x, y e B, x x^{\wedge} y$ if $\|x+A y| | \wedge\| x|\mid$

The research work of the author was in part supported by a Scaife Faculty Grant administered by Carnegie-Melion University.
for all real values of A. Tfre problem
of representing orthogonally additive functionals on B with respect to the relation JL^{\wedge} has been dealt in Sundaresan [7]. None of the preceding concepts of orthogonality extend to arbitrary topological vector spaces. We introduce here a useful orthogonality concept in an arbitrary topological vector space. Let E be an Hausdorff topological vector space and $T: E->E$, where E is the dual of E, be a linear mapping. If $x, y e E$, then x is T-orthogonal to y if $T x(y)$, denoted by, (Tx,y) $=0 . \quad$ In the present paper the problem of characterizing T-orthogonally additive functionals on a topological vector space is dealt.

In the next section we recall briefly the basic terminology and establish few results useful in the subsequent discussion. In section 3 we discuss T-orthogonally additive functionals when T-orthogonality is not symmetric. In section 4 we consider the same problem when T-orthogonality is symmetric.
2. Throughout the paper E is a Hausdo'rff Topological vector space on the real field $R_{\circ} E$ is the vector space of continuous linear functionals on E. To avoid trivialities we always assume that $\operatorname{dim} E \wedge 2 . \quad$ If $T: E \longrightarrow E$ is a linear mapping and $x, y € E$, then x is T-orthogonal to y or briefly $x \quad x y$, when T is understood, if $(T x, y)=0$. T-orthogonality is said to be symmetric, if $(T x, y)=0$ implies $(T y, x)=O_{0}$ A vector X is said to be T-isotropic or simply isotropic
if (TXjX) = O, Tfhe operator T is said to be symmetric
if $(T x, y)=(T y, x)$ for all $x, y \in E$. If x, y, z, \ldots are vectors in E, the span of x, y, z, \ldots is denoted by $[x, y, z, \ldots]$. We conclude this section with a few useful lemmas.
. ${ }_{+}^{+}$
Lemma 1. If $\mathrm{T}: \mathrm{E}-\mathrm{E}_{\mathrm{E}}$ is a linear mapping such that T-orthogonality is symmetric and if there is a nonisotropic vector'then T is symmetric.

Proof. Let y,zeE. Suppose (Ty,z) $£(T z, y)$. Since the relation x is symmetric (Tysz) ^ 0 ^ (Tz,y). If $y ~ X y$ it is verified that there is a real number a ^ O g such that $y \quad i \quad y+a z . H e n c e ~ y+a z x y . ~ T h u s ~ a(T z, y)=-(T y, y)=a(T y, z)$. Hence $(T y, z)=(T z, y) . \quad$ If $z ~ \ z i t i s ~ v e r i f i e d ~ s i m i l a r l y ~$ that $(T y, z)=(T z, y)$ Let now y J. y and $z x z$. Let x be a vector such that x \ x . The preceding observation shows that $(T x, p)=(T p, x)$ for all peE. Further since x \ x either $x+y$ or $x-y$ is not isotropic. Hence $(T(x+y), z)=(T z,(x+y))$ or $(T(x-y), z)=(T z,(x-y))$. Thus $(T y, z)=(T z, y)$ and T is a symmetric mapping.

Lemma 2. If T : $\mathrm{E} \rightarrow \mathrm{E}$ is a linear mapping and if the rank of T is an odd integer, then there is at least one non-isotropic vector.

Proof. Suppose every vector is isotropic.

The hypothesis of the lemma implies there exists a ($2 \mathrm{~K}+1$) dimensional subspace $E^{2 K+1}$ of E, for some positive integer K, such that $T\left(E^{2 K+1}\right)$ is also (2K+1)-dimensional. Thus if $T_{\boldsymbol{1}}$ is the restriction of T to $E^{2 K+1}>{ }^{T}$ i roight be considered as a linear isomorphism on $E^{2 K+1}$ to $E^{2 K-J \sim 1}$ such that the innerproduct $\left(T_{I} x, x\right)=0$ for all $x e E^{2 K+1}$. Thus there exists continuous nónvanishing tengential vector field on the sphere in $E^{\mathbf{2 K}^{K+}} \boldsymbol{I}$, contradicting Poincar ${ }^{\wedge}$-Brouwer theorem, Dugundji [t].

Lemma 3. If T : $-\star E$ is a 1 -dimensional linear mapping then the following two statements are equivalent.
(1) T-orthogonality is symmetric 4
(2) There is a nonisotropic vector x such that x J- y implies $T y=0$.

Proof. Let $x \backslash x$. Let yeTx" $I_{(0)}$. Then (1) implies y a. x. Since T is 1-dimensional and $T x \wedge 0$, Tye [Tx]. Let Ty = ATx. Then since $y \pm x$ it is verified that either, $A=0$ or $(T x, x)=0$. Since $x X x_{5} A=0$. Hence $T y=0$. Thus (1)
implies (2). Conversely suppose (2) holds and X€E such that x i y implies $T y=0$. Since $T x / 0, \operatorname{Tx"~}^{\mathbf{l}}(0)$ is a subspace of codimension 1 . Thus each £eE determines uniquely a real number ? and a vector h, x J. h, such that $£=A x+h$. Thus if $£_{\mathbf{i}}=A_{\mathbf{i}} x^{+h} \mathbf{i}^{\prime} \quad i=1,2$, then $£_{\mathbf{L}} \pm £_{2}$ if and only if $\wedge_{\wedge_{\perp}}^{2}{ }_{-}=\wedge$ since Th. $=0$. Hence JL is symmetric.

