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T-Orthogonality and Nonlinear Functionals

on Topological Vector Spaces

K. Sundaresan and 0. P. Kapoor

In recent years the problem of concretely representing

a class of nonlinear functionals on Banach spaces has received

considerable attention. Suppose B is a Banach space equipped

with an orthogonality relation i c B x B. Denoting (x,y)€i

by x i y, a real valued function F on B is said to be

orthogonally additive if x x y implies F(x+y) = F(x) + F(y).

For example when B is a vector lattice^a natural orthogonality

relation is the lattice theoretic one: x ±. y if |x| A |y| = 0.

•tfie problem of representing orthogonally additive functions on

normed vector lattices of measurable functions has been dealt

in Drewnowskii and Orlicz [l],Mizel and Sundaresan [2], Friedman

and Katz [ 4 ] , Koshi [ 5 ] , and several others. If B is

the Hilbert space L~[O,1] with the usual concept of ortho-

gonality i.e. x ±2 Y if t^ie inner product (x,y) = 0* the

problem of representing orthogonally additive functionals has

been considered by Pinsker [3]. If B is an arbitrary Banach

space there are several orthogonality relations which are

generalisations of the usual concept of orthogonality when B

is a Hilbert space. One such concept of considerable geometric

and analytic interest is the following. Let (B,|| ||) be a

Banach space. If x,yeB, x x^ y if ||x+Ay|| ^ ||x||
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for all real values of A. Tfre problem

of representing orthogonally additive functionals on B with

respect to the relation JL̂  has been dealt in Sundaresan [ 7 ] .

None of the preceding concepts of orthogonality extend

to arbitrary topological vector spaces. We introduce here a

useful orthogonality concept in an arbitrary topological vector

space. Let E be an Hausdorff topological vector space and

T : E —>E , where E is the dual of E, be a linear mapping.

If x,yeE, then x is T-orthogonal to y if Tx(y) , denoted

by, (Tx,y) = 0. In the present paper the problem of charac-

terizing T-orthogonally additive functionals on a topological

vector space is dealt.

In the next section we recall briefly the basic terminology

and establish few results useful in the subsequent discussion.

In section 3 we discuss T-orthogonally additive functionals

when T-orthogonality is not symmetric. In section 4 we con-

sider the same problem when T-orthogonality is symmetric.

2. Throughout the paper E is a Hausdorff Topological

vector space on the real field Ro E is the vector space

of continuous linear functionals on E. To avoid trivialities

we always assume that dim E ̂  2. If T : E —-> E is a linear

mapping and x,y€E, then x is T-orthogonal to y or briefly

x x y, when T is understood, if (Tx,y) = 0. T-orthogonality

is said to be symmetric, if (Tx,y) = o implies (Ty,x) = Oo

A vector X is said to be T-isotropic or simply isotropic



if (TXjX) = O, Tfhe operator T is said to be symmetric

if (Tx,y) = (Ty,x) for all x,yeE. If x,y,z,... are

vectors in E, the span of x,y,z,... is denoted by [x,y,z,...].

We conclude this section with a few useful lemmas.

y

Lemma 1. If T : E —* E is a linear mapping such that

T-orthogonality is symmetric and if there is a nonisotropic

vector then T is symmetric.

Proof. Let y,zeE. Suppose (Ty,z) £ (Tz,y). Since the

relation x is symmetric (Ty5z) ^ 0 ^ (Tz,y). If y X y

it is verified that there is a real number a ^ 09 such that

y i y + az. Hence y + az x y. Thus a(Tz,y) = - (Ty,y) = a(Ty,z)

Hence (Ty,z) = (Tz,y). If z \ z it is verified similarly

that (Ty,z) = (Tz,y) • Let now y J. y and z x z. Let x

be a vector such that x \ x. The preceding observation

shows that (Tx,p) = (Tp,x) for all peE. Further

since x \ x either x + y or x - y is not isotropic.

Hence (T(x+y) ,z) = (Tz, (x+y) ) or (T(x-y) ,z) = (Tz, (x-y) ) .

Thus (Ty,z) = (Tz,y) and T is a symmetric mapping.

Lemma 2. If T : E —> E is a linear mapping and if the rank

of T is an odd integer.then there is at least one non-isotropic

vector.

Proof. Suppose every vector is isotropic.



