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NEMITSKY OPERATORS ON SOBOLEV SPACES

by

M. Marcus and V. J. Mizel

Introduction. The present paper deals with situations in which

a function g(x,t ,...,t ) provides, via composition, a mapping

(t!Nemitsky operator") between Sobolev spaces. That is, we take

g to be a function satisfying "Caratheodory conditions" and we

analyze circumstances under which for every system of functions

U......U eW. (fi) 3 where W. (0) is the class of L functions
1 m l,q 1><3 q

with L summable strong first derivatives on the domain Q c: R
q n

the composite function given by v(x) = g(x,u_ (x) , . . . ,u (x) )
1 ~ m ~

belongs to VI. (0) , with preassigned 1 < p < oo . We suppose

in addition to the Caratheodory conditions that, roughly speaking,

g is locally absolutely continuous on lines in R parallel to

the axes and has a similar but weaker property for lines in fl.

This implies in some sense that the partial derivatives of g

exist almost everywhere in Q x R , and in our hypotheses one

prescribes for each of these partial derivatives a function of

an appropriate kind which dominates it almost everywhere* Then

whenever u.,...,u are such that their composites with the
1 m

dominating functions lie in appropriate L (Q) spaces, it is

shown that v lies in Wn (fi). (We remark that the analysis
1 P



for the case p = 1 is considerably more complex than when

P > 1.)

The above results are quite different from those usually

studied with Nemitsky operators since such operators are

generally examined only on spaces, such as the L (0) spaces,

which are normal lattices of measurable functions ([10], [11]).

These results should be of interest in the study of partial

differential equations which involve nonlinear functions

satisfying weak smoothness requirements.

In an earlier paper ([12]) we have likewise analyzed situa-

tions in which a function g provides a mapping between Sobolev

spaces. The methods of that paper are quite different from those

used here and are restricted to situations in which a chain rule

is available for the partial derivatives of v. Moreover, there

the chain rule was an essential ingredient in determining when

a function g provides a mapping of the desired kind, while in

the present paper a chain rule is generally not valid for the

situations under study.

The approach we follow here relies heavily on a characteri-

zation of the spaces W (0) due to Gagliardo [6 ]9 Morrey [14]

and Calkin [ 3 ]. It also utilizes a theorem of Hardy-Littlewood

[ 8 ] on difference quotients under translation, as well as

certain classical results of Tonelli [155 p. 123] on absolutely



continuous curves.

The plan of the paper is as follows. Section 1 is devoted

to preliminaries. Section 2 deals with the basic problem for the

case p > 1. Section 3 extends these results to the case p = 1.

Section 4 analyzes continuity properties of the Nemitsky

operators for the case p > 1. Finally in Section 5, by re-

stricting attention to the particular case of functions g which

are independent of xeQ and by strengthening our previous

conditions, we obtain a chain rule for the partial derivatives

of v.

§1. Preliminaries

The following notations will be used in this paper.

A point in the Euclidean space R will hereafter be denoted by

x = (xn.....x ); the Euclidean norm will be denoted by • .
In

We shall denote by &., k-dimensional Lebesgue measure and by

M. k-dimensional Hausdorff measure. We shall use the same
k

symbol for an equivalence class of functions (relative to Lebesgue

measure) as for a representative of that class. The meaning will

be clear from context.

If f is a real function defined in a domain Q in R ,

<^f
we denote by ^ — the classical partial derivative (with respect

to x, ), wherever it exists; and we denote by S f the



distribution derivative (with respect to x_ ) of f in ft,

whenever it is meaningful.

By C (ft) we denote, as usual, the class of real functions

which are continuous and possess continuous derivatives, up to

k
order k, in ft. The subspace of C (ft) consisting of those

functions whose support is a compact subset of 0 will be denoted

by C (ft). The class of real functions {f} such that f is

Lipschitz in ft will be denoted by Lip(Q) ; the class of real

functions (f} such that f is Lipschitz in every compact subset

loc
of ft will be denoted by Lip (ft) . Finally, we denote by

L (ft) the class of real functions { f} which are Lebesgue p-
P
summable in ft. The class of functions {f} which belong to

L (ft! ) for every bounded domain Q! such that 0! c: Q9 will

loc
be denoted by L (ft) . The standard norm in L (0) will be

P P

denoted by L

A real function f defined on an open subset 0 of the

real line R , is said to be locally absolutely continuous

(or l.a.c.) on 0, if it is absolutely continuous on every

compact subinterval of 0. Similarly, f is said to be locally

of bounded variation (or l.b.v.) on 0, if it is of bounded
CD

variation on every compact subinterval of 0. If 0 = U I ,
n=l

where {i } is a family of disjoint open intervals, we denote:
n



< * •

oo
(1.1) tot.var. [f] = 2 tot.var. [f ],

1 n

which may be finite or infinite.

In this paper, such notions, as "null set" and "almost

everywhere", will always refer to the measure £ , except when

another measure is specified.

We bring now a number of preliminary results that will be

needed in the following sections.

If f is any real function defined on an interval I on

the real line, it is known that the domain of existence of f!

is an £ -measurable set and f1 is an £ -measurable function

on this domain. Moreover if f is Borel measurable, then f!

is Borel measurable. (See Saks [15], p. 112-113.)

For functions in more than one variable we have the following

two results:

Lemma 1.1. Let f be a real function defined in a domain Q

in R . If f is Borel measurable, then the domains of existence
n

of each of the derivatives ^ — , (j = l,...,n), are Borel sets,
j

and the derivatives are Borel functions on their respective domains

For proof, see Marcus and Mizel [12, Lemma 4.1].