Remark 1. From the proof of the preceding lemma it is clear that (2) could as well be replaced by "for every nonisotropic vector x, x i y implies $T y=0 "$.
3. Let $T: E-\wedge E$ be a linear mapping such that i is not symmetric. Let the rank of $T=1$. Then from lemma 2 it is inferred that there is a nonisotropic vector. Let x be one such vector. Let $M=T x \sim^{1}(0)$. If $y, z e M$ then since $T x \wedge 0$ and rank $T=1$, Ty,Tze[Tx]. Since $(T x, z)=0$ it is verified that y j. z. In particular for all $y e M, y x y . ~ N o w ~ i f ~ F ~$ is a continuous T-orthogonally additive functional on E then the preceding observation implies that F is homogeneous and additive on M. Thus $F \mid M$ is a continuous linear functional on M. Since i is not symmetric it is inferred from lemma 3 that there is a vector $y e M$ such that $T y \wedge 0$. Since M is a subspace and TyG[Tx] we can as well assume that $T y=T x$. -Thus $\mathrm{x}-\mathrm{y}$ i x . Hence if $\mathrm{F}(? \backslash \mathrm{x})=\mathrm{cp}(\mathrm{A})$ then since $\sim h(\mathrm{x}-\mathrm{y}) \mathrm{x}$ \ix for all pairs of real numbers A, u it is verified from the orthogonal additivity of F and linearity of F on M that $\mathrm{cp}(\mathrm{A}+\wedge)=\mathrm{cp}(\mathrm{A})+\mathrm{qp}(f i)$. Since F is a continuous function, $\mathrm{cp}: \mathrm{R}->\mathrm{R}$ is a continuous additive function. Thus cp is linear. Now if $£ G E$ and $£=A x+y$, $y \in M$, then $F(A x+y)=c p(A)+F(y)$. Since $C P$ is linear on R it follows that $F G E$. Since every linear functional on E is orthogonally additive it is proved
that under the above hypothesis on T that a continuous function $\mathrm{F}: \mathrm{E}-» \mathrm{R}$ is T -orthogonally additive if and only if $\mathrm{F} \in \mathrm{E}$ •

Next we proceed to the case when rank T > 1. First we deal the case of $\operatorname{dim} E=2$ or 3 .

Proposition 1. If $\operatorname{dim} E=2$ or 3 and if T : E-*E is a linear mapping such that rank $\mathrm{T}>1$ and T -orthogonality is not symmetric, then every continuous orthogonally additive functional on E is linear.

Proof. Let $\operatorname{dim} E=2$. Suppose that $e_{\perp}, e_{2} e E$ such that $e_{1} l e_{2}$ but $e_{\mathbf{2}} \backslash e_{\mathbf{1}}$. Thus $e_{1}, e_{\mathbf{2}}$ are linearly independent* Since the rank $T=2, T e_{\perp} / 0$. Hence $\left(T e^{\wedge}, e_{2}\right)=0$ implies that $\left(T e_{\mathbf{1}} \mathrm{je}_{\mathbf{1}}\right) \wedge 0$. Thus there is a real number a/ 0 such that $a e_{1}+e_{-}^{\wedge} e_{\perp}^{-}$. Hence if A, u are two real numbers then $A\left(a e_{1}+e_{2}\right)$ i lie^ Hence $F\left(A a e_{x}+A e_{2}+l i e^{\wedge}=F\left(A\left(a e_{1}+e_{2}\right)\right)+F\left(\mid i e_{1}\right)\right.$. Since e.^. $\pm e_{2}, F\left((I \backslash B L+\backslash i) e_{1}+^{\prime} \backslash e_{2}\right)=F^{\wedge} A a+t-O e^{\wedge}+F\left(A e_{2}\right)$.
Thus $\left.P\left((>. a+\mid i) e_{1}\right)+F\left(A e_{2}\right)=F\left(A\left(a e_{1}+e_{2}\right)\right)+F C^{\wedge} e^{j} \wedge\right)$. Hence F is additive on $\left[e_{i}\right]$. Since F is continuous F is homogenous on $\left[e^{\wedge}\right]$. Further noting that $a e_{\perp}+e_{2} x e_{\prime_{\perp}} e_{\mathbf{I}_{\perp}} \backslash a e_{\perp}+e_{2}$ it is verified as above that F is homogenous on $a e_{1}+e_{\sim}^{\wedge}$. Since $a e_{i}+e_{2} i e_{i}$, the T-orthogonal additivity of F at once implies that F is linear.

