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NEMITSKY OPERATORS ON SOBOLEV SPACES
by

M. Marcus and V. J. Mizel

Introduction. The present paper deals with situations in which

,t ) provides, via composition, a mapping

a function g(§,tl,... m

(" Nemitsky operator") between Sobolev spaces. That is, we take
g to be a function satisfying "Caratheodory conditions" and we
analyze circumstances under which for every system of functions
Ugsees eEW () , where W (€)) is the class of L functions

m 1l,qg 1,9 q

with L summable strong first derivatives on the domain (O C Rn’

the composite function given by v(x) = g(§,ul(§),...,um(§))

belongs to W (), with preassigned 1 < p < oo. We suppose

L,p
in addition to the Caratheodory conditions that, roughly speaking,
g 1is locally absolutely continuous on lines 1in Rm parallel to
the axes and has a similar but weaker property for lines in (.
This implies in some sense that the partial derivatives of g
exist almost everywhere in (O x Rm’ and in our hypotheses one
prescribes for each of these partial derivatives a function of

an appropriate kind which dominates i1t almost everywhere. Then

whenever Ugyse..,u are such that their composites with the

dominating functions lie in appropriate Lr(Q) spaces, it is

shown that v lies 1n Wl p(Q). (We remark that the analysis
s



for the case p = 1 1is considerably more complex than when
p > 1.)

The above results are quite different from those usually
studied with Nemitsky operators since such operators are
generally examined only on spaces, such as the Lr(Q) spaces,
which are normal lattices of measurable functions ([10], [11]).
These results should be of interest in the study of partial
differential equations which involve nonlinear functions
satisfying weak smoothness requirements.

In an earlier paper ([1l2]) we have likewise analyzed situa-
tions in which a function g provides a mapping between Sobolev
spaces. The methods of that paper are quite different from those
used here and are restricted to situations in which a chain rule
is available for the partial derivatives of v. Moreover, there
the chain rule was an essential ingredient in determining when
a function g provides a mapping of the desired kind, while in
the present paper a chain rule is generally not valid for the
situations under study.

The approach we follow here relies heavily on a characteri-
zation of the spaces Wl, () due to Gagliardo [ © ], Morrey [14]
and Calkin [ 3]. It also utilizes a theorem of Hardy-Littlewood

[ 8] on difference quotients under translation, as well as

certain classical results of Tonelli [1l5, p. 123] on absolutely



continuous curves.

The plan of the paper is as follows. Section 1 is devoted
to preliminaries. Section 2 deals with the basic problem for the
case p > l. Section 3 extends these results to the case p = 1.
Section 4 analyzes continuity properties of the Nemitsky

operators for the case p > 1. Finally in Section 5, by re-

stricting attention to the particular case of functions g which

are independent of §€Q and by strengthening our previous

conditions, we obtain a chain rule for the partial derivatives

of w.

81. Preliminaries

The following notations will be used in this paper.

A point in the Euclidean space Rn will hereafter be denoted by

yees,X ); the Euclidean norm will be denoted by
1 n

We shall denote by Sk, k-dimensional Lebesgue measure and by

X = (x

Hk’ k-dimensional Hausdorff measure. We shall use the same

symbol for an equivalence class of functions (relative to Lebesgue

measure) as for a representative of that class. The meaning will

be clear from context.

If f 1is a real function defined in a domain € in Rn’

df
Oxy

to xk), wherever it exists; and we denote by o £ the

X](

we denote by the classical partial derivative (with respect



distribution derivative (with respect to xk) of £ in Q,
whenever 1t is meaningful.

By Ck(Q) we denote, as usual, the class of real functions
which are continuous and possess continuous derivatives, up to
order k, in (. The subspace of Ck(Q) consisting of those
functions whose support is a compact subset of (I will be denoted
by Cg(Q). The class of real functions {f} such that f is
Lipschitz in (Q will be denoted by Lip({}); the class of real
functions {f} such that f is Lipschitz in every compact subset
of (I will be denoted by Liploc(Q). Finally, we denote by
PP(Q) the class of real functions { f} which are Lebesgue p-
summable in Q. The class of functions {f} which belong to
L (Q') for every bounded domain (' such that Q <, will
be denoted by L;OC(Q). The standard norm in LP(Q) will be
denoted by H-HL éQ)'

A real funition f defined on an open subset O of the
real line Rl’ is said to be locally absolutely continuous
(or l.a.c.) on O, if it is absolutely continuous on every
compact subinterval of 0. Similarly, £ 1s said to be locally
of bounded wvariation (or l.b.v.) on O, 1f it is of bounded
variation pn every compact subinterval of 0. If O = CB In’

n=1
where {In} is a family of disjoint open intervals, we denote:



oo
(1.1) tot.var. [f] = £ tot.var._ [f],
O 1 In

which may be finite or infinite.

In this paper, such notions, as "null set" and "almost
everywhere" , will always refer to the measure £h’ except when
another measure is specified.

We bring now a number of preliminary results that will be
needed in the following sections.

If £ 1is any real function defined on an interval I on
the real line, it is known that the doma;n of existence of £
is an Sl—measurable set and f' 1is an £1—measurable function

on this domain. Moreover if f 1s Borel measurable, then £

is Borel measurable. (See Saks [15], p. 112-113.)

For functions in more than one variable we have the following

two results:

Lemma 1.1. Let f Dbe a real function defined in a domain ()

in Rn' If £ 1is Borel measurable, then the domains of existence

of each of the derivatives %ﬁ- , (J =1,...,n), are Borel sets,

J
and the derivatives are Borel functions on their respective domains.

For proof, see Marcus and Mizel [l12, Lemma 4.1].



Lemma l1l.2. Let f£ Dbe a real measurable function in a domain

) in Rn' Suppose that £ 1s continuous on almost every line

T parallel to the xi-axis (where 1 1s a fixed index). Then
. . df . Of .
the domain of existence of Swc 1s measurable and Nwt is a
i .

i
measurable function on this domain.

This result is probably known, but we have not been able to
locate any reference for it. Therefore, we present a proof below.
If instead of considering the standard derivative %ﬁf one con-
siders approximate partial derivatives, then results ;n their
measurability may be found for instance in Saks [15] and Federer
[ 5]. Actually, a result that is stronger than Lemma 1.2 (it
assumes only that f 1s measurable) is stated in Haslam- Jones
and Burkill [ 2], but their proof contains a serious gap.

Before we proceed with the proof of the lemma, we introduce
a notation that will be useful in this proof and elsewhere.

For any function £f we denote:

(1.2) 5YE(x) = T[E(x + he) - £(0)], (b # 0),

where e = (o O. )

i,1°°"°"’ "i,n

Proof of Lemma 1.2. Let Bif [resp. Qif] denote the upper

[resp. the lower] derivative of £ 1n the xi—direction. It

is sufficient to show that both of these extreme derivatives are



measurable. Indeed, if this is shown, then the domain of

existence of '%ﬁ— is precisely the set where B;f - D.f = 0O,

=i
1
which 1s measurable; on this set gi coincides with the measurable

1

function Bif.

By definition Bif(x) = lim sup éif(x). We also define:

h O
—rat. . 1
(1. 3) Di f(x) = lim supérf(x),
i r o)
: : . —rat.
where r 1s restricted to the rational numbers. Clearly, Di f,

being the 1lim sup of a countable family of measurable functions,

is itself a measurable function in . If we similarly define

rat.

Qi f (with 1lim sup replaced by 1lim inf), then by the same token,
rat. : : —rat.
D, f 1s measurable in Q. Let A be the set where Di f =
rat. : - . t. :
Qi f. In A we define Diat f = Dia f. Then A 1s a
rat. . |
measurable set and Di f 1s measurable on A. If B denotes
the domain of existence of %§~ , then clearly B € A and
1
gi = Diat°f in B. We shall show that A - B 1is a null set,
1

thereby proving the assertion of the lemma.

Let 7T Dbe a line parallel to the xi—axis such that f 1is
continuous on 7T N Q. We shall show that A N 7 =B N 1.

Let xeA N T and let {hv}ij be any sequence of numbers
tending to zero, such that hv # 0, (v=1,2,...). We may assume

that the sequence of points {x + hvel}?) is contained in a



compact subinterval of T N Q. Choose a sequence of rational

numbers {rv}ié such that lim rv/hv = 1 and such that
. .V 00
| £(x + rvel) - f(x + hvel)l g_hv/v. (Here we use the continuity

of £ on 7T N Q.) Then:

i r, i f(x+hvel) - f(x+rvel)
(1.4) lim 5h f (x) lim [E~ 6r f(x) + n
| V a Vv V 0o V V

Il

]

lim &% £(x) = D 2t £(x).
r 1

V OO V

It follows from (1.4) that A Nt =B N 1. Since this holds for

almost every line T parallel to the xi—axis, it follows that

A - B 1s a null set, and the proof is complete.