Lemma 1.2. Let f be a real measurable function in a domain

fi in R . Suppose that f is continuous on almost every line

T parallel to the x.-axis (where i is a fixed index). Then

the domain of existence of T — is measurable and ^ — is a
ox. ox.

1 1
measurable function on this domain.

This result is probably known, but we have not been able to

locate any reference for it. Therefore, we present a proof below,

<^f
If instead of considering the standard derivative ^ — one con-

1

siders approximate partial derivatives, then results on their

measurability may be found for instance in Saks [15] and Federer

[ 5 ]. Actually, a result that is stronger than Lemma 1.2 (it

assumes only that f is measurable) is stated in Haslam- Jones

and Burkill [ 2 ] , but their proof contains a serious gap.

Before we proceed with the proof of the lemma, we introduce

a notation that will be useful in this proof and elsewhere.

For any function f we denote:

(1.2) 6h f ( x ) = h t f ( x + h e l ) " f ( X ) ]> (h ^ 0 ) '

t

where e = (5. .,...,6. ) .
il in

Proof of Lemma 1.2. Let D.f [resp. D.f] denote the upper

[resp. the lower] derivative of f in the x.-direction. It

is sufficient to show that both of these extreme derivatives are



measurable. Indeed, if this is shown, then the domain of

existence of ^ — is precisely the set where D.f - D.f = 0.
ox, r * 1 — i

1 df
which is measurable; on this set T — coincides with the measurable

ox. v

__ i

function D.f.
I

By definition D.f(x) = lim sup 6 f (x) . We also define:
h o

—y>a 4- -j

(1.3) D. *f(x) = lim supS f (x) ,
r o

T3_ t

where r is restricted to the rational numbers. Clearly, D. * f,

being the lim sup of a countable family of measurable functions,

is itself a measurable function in 0. If we similarly define

I). * f (with lim sup replaced by lim inf) , then by the same token,

D. *f is measurable in Q. Let A be the set where D. *f =
—l l

rat. _ . "~xat. _. rat. _
D. f. In A we define D. f = D. f. Then A is a
~i I I

rat
measurable set and D. "f is measurable on A. If B denotes

I

the domain of existence of T — , then clearly B ^ A and
1

> : = D. #f in B. We shall show that A - B is a null set,
ox. l

l

thereby proving the assertion of the lemma.

Let r be a line parallel to the x.-axis such that f is

continuous on T fl Q. We shall show that A fl r = B PI T.

Let xeA fl r and let {h } be any sequence of numbers

tending to zero, such that h ^ 0, (v = 1,2,...). We may assume

that the sequence of points { x + h e } is contained in a
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compact subinterval of T H Q. Choose a sequence of rational

numbers fr }n such that lim r /h = 1 and such thatL vJ 1 v v
V OO

f (x + r e ) - f (x + h e ) | <^h /v. (Here we use the continuity

of f on T fl Q.) Then:

• •

r . f(x+h e1) - f(x+r e )
(1.4) lim sj" f (x) = lim [r~ 5^ f (x) + — ]

V O D V V O O V V V

= lim 61 f(x) = Drat#f(x) .
r I

V OO V

It follows from (1.4) that A n r = B fl T. Since this holds for

almost every line r parallel to the x.-axis, it follows that

A - B is a null set, and the proof is complete.

Corollary 1.1. Let f have the properties stated in the lemma.

If, for almost every line r parallel to the x.-axis, -r— exists

X, - a.e. on r n 0, then |*- exists a.e. in fl and is^easurable.
1 OX.

1

By Fubini1 s theorem, this is an immediate consequence of

the lemma.

Definition 1.1. Let Q be a domain in R . We denote by A.(fi)
n J l

the class of functions {f) such that:

(i) f is a real measurable function in Q.

(ii) For almost every line r parallel to the x.-axis,

f is l.a.c. on r n Q.



n
The intersection PI A. (Q) will be denoted by A(Q).

The class of functions {f} such that f coincides a.e.

*+*>

in Q with a function f in A. (Q) [resp. A(Q) ] wi l l be denoted

by A!. (Q) [resp. A' (̂ ) ].

Finally, suppose that condition (ii) is replaced by:

(ii)! For almost every line r parallel to the x.-axis,

f is continuous and l.b.v. on r H Q.

Then, the spaces corresponding to A.,A1., A,A1 will be denoted

by B.,B!. , B,B! respectively. Note that A. c B . , A\ c B!. , etc.
2 l l * * 1 1 1 1

Remark 1.1. By Corollary 1.1, if feB.(^), then -jr— exis ts
i

a .e . in Cl and i s measurable.

Definition 1.2. Let f€B!. (Q) and l e t feB.(fi) such that f = f

a.e. in Q. We denote by o1 f the equivalence class of

measurable functions in Q which contains the function ^ . Then
ox.

1

S! f will be called the strong approximate derivative of f
1

with respect to x..

We note that if f , f eB.(Q) and f = f a.e. in
-1- tmt J— J. £*

l 2
then -^— = ̂ — a.e. in Q.

ox. ox.
I I

Lemma 1.3. Suppose that feL (H) n A1. (0). If 5« feL (0) ,
A. 1 X • 1

1

then
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(1.5) « f = d fx. x .
X 1

a.e. in Q,

r^ r^ O O

Proof. Let f€A. (Q) such that f = f a.e. in Q. Let cpeC (Q)

If r is a line parallel to the x.-axis, such that f is l.a.c

on r 0 Q, we have:

df
T

n n OX.
rflQ I

<pdx. =
^ 1

f
no

dx

Hence, by Fubini1s theorem:

n
cpdx = -

n
dx f

Q

dx

which proves the assertion of the lemma.