Next we proceed to the case when $\operatorname{dim} E=3$. Let the
 If $\left(\mathrm{Te}^{\wedge \wedge \wedge} \mathrm{e}_{\mathbf{1}}\right) \wedge 0$ or $\left(\mathrm{Te}_{2}, \mathrm{e}_{2}\right) / 0 y$ then as in the preceding case it is verified that F is linear on $\left[e_{-}^{\wedge} e^{\wedge} . ~ I f\right.$ $\left(T \mathbf{e}_{\mathbf{1}}, \mathrm{e}_{\mathbf{1}}\right)=0$ and $\left(\mathrm{Te} \mathrm{e}_{2}, \mathrm{e}_{2}\right)=\mathrm{o}_{\mathbf{j}}$ then F is homogeneous on [$\mathrm{e}_{\mathbf{1}}$]
and $\left[e_{\underset{\sim}{\sim}}^{\sim}\right]$. Since $e_{\perp}^{*} \times \underline{e}_{\underline{2}}$ is linear on the subspace [$\left.e_{1_{\perp}} e p\right]$. Thus in either case F is linear on $f^{e} i^{\wedge}{ }^{e} 2^{\wedge}$ • Now $\wedge^{f} \mathrm{Te}^{\wedge}, \mathrm{Te}_{2}$ are linearly independent then since the rank $T=2$ there exists a vector $e_{3} \wedge\left[e_{1}, e_{2}\right]$ such that $T e_{3}=0$. Since $e_{3} x e_{3}$ F is homogenous on $\left[e_{3}\right]$. Further since $e_{3} J L\left[e_{\boldsymbol{1}}, e_{2}\right]$ and F is linear on $\left[e^{\wedge} e^{\wedge}\right.$ it is verified that F is a linear functional. If $\mathrm{Te}_{\underline{1}}, T \mathrm{~T}_{-}$are linearly dependent then either $T e_{\underline{1}}=0$ or $T e ._{1}={ }^{A T e} 2>\wedge / 0$. Since $\left(T e^{\wedge} e \ell^{\wedge} \wedge 0\right.$ there is a vector $x £\left[e_{1}, e_{2}\right]$ such that $e_{2} J L X$. Thus if $T e^{\wedge \wedge}=0$ then $e_{1} x x$. If $x \backslash e_{2}$ or $x X e_{1}$ then as in the case of $\operatorname{dim} E=2$ it is verified that F is homogenous in $[x]$. Since $\left[e_{-}^{-}, e_{2}\right] \quad x \quad x, F$ is a linear functional. If x JL e_{2} and $x \times e_{\mathbf{i}^{\prime}}$ then, since $e_{2} X e_{1^{\prime}} x+e_{2} 1 e_{\mathbf{I}_{i}}$. However since
 genous on $\left[x+e_{2}\right]$. Since $x \times e_{2}$ and F is homogenous on [e_{2}] it is verified that F is homogenous on [x]. Thus F is linear. Next suppose $T e_{\boldsymbol{1}} \wedge 0$. Then since $T e_{\mathbb{1}}=A T e_{2}$ for some $A \wedge 0$, and $e_{2} X e_{\boldsymbol{\perp}}$ there is a vector $x^{\wedge}\left[e^{\wedge}{ }_{5} e_{2}\right]$ such that $\left[e_{1}, e_{2}\right] x \mathrm{x}$. If $\mathrm{x} X\left[\mathrm{e}_{\mathbf{1}}, e_{2}\right]$ then once again F is homogenous on $[x]$ and F is a linear functional. If $x \quad x \quad\left[e^{\wedge}, e_{2}\right]$ since the rank $T=2$, $(T x, x) \wedge 0$. Further since $T e^{\wedge} / 0$,
 $x \mathrm{x} e_{1}$ and $\left(T e_{1}, e_{1}\right) \wedge 0 \wedge(T x, x)$ it is verified that (*) there is a real number $a^{\wedge} 0$, such that $x+a e_{x} x x+a e$, or $x+a e_{\perp} x x-a e_{1}$. In the case of the first alternative, F is homogenous on $\left[x+a e_{\mathbb{I}}\right]$. Then since $x x_{-} e_{1}$ and F is homogenous
on [e, ${ }_{\perp}$] it is verified that F is homogenous in [x].
Thus F is linear. If $x+a e_{1} x \quad x-a e_{\perp}$ then if $\sim K, \backslash A$ are two real numbers $F\left((A+f i) x+A a e_{x}-l-\right.$ lae $\left.^{\wedge}=F f M x+a e^{\wedge}\right)+F\left(\mid i\left(x-a e_{1}\right)\right)$ $=F(A x)+F(\mid a x)+F\left(A a e_{\mathcal{J}} .-F\left(\mid i a e_{\mathcal{L}}\right)\right.$, since $A\left(x+a e_{\perp}^{j} x \mid i\left(x-a e_{\perp}\right) .\right.$, Since $x x^{\prime} e^{\wedge} F\left((A+\mid j) x+A a e\right.$ - $^{\wedge} a e^{\wedge}=F((A+\mid i) x)+F t A a e^{\wedge} f i a e^{\wedge}$. From the preceding equations it is verified that $\mathrm{F}(\mathrm{A}+\mid \mathrm{a}) \mathrm{x})=$ $=F(A x)+F(p . x)$ after noting that F is homogenous on $\left[e .{ }_{1}\right]$. Since F is continuous, F is homogenous on [x]. Hence F is a linear functional completing the proof in the case rank $T=2$. Next suppose $\operatorname{dim} E=3$, and rank $T=3$. Since T orthogonality is not symmetric there exist linearly independent vectors $\left.{ }^{e}{ }_{i}\right\rangle^{e} O_{4}$ such that $e_{\perp} J L e_{2}$ and $e_{2} X e_{\perp}$. Thus as in the case of $\operatorname{dim} E=2$ it is verified that F is linear on [$\left.e^{\wedge}, e_{2}\right]$. Suppose there is a vector $e_{3}{ }^{\wedge}\left[e_{15} e_{2}\right]$ such that
 on [e_{3}] and F is a linear functional. Next let $e_{\perp} I e^{\wedge}$ and $e_{2} J L e_{3}$ or equivalently $\left[e^{\wedge \wedge} e^{\wedge}\right]$ J- e_{-}^{\wedge}. Since $e_{3} I\left[e_{\mathbf{1}^{*}} e_{2}\right]$ $e_{3} \wedge\left[e_{1}, e_{2}\right]$ and rank $T=3,\left(T e_{3}, e_{3}\right) / 0$. Similarly since
 since $e_{1} x e_{3}, e_{3} x e_{1}$ there is a nonzero real number a such that either $a e_{\perp}+e_{3} x a ._{1}+e_{3}$ or $e_{3}+a \mu_{1} x e_{3}-a e_{\perp}$. Thus as in the case of (*) in the preceding paragraph it follows that F is homogenous on [$\left.e_{3}\right]$. Hence F is a linear functional. Next suppose there is no vector $e_{3} \wedge\left[e_{\mathbf{1}_{1}}, e_{2}\right]$ such that $e_{3} x\left[e_{\boldsymbol{I}^{\prime}}, e_{2}\right]$. Since rank $T=3$, there is a vector $x / 0$ such that $\mathrm{x} x \quad\left[\mathrm{e}_{\mathbf{1}}, \mathrm{e}_{2}\right]$ and $\mathrm{x}^{\wedge}\left[\mathrm{e}_{\mathbf{1}}\right]$. Since such a vector
$X €\left[e^{\wedge}, e_{2}\right]$ there are real numbers $a, b, b / O$ such that $a e_{1}+b e_{2} x e_{2}$, and $a e_{1^{\prime}}+b e_{2} x{\underset{1}{ }}^{\prime}$. Thus since ${ }^{e} j^{x e} 2$ and $e_{2} \backslash e_{1}$ it is verified that $\left(T e_{2}, e_{2}\right)=0=\left(T e^{\wedge} e^{\wedge}\right.$. Hence we are in the case $e_{\mathbf{i}} x e^{\wedge} e_{2} x e_{2}, e_{1} x e_{2}$ and $e_{2} \backslash e^{\wedge}$. Since $e_{ \pm} x\left[e^{\wedge} e^{\wedge}\right.$ J, and $T e_{x}, T e_{2}$ axe linearly independent there is a vector ${ }^{e} 3^{\wedge}\left[{ }^{e} i^{\wedge}{ }^{e} 2^{\wedge}\right.$ such that $\odot_{2}{ }^{\mathrm{e}}{ }^{\mathrm{e}} 3^{\#}$ Identifying linear functionals f on E with points in E by the mapping $f<->\sum_{i=1}^{3} f\left(e_{x}\right) e_{x}$ it is verified that there are real