Corollary 1l.1. Let £ have the properties stated in the lemma.

If, for almost every line 1T parallel to the xi—axis, gi exists
i
£l - a.e. on T N Q, then gi exists a.e. in ( and is measurable.
i

By Fubini's theorem, this is an immediate consequence of

the lemma.

Definition 1.1. Let ( be a domain in Rn' We denote by Ai(Q)

the class of functions {f} such that:
(1) f is a real measurable function in (.

(1i) For almost every line 7T parallel to the xi—axis,

f 1is l.a.c. on T N Q.



n
The intersection Ai(Q) will be denoted by A(Q).
1

The class of functions {f} such that £f coincides a.e.
in Q with a function f in A, (Q) [resp. A(Q)] will be denoted
by AR(Q) [resp. A!' (Q)].
Finally, suppose that condition (1ii) 1is replaced by:
(ii)' For almost every line T parallel to the xi—axis,
f 1s continuous and l.b.v. on T N Q.

Then, the spaces corresponding to Ai’A&’ A,A' will be denoted

by Bi’Bi’ B,B' respectively. Note that Ai CiBi, Ai CZBR, etc.

Remark 1l.1. By Corollary 1.1, if feBi(Q), then gi exists

i

a.e. 1n ! and i1s measurable.

Definition 1.2. Let £eB!(Q) and let EeBi(Q) such that £ = f
a.e. in Q. We denote by 5; f the equivalence class of

1 ~
measurable functions in ( which contains the function gi . Then

i
5; f will be called the strong approximate derivative of f
i

with respect to x..

i
. ~ ~ ~ _ ~ . ) R Q
We note that if fl,fzeBi(Q) and fl f2 a.e. in ,
then afl = afz a.e. in
Bxi B BXi *e )

1
1

loc

ocC
! (),

(Q) NAL(Q). If o' felL
1 X,

Lemma l1l.3. Suppose that fel

then
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(1.5) a'x f =0 f a.e. in Q.

Proof. Let %eAi(Q) such that f = £ a.e. in . Let wngD(Q).
If T 1s a line parallel to the xi~axis, such that f is l.a.c.

on T N Q, we have:

J gf . (DdXi=—Jr fE é“Q""dX..
7NQ 1 N0 i

>

Hence, by Fubini's theorem:

r Of ~ d de
odx = - £ dx = -{ £ dx
JQ Bxi JQ i JQ Bxi

which proves the assertion of the lemma.

We denote by Wk p(Q) (k a positive integer; p > 1), the
3
Sobolev space of real functions {f} such that £ and its

distribution derivatives up to order k, belong to Lp(ﬂ).

This space is provided with the standard norm:

I£] = = o £
W Q) x "L (Q)°
k,p | o| <k p
where o = (al,...,an), O g_aj is aninteger (j = 1l,...,0n),
a a
— QAo _ 1 n
la| = Ay teeot o and Bxf = Bxl....,BX £f.
n
The space of functions {f} such that feWk p(Q') for every
3
bounded domain ' such that Q' < Q is denoted by WiO;(Q).
3
The product space W () XeeoX W () will be denoted

k,p kK,p

1 | m
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by W (), where §‘= (pl,...,pm).
K,p

The following characterization of W (Q), (1 < p), 1is

1,p |
due to Gagliardo [6 ]. (Most of the essential features of this

result (at least in local form) are also contained in the papers

of Calkin [ 3 ] and Morrey [14].)

Lemma 1.4, Let 1 < p < oo. A function £, defined in (,

belongs to W (Q) i1f and only 1f:

1,p
(1) £ea' (Q);
(ii) B;if € LP(Q), (1= 1,...,n);
iii1) felL (Q).
( p(
Moreover, if feW (Q) then o' £f=0 f a.e. in Q, (i =1,...,n).
l,p X, X,
Finally if Q 1s bounded and has the cone property, then

condition (iii) may be omitted.

Remark 1.2. 1. The result was not stated in this form in [6 ],

but is an immediate consequence of Sections 1 and 2 of that

paper.
2. As a consequence'of this lemma we have the following

local result:

feWio;(Q) if and only 1if:

(1) £feA' (Q);
(ii)' o' f € Ll
X, P

3. If k > 1, then Wk p(Q) may be characterized inductively
b/

oC .
(Q)) l=l,ooo,no
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(1.6) fewk’p(ﬂ)@ ax.few _ (Q).

i k-1,p

The following two results on Sobolev spaces are well known.
For proofs see for instance Agmon [l ] (pp. 42-45). ‘Combined,

these results yield an alternative characterization of W (Q),

1,p
for 1< p <K .
If Q is a domain in Rn and Q' a set in Rn’ the

notation ' <C Q means that Q' is a compact subset of (.

The boundary of Q will be denoted by 0oQ.

Lemma 1l.5. Let fer p(Q), where 1< p < ®. If O 1is an
3

open set such that Q' << Q and if 0 < h < dist. (Q',00), then:

1 o
(1.7) HéthLp(Q,) < HBXifHL (@ (1= 1,...,m).

Lemma 1l.6. Let feLp(Q), where 1 < p < . Suppose that there
exists a number C such that, for every open set Q' with

(0 cc Q, and for sufficiently small |h

i
(1.8) \\5hf1|Lp(Q,) < c.

Then BX feLp(Q) and || £ In particular, if (1.8)

<. T, (o) & ©
i i P
holds for all i, (i = 1,...,n), then fewl p(Q).
2
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Remark. In [l ] these results are stated for p = 2. But the

proofs given there, with only minor modifications, yield also
the more general results stated above. The special assumption
on (), included in the statement of Theorem 3.15 of [1 ], was

made for convenience only and is not really needed (see [1l, p. 1l1l]).

The next lemma deals with the situation considered in Lemma
1.6, for the case p =1, and f a function of one variable.

It is due to Hardy and Littlewood [8 ].

Lemma l.7. Let feLl(I), where I 1is an interval on the real

line. Suppose that for every compact subinterval of I, say 1I',
and for every sufficiently small |h| we have:
(1.9) j |£(c + h) - £(0)|/|h|do < c,

!
where C 1is a constant independent of I' and h. Then £
coincides &_ - a.e. in I with a function f ‘of bounded

1

variation such that:

(1.10) tot.var.I[%] < C.

\ /
We shall need also the following two results due to Valee
Poussin [19]. (Stronger versions of these results were obtained
by Serrin and Varberg [17]; their proofs are much simpler than

. / :
the original proofs of Valee Poussin.)

HUNT LiRTrRY
CARNEGIE-MELLON uRivR5iTY
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Lemma l1.8. Let s Dbe an absolutely continuous real valued

function on an interval I of the real line. Let N be an sl-
null set on Rl and set M = s"l(N) N I. Then s' =0

£l‘— a.e. in M.

Lemma 1.9. Let w and s be absolutely continuous real valued

functions on intervals J and I respectively. If s(I) ©J

and if w s 1is absolutely continuous in I, then:

(1.11) [we s]' = [w'oe s]s!', £l - a.e. in I,

provided that we interpret the right side as zero whenever

s' (0) = O (even if (w'e s)(0) is undefined or infinite).
Conversely, if with the above convention [w' e s]sf

is summable on I, then we s 1is absolutely continuous on I

and (1l.11) holds.

The next result is due to Serrin [16] (unpublished).

For a more general result see Marcus and Mizel [12] (Theorem 4, 3).

Lemma 1.10. Let g : Rl-o Rl be an l.a.c. function. Suppose

that uerOC(Q) and set v = ge u. Then verOC
1,1 1,1

(€2) if and only

if the following condition holds:

1

ocC .
@, (i = 1,...,m),

(1.12) v, = [g' o u]axiu e L

the product being interpreted as zero whenever Bx u = O.
i




15

Moreover, if (1.12) holds we have v, = 0 v a.e. in Q,

(i = l,o-o,n)-

For the sake of convenience we give a proof of this lemma.