We denote by W (0) (k a positive integer; p ̂> 1), the

Sobolev space of real functions {f} such that f and its

distribution derivatives up to order k, belong to L

This space is provided with the standard norm:

(Q) a

where a = (a1,...j,a ), 0 a . is an integer (p = l,...,n),

a a and d^
n x

an
x1

x f.
n

The space of functions { f} such that few (fiT ) for every
K,p

— loc
bounded domain QT such that Q1 c 0 is denoted by W. (0) .

k,p

The product space W (0) x...x W. (Q) will be denoted
K.p
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by W (Q), where p = (p-,...,p ).
k,p

The following characterization of W (0), (1 <1 p) , is
1 P

due to Gagliardo [6 ]. (Most of the essential features of this

result (at least in local form) are also contained in the papers

of Calkin [3 ] and Morrey [14].)

Lemma 1.4. Let 1 <£ p < oo . A function f, defined in fl,

belongs to W. (0) if and only if:
1 P

(i)

(ii) d1 f e L (fi) , (i = 1,. . . ,n) ;x. p
l *

(iii) feL (Cl) .
P

Moreover, if few. (Q) then S1 f = 5 f a.e. in Ci, (i = l,...,n)
* 1 1

Finally if Q is bounded and has the cone property, then

condition (iii) may be omitted.

Remark 1.2. 1. The result was not stated in this form in [6 ],

but is an immediate consequence of Sections 1 and 2 of that

paper

2. As a consequence of this lemma we have the following

local result:

feW?"OC(n) if and only if
1 P

(i) feA! (Q) 7

1 Of

(ii)' 5' f € L (fl), i = l,...,n.

3. If k > 1, then W (fi) may be characterized inductively
kp
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by:

(1.6) few. (^)4=^ d few. _ (0)v n- - ^ x. k - l ,p
1 ysr

The following two results on Sobolev spaces are well known.

For proofs see for instance Agmon [ 1 ] (pp. 42-45). Combined,

these results yield an alternative characterization of W-

for 1 < p < oo .

If Q is a domain in R and QT a set in R , the
n n

notation 0! ce: Q means that Q1 is a compact subset of Q

The boundary of Cl will be denoted by dfi.

Lemma 1.5. Let feW_ (Q) . where 1 < p < oo . If 0! is an
l,p -̂

open set such that Q1 cc Q and if 0 < h < dist. (Q! ,dG) , then

(1.7) ||6jfllL

P

Lemma 1.6. Let f€L (fi) 9 where 1 < p < oo . Suppose that there

exists a number C such that^ for every open set Q1 with

Qt CJC Q̂  and for sufficiently small | h

(1.8) ||6jf||L
P

Then S feL (Q) and \\6 f|| / r n <^ C. In particular, i f (1.8)
X . ID X . L ( )

1 ^ 1 p

holds for all i5 (i = l,.,.,n), then few (Q) .
iP
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Remark, In [ 1 ] these results are stated for p = 2. But the

proofs given there, with only minor modifications, yield also

the more general results stated above. The special assumption

on Q, included in the statement of Theorem 3.15 of [ 1 ], was

made for convenience only and is not really needed (see [ 1 , p. 11])

The next lemma deals with the situation considered in Lemma

1.6, for the case p = 1, and f a function of one variable.

It is due to Hardy and Littlewood [ 8 ].

Lemma 1.7. Let feL-(I), where I is an interval on the real

line. Suppose that for every compact subinterval of I, say I!,

and for every sufficiently small |hj we have:

(1.9) [ | f (or + h) - f (a) |/|h|d<r £ c,

where C is a constant independent of I! and h. Then f

coincides & - a.e. in I with a function f of bounded

variation such that:

(1.10) t o t . v a r . [f] <̂  C.

We shall need also the following two results due to Valee

Poussin [19], (Stronger versions of these results were obtained

by Serrin and Varberg [17]; their proofs are much simpler than

the original proofs of Valee Poussin.)

HUNT i
CARNEGIE-MELLON
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Lemma 1.8. Let s be an absolutely continuous real valued

function on an interval I of the real line. Let N be an £ •

-1
null set on R and set M = s (N) 0 I. Then s! == 0

- a. e. in M.

Lemma 1.9. Let w and s be absolutely continuous real valued

functions on intervals J and I respectively. If s(I) <= J

and if w s is absolutely continuous in I, then:

(1.11) [wos]' = [w»os]s«, * - a.e. in I,

provided that we interpret the right side as zero whenever

s1 (a) = 0 (even if (w!c s) (a) is undefined or infinite).

Conversely, if with the above convention [w1 o s]s!

is summable on I, then w* s is absolutely continuous on I

and (1.11) holds.

The next result is due to Serrin [16] (unpublished).

For a more general result see Marcus and Mizel [12] (Theorem 4.3).

Lemma 1.10. Let g : R.—* R be an l.a.c. function. Suppose

loc loc
that ueW (Q) and set v = go u. Then veW (Q) if and only

1 j 1 l 1

if the following condition holds

(1.12) v. = [g* © u]d u e L?"OC(n) , (i = l,...,n) ,
i x, x

1

the product being interpreted as zero whenever d u = 0.
1
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Moreover, if (1.12) holds we have v. = S v a.e. in Q,
-L X •

1

(i = 1,•..,n).

For the sake of convenience we give a proof of this lemma.

Proof. By Lemma 1.4, there exists ueA(fl) such that u = u a.e

in 0 and ^ — = 5 u a.e. in fl. Set v = go u.
ox. X.