 real numbers. Thus $e_{-}^{\wedge} x e_{-}^{\wedge}$ while $e_{-}^{\wedge} x e_{-}^{\wedge}$. Hence F is homogenous on [e_3]. Further it is verified that $e_{3} x c_{2} e_{3}-c_{3} \mathbf{e}_{\mathbf{2}}$
 Now since $e_{0} x\left[e_{Q}, c_{0} e_{\circ}-c^{\wedge} e_{0}\right]$ and F is homogenous on [e_{0}] it follows that F is linear on E.

Next we proceed to the main theorem of this section.

Theorem 1. Let E be a real Hausdorff topological vector space and $T: E-» E^{*}$ be a linear mapping such that the T-orthogonality is not symmetric. Then every continuous orthogonally additive functional on E is linear.

Proof. In view of the introductory comments in this section we may assume that rank $T \wedge 2$. Since the range of T is of dimension at least 2, and orthogonality is not symmetric we claim that there exist two vectors $e_{\mathbf{1}}^{-}, \mathrm{e}_{2} \mathrm{eE}$ such that $\mathrm{e}_{\mathbf{1}} \mathrm{x} \mathrm{e}_{\underline{2}}$,
$e_{\sim}^{\sim} X e_{\mathcal{L}}$ and $-T e_{\mathbf{1}}$,Tep are linearly independent. For let x, y be two vectors such that x i y, and $y ~ \ x$. If Tx,Ty are linearly dependent let $p e E$ be such that $T p, T y$ are linearly independent. If y \p then since $y \backslash x$ there exists a real number a such that y JL $p+a x$. If $p+a x i y$ then since $x \quad x y, p$ i y. Thus $y X p$ and $p i y$ and $T p, T y$ are linearly independent. Next if $p+a x \backslash y$, then $p+a x, y$ are vectors of the required type. If $y x p$, then if $p \backslash y$, p,y have the desired properties. If $p \pm y$ then $p+x$ i y and p 4- x, y have the desired properties. Thus there exist
 the linear mapping $T \mid\left[x_{5} \mathrm{e}_{1}, \mathrm{e}_{2}\right]=0^{\wedge}$. Then applying proposition 1 to T_{1} and the function F it follows $F \mid\left[x, e_{1}, e_{2}\right]$ is linear. Tliis also implies in particular that F is linear on [x] for all xeE. Next let x, y be two linearly independent vectors,
 from the preceding observation. Next if $x \backslash y$ and $y ~ \ x$, then if $(T x, x) \wedge 0$ or $(T y, y) \wedge 0$ it is possible to find a
 in either case as before F is linear on the span of [$x_{3} y$]. If $(T x, x)=0=(T y, y)$, then since $(T x, y) / 0 /(T y, x)$ it is verified that there is a real number a such that $x+a y \quad x y+x, ~ o n c e ~ a g a i n ~ v e r i f y i n g ~ F ~ i s ~ l i n e a r ~ o n ~[x, y] . ~$ Thus in any case F is linear on $[x, y]$. Hence F is a linear functional.
4. We discuss here the case when the T-orthogonality is symmetric. We note that if $\mathrm{F}: \mathrm{E}->\mathrm{R}$ is orthogonally additive then the even and odd parts ${ }^{F}{ }_{i}>^{F} 2$ of F are also orthogonally additive. This is verified from the equations $F-\wedge x)=-j \not{ }^{1} \mathrm{~F}(\mathrm{x})+\mathrm{F}(-\mathrm{x})$] and $\quad F_{2}(x)=I_{2}[F(X)-F(-X)]$.