The hypothesis of the lemma implies there exists a (2K+1)-

2K+1dimensional subspace E of E, for some positive

2K+1
integer K, such that T(E ) is also (2K+1)-dimensional.

2K+1
Thus if T, is the restriction of T to E > Ti roight

2 K+1 2 K-J~1
be considered as a linear isomorphism on E to E

2K+1such that the innerproduct (T x,x) =0 for all xeE

Thus there exists continuous nonvanishing tengential vector

field on the sphere in E K+ , contradicting Poincar^ -Brouwer

theorem, Dugundji [t ].

Lemma 3. If T : E — * E is a 1-dimensional linear mapping

then the following two statements are equivalent.

(1) T-orthogonality is symmetric4

(2) There is a nonisotropic vector x such

that x J- y implies Ty = 0.

Proof. Let x \ x. Let yeTx" (0) . Then (1) implies y a. x.

Since T is 1-dimensional and Tx ^ 0, Tye [Tx] . Let Ty = ATx.

Then since y ± x it is verified that either, A = 0 or

(Tx,x) = 0. Since x X x5 A = 0. Hence Ty = 0. Thus (1)

implies (2). Conversely suppose (2) holds and X€E such

that x i y implies Ty = 0. Since Tx / 0, Tx" (0) is a

subspace of codimension 1. Thus each £eE determines uniquely a

real number ?\ and a vector h, x J. h, such that £ = Ax + h.

Thus if £. = A. x+h., i = 1,2, then £- ± £2 if and only

if ^i^2 = ^ since Th. = 0 . Hence JL is symmetric.



Remark 1. From the proof of the preceding lemma it is clear

that (2) could as well be replaced by "for every nonisotropic

vector x, x i y implies Ty = 0".

3. Let T : E -^ E be a linear mapping such that i is not

symmetric. Let the rank of T = 1. Then from lemma 2 it is

inferred that there is a nonisotropic vector. Let x be one

such vector. Let M = Tx~ (0). If y,zeM then since Tx ^ 0

and rank T = 1, Ty,Tze[Tx]. Since (Tx,z) =0 it is verified

that y j. z. In particular for all yeM, y x y. Now if F

is a continuous T-orthogonally additive functional on E then

the preceding observation implies that F is homogeneous and

additive on M. Thus F|M is a continuous linear functional

on M. Since i is not symmetric it is inferred from lemma 3

that there is a vector yeM such that Ty ^ 0. Since M is

a subspace and TyG[Tx] we can as well assume that Ty = Tx.

•Thus x - y i x. Hence if F(?\x) = cp (A) then since ~h (x-y) x \ix

for all pairs of real numbers A,u it is verified from the

orthogonal additivity of F and linearity of F on M that

cp(A+̂ ) = cp(A) + cp(fi). Since F is a continuous function,

cp : R—>R is a continuous additive function. Thus cp is linear.

Now if £GE and £ = Ax + y, yeM, then F(Ax+y) = cp (A) + F(y).

Since cp is linear on R it follows that FGE . Since every

linear functional on E is orthogonally additive it is proved



that under the above hypothesis on T that a continuous function

F : E—»R is T-orthogonally additive if and only if F€E •

Next we proceed to the case when rank T > 1. First we

deal the case of dim E = 2 or 3.

Proposition 1. If dim E = 2 or 3 and if T : E—*E is a

linear mapping such that rank T > 1 and T-orthogonality is

not symmetric then every continuous orthogonally additive

functional on E is linear.

Proof. Let dim E = 2. Suppose that e-,e2eE such that

e. l e but e \ e . Thus e-,e are linearly independent*

Since the rank T = 2, Te- / 0. Hence (Te^,e2) = 0 implies

that (Te,je.) ^ 0. Thus there is a real number a / 0 such

that ae., + e^ I e-. Hence if A,u are two real numbers then

A(ae1+e2) i lie^ Hence F(Aaex + Ae2 + lie^ = F(A (ae1 + e2) ) + F(|ie1)

Since e.̂  ± e2, F((l\BL+\i)e1+'\e2) = F^Aa+t-Oe^ + F(Ae2).

Thus P((>.a+|i)e1) + F(Ae2) = F(A(ae1+e2)) + FC^ej^). Hence F

is additive on [e.]. Since F is continuous F is homo-

genous on [e^] . Further noting that ae, + e2 x e,, e., \ ae, + e2

it is verified as above that F is homogenous on ae1 + e^.