Proof. By Lemma 1.4, there exists GeA(Q) such that u = u a.e.

in Q and ou =9d u a.e. in Q. Set v = go u.
Bxi X

First we assume that (1.12) holds. Let 1T be a line

parallel to the xi—axis, such that u is l.a.c. on T N Q

r~/

du loc

and such that ¥, = [g! © U] S~ €L] (Q). Then by Lemma 1.9,
i
~ v ~ .
v is l.a.c. on 7 N Q and = v, &£, - a.e. in T N Q.
Bxi i 1
Since this holds for almost every line 7T parallel to the X, -
axis (i = 1,...,n) it follows that ;eA(Q) and that gz = ;i
i

a.e. in Q. Hence by (l1l.12) and Lemma 1.4 (see also Remark

loc
1,1

Now, suppose that veWJl.O(l:(Q) . Then V = ge GGA(Q) .
, ,

1.2(3)) it follows that vewW, .(Q).
Indeed, v is continuous on T N Q, for almost every line T
parallel to one of the axes and Vv =v a.e. in Q. Since
ved! () (by Lemma 1l.4) it follows that GEA(Q).

If T 1s a line parallel to the xi-axis such that both

~J

u and v are l.a.c. on T N Q, it follows from Lemma 1.9 that:
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Since GEWIOC(Q) this implies (1.12). This completes the proof

1,1

of the lemma.

Corollary 1.2. If Q 1s bounded and has the cone property,

the statement of the lemma is valid also in the case the

1" 1oc 1t : 1 1" 11 loc " 3
ver,l(Q) is replaced by ver’p(Q) and ving (Q)" 1is

replaced by "viepp(Q), (l1<{p<wm)".

This follows immediately by Lemma 1l.4.

§2. On a Class of Nemitsky Operators

ILet (Q Dbe a domain in Rn and let g = g(x,t) be a real

function defined in O X Rm' Here x = (X .,xn) denotes a

l,..

oint in a = .« o a ; ) .
P Rn nd t (tl, ,tm) denotes point 1in Rm

Definition 2.1l. A function g as above 1is called a Caratheodory

function if:

(1) For a.e. x€l, g(x,*) 1s a continuous function on Rm;
(1i) For every fixed teRm, g(*,t) 1s a measurable function

in Q.

With a given Caratheodory function g, we associate an

operator G defined by:

Gu(x) = g(x,u(x)) =(go v (x)
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where u = (ul,...,um) is measurable in (l. Such an operator G

~~

1s called a Nemitsky operator.

By a theorem due to Caratheodory [4 ], if u is a measurable
vector wvalued function as above, Gu 1s measurable in Q. (For
the proof see also vVainberg [18], p. 152.)

In this section we consider the following problem:

Given a vector valued function uew (Q2) , where

l,q

a = (ql,...,qm), state conditions on g such that GueWw (Q) .

1,p
In the theorems that follow we describe a set of rather
weak conditions on g which impiy this property of the associated

operator G.

First we introduce:

Definition 2.2. Let g be a real function defined on Q X Rm.

We shall say that g is an l.a.c. Caratheodory function if:

(1) There exists a null subset of (), to be denoted by
N = Ng’ such that for every fixed xeﬁ - N:
(a) g(x,+) is continuous in Rm;
(b) For every iine parallel to one of the axes in
Rm’ g(x,*) restricted to this line 1is locally.

absolutely continuous.

(ii1) For every fixed EeRm, g(',E)eA‘(Q).

Note that a function g as above is in particular a
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Caratheodory function.

With this definition we have:

Theorem 2.1. Let Q be a bounded domain in Rn’ possessing
the cone property. Let g be an l.a.c. Caratheodory function

in Q x Rm' Let p>1 and g = (ql,...,qm) where d; > p.
Given certain functions a, b, a., b, . suppose that:

1 1,7

I. For every fixed teRm:

(2.1) |a;( g(x,t)| < a(x) + b(t), a.e. in Q, (i = 1,...,n),

1

where 5; g denotes the strong approximate derivative of g,
1

as 1n Definition 1. 2.

ITI. The inequality:

dg(x, t) m
(2.2) | | < a,(x) + & b, .(t.), (k = 1,...,m),

holds at every point (x,t)e(Q-N) X Rm at which the estimated
derivative exists in the classical sense. Here, N = N is the

set mentioned in Definition 2.2.

The assumptions on a, b, a s bk 3 are as follows:
J
(2. 3) Q) g_aeLp(Q);

(2.4) O < b 1is continuous in R 7
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1 1 1
(2.5) O g_akeLq'(Q), where o T T (k = 1,...,m);
k k k
(2.6) O g_bk 5 1s an extended real valued Borel measurable
3
function on Rl’ (k, 3 = 1l,...,m);
(2.7) b . ent°%(r.) (k = 1 )
o k,k l l 9 - ,ooo,m ®
Let u = (ul,...,um)ewl,a(ﬂ) and suppose that:
(2.8) bouel (Q);
~ P
2.9) b, .0 u.elL ) k, =1,...,m:k # 9);
( k,] J q]|<( J ( 33 3 3 # J
(2.10) [bk,k uk]axiukepp(ﬂ), (k =1,...,m;i = 1,...,n),

where the product is to be interpreted as zero

= = o
whenever Bxiuk O. Then v = g°ueW (Q).

1l,p

Proof. Let M Dbe a countable dense set 1n Rm. For each fixed

EteRm we may modify g(',E') on a null subset of (, say Nt"

such that the modified function is in A({Ql). We make this
modification for every t'eM, leaving g(x,t) unchanged when

tZM, and denote the modified function by Io° Let NM = U Nt';
. t'eM

then NM is a null subset of (. Note that g, may differ

from g only on NM X M. Clearly Ig satisfies all the

assumptions that have been made with respect to g, except that
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in IT N = Ng may have to be replaced by a larger null set
® [ U [ ]
(e.qg N NM)
Since g(x,g(x)) = go(x,E(x)) a.e. in Q it is sufficient

to prove that 9,9 uew p(Q) .

1,
In order to simplify the notation we shall assume that the

given function g already satisfies the additional condition:
(2.11) g(-,t')eA(Q), VL' eM,

with M as above. Then (by Definition 1.2), for every fixed

E‘EM:

5; g(x,t') = éi—(x;t'), a.e. in Q, (1 =1,...,n).

Hence, taking into account that M 1s countable, there exists

a null subset of (Q, say NF such that (by (2.1)):

(2.1)! y%g—(x,g)\ <a(x) +b(t), v (x,£)e(-N) xM, (i=1,...,n).
i

Let Eo be a fixed point 1in Rm. Then g(°,£?)eA'(Q) and

by (2.1) 5; g(',to)epp(Q), (i=1,...,n). Hence by Lemma 1.4
i

it follows that:

O O
(2.12) g, t)ew, (M, TEER .

1,

Denote:
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(2.13) Bi(p)

il
——
UJ

i,i(p)dp, -o < p<L<L oo, i=1,...,n.

Then Bi is l.a.c. on ‘Rl' By (2,10) and Corollary 1.2 it

follows that
O 1 =
(2.14) Bi uieWi,p((D, i l,...,n.

(In deriving (2.12) and (2.14) we used the fact that Q 1is

bounded and has the cone property.)

We prove now that v

go;geyp(ﬂ). First we remark that,
by the theorem of Caratheodory [4 ] mentioned before, v 1is a

measurable function in Q.

If xe(Q-N, then by (2.2):

t
1
(2.15) lg(x,;)—g(x,E?)| g,|f %%f(x,c,tg,...,t;)dol S
o] 1
tl
t
-1 .
+ |J ] St (x,tl,...,tm_l,c)d01 <
. m
m
m o i-1 o
g_ifl{ai(x)lti-til + jElbi,j(tj)lti—ti

m

O o O
+ B b (e ]emt ]+ B (e B (£ ]

j=i+l 7

To simplify the notation we denote:
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1-1 m
cil)(E) = I bi (t.), ciz)(t) = z bi (t.),
j=1 ~0J j=i+1 T2

(2.16)
_ (1) (2)
ci(E) = cy (t) + c:.L (t).

Then, for xe(}-N, we have:

3

(217 [9(x,D-g(x,E)] < 3 lay 0 +cf (v + {2 (£)1]e;-

1=1

m
0
+ .2 IBi(ti)—Bi(ti)i.
1=1

Now, pick a point t° such that bi j(tcj)) is finite for
~ ’

i,j=1,.e.,m, 1 # j. (Clearly, by (2.9), such a point exists.)

Then, from (2.5), (2.9), (2.14), (2.17) we get:

m

m
2
o 2o @ el o

+ Z Hﬁio ui - Bl(ti) ”L (Q).
i=1 P

Note that since ( 1is bounded and uic—:Lq (), with d; > p, it
i

follows that uieL (). Taking into account (2.12) we conclude

that VGFP(Q).
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In order to show that ver p(Q) we have to discuss some
2

additional properties of g.