As in the preceding sections we assume that $\operatorname{dim} \mathrm{E} \wedge \geq 2$. Further we note that if dim $T=1$ then as observed in lemma 2 there is a $x e E$ such that $(T x, x) \wedge 0$. Now as in the case when T-orthogonality is not symmetric, $\operatorname{dim} T=1$ (see first paragraph in section 3) it is verified that if F is a orthogonally additive functional on E and $M=T x{ }^{\prime} \mathbf{l}_{(0)}$ then $F \mid M$ is linear. Since $E=M \odot[x]$ it is verified that F determines a unique continuous function $c p: R->R, C p(0)=0$ such that $F(A x+y)=C P(A)+I(y)$ if $y e M$ and $F \mid M=I$. Conversely if IeE and $C p: R-\wedge R$ is a continuous function, $C p(0)=0$, then the function $F: E-^{\wedge} R$ defined by $F(£)=c p(A)+t(y)$, if $£=A x+y, y e M$, determines a continuous orthógonally additive function. The preceding fact is verified by noting that for y,ZGM, Ax + y JL $\backslash X K+z$ if and only if $A j J,=0$ since orthogonality is symmetric and $y \pm z$.

We proceed to discuss the case when rank $T \wedge 2$.

Proposition 2. Let $\operatorname{dim} E=2$. If $T: E->E^{*}$ is a linear mapping, rank $T=2$, and if T-orthogonality is symmetric, then a continuous function F : E->R is even and orthogonally additive if and only if $F(X)=C(T x, x)$ for some real number c.

Proof. If $(T x, x)=0$ for all $X \in E$, then since F is even orthogonally additive functional it follows that $F(x)=F(-x)$, and $F(x)+F(-x)=F(0)=0$. Thus $F(x)=0$ for all $x e E$. Next if for some $x(T x, x) \wedge 0$, then from lemma 1 it is inferred that T is a symmetric mapping. Let e.^ be a vector such that $e^{\wedge} \backslash e^{\wedge}$ Then there is a vector $\left.e_{2}, e_{2} M^{e}\right]$ _] such that $e_{1} i e_{2}$. Since T is of rank $2, T e_{2} / 0 \ll \quad$ Thus $e_{2} J-\underset{\perp}{e}, ~ i m p l i e s ~ e_{2} \backslash e_{2}$. Hence we can assume that there are real numbers $a^{\wedge} 0 / h$, such that $T e_{1}=a-j^{\wedge}$ and $T e_{2}=b e_{2}$. We can assume without loss of generality that $a>0$. It is

 $x, y, x \in\left[e^{\wedge}, y e\left[e_{2}\right]\right.$ such that $(T x, x)=1=(T y, y)$. If $b<0$ then there are vectors x, y,as above such that $(T x, x)=1=-(T y, y)$. For such a pair x, y, for all real numbers K, $K(x+y) I K(x-y)$ or $K(x+y)-L K(x+y)$ according $a s b>0$ or $b<0$. Since F is even and $K x \pm K y$, it is verified from the orthogonal additivity of F that $F(K x)=F(K y)$ or $F(K x)=-F(K y)$. Now it is verified that there is a real number c such that for all $K, F(K z)=C(T K z, K z)$ where $z=x$ or $z=y$, noting that $F(K x)=F(K y)$ and $F(K x)=-F(K y)$ according as $(T x, x)=(T y, y)$ or $(T x, x)=-(T y \wedge y)$. Let now 4 be an arbitrary vector in E. Let $£=A x+$ iy. Then from the
orthogonal additivity of F it follows that

$$
\begin{aligned}
F(A x+\mid-i y) & =F(A x)+F(f-i y)=c(T A x, A x)+c(T \mu y, \mu y) \\
& =c(T(A x+\mid j y), \lambda x+\mu y)
\end{aligned}
$$

Hence $\quad \mathbf{F}(£)=c(T \xi, \xi)$.

Theorem 2. Let $\operatorname{dim} E \wedge 2$ and $T: E->E$ be a linear mapping such that rank $T{ }^{\wedge} \geq 2$. If T-orthogonality is symmetric^then a continuous real valued function F on E is even and orthogonally additive only if there is a real number c such that for all $\boldsymbol{\xi} \in \mathbf{E}$,

$$
F(\xi)=c(T \xi, \xi)
$$

Proof. If $(T x, x)=0$ for all $x e E$ ^then since $x \pm x$ for all x, F is linear on $[\mathrm{x}]$. Since F is also even $\mathrm{F}(\mathrm{x})=0$ for all $x e E$ and it follows that $F(x)=C(T x, x)$ for all x, where c is an arbitrary real number.