Since ae.. + e2 i e.., the T-orthogonal additivity of F at

once implies that F is linear.

Next we proceed to the case when dim E = 3. Let the

rank T = 2 and e^e^eE such that e. i. e~ and e~ \ e,.

If (Tê ^̂ e.) ^ 0 or (Te2,e2) / 0 y then as in the preceding

case it is verified that F is linear on [e^e^ . If

= 0 and (Te2,e2) = o. then F is homogeneous on



and [e~] • Since e* x e2 is linear on the subspace [e,,ep] .

Thus in either case F is linear on fei^e2^ • N o w ^f Te^,Te2

are linearly independent then since the rank T = 2 there

exists a vector e3^ [e, ,e2] such that Te3 = 0. Since e3 x e3

F is homogenous on [e3] . Further since e3 JL [e, ,e2] and F

is linear on [ e ^ e ^ it is verified that F is a linear

functional. If Te1,Te2 are linearly dependent then either

Te 1 = 0 or Te.. = ATe2> ^ / 0. Since (Te^e.^ ^ 0 there is

a vector x£ [e,,e2] such that e2 JL X. Thus if Tê ^ = 0

then e. x x. If x \ e or x X e1 then as in the case of

dim E = 2 it is verified that F is homogenous in [x] .

Since [e-.,e2] x x,F is a linear functional. If x JL e2

and x x e.., then, since e2 X e,, x + e2 1 e... However since

el x e2' el x x + e2m O n c e a 9 a i n F is verified to be homo-

genous on [x+e2] . Since x x e2 and F is homogenous on [e2]

it is verified that F is homogenous on [x]. Thus F is

linear. Next suppose Te, ^ 0. Then since Te, = ATe2 for

some A ^ 0, and e2 X e, there is a vector x^[e^5e2] such

that [e1,e2] x x. If x X [e ,e2] then once again F is

homogenous on [x] and F is a linear functional. If x x [e^,e2]

since the rank T = 2, (Tx,x) ^ 0. Further since Te^ / 0,

and ê , x [x,e ] it follows that (Te^e..) / 0. Since e. x x,

x x e1 and (Te1,e1) ^ 0 ^ (Tx,x) it is verified that (*)

there is a real number a ^ 0, such that x + aex x x + ae, or

x + ae, x x - ae1. In the case of the first alternative, F is

homogenous on [x+ae,]. Then since x x e1 and F is homogenous
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on [e. ] 9 it is verified that F is homogenous in [x] .

Thus F is linear. If x + ae1 x x - ae, then if ~K,\A are

two real numbers F((A+fi)x + Aaex - l-laê  = FfMx+ae^) + F(|i(x-ae1))

= F(Ax) + F(|ax) + F(AaeJ - F(|iae-), since A (x+aej x |i(x-ae,).,

Since x x e^ F((A+|j)x + Aae-^ae^ = F((A+|i)x) + FtAae^fiae^ .

From the preceding equations it is verified that F( (A+|a) x) =

= F(Ax) + F(p.x) after noting that F is homogenous on [e. ] .

Since F is continuous, F is homogenous on [x]. Hence F

is a linear functional completing the proof in the case rank T = 2.

Next suppose dim E = 3, and rank T = 3. Since T-

orthogonality is not symmetric there exist linearly independent

vectors ei>eo such that e, JL e2 and e2 X e,. Thus as in

the case of dim E = 2 it is verified that F is linear on

[e^,e2]. Suppose there is a vector e3^[e15e2] such that

e3 x '•el'e2"'# If el ^ e3 or e2 "^ e3 tlien F ^s homogenous

on [e~] and F is a linear functional. Next let e, I e^

and e2 JL e3 or equivalently [e^^e^] J- e^. Since e3 I [e*,e ]

e3^[e1,e2] and rank T = 3, (Te3,e3) / 0. Similarly since

el x e2^ el X e3 ^t ^s v e r ^ f i e d that (Tê ^̂ e,) ^ 0. Thus

since e, x e3, e3x e, there is a nonzero real number a such

that either ae, + e3 x ae., + e3 or e3 + ae, x e3 - ae, .

Thus as in the case of (*) in the preceding paragraph it follows

that F is homogenous on [e3]. Hence F is a linear functional.