First we observe that g satisfies the following condition:

For a.e. line T 1in Rn’ parallel to the xi—axis:

1"

X,
1

(2.19)  |g(x,0-g(x",0)| <[] adx | +b(o)|x-x],

x!
1

for every EeRm and every two points x',x" 1lying in one

interval of T N Q, such that x',x"¢N. (The index i will be

kept fixed throughout the following part of the'proof.)

Indeed, for a.e. line T parallel to the xi-axis the

following three conditions are satisfied:

(al) T N (N U Nl) is an &l—null set;

5) "a" restricted to T N Q 1is in pp;

(a3) g(-,t) is l.a.c. on T N Q for every teM.

(o

This follows from (2.3), (2.1l1l) and the faét that N U Nl
is a null set.

If T is a line as above, satisfying conditions (al),
(az), (a3), and if EﬁM, (2.19) follows immediately from (2.1)!',
for any two points x!',X" 1lying in a subinterval of 71 N Q.

If in addition x',x"#¢N, then by the continuity of g with
respect to t (Definition 2.2(i)) and by the continuity of b

in Rm we conclude that (2.19) holds for every teRm. Here we
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are using the fact that M 1s a dense subset of Rm.

Furthermore, for such a line T and for every teRm, we
can modify g(°*,t) on T N N 1in such a way that the modified
function will be l.a.c. on 717 N O and will satisfy (2.19) for

every two points x!',x" 1lying in a subinterval of 7t N Q.

Indeed, for every fixed EeRm, g(+,t) restricted to (7t N Q) - N

is uniformly continuous (by (2.19)). Since Tt NN is an &_ -null

1

set and hence has a dense complement, it follows (by a standard

argument) that g(°,t) may be redefined on T N N in such a

way that it will become uniformly continuous on 71 I Q. Obviously,

the function thus modified will have the properties stated
above.
Denote the function resulting from this modification of g
on all lines T as above, by g5 Note that gi(x,E) = g(x,E)
for all (x,E)e(Q—N) X Rm' Hence gi will also satisfy condition
(i) of Definition 2.2 as well as inequalities (2.2) and (2.17).
Set vi\= g, 0 Ui clearly v = v, a.e. in Q. Let T

be a line parallel to the xi-axis satisfying conditions (al)—

(a3)- Let xoe(T N Q) - N and let |h| # 0 be a sufficiently
O o O 1 .
small so that x and xh = X + he belong to one subinterval

of T N Q. Then by (2.17) and (2.19):
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' 1
(2.20) \6;vi(xo)‘ g_TETng(xﬁ,g(xﬁ)) - gi(xo,g(xﬁ))l

+'T%T|9i(x0’3(xg)) - 9, (a0 |

| h -
<Tar a0 rehat s mow )

b E a0 + (Mo w ) + (P w ) 1]k, (+°) |
k=l[ak(x (¢, "o 1) (x () "o 1) (x n 9 (X

m .
+ B | 85(B 0w ) (x)].
o1 Bk Y

Let Q' be an open subset of (0 such that Q' <0 and
_ A4 : .
let hg dist. (0 ,0Q). Since u eW (Q) and Bke»ukewl,p(ﬂ),

k l,qk
it follows (by Lemma 1l.5) that:

(2.21)
l6,, 18, o ukl\\Lp(Q) < 1R, (A uk]HLp('m,' (0 < [nf < ny).

By (2.20) and (2.21):

(2.22) + |be ull

lolv. Il oy < llal
h i LP(Q ) L, () L ()

m
+ I [l + lle, o ul 1R w |
o1k qu(Q) k qu(Q) x. k qu(C)
m
+ I, (Beeuw)lly (g (0< In[ <D
k=1 1 P
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Here we used Minkowski's inequality and Holder's inequality.

For reference we shall denote the right side of (22) by Ki'

We note that Ki does not depend on ' or h, for sufficiently

small |h

Since vieLp(Q), (lL< p< o), it follows from (2.22) (by

Lemma 1.6) that BX viepp(Q) and that:
\ :

(2.23) Hax.viHL ) <K
1 P

We remark that this is the only place in our arguments

where the assumption 1 < p Wwas needed.
Now, v, = v a.e. in ; hence, it follows that Bx.veL (Q)
and that: i
(2.24) naxianp(Q) < K.
Finally, since this holds for every 1, (1 =v1,...,n) we conclude

that vew Q) .
l,p( )

corollary 2.1. In addition to the assumptions of the theorem,

suppose that bi .(0) is finite for i,j = 1l,...,m (i # 3).

5]
Then, without loss of generality we may assume also that bi j(O) = 0
=3
for i,j as above. In this case, v satisfies the following

inequality:
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(2.25) vl gy S llgCLNL g + llRll, (o) + IPeyll
| p

1,p ~ PP(Q)
m
+ T [la | + ey e ul |
k=1 * qu(Q) 8 Lqi(n) x Wl,Qk(Q)

m
+ kz]_uﬁk © ukHW]_,p(Q) ¢

This inequality follows immediately from (2.18) with

t° = (0,...,0) and (2.24).

Corollary 2.2. If Q 1is any domain in Rn (possibly unbounded) ,

the theorem will still be valid if we make the following additional

assumptions:
b. .(0) = 0, (i, = 1,...,m;i # 3J),
1,] |
(2.26) g(*,Q L (0),
Bio uieLp(Q), (i =1,...,n),

with Bi as defined in the proof of the theorem.

The assumption that ( 1s bounded and has the cone property
has been used only in the proof of (2.12), (2.14) and (2.18).
Since it is enough, for our purposes, to obtain (2.18) with
t° = (0,...,0), the conditions (2.26) make it possible to

dispense with this special assumption on (.
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Corollary 2.3. Under the assumptions of the theorem we have:

(2.27) |ax v(x)| € a(x) +(be u)(x)
i
m m
+ L [ak(x) + .2 (bk

Lo u.)(x)]1]d (x) |,
k=1 3=1 s J J xiuk

a.e. in Q, (1 =1,...,n), the products on the right being

interpreted as zero whenever BX w = O.
1

Proof. Let G%, v be functions in A(Q) such that v = Y and

u, = E? (k =1,...,m), a.e. in (. Such functions exist by

* ~
Lemma l.4. We denote v = g(x,u).
°ou 1 '
By (2.14), ﬁi ui€wl,p(Q) so that (by Lemma 1.4) BiO'uieA (Q) .
But Bia Gi is continuous on every segment where Gi is continuous.

Therefore ﬁiﬂ GieA(Q), (i=1,...,n).
Let T Dbe a line parallel to the xi—axis such that T

satisfies conditions (al)—(a3) and in addition:

G, \7, ﬁkou‘k (k=1,...,m) are l.a.c. on T N Q;

land

b, ;0 GS restricted to T N Q is locally summable
(2.28) ?

(k:j = 1l,...,m;kK # j)?

V= v £l - a.e. on T N Q,

These conditions are satisfied by a.e. line 1T parallel to the

X.-aXis.
i

Further, let x° be a point in (7 N Q) - N such that:
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X is a Lebesgue point for each of the functions a

~

and b, . u., (k,j=1,...,m;k # j) restricted

k,J 3
to 1T N Q;
(2.29) 3 BE B(Bkc u_k) | o
Se .’ Sx and Sw exist at x
1 1 1
G(xo) = v*(xo).

These conditions are satisfied by &l - almost every point on
T N Q.
Let {hV}T) be a sequence of non-zero numbers such that
: V o 1
hv-» O and such that the points x = x + hve (v=1,2,...)
lie in the subinterval of 7T N Q which contains xo. Moreover,
. V ~, ¥V * V
choose hv in such a manner that x ¢gN, v(x ) = v (x), (vwv1,2,...)

and finally b 1,...,m:k # 3j).

o
o
X
r
-
I

.Oﬁj(xv)-)b

k,J k,J J

This 1s possible since by condition (2.29) x is actually a
point of approximate continuity of the functions b, . e a

k,J J

restricted to T N Q. (For the definition of approximate continuity
see Saks [13], p. 132.)