1 1

First we assume that (1.12) holds. Let r be a line

parallel to the x.-axis, such that u is l.a.c. on r fl Q

w v-v l o c
and such that v. = [g1 © u] ̂ r21- eL (fl) . Then by Lemma 1.9,

v is l.a.c. on r H fl and ^ — = v. <£_ - a.e. in r H fl.
ox. 1 1

I

Since this holds for almost every line r parallel to the x.-

axis (l = l,...,n) it follows that veA(fl) and that ^r— = v.
ox. I

I

a.e. in fl. Hence by (1.12) and Lemma 1.4 (see also Remark

1.2(3)) it follows that veW?"O^(n).
1,1

lOC r*~* r^
Now, suppose that veW (0) . Then v = gou€A(Q).

1,1

Indeed, v is continuous on r H Ci, for almost every line r

parallel to one of the axes and v = v a.e. in Q. Since

VGA1 (Q) (by Lemma 1.4) it follows that

If T is a line parallel to the x.-axis such that both

u and v are l.a.c. on T fl fl, it follows from Lemma 1.9 that

d
= [g! o u]

i
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r*> l O C
Since v€W_ (0) this implies (1.12). This completes the proof

of the lemma.

Corollary 1.2. If Q is bounded and has the cone property,

the statement of the lemma is valid also in the case the

1 or* Toe
£ ![(n)" is replaced by "veW^ (fi)" and'V^L^ (Q)" is

replaced by "v.eL (Q), (1 £ p < OD )tr.

This follows immediately by Lemma 1.4.

§2. On ci Class of Nemitsky Operators

Let 0 be a domain in R and let g = g(x,t) be a real
n ~

function defined in Q x R . Here x = (x.,...,x ) denotes a

point in R and t = (t. ,...,t ) denotes a point in R .
n ~ 1 m * m

Definition 2.1. A function g as above is called a Caratheodory

function if:

(i) For a.e. xeQ, g(x,•) is a continuous function on R .

(ii) For every fixed t€R , g(**t) is a measurable function
"*• m r^

in Q.

With a given Caratheodory function g, we associate an

operator G defined by:

Gu(x) = g(x,u(x)) =(gou)(x)
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where u = (u. .....u ) is measurable in Q. Such an operator G
~ 1 m

is called a Nemitsky operator.

By a theorem due to Caratheodory [ 4 ], if u is a measurable

vector valued function as above, Gu is measurable in Q. (For

the proof see also Vainberg [18], p. 152.)

In this section we consider the following problem:

Given a vector valued function ueW (Q), where

T 9 • • • JQL) 9 state conditions on g such that GueW. (Q) •
1 ui ^ l,p

<
In the theorems that follow we describe a set of rather

weak conditions on g which imply this property of the associated

operator G.

First we introduce:

Definition 2.2. Let g be a real function defined on Q x R
m

We shall say that g is an l.a. c. Caratheodory function if:

(i) There exists a null subset of Q, to be denoted by

N = N , such that for every fixed x€Q - N:
g

(a) g(x.#) is continuous in R ;
m

(b) For every line parallel to one of the axes in

R , g(x,*) restricted to this line is locally

absolutely continuous.

(ii) For every fixed teR , g(#,t)eA! (0).

Note that a function g as above is in particular a
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Caratheodory function.

With this definition we have

Theorem 2.1. Let Q be a bounded domain in R , possessing

the cone property. Let g be an l.a.c. Caratheodory function

in n R L t > 1 dx R . Let p > 1 and q = (q 3. . . ,q ) where q.

Given certain functions a. b. a., b. . suppose that:
I I,j ^^

I. For every fixed t€R :
~ m

(2.1) |d! g(x,t)| £ a(x) + b(t), a.e. in n, (i=l,...,n),
l

where S1 g denotes the strong approximate derivative of g,
1

as in Definition 1.2.

II. The inequality:

m
(2.2) 1 a ~ 1 £ a (x) + 2b (t), (k=l,...,m),

holds at every point (x,t)e(O-N) x R at which the estimated

derivative exists in the classical sense. Here, N = N is the

set mentioned in Definition 2.2.

The assumptions on a, b, a , b, . are as follows:
K K 3

(2.3) 0 £ aeL (Q) ;

(2.4) 0 < b is continuous in R ;
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(2.5) O £ akeL , (fl) , where — + — = -, (k = 1,.. . ,m) ;
k Jc K.

(2.6) O <̂  b . is an extended real valued Borel measurable
k 3

function on R 3 (k,j = l,...,m);

(2.7) b k k € L i ° C ( R l ^ (k =

Let u = (u......u )€Wn ~(0) and suppose that:
~ 1 m l q

(2.8) b * U€L (Q) ;
~ P

(2.9) b © u e L (G), (k,j = 1,...,m;k * j) ;
K 9 J J H ^

(2.10)

where the product is to be interpreted as zero

whenever d u, = 0. Then v = g ° ueWn (Q) .
X K ^ 1 P

u, = 0. Then v = g ° ueWn
i K ^ - 1,

Proof, Let M be a countable dense set in R . For each fixed
m

t! GR we may modify g(# . t1 ) on a null subset of Q. say N.t «
~ m J ~ •* t!

such that the modified function is in A(fi) . We make this

modification for every t1eM, leaving g(x,t) unchanged when

. and denote the modified function by g . Let N = U N , ;
o M . f __ t

!

then N is a null subset of 0. Note that g may differ

from g only on N x M. Clearly g satisfies all the

assumptions that have been made with respect to g, except that
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in II N = N may have to be replaced by a larger null set

(e.g. N U N ) .