Next suppose there is no vector e3^[e,,e2] such that

e3 x [e,,e2]. Since rank T = 3, there is a vector x / 0

such that x x [e,,e2] and x^[e,]. Since such a vector



X€ [e^,e2] there are real numbers a,b,b / O such that

ae, + be2 x e2, and ae., + be2 x e,. Thus since ej x e 2

and e2 \ e1 it is verified that (Te2,e2) = O = (Te^e^ .

Hence we are in the case e.. x e^ e2 x e2, e1 x e2 and e2 \ e^.

Since e± x [e^e^J, and Tex,Te2 axe linearly independent

there is a vector e3^[ei^e2^ such that ©2
 x e3 # Identifying

linear functionals f on E with points in E by the

mapping f<->£ f(e.)e. it is verified that there are real
i=l x X

numbers a3,b-,c-,c2,
 fand c~ such that Te = a3e3, Te2 = b.e.,

Te3 = S c.e.. Since the rank T = 3, a3, b,, c3, c2 are nonzero

real numbers. Thus e^ X e^ while e^ x e^. Hence F is

homogenous on [e3]. Further it is verified that e3 x c2e3 - c3

and coe3 " C3e9 ^ e3* Hence F is linear on te3 ̂  C2e3 " C3e2-'#

Now since eo x [eQ,coeo - c^eo] and F is homogenous on [eo

it follows that F is linear on E.

Next we proceed to the main theorem of this section.

Theorem 1. Let E be a real Hausdorff topological vector

space and T : E —»E be a linear mapping such that the

T-orthogonality is not symmetric. Then every continuous ortho-

gonally additive functional on E is linear.

Proof. In view of the introductory comments in this section

we may assume that rank T ^ 2. Since the range of T is of

dimension at least 2, and orthogonality is not symmetric we

claim that there exist two vectors e-.,e2eE such that e, x e2
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e~ X e, and -Te,,Tep are linearly independent. For let x,y

be two vectors such that x i y, and y \ x. If Tx,Ty are

linearly dependent let peE be such that Tp,Ty are linearly

independent. If y \ p then since y \ x there exists a

real number a such that y JL p + ax. If p + a x i y then

since x x y, p i y. Thus y X p and p i y and Tp,Ty

are linearly independent. Next if p + ax \ y, then p + ax,y

are vectors of the required type. If y x p, then if p \ y,

p,y have the desired properties. If p ± y then p + x i y

and p 4- x,y have the desired properties. Thus there exist

vectors e-)*e? as clairaed- L e t n o w x e E ~ fei^e9-' # Consider

the linear mapping T| [x5e1,e2]=0^. Then applying proposition 1

to T, and the function F it follows F| [x,e,,e2] is linear.

Tliis also implies in particular that F is linear on [x] for all

xeE. Next let x,y be two linearly independent vectors,

X*Y^ tei *e?] • If x JL y(yJ-x) F is verified to be linear on [x,y]

from the preceding observation. Next if x \ y and y \ x,

then if (Tx,x) ^ 0 or (Ty,y) ^ 0 it is possible to find a

real number a such that x x x + ay or y x y + ax, Then

in either case as before F is linear on the span of [x3y] .

If (Tx,x) = 0 = (Ty,y), then since (Tx,y) / 0 / (Ty,x) it

is verified that there is a real number a such that

x + ay x y + x, once again verifying F is linear on [x,y].

Thus in any case F is linear on [x,y]. Hence F is a

linear functional.
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4. We discuss here the case when the T-orthogonality is

symmetric. We note that if F : E—>R is orthogonally additive

then the even and odd parts Fi>F2 of F a r e a l s o orthogonally

additive. This is verified from the equations F-^x) =-j [F (x) +F(-x) ]

and F2(x) = I[F(X)-F(-X) ].

As in the preceding sections we assume that dim E ̂ > 2.

Further we note that if dim T = 1 then as observed in lemma 2

there is a xeE such that (Tx,x) ^ 0. Now as in the case

when T-orthogonality is not symmetric, dim T = 1 (see first

paragraph in section 3) it is verified that if F is a ortho-

gonally additive functional on E and M = Tx" (0) then F|M

is linear. Since E = M © [x] it is verified that F de-

termines a unique continuous function cp : R—>R, cp (0) =0

such that F(Ax+y) = cp (A) + I (y) if yeM and F|M = I. Con-

versely if leE and cp : R—^R is a continuous function, cp(O) =0,

then the function F : E—^R defined by F(£) = cp (A) + t (y),

if £ = Ax + y, yeM, determines a continuous orthogonally additive

function. The preceding fact is verified by noting that for

y,ZGM, Ax + y JL \XK + z if and only if AjJ, = 0 since orthogonality

is symmetric and y ± z.