By (2.17) and (2.19) we obtain:
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. . | h| . N
oy FEO) | = fop v ] <y [ a6® + gehat + (e d) (x)
V V @)
. o (1), =~ (2) L~
D00 x (e u) (%) + (e g)(x°>115;va£(x°)|
o 1 o
+ I o (B el )(x)].
k=1 }R) k k

Letting Vv-% oo we get:

~/

(2. 30) IS;’ (x°)] < a(x”) + (be ) (x")
1 m du
+ T [y () + (o u)(x°>]la:k(x°>i
k=1 1
o a(Bk‘:'uk) O
L) ].
k=1 i
This inequality holds £l - a.e.. on T N Q for almost every

line Tt parallel to the xi—axis. Since both sides of the

inequality are measurable functions, it follows (by Fubini's

theorem) that the inequality holds a.e. in (. Finally we note

that by Lemma 1.10 :

(2.31) 0 ° %) = [b, Lou ] - i a.e. in Q
| o0x, - UkL,k Ok ox, ’ T ’
i i
aa“k
the product being interpreted as zero whenever Sw. - 0. Com-
i ~J
o
bining (2.30) and (2.31) and taking into account that Bxi = Bxiuk

a,.e, in Q, (k=1,.0s,m;1 = 1,...,n) we obtain (2.27).



31

§3. On a Class of Nemitsky Operators (Con't)

In the previous section we considered Nemitsky operators

associated with l.a.c. Caratheodory functions, which map an R -

valued function ueWw (Q) to a function in W1 p(Q) with p > 1.
~ 1,49 ’

The case p = 1 requires a different treatment. 1In the present

section we deal with this special case.

Theorem 3.1. Let p 1l and §'= (ql,...,qm) with ql S qm = 1,

Then, under the assumptions of Theorem 2.1 with p and a as
above we have Vv = geo UEW, l(Q).
~ b

Proof. As in the proof of Theorem 2.1, we may and shall assume

that g satisfies condition (2.11) and inequality (2.1)', where
M 1s a dense countable subset of Rm' We also use the wvarious
notations introduced in the proof of that theorem.

By Lemma 1.4, there exist functions ﬁkeA(Q) such that
BN
0 = and —— = J a.e, in Q, (k= 1,...,m;1 = 1,...,n).
e T % Bxi xiuk

Denote by N the set of points in (1 where at least one

2

of the following relations does not hold:

I
1S

(3.1) u(x) (x);  a (x) < “ak“LOO(Q);(bk,j'uj)(X)g‘ ku,jc u, |

J
LbD(CD‘
(k,3 = 1,...,m;k # j). By (2.5) and (2.9) these relations hold

on a subset of Q of full measure, so that N2 1s a null set.

Let T Dbe a line parallel to the xi—axis such that
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conditions (al)—(a3) (described in the proof of Theorem 2.1)

are satisfied and such that:

and ﬁko Gk (k =1,...,m) are l.a.c. on T N Q

e

(a4)
(as) N2 N T 1is an £l - null set.

Clearly, almost every line 7T parallel to the xi—axis

satisfies these conditions.

Let then T bDbe a line as above and let I be a compact

¥* ~
subinterval of 7 N Q. Denote v = gou and let x',x"e€I-N.

Then by (2.17) and (2.19) we have:

x"
i
(3.2) lv*(x')—v*(x")l g_lf | a(x)dxil + (b¢>§)(x')|x&—x1
%3
m
(1) . ~
+ ¥ [a, (X") +(c © 1) (x')
k=1 K K ~
+(e{oT) (x) 118, (x1) -7, (x") |
kR EITY Y

m
+ (R W) (x') - (B o &) (x")
k=1 '

In particular, if x',x"e¢eI - (N U N2) we have:
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1"

v X,
1

(3. 3) ‘V* (X' )—V* (X") l S. ‘Jx‘ a(X) dxll + (b o G) (X'") lx'i—X':;_
i

m

+ I [lla.l + |lc, o1 1o ]9 (x')-u_(x") ]
ke | KL (D) k" ~'D_ (0) Y% Yy

m
+ T [(B o) (x') - (B o) (x")
k=1

*
By (3.3), v restricted to 7 N Q, is uniformly continuous on

*
I - (N U N2). Hence, by a standard argument, v can be redefined

on I N (N U N2) in such a manner that the modified function
will be continuous in I and will satisfy (3.3) at every point
in 1I.

Modifying v* in this manner on all the compact subintervals
of 7 N QO and for all lines 1T parallel to the xi-axis as
above, we denote the modified function by vz. Note that this
modification involves only points x 1in N U N2 so that
V? = v* a.e. in Q. By (3.3), v?eAi(Q). Using inequality

*
(3.2) together with the above remarks concerning v, we obtain

(as in the proof of Corollary 2.3):

BVZ m Bﬁg
‘axi(x” < a(x) + (bo i) (x) + I 3 (x40 @ (X)”axi“‘)‘

(3.4)

m O(B e ) (x)
+ I | ké k |, a.e. in Q.
k=1 2y
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*

ov,
Hence, BxieLl(Q) and:
Bvi o
(3.5) \iaxi\lLl(m < Ha“Ll(Q) + Hb"‘i“Ll(Q)

T | u H———BN |
+ I [lla + |lc, e u ]
m B(Bkcvﬁk)

+ 3| I
k=1  O%; Iy (D)

As in the proof of Theorem 2.1, veLl(Q) and satisfies (2.18)

(with p = 1, q; = 1, q& = o). Since Vv = v? a.e. in Q it

follows (by Lemma 1,3) that:

(3.6) d = —= a.e. in Q,

so that BX veLl(Q). This result holds for every i, (i = 1,...,n).
1

Therefore veWl l(Q) and the proof is complete.
, .

Corollary 3.1l. The statements of Corollaries 2.1, 2.2 and 2.3

are valid also in the case p =1, g= (1,...,1).

The proofs are the same as those of the above mentioned
corollaries. Actually inequality (2.27) has already been obtained

in the proof of the theorem (see (3.4) and (3.6)).
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Corollary 3. 2. 'Let p = 1 and a = (ql,...,qm) with qi > 1.

Let Q, g and u satisfy the condition of Theorem 2.1 with p

and q as above. In addition suppose that:

loc loc . :
(3.7) akeLoo (Q), bk,jaujeLoo (M, (ky,j=1,...,m;k # 7).

= o
Then v g ngl’l(ﬂ).

Proof. Since W (Q) Cw
1,qy

theorem are satisfied in compact subdomains of Q (by (3.7)).

(2) , all the assumptions of the

1,1

loc
Hence ver,l(Q).

By Corollary 3.1, ineqguality 2.17 is valid. Therefore

Bx vV € Ll(Q), (i=1,...,n). In fact we have:

1
(3.8) 0, vl () < llally (o) * Hbou\\Ll(Q)
T - |
+ I [lla |l + |lc, o ul 1/|9

ok qk(Q) k Lq},{(Q) xiu‘k L k(m

T n

+ T (b e y)d u , (i=1,...,n).
k=1 k,k X, k Ll(Q)

As in the proof of Theorem 2.1, veLl(Q) and satisfies (2.18)

(with p = 1). Hence vVeW (Q) .
1,1

Remark. Note that the statements of Corollaries 2.1, 2.2, 2.3 are
valid also under the assumptions of the above corollary. The

validity of Corollary 2.3 in this case follows from its wvalidity
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under the assumptions of Theorem 3.1 (and has been used in the
proof above). For the other two, the proof is the same as before.

The following theorem deals with the same case as Corollary

3.2, but without the additional assumption (3.7).

Theorem 3.2. Let p =1 and q = (ql,...,qm) with q; > 1.

Let Q, g and u satisfy the conditions of Theorem 2.1 with p

and a as above. In addition suppose that g 1is continuous in

Q X Rm. Then v = g"EFB'(Q) and the strong approximate derivatives
8; v, (i=1,...,n), belong to Ll(Q).

i
Proof. Let G% be a function in A(Q) such that ﬁ% =w a.e.

*
in Q, (k=1,...,m). Denote v = ge

*
+ then v = v a.e.

e

in Q.

As in the proof of Theorem 2.1 we have:

(3.9) veLl(Q) and Bko ukewl’l(Q), (k = 1,'...,m).

~~7

Furthermore, Bk o ukeA( Q) .
Let 7T Dbe a line parallel to the xi-axis such that 171

satisfies conditions (al)—(a4) (which are stated in the proofs

of Theorem 2.1 and Theorem 3.1) and in addition:



37

r~/

uleﬂQEWl,qk(T nQ, (k = 1,...,m);

. © uk|1_nQer,l('r naQ, (k = 1,...,m);
alemeLq,‘(T naQ, (k = 1,...,m);

(3.10) k
bk,jO'ujITnQequ(T naQ, (k,5 = 1,...,m;k # j);

*
\Y |TﬂQ€L1(T N Q);

bod| el (1 N Q)

We observe that, since G%EWl,q () N A(Q)), the first con-
dition in (3.10) is satisfied by a.e. lihe T parallel to the
xi-axis. The same remark applies to the second condition in
(3.10). It is clear that also the other conditions in (3.10)
as well as (al)—(a4) are satisfied by a.e. line T as above.