Next let x be a vector such that $(T x, x) \wedge 0$. Let F be a continuous orthogonally additive function. Let $M=T^{-1}(0)$. There exists a yeM such that (Ty,y) / 0. For let every vector in M be isotropic. Since the rank $T{ }^{\wedge} \geq 2$ there is a vector $p e M$ such that Tp\&jTx] • Thus there exists a zeM such that $p \mathrm{X} z$. Now $\mathrm{p}+\mathrm{zeM}$. Since $\mathrm{p}+\mathrm{zip}+\mathrm{z}$, (Tp,z) $+(T z, p)=0$, since every vector in M is isotropic. Since the mapping T is symmetric the preceding equation implies p i z contradicting the choice of z. Thus there is a vector $y e M$ with $(T y, y) \wedge 0$. Let $T_{1}=T \mid[x, y]$. Since (Ty,y) ^ 0 and $(T x, y)=0, T_{\perp} y, T_{\perp} x$ are linearly independent and the rank $T_{\mathbf{1}}=2$. Noting that T-orthogonality coincides with T^{\wedge} orthogonality on the plane [x,y] it follows from the preceding
proposition that $F(£)=c(T £, £)$ for all $\left.£ \mathrm{E}^{\mathrm{x}}>\mathrm{y}\right]$ where c 2
is independent of $£$. In particular $F(K x)=K F(x)$ for all $K^{\wedge} 0$. Let now zeE. Let $z=A x+r \backslash$ where x JL r \} and A is a real number. Then

$$
F(z)=F(A X+T J)=F(A X)+F(7 ?)=A^{2} F(x) .+F(7) .
$$

If (TTJ,TJ) $=0$ then $\mathrm{F}(? 7)=0$. If (TTJJT)) $\wedge 0$ from the preceding it follows that $\mathrm{F}(77)=\mathrm{c}(\mathrm{Trj}, \mathrm{rj})$ where c is snch that $F(x)=c(T x, x)$. Thus

$$
\mathrm{F}(\mathrm{z})=\mathrm{A}^{2} \mathrm{~F}(\mathrm{x})+\mathrm{c}(\mathrm{~T} 77, \mathrm{~T} ?)=\mathrm{c}(\mathrm{~T}(\mathrm{Ax}+\mathrm{rj}), \lambda \mathrm{x}+\eta) .
$$

This completes the proof of the theorem
Next we proceed to the case when T-orthogonality is symmetric and F is an odd functional. In this case if $x \pm x$, then F is linear on [x]. Thus,if $(T x, x)=0$ for all x, we expect F to be a linear functional. However we provide an example to show that this need not be the case when every vector x in E is isotropic and rank $T=2$.

Theorem 3. Let $\mathrm{T}: \mathrm{E} \sim^{\wedge} \mathrm{E}$ be a linear mapping such that T orthogonality is symmetric and rank $T \wedge \geq 2$. Then every odd continuous T-orthogonally additive real valued function on E is linear, if there is at least one nonisotropic vector.

Proof. Since there is a nonisotropic vector and T-orthogonality
is symmetric, the linear mapping T is symmetric. Further we note that since F is an odd orthogonally additive function, F is linear on $[\mathrm{x}]$ if x is isotropic. We proceed to verify that F is linear on $[x]$ even if x is nonisotropic. As already noted in the second paragraph of the proof of the preceding theorem there is a vector $y \mathrm{x} x$ such that (Ty,y) ^0. We may even assume that $(T y, y)=; \underline{f}(T x, x)$. if $(T y, y)=(T x, x)$ then since $\mathrm{x} x \mathrm{y}, \mathrm{K}(\mathrm{x}+\mathrm{y}) \mathrm{JL} \mathrm{K}(\mathrm{x}-\mathrm{y})$ for all real numbers K . Thus noting that F is an odd function it is verified that $\mathrm{F}(2 \mathrm{Kx})=2 \mathrm{~F}(\mathrm{Kx})$ and $\mathrm{F}(2 \mathrm{Ky})=2 \mathrm{~F}(\mathrm{Ky})$. Further since for any real number $m, m(x+y) x(x-y)$ it is verified that $F((m+l) x)+F((m-l) y)=F(m x)+F(x)+F(x n y)-F(y) \cdot$ Now by straightforward induction it is verified that for integers m, $F(m x)=m F(x)$ and $F(m y)=m F(y)$. Since x, y could be replaced by rx,ry, r a real number, $F(m r x)=m F(r x)$ for all real numbers r and integers m. Hence for rationals $\frac{\mathfrak{m}}{\mathbf{n}}$ we have $F(\underset{\sim}{\mathfrak{n}} \mathrm{x})=\frac{\mathfrak{m}}{\mathrm{n}} \mathrm{F}(\mathrm{x})$. Since F is continuous F is linear on [x]. If $(T x, x)=-(T y, y)$, since $x x y, x+y, x-y$ are isotropic vectors. Thus for any real number A, $F(M x+y))=M F(x)+F(y))$ and $F(A(x-y))=A[F(x)-F(y)]$. Hence $F(A x)+F(A y)=A(F(x)+F(y))$ and $F(A x)-F(A y)=A[F(x)-F(y)]$. Thus $F(A x)=A F(x)$. Hence F is linear on all 1-dimensional subspaces of E.

We proceed to show that F is indeed linear on E. Since F is linear on each line in E and orthogonally additive it is enough to show that in any two dimensional subspace [x, y] there are two linearly independent orghogonal vectors. Let x, y be two linearly independent vectors. If $x \mathrm{x} y$ we have two
orthogonal vectors in $[x, y]$. If $x \notin y$, but $(T x, x) \neq 0$ $((T y, y) \neq 0)$ the pair $x, x+a y(y, y+a x)$ where
$a=-\frac{(T x, x)}{(T x, y)}\left(a=-\frac{(T y, y)}{(T x, y)}\right)$ is verified to be a pair of the required type in the subspace $[x, y]$. If $(T x, x)=O=(T y, y)$ then the pair $x+y, x-y$ is one such since T is symmetric. This completes the proof of linearity of F. Thus $F \in E^{*}$.