We proceed to discuss the case when rank T ^ 2.

Proposition 2. Let dim E = 2. If T : E—>E is a linear mapping,

rank T = 2, and if T-orthogonality is symmetric then a continuous

function F : E—>R is even and orthogonally additive if and

only if F(X) = c(Tx,x) for some real number c.
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Proof. If (Tx,x) = 0 for all X€E, then since F is even

orthogonally additive functional it follows that F(x) = F(-x),

and F(x) + F(-x) = F(0) = 0. Thus F (x) =0 for all xeE.

Next if for some x (Tx,x) ^ 0, then from lemma 1 it

is inferred that T is a symmetric mapping. Let e.̂  be a

vector such that ê ^ \ e^ Then there is a vector e2, e2M
e]_]

such that e, i e2. Since T is of rank 2, Te2 / 0« Thus

e2 J- e, implies e2 \ e2. Hence we can assume that there are

real numbers a ^ 0 / h, such that Te1 = ae-ĵ  and Te2 = be2.

We can assume without loss of generality that a > 0. It is

verified that xiei + xoe2 ± ^lel + ^2e2 "*"f a n d on^Y ^f

a x l y l + b x2 Y2 = ° * N o w if b > ° tl:ien there are vectors

x,y,x€ [e^ ,ye [e2] such that (Tx,x) = 1 = (Ty,y) . If b < 0

then there are vectors x,y,as above such that (Tx,x) = 1 = - (Ty,y) .

For such a pair x,y, for all real numbers K, K(x+y) I K(x-y)

or K(x+y) -L K(x+y) according as b > 0 or b < 0. Since F

is even and Kx ± Ky, it is verified from the orthogonal

additivity of F that F(Kx) = F(Ky) or F(Kx) = -F(Ky).

Now it is verified that there is a real number c such that

for all K, F(Kz) = c(TKz,Kz) where z = x or z = y, noting

that F(Kx) = F(Ky) and F(Kx) = -F(Ky) according as

(Tx,x) = (Ty,y) or (Tx,x) = -(Ty^y). Let now 4 be an

arbitrary vector in E. Let £ = Ax + |iy. Then from the

orthogonal additivity of F it follows that

F(Ax+|-iy) = F(Ax) + F (f-iy) = c(TAx,Ax)

= c(T(Ax+|jy) ,
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Hence F(£) =

Theorem 2. Let dim E ^ 2 and T : E—>E be a linear mapping

such that rank T ̂ > 2. If T-orthogonality is symmetric^then

a continuous real valued function F on E is even and ortho-

gonally additive only if there is a real number c

such that for all

Proof. If (Tx,x) = 0 for all xeE ^then since x ± x for all

x, F is linear on [x] . Since F is also even F(x) =0

for all xeE and it follows that F(x) = c(Tx,x) for all x,

where c is an arbitrary real number.

Next let x be a vector such that (Tx,x) ^ 0. Let F

be a continuous orthogonally additive function. Let M = Tx (0) .

There exists a yeM such that (Ty,y) / 0. For let every

vector in M be isotropic. Since the rank T ̂ > 2 there is

a vector peM such that Tp&jTx] • Thus there exists a zeM

such that p X z. Now p + zeM. Since p + z i p + z,

(Tp,z) + (Tz,p) = 0 , since every vector in M is isotropic.

Since the mapping T is symmetric the preceding equation implies

p i z contradicting the choice of z. Thus there is a vector

yeM with (Ty,y) ^ 0. Let T, = T| [x,y]. Since (Ty,y) ^ 0

and (Tx,y) = 0, T,y,T,x are linearly independent and the

rank T, = 2. Noting that T-orthogonality coincides with T^-

orthogonality on the plane [x,y] it follows from the preceding

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY



14

proposition that F(£) = c(T£,£) for all £e tx>y] where c
2

is independent of £. In particular F(Kx) = K F(x) for

all K ̂  0. Let now zeE. Let z = Ax + r\ where x JL r\

and A is a real number. Then

F(z) = F(AX+TJ) = F(Ax) + F(7?) = A2F(x). + F (77) .