Let I be an open interval contained in 7T N Q 1let I!
be a compact subinterval of 1I. Denote by hO ‘the distance
between I' and the boundary of 1I.

If x',x" are two points in I - N, the difference
|v*(x') -~ v*(x")l may be estimated as in (3.2). In particular,

if h # 0 is a fixed number such that |h| < h_, we have:
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. | h| . .
(3.11)  |6ov" ()] ST%TJ a(x + Eel)dE + (bo3)(x + he')
O
m
(1), ~
+ T [a, (x) + (c.7"0 u)(x)
ko1 X k ~
+ (céz)o g)(x + hei)]|6iﬁk(x)l

m :
+ T |6 (B o) (x)],
o1 Bk Yk
for 81 - a.e. point xeI'.

Integrating over I' and using the one-dimensional version

of Lemma 1.5 we obtain:

+ |bo 1l

(3.12)  |oXv" | Ly < lall
h™ 'm, (1') L, (1) ~'L, (1)

m BG£

b T (| + fle, o Tl vl
-1 Lq],{(I) k Lq],{(I) ox, qu(I)
P e,
+ \ ’
=1 ox Ll(I)
for all 0 < |h| < h_.
By Lemma 1.7, v* colincides Sl - a.e. in I, with a

function of bounded wvariation on I. Since this result holds

*

for every subinterval of 7T N Q, v coincides Sl - a.e. in

‘ x*
T N Q with a function v which is locally of bounded variation

on T N Q. Moreover (by Lemma 1.7 and (3.12)):
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¥* | ~
(3.13) tot.var.TﬂQ[vT] < Ha“Ll('rﬂQ) + ||be E“Ll(‘rﬂﬂ)

m N aﬁ£

Il i (rnay T ek ® ully (TﬂQ)]”ay;HL (700
k=1 a} . E
L S

+ Z .
k=1 Bxi Ll(TﬂQ)

Up to this point we have not made use of the continuity of

*
g in Qx R . We observe now, that by this assumption, v |T

NQ
. . ~ . . . * ¥*
is continuous (because ulrﬂﬂ is continuous). Since v = v
%
£. - a.e. on T N Q, it follows that v is also l.b.v. on

1

T N Q. (This is easily verified directly from the definition.)

%* *

Furthermore, v_ = v | + s, where s 1is a saltus function on

7NQ

T N Q, such that s = 0 everywhere, except on a countable set

of points, on T N Q, (see Saks [l153], p. 97-98). Clearly,

*

av'r dv.
= 0 wherever it exists, so that = L. - a.e. on
. Ox ox

: : 1
1 1.

ds
dx

i
T N Q. Finally, by a well-known property of functions of

bounded variation (see Saks [1D5], pp. 119 and 121):

*

3o dv

(3.14) | | dx |—T"| dx, < tot.var.
JTHQ Bxi JTDQ Bxi i

*

TOQ[VT]'

Note that these results hold for a.e. line T parallel

*x
to the xi—axis, (i=1,...,n). Hence, in particular, v €B({)
*

ov

and the derivatives Sx ° (L=1,...,n), exist a.e. 1in I and




40

are measurable there. Combining (3.13) and (3.14) and using

Fubini' s theorem we get:

dv ~
_ S+
+ §l[Hak”L () + Wﬁ<°}y\ '((DJHBX.HL (Q)
= qk qk 1 qk
m O(B o u)
x° Y _
¥ 21” S “Ll(m’ (L =1,...,n).

Since v = v a.e. in (), the assertion of the theorem is

proved.
For the next result we introduce:

Definition 3.1. Let g be a real function defined in (O X Rm

and let W be a function in A(Q), (k= 1,...,m). We shall

% |
say that g has the (N ) property with respect to w = (wl,...,wm),
if for almost every line 7T parallel to one of the axes in Rn’

the function geo w, restricted to 7T N Q, has the (N) property

(i.e. it takes Sl - null subsets of 7 N Q into null sets).

The following lemma provides sufficient conditions for a

*
function g to have the (N ) property.
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Lemma 3.1. Let g be an l.a.c. Caratheodory function in Q X Rm'

Suppose that g satisfies conditions I and II of Theorem 2.1.

We assume also that the null set N = Ng’ mentioned in Definition

2.2 (and also in Condition II), satisfies ﬁn_l(N) 0.

b are as follows:

The assumptions on a, b, a, X, 3

loc

(3.16) O g_aeLl

(Q) :

(3.17) O < b 1is continuous in R i

(3.18) a (k l,...,m) are non-negative measurable functions,

k,

finite everywhere in QQ;

bk 52 (k,j = 1,...,m) are non-negative Borel functions,
3
(3.19) finite everywhere in Rl;
loc
O g_ bk,kEL]_ (Rl) L) (k - l’ o o o ,m) L

Let wkeA(Q), (k = 1,... ,m), and set Y;= (wl,...,wm).

Suppose that:

Bwk loc
(3. 20) (bk.k?wk) gszLl (), (k=1,¢ee,m;i=1,...,n).
3

¥*
Then g has the (N ) property with respect to w.

Proof. Let M Dbe a countable dense subset of Rm. As 1n the

proof of Theorem 2.1 we obtain inequality (2.1)' for (x,E)e(Q~Nl)me,

where Nl is a null subset of (.



42

Defining @k as in Theorem 2.1, we note that by (3.20)

and Lemma 1.9, Bko wkeA(Q).

Let T be a line parallel to the xi-axis (the index i

will be kept fixed throughout the proof) such that:

T NN 1is empty;

T N Nl is an &l—null set;

g(*,t) is l.a.c. on T N Q for every teM;

1
TﬂﬂeLl

(3.21)

al °Sir nq;

Wy and Bkowk, (k =1,...,m) are l.a.c. on T N Q;

We remark that each of the conditions in (3.21) is satisfied

by a.e. line T parallel to the xi—axis. With respect to the

first condition, this follows from the fact that hn_l(N) 0,

since this implies that the projection of N on the hyperplane
X, =0 1is an & -null set.
i n-1
Let I Dbe an open subinterval of 7T N Q such that .E‘C T N Q.

It i1s sufficient to show that u gew has the (N) property
on I.

By (2.17) and (2.19) we obtain:
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LA

X

i ;
(3.22) |w(x")-p(x")| < Ijx’a(x)dxil + (bow) (x')\xg_—x'i
A |

g (1)
+ I [a, (x")+(c o W(x')
o1k k ~

+ (et e w) (x) 1wy (x1) -w (x")
m .

+ T (B ew)(x) - (B ow)(x")],
k=1

for every x',x"eI. (Here we use the fact that I does not
intersect N.)

Let Q Dbe an xl—null subset of I. We have to show that
#(Q) is a null set.

Let:

(3.23) J, = {xe:[\ak(x) < x (b,

j.'wj)(x) <1 for k,j=1,...,m;

k # 3},

2

and we set Ql = Q NJ,.

L

@
where 4 =1,2,... Then I = U JL
1

In the next part of the proof we shall keep 4 fixed. It
is sufficient to prove that “(QL) is a null set.
Given €> 0O, let O be an open subset of I containing

QL such that xl(O) < €. The set O may be written as a

ao

v=1" We may

countable union of disjoint open intervals {IV}

assume that every interval I, contains at least one point of
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Q,; we pick such a point in I, and denote 1t by x".

Let x'er NQ,. Then by (3.22) and (3.23):

L
(3.24) |u(x')—u(xv)| < J‘ a(x)dxi + xl(Iv) sup boyw
Iv I
m V
+c. b T lw (x') - w (x)]
1 k#l k k
o V
+ T |B ew (x') - B ew (x)],
k=1 k k k k

where <, is a constant depending only on m. Note that bew

is continuous on T N Q so that sup bow < .

I
Denote N sup | u(x') - u(xv) . Then, by (3.24):
x'eI NQ
vV 4
(o'e) J m f Bwk
(3.25) £ s < | a(x)dx, + €-sup(boew) + c. 4 T | | dx.
1 Y Yo * I ~ L i
m O(B, ©ow. )
k k
+ I J | o \dxi.
k=1 O '

All the integrals in (3.25) are integrals of functions
belonging to Ll(I) . Hence, they tend to zero when & =%,

Obviously u(QL) is covered by a countable family of closed

o)
intervals whose total length is 2 % Nt Hence, the outer measure
1
of u(QL) is bounded by twice the right side of (3.25), which

tends to zero when €=-$0. Hence “(QL) is a null set. This
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completes the proof of the lemma.