Before proceeding to the case when every vector is T -
isotropic let us recall that according to lemma 2 if the rank of T is an odd integer ≥ 3 then there is at least one nonisotropic vector. We start with a preliminary result dealing with the case when rank $T=4$.

Proposition3. If $\operatorname{dim} E=4$ and $T: E \rightarrow E^{*}$ is a symmetric linear isomorphism and if every vector is isotropic, then every odd orthogonally additive continuous real valued function on E is linear.

Proof. Let $e_{1} \in E \sim\{0\}$. Since $T e_{1} \neq 0$, the subspace $M=T e_{1}^{-1}(0)$ is 3-dimensional. Let e_{2} be a vector in $\mathrm{Te}_{1}^{-1}(0)$ such that e_{1}, e_{2} are linearly independent. Since $T e_{2}$ and $T e_{1}$ are linearly independent there is a vector e_{3} such that $e_{1} \perp e_{3}$ and $\left(T e_{2}, e_{3}\right)=1$ and a vector e_{4} such that $e_{2} \perp e_{4}$ and $\left(T e_{1}, e_{4}\right)=1$. It is verified that $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ is a base for E and representing linear functionals f on E with vectors in E by the isomorphism $f \longleftrightarrow\left(f\left(e_{1}\right), f\left(e_{2}\right), f\left(e_{3}\right), f\left(e_{4}\right)\right)$
it is verified from the properties that every vector is isotropic and orthogonality is symmetric that

$$
T e_{1}=e_{4}, T e_{2}=e_{3}, T e_{3}=-e_{2} \text { and } T e_{4}=-e_{1}
$$

Since for every $x \in E, x \perp x$ it follows that F is linear on [x] for every $x \in E$. Thus if $x \perp y$ then F is linear on the subspace $[x, y]$. Since $e_{1} \perp\left[e_{1}, e_{2}, e_{3}\right], e_{2} \perp\left[e_{1}, e_{2}, e_{4}\right]$, $e_{3} \perp\left[e_{1}, e_{3}, e_{4}\right], e_{4} \perp\left[e_{2}, e_{3}, e_{4}\right]$ and $\left[e_{2}, e_{3}\right] \perp\left[e_{1}, e_{4}\right]$ it is enough to verify that F is linear on the subspaces $\left[e_{2}, e_{3}\right]$ and $\left[e_{1}, e_{4}\right]$. Consider a typical vector, say $\lambda e_{2}+\mu e_{3}$ in $\left[e_{2}, e_{3}\right]$. It is verified that $e_{1}+\lambda e_{2}+\mu e_{3}-\lambda \mu e_{4}$ and $e_{1}-\lambda \mu e_{4}+\lambda e_{2}+\mu e_{3}$. Thus

$$
F\left(e_{1}+\lambda e_{2}+\mu e_{3}-\lambda \mu e_{4}\right)=F\left(e_{1}+\lambda e_{2}\right)+F\left(\mu e_{3}-\lambda \mu e_{4}\right)
$$

Since $e_{1} \perp e_{2}$ and $e_{3} \perp e_{4}$,
(1) $\quad F\left(e_{1}-\lambda \mu e_{4}\right)+F\left(\lambda e_{2}+\mu e_{3}\right)=F\left(e_{1}\right)+F\left(\lambda e_{2}\right)+F\left(\mu e_{3}\right)-F\left(\lambda \mu e_{4}\right)$.

Once again since $e_{1}+\lambda e_{2}+\mu e_{3} \perp \lambda e_{2}+\lambda \mu e_{4}$ and $e_{3} \perp e_{1}-\lambda \mu e_{4}$ it follows that

$$
\begin{aligned}
F\left(e_{1}+\mu e_{3}-\lambda \mu e_{4}\right) & =F\left(\mu e_{3}\right)+F\left(e_{1}-\lambda \mu e_{4}\right) \\
& =F\left(e_{1}+\lambda e_{2}+\mu e_{3}\right)-F\left(\lambda e_{2}+\lambda \mu e_{4}\right) \\
& =F\left(e_{1}\right)+F\left(\lambda e_{2}+\mu e_{3}\right)-\left[F\left(\lambda e_{2}\right)+F\left(\lambda \mu e_{4}\right)\right]
\end{aligned}
$$

Thus
(2) $F\left(e_{1}-\lambda \mu e_{4}\right)-F\left(\lambda e_{2}+\mu e_{3}\right)=F\left(e_{1}\right)-F\left(\lambda \mu e_{4}\right)-F\left(\lambda e_{2}\right)-F\left(\mu e_{3}\right)$

From equations (1) and (2) and from the linearity of F on each line in E it follows that

$$
\begin{aligned}
& F\left(\lambda e_{2}+\mu e_{3}\right)=F\left(A e_{2}\right)+F\left(\mid J . e_{3}\right)=A F\left(e_{2}\right)+\mid i F\left(e_{3}\right) \text { and } \\
& F\left(e_{1}-\lambda \mu e_{4}\right)=F\left(e_{1}\right)-\lambda \mu F\left(e_{4}\right) .
\end{aligned}
$$

Thus F is verified to be linear on the subspaces $\left[e_{2}, e_{3}\right]$ and $\left[e^{\wedge} e_{4}\right]$. Hence F is a linear functional on E.