If (TTJ,TJ) = 0 then F(?7) = 0. If (TTJJT)) ^ 0 from the

preceding it follows that F(?7) = c(Trj,rj) where c is snch

that F(x) = c(Tx,x). Thus

F(z) = A2F(x) + c(T77,T?) = c(T(Ax+rj) ,

is completes the proof of the theorem

Next we proceed to the case when T-orthogonality is symmetric

and F is an odd functional. In this case if x ± x, then F

is linear on [x]. Thus,if (Tx,x) = 0 for all x, we expect

F to be a linear functional. However we provide an example

to show that this need not be the case when every vector x

in E is isotropic and rank T = 2.

Theorem 3. Let T : E~^E be a linear mapping such that T-

orthogonality is symmetric and rank T ̂ > 2. Then every odd

continuous T-orthogonally additive real valued function on E

is linear, if there is at least one nonisotropic vector.

Proof. Since there is a nonisotropic vector and T-orthogonality
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is symmetric, the linear mapping T is symmetric. Further we

note that since F is an odd orthogonally additive function,

F is linear on [x] if x is isotropic. We proceed to

verify that F is linear on [x] even if x is nonisotropic.

As already noted in the second paragraph of the proof of the

preceding theorem there is a vector y x x such that (Ty,y) ^ 0.

We may even assume that (Ty,y) = ;f(Tx,x) . if (Ty,y) = (Tx,x)

then since x x y, K(x+y) JL K(x-y) for all real numbers K.

Thus noting that F is an odd function it is verified that

F(2Kx) = 2F(Kx) and F(2Ky) = 2F(Ky). Further since for any

real number m, m(x+y) x (x-y) it is verified that

F((m+l)x) + F((m-l)y) = F (mx) + F (x) + F(xny) - F (y) . Now by

straightforward induction it is verified that for integers m,

F(mx) = mF(x) and F(my) = mF(y). Since x,y could be re-

placed by rx,ry, r a real number, F(mrx) = mF(rx) for all

real numbers r and integers m. Hence for rationals — we

have F(~x) = — F(x) . Since F is continuous F is linear

on [x]. If (Tx,x) = -(Ty,y), since x x y , x + y , x - y

are isotropic vectors. Thus for any real number A,

F(Mx+y)) = MF(x)+F(y)) and F(A(x-y)) = A [F (x)-F (y) ] .

Hence F(Ax) + F(Ay) = A(F(x) + F (y) ) and F(Ax) -F(Ay) =A[F(x) -F(y)]

Thus F(Ax) = AF(x). Hence F is linear on all 1-dimensional

subspaces of E.

We proceed to show that F is indeed linear on E. Since F

is linear on each line in E and orthogonally additive it is

enough to show that in any two dimensional subspace [x,y]

there are two linearly independent orghogonal vectors. Let

be two linearly independent vectors. If x x y we have two



16

orthogonal vectors in [x,y]. If x X y, but (Tx,x) ^ 0

((Ty,y) / 0) the pair x, x + ay(y,y+ax) where

Verified tO be a P a i r Of the

required type in the subspace [x,y] . If (Tx,x) = O = (Ty,y)

then the pair x + y, x - y is one such since T is symmetric.

iTiis completes the proof of linearity of F. Ihus FGE .

Before proceeding to the case when every vector is T-

isotropic let us recall that according to lemma 2 if the rank

of T is an odd integer ̂  3 then there is at least one non-

isotropic vector. We start with a preliminary result dealing

with the case when rank T = 4.

Proposition3. If dim E = 4 and T : E—>E is a symmetric

linear isomorphism and if every vector is isotropic then every

odd orthogonally additive continuous real valued function on E

is linear.

Proof. Let e-GE ~ (0). Since Te, £ 0, the subspace

M = TeZ (0) is 3-dimensional. Let e2 be a vector in TeZ (0)

such that eT> e
2
 a r e linearly independent. Since Te2

and Te, are linearly independent there is a vector e~ such

that e.̂  x e3 and (Te2,e3) = 1 and a vector e 4 such that

e2 x e4 a n d (Tei>e4) = !• x t is verified that £e]*e2'e3^e4^

is a base for E and representing linear functionals f on E

with vectors in E by the isomorphism f «-*(f (e^ , f (e2) , f (e3) ,f (e4) )
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it is verified from the properties that every vector is isotropic