Since g(x,u(x)) = g (x,u(x)) a.e. in Q it is sufficient

to prove that g o ueW- (0) .
* o ~ l p

In order to simplify the notation we shall assume that the

given function g already satisfies the additional condition:

(2. 11) g(- 5t
! ) eA(O) , yt! eM,

with M as above. Then (by Definition 1.2), for every fixed

t' eM:

g ( 5 ) ^ ( , t! ) , a.e. in Q,
X • OX •

1 1

Hence, taking into account that M is countable, there exists

a null subset of Q9 say N., such that (by (2.1)):

(2.1)' |^-(x,t) | £ a(x) + b(t) , v (x,t)e(n-N.) x M,
OX . ^ ^ ~ 1

Let t be a fixed point in R . Then g(#,t ) GA ! (Q) and

by (2.1) d1 g(*,t ) GL (Q), (i = l,...,n). Hence by Lemma 1.4
x i ^ p

it follows that:

(2.12) g(-,t°)eW1 (fl),

Denote:



21

(2.13) p= b. . (p)dp, -oo
v 1 , 1

* i = 1 j • • •

Then j3. is l.a.c. on R . By (2,10) and Corollary 1.2 it

follows that

(2.14) . o u.eW (Q) , i = 1,. . . ,n.

(In deriving (2.12) and (2.14) we used the fact that Q is

bounded and has the cone property.)

We prove now that v = qt u€L (0). First we remark that.
~ p

by the theorem of Caratheodory [4 ] mentioned before, v is a

measurable function in fi.

If -N, then by (2.2):

o
(2.15) g(x,;t)-g(x,t )

o
tm)

r m

m
m

_ ,a)da

m
£ S {a. (x) | t.-t. | + E b. .(t.)|t.-t.

m
b. .(tu) t.-t +

l i

o

To simplify the notation we denote:
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(2.16)

(1) 1 1 (2)
c) ; (t) = Z b. .(t.), cK ' (t)

~ ^ D D 1 ~

cP(t>.

2 b. .(t.),

Then, for -N, we have:

(2.17) |g(x,t)-g(x,t")
m

[a (x) + c*" (t) (2) t.-t?
1 1

m

1=1
(t )-|8

Now. pick a point t such that b. .(t.) is finite for
±3 3

i,j = 1, . . . ,m, i ̂  j. (Clearly, by (2.9), such a point exists.)

Then, from (2.5), (2.9), (2.14), (2.17) we get:

m
(2.18) ||v-g(-,t )

Lp(Q) i"L (0) »«!,„, ((I)' (0)

in
+ 2 c[2 ) (t°) ||u -

i"L (Q)
P

m
+ I . • u. -

(Q)

N o t e t h a t s i n c e fi i s b o u n d e d a n d u . € L ( 0 ) , w i t h q . ^ p , i t

follows that u.eL (fi). Taking into account (2.12) we conclude
l p

that veL (0) .
P
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In order to show that veWn (ft) we have to discuss some
1 P

additional properties of g.

First we observe that g satisfies the following condition

For a.e. line r in R . parallel to the x.-axis:
n r 1

x"

(2.19) g(x' ,t)-g(x",t) a(x)dx. b(t) | x'. -xT!
x!.

for every t€R and every two points x! , x" lying in one

interval of T fl Q, such that x! , x'VN. (The index i will be

kept fixed throughout the following part of the proof.)

Indeed, for a.e. line T parallel to the x.-axis the

following three conditions are satisfied:

(aJ r fl (N U N.) is an £ -null set;

(a9) "a
11 restricted to r fl Q is in L ;

g('.t) is l.a.c. on T H Q for every t€M

This follows from (2.3), (2.11) and the fact that N U N

is a null set.

If T is a line as above, satisfying conditions (a.,),

(ccJ9 (ao)3
 a n d if teM, (2.19) follows immediately from (2.1)!,

2 J ^

for any two points x! ,xTt lying in a subinterval of r fl 0.

If in addition x! ,xfVN, then by the continuity of g with

respect to t (Definition 2.2(i)) and by the continuity of b

in R we conclude that (2.19) holds for every teR . Here we
m ~ m



24

are using the fact that M is a dense subset of R .
m

Furthermore, for such a line r and for every teR , we
~ m

can modify g(*,t) on r fl N in such a way that the modified

function will be l.a.c. on r fl Q and will satisfy (2.19) for

every two points xT ,x" lying in a subinterval of r 0 fl.

Indeed, for every fixed teR , g(**t) restricted to (T 0 fl) - N

is uniformly continuous (by (2.19)). Since r 0 N is an £ -null

set and hence has a dense complement, it follows (by a standard

argument) that g(*,t) may be redefined on r 0 N in such a

way that it will become uniformly continuous on T H fl. Obviously,

the function thus modified will have the properties stated

above.

Denote the function resulting from this modification of g

on all lines T as above, by g.. Note that g.(x,t) = g(x,t)

for all (x,t)e(fl-N) x R . Hence g. will also satisfy condition

(i) of Definition 2.2 as well as inequalities (2.2) and (2.17).

Set v. = g.« u; clearly v = v. a.e. in fl. Let r

be a line parallel to the x.-axis satisfying conditions (a,)-

(a.J . Let x e(T fl fl) - N and let |h| ̂  0 be a sufficiently

small so that x and x = x + he belong to one subinterval

of T 0 fl. Then by (2.17) and (2.19):
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(2.20) 1 O

hVi
o

g.(x ,u
JL rs-

g (x°,u(x°)) g±(x ,u(x ))

£" J h
(be u)

m

k=l

(1) (2) u)

m

Let be an open subset of Q such that Q! c Q and

let h = dist. Since u GW (Q) and j3 o u GW (Q)

i t follows (by Leirana 1.5) t ha t :

(2.21)

p

(0< |h| < V -

By (2.20) and (2.21):

(2.22)
Lp(Q)

m

k=l <ll
+ IICk°)i"Lqt(0) L (fi)

m

k=l
L (Q) '
P

(0 < < h )
o
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Here we used Minkowski1 s inequality and Holder1s inequality.