Theorem 3.3. Let p=1 and q = (ql,...,qm)'with q; > 1.

Suppose that (2, g and u are as in Theorem 2.1 with p and

r~/

q as above. In addition suppose that g 1is continuous in Q X Rm’

that ﬁn_l(N) = 0 (where N = Ng) and that the functions ay s
b (k,3 = 1,...,m;k # j) are finite everywhere in Q and R

k,3’ 1

respectively.

Then v = g€ ueWw

acwy 1 ()

Proof. By Theorem 3.2 vwveB' ({l). Let G£ be a function in A(Q)

~ ) * ~ *
such that u, = u a.e. in Q. If wv geu, then v = v

k k

¥*
a.e. in (. Furthermore v is continuous on T N Q, for a.e.

* ‘
line 7T parallel to one of the axes in Rn' Therefore, v €B(Q),

(see Definition 1l.1).
* ~
By Lemma 3.1, g has the (N ) property with respect to u.

Hence, for a.e. line 71 parallel to one of the axes in Rn’

*

v | has the following properties: it is continuous, it has

T NQ

the (N) property and it is locally of bounded variation. Therefore,

%

by a theorem of Banach-Zarecki (see Saks [15], p.227) v |TﬂQ

is l.a.c. on T N Q. Hence vfeA(Q).
»*

Again by Theorem 3.2, 2; eLl(Q), (L=1,...,n). Hence,

i
(). This completes the proof of the theorem.

by Lemma 1.4, ver,l
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(Q)

§4. Demicontinuity of G : W (Q)—?W

l,q l)p

In this séction we describe first a general class of conditions
on g which e;sure that G 1s a demicontinuous (i.e. "strong —>
weak" continuous) mapping from Wl ~(Q) to Wl,p(0)° Then in
order to illustrate the scope of oag theorem we give a relatively
explicit result in which g 1is assumed to satisfy power type
growth conditions. The methods are based on those used in proving
Theorem 2.1.

Our main result follows. Recall that a bounded transformation

between normed spaces is one which maps bounded sets to bounded

sets.

Theorem 4.1. Let (O be a bounded domain in Rn possessing the

cone property and let p > 1, §'= (ql,...,qm), d; > p, be given.
Suppose that g 1is an l.a.c. Caratheodory function in O X Rm
which fulfills the estimates of Theorem 2.1 with functions a, b,

s bk,j which satisfy (2.3)-(2.7), a and bk,j being every-

where finite. Suppose also that b is continuous, k = 1,...,m,

k,k

and that under functional composition the functions b, bk 57
5

k,3=1,...,m, satisfy:
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bk,j defines a mapping from L _(Q) to Lq,(Q),
q. k
J
ng.
*
401 = b

b defines a mapping from L *(Q) XeooeX L *(Q) to LP(Q).

9 In

Then G maps W (Q) into W

l,q
Moreover G is continuous as a mapping from W (Q) to QP(Q)»

l,q

() and is demicontinuous.
1,p

Remark 4.1, It is implied by (4.1) that the following estimates

hold ([7], Theorem 1 (slightly modified)):

¥*
| q]'</ q. |
lbk,j(a)l S'ck,j + dk,jlol , kK, = 1,00.,m,
(4. 2)

* *

d
|b(ol,...,om)| < c(l + Ioll Lo la | )

Thus all the composition mappings in (4.1l) are bounded. 1In

addition, the mappings associated with b k=1,...,m) and

K,k
with b are continuous ([9], [11], [13]).

Proof. 1In order to prove demicontinuity we must show that for

V .
any sequence u = (uI,. .,u;), v > 1, convergent to a limit
o o) o, . : V V
u- = (ul"'°’um) in W (), the functions v = Gu converge
1,q9
o o .
weakly to v = Gu in W (Q).
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: \Y .
We show first that the sequence v converges to vo' in

LP(Q). According to (2.17) we have for all =xe(Q-N,

m
(4.3)  |g(x,u”(x)-g(x,u (x)| < T [a (x) + C]il) (3" ())

k=1

+ e (@00 1 gl - 0|

m
+ T B (0 (%) - B (u)(x))]

k=1
where the Bk are defined as in (2.13). Now by Sobolev's
imbedding theorem, u;eL (1), v > 0, and the convergence of
I
V o . : :
u to u in W (Q) implies that

l,q

V o .
w =»u  1in L (), k=1l,...,m,
I

Thus (4.11) and Corollary 1.2 give

V., V Vv o
(4.4) Bxi(Bko uk) = (bk,kou’k)ax.uk’ v=0,1,....

1

Moreover by using Remark 4.1 we also deduce that

o .
o = ,m,
bk,k"uk'_’bk,k W in Lq},{(Q), k l,....m

Applying this result to (4.4) we obtain:



49

v o) | Vv o)
(4.5) “axi(ﬁko “k)’axi(ﬁk‘ o) HLP(Q) s ku,k°uk } bk,k°”k”1,q,_ (Q =
e

xR, well g
i d

kK
+ oy i@ “12”1, (Q) “ax.u]:
3 q-j{ i
-—P 0.
Moreover, we obtain from (4.21) the following estimate
o-"
(4.6) |B (0")-B (0")] = |j0'bk,k(o)dc|
a. /q " /qt
d d,/d
<lep +a (o] ™ Fx o] om0
This ensures that the sequence BkOu]\: converges in LP(Q) :
* *
q, /al q, /al
V o v, "k’ Tk o, k" “k V O
Hﬁk"uk"ﬁk"ﬁ{\\LP(m < ey (uy | +|uy | )\lLr cay oy Nl
k

q, /4! q, /q!
v K Tk o, k' “k V O
9y R
—>o,
r _ 1 1 1 1
where = - = -~
r. P * dQ N

2y W°

u
X. kK
i

| .

()
9

Iz,
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Utilizing this fact in conjunction with (4.11) we obtain from

(4. 3) the estimate

m
z [|la, +c
k=1 k

(1)0 u\)+c(2) OH n v O

(4.7 V=9l g < k @2 ¥ e Bl (q)
p d

m
+ T ||B o Vo B. o ‘3H
oK Y T OPk% % L (0)

-p O.

In order to complete the proof it suffices, by reflexivity

of LP(Q), to show that for each 1 the functions Bx v’ form
i
a bounded set in pp(ﬂ). For it then follows, by a standard

argument, that BX vv—, Bx vo weakly in LP(Q) and hence vv...’ vo
i i

weakly in W (QQ) . However, by (2.22) we have for any open

1l,p
subset M of O such that Q@ < Q the estimate

(4.8) Nlogvlly, gy < lally (g + ol (g
p P P
m Vv . Vv
+ Zolllaglly )+ llege wllly )10, wlln (q)

m
+ £ |3, (B 0w I, (> (@< Inl <h), d=1,....h
k=1 =i p

By (4.2) and (4.5) the right side of (4.8) is bounded uniformly

in v, and hence by Lemma 1.6 we have the requisite boundedness
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for Hax v ||

i

i - l’...’n, VZO.

/

L (Q)°
p
The next result can be regarded as a corollary to Theorem 4.1.

As mentioned above it is stated primarily for illustrative

purposes.

Theorem 4.2. Let (Q be a bounded domain in Rn possessing the

cone property and let p > 1, g = (ql,...,qm)'with d; > p,
be given. Suppose that g 1is an l.a.c. Caratheodory function

in Q X Rm which satisfies the following estimates for certain

functions aeLp(Q), a,

ELq'(Q)’ k=1,...,m:
k
m V.,
(I) |5; g(x,E)‘ < a(x) +b & \tj\ J a.e. in (Q, where

1 j=1

vV, = g./ i=1,...,n);
qup,( se ey

V .
k,]

dg(x, t)
(x1) | | g_ak(x) + Db

atk 5

for all (x,E)e(Q—N) X Rm'

at which the left side exists, where Vv, . = q%/q‘
k,3 3"k

(k = 1,...,m).

Here N = Ng is the null set mentioned in Definition 2.1.

Then G maps W N(Q) into W

1,q
Moreover G 1is continuous as a mapping from W (Q) to FP(Q).

1,q

(Q) and is demicontinuous.
1,p
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§5. Chain Rules

In the present section we describe certain results in which
the mapping G has the additional feature that a chain rule holds.
That is, one has, for each i =1,...,n, equality between the
derivative BX.(gcsE) and the (properly interpreted) combination

i
(Bx.g)a u + [(Vug)o'glbx.g. Associated with the existence of
suc; a chain ruIe are, a; is clear, stronger continuity
properties than in previous sectilons.

Our first result applies to functions g which are independent

of x.