and orthogonality is syminetric that

T el = e 4 ' T e2 = e3* Te3 = ~e2 a n d T e4 = "~el #

Since for every xeE, x x x it follows that F is linear

on [x] for every xeE. Thus if x x y then F is linear

on the subspace [x,y] . Since e, x [e-^e^e^ , e2 ^ fei^e2^e4

e3 ± fei^e3'e4^ e4 x [e2^
e3^e4l a n d [ e2 f e3 ] x tel^e4^ ii:

is enough to verify that F is linear on the subspaces [^je^]

and [e-,e^]. Consider a typical vector, say Ae2 + \ie^

in [e2,e3]. It is verified that ê , + Ae2 x |ie3 - A|ie4 and

e, - A|ae. 1 7\e2 + l^
e3# Thus

Since e, x e and e3 x e«,

(1) F(e,-A|JeA) + F(Ae9+p,e~) = F(en) + F(Ae9) + F(|ie-) -

Once again since e 1 + Ae2 + fjte3 x Ae2 + A|ae4 and e3 x

it follows that

) = F(|je3) +F

= F(e

= F(e1) + F(Ae2+|ae3) - [F(Ae2)

Thus

(2) F f e T - A j i e . ) - F(Aeo+[JLeo) = F ( e , ) - F(A|ae>,) - F ( A e o ) - F
1 44- Z o X Q £
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From equations (1) and (2) and from the linearity of F on

each line in E it follows that

) = F(Ae2) + F(|J.e3) = AF(e2) + |iF(e3) and

Thus F is verified to be linear on the subspaces [e

and [e^e.]. Hence F is a linear functional on E.

Theorem 4. Let E be an arbitrary topological vector space

and T : E—>E be a linear mapping such that rank T ̂ > 3

and (Tx,x) = 0 for all xeE, and T-orthogonality is

symmetric. If F is a continuous orthogonally additive

functional on E >then F is linear.

Proof. Let e,,e4 be an arbitrary pair of linearly independent

vectors. If e1 x e4 then since F is linear on [x] for

each xeE, F is linear on the subspace [e, *e4] . Next

let e- X e4. Since e]_ ^ e4* e4 i e4 and Te1 / 0 ̂  Te4 it

is verified that Te-^Te^ are linearly independent. Since

x x x for all xeE and dim T ^ 3, it follows from the remarks

preceding the proposition 3 that dim T ^ 4. Thus there exists

a vector £, say £ = Ae4 + h, where heTe" (0) such that

1^Te 4]. Now let h = M-e-. + e2 where e2 i e,. Then

it is verified that Te 2^ [Tê ,̂ Te4] and ê ^ JL e2, e4 x e2.

Now let e^ be a vector in Te~ (0) D Te4 (0) such
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that e 2 X e 3. It is verified that T e 3 j 1 2 4

Further it is verified that the rank of T 1 = T| E is 4, where

4 4
E = te-i *eo*eo 9 e4.] anc^ the T-orthogonality restricted to E

coincides with T,-orthogonality. Thus applying the preceding

i 4proposition, it is inferred that F|E is linear. Hence F

is linear on [e-^e^] completing the proof of the theorem.

Before summarizing the results we discuss an example

showing that preceding theorem cannot be improved.

2
Example. Consider E = R . Let {e^ej} be a base of E.

Let T be the operator defined by Te, = e^ and Te~ = -©-!•

2 2
Then i t is verified that (Tx,x) = 0 for xeR . Let F : R —^ R

defined by, F(ae1+be2) = (a.3+b3)1^3. I t is verified that F
2

is a continuous T-orthogonally additive odd functional on R .

Thus in the preceding theorem rank T ;> 3 cannot be replaced

by rank T ̂> 2.

Since every orthogonally additive functional F is the

sum of an even and an odd orthogonally additive functional we

can summarize the results of this section as follows.

Theorem 5, Let T : E—>E be a linear mapping such that

dim E ̂  2. If T-orthogonality is symmetric and if there is

at least one non-isotropic vector then a continuous function

F : E—^R is orthogonally additive only if there are
-x-

a real number c and a functional leE such that

F(x) = c(Tx,x) + t (x) for all X€E. If T is as above except
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that every vector in E is isotropic^then if dim T ^ 3

every continuous orthogonally additive functional is linear.

In conclusion it might be remarked that if the quadratic

form associated with the linear mapping T is not continuous

on E. then c = 0 in Theorems 2 and 5.
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