For reference we shall denote the right side of (22) by K..

We note that K. does not depend on Q1 or h, for sufficiently

small |h

v.eL (Q), (1 < p < oo), it follows from (2.22) (bySince

Lemma 1.6) that d v.eL (Q) and that:
x. l p
I ^

(2.23) Pxv.||L IK,.
l p v

We remark that this is the only place in our arguments

where the assumption 1 < p was needed.

Now, v. = v a.e. in Q; hence, it follows that S veL (0)
i xi p

and that:

(2.24) ||a v||
l p v

Finally, since this holds for every i, (i = l,...,n) we conclude

that veW

Corollary 2.1. In addition to the assumptions of the theorem,

suppose that b. .(0) is finite for i,j = l,...,m (i ̂  j) .

Then, without loss of generality we may assume also that b. . (0) = 0

for i,j as above. In this case, v satisfies the following

inequality:
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(2-25)

m

k=l

m

k=i

This inequality follows immediately from (2.18) with

t° = (0,...,0) and (2.24).

Corollary 2.2. If Q is any domain in R (possibly unbounded),

the theorem will still be valid if we make the following additional

assumptions:

b (0) = 0, (i,j = l,...,m;i ̂  j),
i^ j

(2.26) 1 g(-,O)eL (0),

(Q) , (i = 1,. . . ,n) ,

with ]8. as defined in the proof of the theorem.

The assumption that Q is bounded and has the cone property

has been used only in the proof of (2.12), (2.14) and (2.18).

Since it is enough, for our purposes, to obtain (2.18) with

t = (0,...,0), the conditions (2.26) make it possible to

dispense with this special assumption on Q.
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Corollary 2.3. Under the assumptions of the theorem we have

(2.27) \b v(x) | 1 a(x) + (bau)(x)
1

m m
E [a (x) + S (b .»u)(x)]|a a(x)
=l * j=l k j D 3 xi *

a.e. in 0, (i = l,...,n), the products on the right being

interpreted as zero whenever d xx, - 0.
X . JCI

Proof, Let u, , v be functions in A(Q) such that v = v and

VL (k = l^...^m)^ a.e. in Q. Such functions exist by

Lemma 1.4. We denote v = g(x,u) .

By (2.14), j8.ou.eW (Q) so that (by Lemma 1.4) 0. « u.eA' (Q) .

But iS. ̂ u. is continuous on every segment where u. is continuous

Therefore j8.*u.€A(Q),(i=l,...,n).

Let T be a line parallel to the x.-axis such that r

satisfies conditions (a,)-(aO and in addition:

u, v, (3 * XL (k = l,.,.,m) are l.a.c. on r fl fl;

b. .0 u. restricted to T H fl is locally summable
(2.28) f ^ D

(k,j = 1,...,m;k ̂  j);

v = v £ - a.e. on T fl fl.

These conditions are satisfied by a.e. line r parallel to t}ie

x.-axis.
I

Further, let x be a point in (T 0 fl) - N such that:
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x is a Lebesgue point for each of the functions a

and b, .• u.
3 3

to T Q;

,j = l,...,m;k ̂  j) restricted

(2.29) IU

and exist at x ;

v(x = v (x ).

These conditions are satisfied by £ - almost every poir>t on

T n n.

Let {h ) be a sequence of non-zero numbers such that

v o i
0 and such that the points x = x + h e (v = 1,2,...)v

lie in the subinterval of r 0 Cl which contains x . Moreover,

V ~ V * v
choose h in such a manner that x ĵ N, v(x ) = v (x ) , (v=l,2,.

and finally b. . o u . (x ) —* b, . o u . (x ) , (k5 j = 1, ... ,m;k ^ j ) .
^i D D &93 3

This is possible since by condition (2.29) x is actually a

point of approximate continuity of the functions b v . * u.
K> 3 3

restricted to r fl Q. (For the definition of approximate continuity

see Saks [15], p. 132. )

By (2.17) and (2.19) we obtain:
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v(x°
v

v

V

1
^ h

h•»

c
o

a(x°

m

k=l
[ak(x°) + o u)(xh) + u)(x )]|6

v

m

h
k=l v

Letting

(2.30)

v -1> oo

- (x°!

we get:

r a(x°)

+
k=l

u)

m

k=l

o
+ (c,.• u) (x") ] K . O

bx.(x~)

This inequality holds Z - a.e. on T 0 Q for almost every

line T parallel to the x.-axis. Since both sides of the

inequality are measurable functions, it follows (by Fubini!s

theorem) that the inequality holds a.e. in fi. Finally we note

that by Lemma 1.10 :

(2.31)
dx. Sx.

, a.e. in Q,

the product being interpreted as zero whenever = 0. Com-

01bining (2.30) and (2.31) and taking into account that >r— = d ir
OX. X . JC

1 1

a.e. in Q9 (k = l,...5m;i = l,...,n) we obtain (2.27).
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§3. On a. Class of Nemitsky Operators (Cony t)

In the previous section we considered Nemitsky operators

associated with l.a.c. Caratheodory functions, which map an R -

valued function ueW (Q) to a function in W. (Q) with p > 1

The case p = 1 requires a different treatment. In the present

section we deal with this special case.

Theorem 3.1. Let p = 1 and q = (q ,...,q) with q =...= qr = 1

Then, under the assumptions of Theorem 2.1 with p and q as

above we have v = go ueW (0).