Lemma 5.1. Let I be an open interval in Rl' Let g = g(tl,...,tm)
be an l.a.c. Caratheodory function (i.e. g 1is continuous in Rm
and the restriction of g to any line parallel to one of the
axes in Rm is an l.a.c. function).

Suppose that the inequality:

dg(t) m

(5.1) \ atk | < a, + jilbk’j(tj), (k = 1,...,m),
holds at every point in R at which the estimated derivative
exists, where a are constants and the functions b, . \satisfy

k k,3]

the conditions described below.

(5.2) O g.bk 3 is a real valued Borel function on Ry
b

(k,5 = 1,...,m;k &£ j).
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loc

(5. 3) O g_bk’keLl

(Rl), (k=1,...,m).

Let w, : I-»R. Dbe an l.a.c. function such that w'eLq (I),

k 1 k

(k=1,...,m), for some gq, 1< g< . Denote w = (wl,... m

Suppose that g has a differential at each point of the

set T, = w(I) SR, except for an ﬂl—null set.

Finally suppose that:
loc

. : 1
(5.4) bk,j"wjeLq' (1), (k,j =1,...,m;k # j), where o +

Q |~

(5.5) (b o W )w'eL (I), (k =1,...,m).

k,k k

Then u = goéw 1is l.a.c. on I and the chain rule holds, i.e.

=

(5.6) o=z (%g—- w)w', ;(l - a.e, on I,

the products on the right being interpreted as zero whenever

their second factor is zero.

lo
Proof. By Theorem 3.3 (for the case n = 1), uewl i(I).
5

But u 1is continuous on ‘I; hence y 1is l.a.c. on I. (Recall

loc

1, l(I) coincides a.e. in I with an

that every function in W

l.a.c. function.)

Denote by ¢ a general point in Rl' Let J = [a,b] be

a compact subinterval of I. Let s Dbe the arc length of the

absolutely continuous curve w = w(g), a £ 0 < b, with s(a) = 0.

~/

JW_ ).
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Then s 1s a monotonic increasing, absolutely continuous function

[ [ * [J
in J and s' = |w'| a.e. in J. Denote by J the interval
0 £ s < s(b).
. . _ * * *
There exists a unique function w =W (s), (s€J ), such
N |
that w (s(o0)) = w(o), (0eJ). Indeed, if 0,,0, are two distinct

points in J such that S(Gl) = s(oz), it follows (by monotonicity)

that s(0) = const. in the interval between 0, and o, and

hence s'(g) = |w'(0)|] = 0 in this interval. But an absolutely
continuous function whose derivative is zero a.e. in an interval
ls necessarily a constant in that interval. Hence w(ol) = w(cz).

* *
Furthermore M% (s;) - w (52)| < |s,-s

x*
1 2|, V S,,5,6J , (see

Saks [13], p. 123). Hence w* is absolutely continuous and in

~J

fact Lipschitz in J*. Therefore, by Lemma 1.9, we have:
dw (o) dw

50 7 = —_— "'""_""'~ hd ! . . 1 .

( ) Fps e (s(o))*°s' (o), a.e. in J

Noting that by (5.4) (b .OWj) | w (o)leLl(J), we have (by

k,]

a known theorem on change of variables; see for instance Federer

s (b) M b

(5.8) fo (by jowy) (s)ds = ja(bk,jo w,) (0) s (o) do,

¥* *
that . Ow, .
SO a bk, wJeLl(J )

aw

By Lemma 1.8, w! = k

———_—o ! - e ° ] *
X [ds s]s!, Xa- a.e. in J Hence, by

*

dw
k
(5.5), (bk,ko w, ) [—a-g——bs]s'eLl(J) . Therefore, by the samg theorem
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on change of variables we have:

*
s (b) X aw, (s) b dw;:(s(o))
o o = !
(5.9) JO (By, 1 @ W) (5) —3-— ds Ja(bk,ko W) (0) == s' (0) do
_X.
dw.
that (b aw*) ——JieL (J)
S0 k,k° "k’ @s ~T1\Ye 4
: * : : : : K :
Finally w, 18 Lipschitz 1n J and lds | <1 J:;'a.e. in J,
*
so that Wkewl,l(J)’ (k=1,...,m).

*
Hence g and w satisfy all the assumptions of Theorem 3.3

. * x* , . *
in J so that gew = u 1s l.a.c. 1n J .

Now, if o, is a point in J such that g% exists at O

and the differential of g exists at vy = w(oo), then (5.6)

lad

holds, as can be verified by an elementary computation. Let M
be the set of points in J where at least one of these conditions
does not hold. Then M consists of a null set, plus a set M

such that y}M') is an Hl—null set. Hence, by Lemma 1.8,

dw

~J

Ea' = 0 xil - a.e, in M. It follows that s' =0 xl - a.e. in M,

so that s(M) is a null set (Saks [15], p. 227). This implies
. * ‘

that u(M) = p (s(M)) is a null set. Here we use the fact that
* *
7] is l.a.c. on J . Appealing once more to Lemma 1.8, and

- - - du
using the fact that pu 1s a.C. in J, we conclude that ac O
251 - a.e. in M. Therefore (5.6) holds 5(1 - a.e. in M and

everywhere in J-M. Since J was an arbitrary compact sub-

interval of I, the proof is completed.
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Theorem 5.1. Let (Q be a domain in R - Let g = g(ti,...,tm)

be an l.a.c. Caratheodory function which satisfies all the
assumptions of Lemma 5.1.
loc
Let ukewl,q(Q)’ for some g, 1 <{ g< oo, (k=1,...,m).
Denote u = (ul,...,um).
Letting Sg denote the set of points in Rm where g does

not possess a differential, suppose that Sg intersects every

absolutely continuous curve in R , on an H_-null set.

m 1
Finally suppose that:
loc . : i 1
(5.10) by 40 useL,, (@, (k,j=1,...,m;k # j), where o T
\ Buk
loc
(50 ll) (bk,kO\J]() axieLl (Q) L] (k - l,ooo’m) .
: loc : \
Then v = gou 1is in Wl l(Q) and the chain rule holds:
~ )
.
(5.12) d v= & (—-g-—ou)a uk, a.e. in 0,
X. ot ~ X,
1 k=1 k 1

the products on the right being interpreted as zero whenever their

second factor 1s zero.

loc

Proof. By Theorem 3. 3, ver 1
3

(Q). If G% is a function in A(Q)
.3

such that u, = w,  a.e. in Q then v = go is continuous on

k

g =R

T N Q for a.e. line T parallel to one of the axes in Rn'

*
Furthermore v = v a.e. in . Therefore, by Lemma 1.4,

¥*
v €A(Q).
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I.o.t 7T Dbe a line parallel to the xi-axis such that u

is l.a.c. on T N QO and such that:

e TR

o
Ox ‘g S(rna, (k=1,...,m);
il 7NQ
~ 1 . :
(5.13) by joulemeLq?C(r nQ, (K;5=1, ... ,m:k#j) ;
3
aa‘k ~
~ loc
[(bk X © uk) Sve ] eLl (r N Q), (k=1,...,m) .
3 ‘

i | 7NQ

aﬁk )

Since Bxi = Bxiuk a.e. in Q, (k=1,...,m), it is clear that

these conditions are satisfied by a.e. line 71 parallel to the

X.-axis.
i

N |
By Lemma 1.5, v is l.a.c. on T N Q and:

m ol
(5.14) Bv- = i ('g%—og) 5:].{ , xl - a.e. on T N Q.

As g 1is continuous on every line parallel to éne of the axes
in Rm’ g 1is a Borel function (see Caratheodory [4]). Hence
%%; is a Borel function (Marcus and Mizel [12], Lemma 4.1).
Therefore, the right side of (5.14) is a measurable function
in ), and of course, the same is true of the left

side of (5.14) (by Lemma 1l.2). Since (5.14) holds 2;.— a.e. on

T N Q for a.e. line T parallel to the xi-axis, it follows



that it holds a.e. in (.

Finally, since Y BX v a.e. in Q (Lemma 1.4), (5.12)
i i
follows from (5.14). This completes the proof of the theorem.

Remark. Other cases in which the chain rule holds, for composition

of functions of the form discussed above, are presented in Marcus
and Mizel [12]. As noted in the Introduction, the methods used
there are quite different from those of the present paper. We
mention in particular that if g depends not only on t but
also on x and if it is a locally Lipschitz function in Q X Rm,
then under a hypothesis on Sg as above, the chain rule holds

for v = gou with ukewioi(ﬂ), (k =1,...,m), ([12], Theorem 2.1).
~ ’
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