Theorem 4. Let E be an arbitrary topological vector space and $T: E->E$ be a linear mapping such that rank $T{ }^{\wedge} \geq 3$ and $(T x, x)=0$ for all $x e E$, and T-orthogonality is symmetric. If F is a continuous orthogonally additive functional on Esthen F is linear.

Proof. Let $e_{\mathbb{1}}, e_{4}$ be an arbitrary pair of linearly independent vectors. If $e_{1} x e_{4}$ then since F is linear on $[x]$ for each xeE, F is linear on the subspace [e, $\left.{ }_{\perp}{ }^{*} e_{4}\right]$. Next let $e_{\perp} X e_{4}$. Since $\left.{ }^{e}\right]_{-}{ }^{e} 4 \star e_{4}$ i e_{4} and $\mathrm{Te}_{1} / 0 \wedge$ Te ${ }_{4}$ it is verified that Te_^Te^ are linearly independent. Since $\mathrm{x} x \mathrm{x}$ for all xeE and $\operatorname{dim} \mathrm{T} \wedge 3$, it follows from the remarks preceding the proposition 3 that dim T ^ 4 . Thus there exists a vector $£$, say $£=A e_{4}+h$, where heTe" ${ }_{l}^{1}(0)$ such that $\boldsymbol{T} \boldsymbol{\xi} \boldsymbol{\phi}\left[\mathbf{T e}_{1} \wedge \mathrm{Te}_{4}\right]$. Now let $\mathrm{h}=\mathrm{Me}_{\boldsymbol{1}}^{-}+\mathrm{e}_{2}$ where $\mathrm{e}_{2} \mathrm{i} \mathrm{e}_{\mathbf{1}}$. Then it is verified that $T e_{2}^{\wedge}\left[T e^{\wedge \wedge}, T e_{4}\right]$ and $e^{\wedge \wedge} J L \quad e_{2}, e_{4} x e_{2}$ 。 Now let e^{\wedge}. be a vector in $\operatorname{Ten}_{1}^{1}(0) \quad \mathrm{De}_{\underline{4}}^{-1}(0)$ such
that $e_{2} \perp e_{3}$. It is verified that $T e_{3} \&\left[T e_{1}, T e_{2}, T e_{4}\right]$. Further it is verified that the rank of $T_{1}=T \mid E^{4}$ is 4, where $E^{4}=\left[e_{1}, e_{2}, e_{3}, e_{4}\right]$ and the T-orthogonality restricted to E^{4} coincides with T_{1}-orthogonality. Thus applying the preceding proposition, it is inferred that $F \mid E^{4}$ is linear. Hence F is linear on $\left[e_{1}, e_{2}\right]$ completing the proof of the theorem. Before summarizing the results we discuss an example showing that preceding theorem cannot be improved.

Example. Consider $E=R^{2}$. Let $\left\{e_{1}, e_{2}\right\}$ be a base of E. Let T be the operator defined by $T e_{1}=e_{2}$ and $T e_{2}=-e_{1}$. Then it is verified that $(T x, x)=0$ for $x \in R^{2}$. Let $F: R^{2} \rightarrow R$ defined by, $F\left(a e_{1}+b e_{2}\right)=\left(a^{3}+b^{3}\right)^{l / 3}$. It is verified that F is a continuous T-orthogonally additive odd functional on R^{2}. Thus in the preceding theorem rank $T \geq 3$ cannot be replaced by rank $T \geq 2$.

Since every orthogonally additive functional F is the sum of an even and an odd orthogonally additive functional we can summarize the results of this section as follows.

Theorem 5. Let $T: E \longrightarrow E^{*}$ be a linear mapping such that $\operatorname{dim} \mathrm{E} 22$. If T -orthogonality is symmetric and if there is at least one non-isotropic vector, then a continuous function $F: E \rightarrow R$ is orthogonally additive only if there are a real number c and a functional $\ell \in E^{*}$ such that $F(x)=c(T x, x)+\ell(x)$ for all $x \in E$. If T is as above except
that every vector in E is isotropic^then if $\operatorname{dim} T \wedge 3$ every continuous orthogonally additive functional is linear.

In conclusion it might be remarked that if the quadratic form associated with the linear mapping T is not continuous on E, then $c=0$ in Theorems 2 and 5.

References

1. Drewnowski, band W. Orlicz, "On Representation of Orthogonally Additive Functionals", Bull. Acad. Polo. Sci. Ser. Math. Astronom. Phys., 17 (1969), 647-653.
2. Mize, V., and K. Sundaresan, "Representation of Vector Valued Nonlinear Functions", (To appear in Transactions of American Mathematical Society, 1971).
3. Pinsker, A. G., "Sur Une Functionelle Dan L-espace de Hilbert", Compiles Rendus (Doklady) De l'Academie Dis Sciences De l'URSS., XX (1938), 411-414.
4. Friedmansand M. Katz, "A Representation Theorem for Additive Functionals", Archive for Rational Mechanics and Analysis, 21 (1966), 49-57.
5. Koshi, S., "On Additive Functional of Measurable Function Spaces", Math. J. of Okayama Univ. 13 (1968), 119-127.
6. Dugundji, J., Topology, Allyn and Bacon, 1966.
7. Sundaresan, K., "Orthogonality and Nonlinear Functionals on Banach Spaces", R. R. 71-22 (1971), Department of The Proceedings
Mathematics, Carnegie-Mellon University. (To appear un of the American Mathematical Society).