Proof. As in the proof of Theorem 2.1, we may and shall assume

that g satisfies condition (2.11) and inequality (2.1)!, where

M is a dense countable subset of R . We also use the various
m

notations introduced in the proof of that theorem.

By Lemma 1.4, there exist functions ULGA(Q) such that

u. = IL and
i

"UL a. e. in fl, (k = 1,... ,m; i = 1,. . . ,n) .
i

Denote by N9 the set of points in Q where at least one

of the following relations does not hold

(3.1) u(x)=u(x);
OO

; (b . u ) W ICJ'VL (n)'

(k,j = 1, . . . ,m;k ^ j) . By (2.5) and (2.9) these relations hold

on a subset of Q of full measure, so that N9 is a null set.

Let T be a line parallel to the x.-axis such that
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conditions (a1)-(a^) (described in the proof of Theorem 2.1)

are satisfied and such that:

(a.) u and j9L o u. (k = l,...,m) are l.a.c. on T fi Qv 4 ~ k K

r-) N o n T is an £. - null set.
D Z 1

Clearly, almost every line r parallel to the x.-axis

satisfies these conditions.

Let then r be a line as above and let I be a compact

• *

s u b i n t e r v a l o f T 0 0. Denote v = g o u and l e t x' , x ' ' e I -N .

Then b y ( 2 . 1 7 ) and ( 2 . 1 9 ) we h a v e :

x TT

( 3 . 2 ) *(x' ) - v (x") a(x)dx. + (b © u) (x» ) x'.-x1:
~ xi

m
S [a (x")

k=l k

m
rsj ) - <v

In p a r t i c u l a r , i f x' , x " € l - (N U N_) we have:
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(3.3) v*(x« )-v*(x")

x"

a (x) dx.
x'.
1

+ (bo U) (x« ) x'.-x'!

m
+ S [||a

OO 00

m

k=l

/*̂

By (3.3), v restricted to T H Q, is uniformly continuous on

I - (N U N J . Hence, by a standard argument, v can be redefined

on I Pi (N U N9) in such a manner that the modified function

will be continuous in I and will satisfy (3.3) at every point

in I.

Modifying v in this manner on all the compact subintervals

of T PI n and for all lines T parallel to the x.-axis as

above, we denote the modified function by v. . Note that this

modification involves only points x in N U N . so that

v. = v a.e. in Q. By (3.3), v.eA.(Q). Using inequality

(3.2) together with the above remarks concerning v. we obtain

(as in the proof of Corollary 2.3):

(3.4)
v.
l

m
(x) a(x) + (bou)(x) + S [a. (x)+(c * ff) (x)]|^-^(x)

rs K. K /^/ C3X
k=l I

m
+ Z
k=l

(x)
a.e. in 0.
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Hence. ^—€L. (0) and:
ox. 1

<3-5'

m 6\JL

m u )

k=l

As in the proof of Theorem 2.1, veL,(0) and satisfies (2.18)

• *

(with p = 1, q. = 1, q'. = oo) . Since v = v. a.e. in Q it

follows (by Lemma 1.3) that:

(3.6) d v = >• a.e. in Q.x x. ox.
l l

so that d veL (Q) . This result holds for every i, (i = 1,..". ,n)
1

Therefore VGW ^(ft) and the proof is complete.
l l

Corollary 3.1, The statements of Corollaries 2.1, 2.2 and 2.3

are valid also in the case p = 1, q = (!,..•,!).

The proofs are the same as those of the above mentioned

corollaries. Actually inequality (2.27) has already been obtained

in the proof of the theorem (see (3.4) and (3.6)).



35

Corollary 3.2. Let p = 1 and q = (q ,...,q) with q. ;> 1.

Let Q, g and u satisfy the condition of Theorem 2. 1 with p

and q as above. In addition suppose that:

loc loc
(3.7) ak6Loo (Q)' b k j O U j € L o o

Then v = g * ueW (fi) .
l l

Proof. Since W. (0) c w - (0) , all the assumptions of the

theorem are satisfied in compact subdomains of Q (by (3.7)).

Hence veW_ . (Q) .

By Corollary 3.1, inequality 2.17 is valid. Therefore

v e L.. (Q) , (i = 1, . . . ,n) . In fact we have:
• -L
1

(3-8) « x I L < n ) i « I L
JL

m

m

As in the proof of Theorem 2.1, veL (0) and satisfies (2.18)

(with p = 1) . Hence v€W .(0).
1, l

Remark. Note that the statements of Corollaries 2.1, 2.2, 2.3 are

valid also under the assumptions of the above corollary. The

validity of Corollary 2.3 in this case follows from its validity
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under the assumptions of Theorem 3.1 (and has been used in the

proof above). For the other two, the proof is the same as before.

The following theorem deals with the same case as Corollary

3.2, but without the additional assumption (3.7).

Theorem 3.2. Let p = 1 and q = (q , ...,g ) with q. ]> 1.

Let fl, g and u satisfy the conditions of Theorem 2.1 with p

and q as above. In addition suppose that g is continuous in

Q x R . Then v = g^ueB1 (Q) and the strong approximate derivatives
m /-'

v, (i = l,...,n), belong to L.(Q).
\. • 1
1

Proof. Let u, be a function in A(Q) such that ul = VL a.e

in fl, (k = lj...,m). Denote v = gou; then v = v a.e.r-J

in fi.

As in the proof of Theorem 2.1 we have:

(3.9) v€Ln(Q) and i o ii €W. -.(0), (k = 1, ,m) .
1 C K. 1 <f 1

Furthermore. & Ou eA(Q),
k k

Let r be a line parallel to the x.-axis such that T

satisfies conditions (a1)-(a^) (which are stated in the proofs

of Theorem 2.1 and Theorem 3.1) and in addition:
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u.
i.qn

(T n (k = 1,...,m);

n n ) '
(k = 1,. . . ,m) ;

(3.10)

o u . f (T n o ) ,
k

(k = 1,.. . ,m) ;

(k,j = 1,...,m;k ^ j);

v (r n n);

b o u n

We observe that, since IL G W (Q) n A(Q), the first con-

dition in (3.10) is satisfied by a.e. line r parallel to the

x.-axis. The same remark applies to the second condition in

(3.10). It is clear that also the other conditions in (3.10)

as well as (a,)-(a.) are satisfied by a.e. line r as above.

Let I be an open interval contained in r fl Q let I!

be a compact subinterval of I. Denote by h the distance

between I! and the boundary of I.

If x1 ,x" are two points in I - N, the difference

v (x! ) - v (x") may be estimated as in (3.2). In particular

if h j£ 0 is a fixed number such that h < h • we have:
o
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(3.11) i *
h

1
h

h
a(x + )dg + (b © u) (x + he1)

o

m
+ 2 [a,.(x) +
k=l

(1) u) (x)

u) (x + he1)

m

for £. - a.e. point xeV .

Integrating over I1 and using the one-dimensional version

of Lemma 1.5 we obtain:

allLl(l)
 +

JL

m

k=l (I)
^

(I)

m

for all O < h < h .

By Lemma 1.7, v coincides Z - a.e. in I, with a

function of bounded variation on I. Since this result holds

for every subinterval of r 0 Cl, v coincides £ - a.e. in

• *

T 0 Q with a function v which is locally of bounded variation
T

on T PI fi. Moreover (by Lemma 1.7 and (3.12)):
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(3.13) tot .var . r m [v* T ] Ln (THO)1
L1(Tf1ft)

m

k==1

m

k=ll!

qk

u

, (Tnfi)
] teHL (TOO

Up to this point we have not made use of the continuity of

g in ft x R . We observe now, that by this assumption, v

is continuous (because u is continuous). Since v = v
T

£ - a.e. on T H ft, it follows that v is also l.b.v. on

T n 0. (This is easily verified directly from the definition.)

Furthermore, v = v9 r
• *

rfift
+ s, where s is a saltus function on

T n 0, such that s = 0 everywhere, except on a countable set

of points, on r PI Q, (see Saks [15], p. 97-98). Clearly,
*

as
~—
dx.

l

= 0 wherever it exists, so that
ov

^ — = -^—
ox. ox.

£, - a.e. on
1

T PI ft. Finally, by a well-known property of functions of

bounded variation (see Saks [15], pp. 119 and 121):

(3.14) i
Tflft

*

T

rHft
dx. £ tot.var.

I -̂

Note that these results hold for a.e. line r parallel

to the x.-axis, (i = l,...,n). Hence, in particular, v eB(O)
1

and the derivatives
dv*^ —
ox.

l

, (i = l,...,n), exist a.e. in Q and
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are measurable there. Combining (3.13) and (3.14) and using

Fubini1 s theorem we get:

m ou

^ » (0)

k=l d x L ( n )

Since v = v a.e. in Q, the assertion of the theorem is

proved.

For the next result we introduce:

Definition 3.1. Let g be a real function defined in fl x R

and let w be a function in A(0), (k = l,...,m). We shall

say that g has the (N ) property with respect to w = (w. ,. . . ,w ) 9

if for almost every line T parallel to one of the axes in R ,

the function gow, restricted to r fl Q̂  has the (N) property

(i.e. it takes £ - null subsets of T 0 Q into null sets).

The following lemma provides sufficient conditions for a

function g to have the (N ) property.
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Lemma 3.1. Let g be an l.a.c. Caratheodory function in Q x R .

Suppose that g satisfies conditions I and II of Theorem 2.1.

We assume also that the null set N = N , mentioned in Definition

2.2 (and also in Condition II), satisfies # (N) = 0.
n-1

The assumptions on a, b, a , b . are as follows:
K K j

(3.16) 0

(3.17) 0 < b is continuous in R ;
•^ m

(3.18) a,, (k = l,...,m) are non-negative measurable functions,

finite everywhere in Q;

'* (kjj == 1 ̂ • • • ̂ rn) are non-negative Borel functions,
3

(3.19) \ finite everywhere in R ;

loc
(R) , (k = 1, . . . ,m) .

Let w. €A(fi) , (k = 1,. . . ,m) , and set w = (wn , • . . ,w )K ^ l m

Suppose that:

/ k loc
(3.20) tbk k«wk) ^T"

611! (n^ (k = 1J« • • ,m;i = 1,.

• *

Then g has the (N ) property with respect to w.

Proof. Let M be a countable dense subset of R . As in the
m

proof of Theorem 2.1 we obtain inequality (2. I)1 for (x, t) € (Q-N ) xR

where N. is a null subset of Q.
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Defining j8L as in Theorem 2.1, we note that by (3.20)

and Lemma 1.9, ft°w €A(Q).

Let T be a line parallel to the x.-axis (the index i

will be kept fixed throughout the proof) such that:

(3.21)

T PI N i s empty;

T n N i s an £ - n u l l s e t ;

g ( # , t ) i s l . a . c . on T H Q for every teM;

r n n
£ L i ° C ( T nn>;

w and ft* w , are l.a.c. on r H Q;

We remark that each of the conditions in (3.21) is satisfied

by a.e. line T parallel to the x.-axis. With respect to the

first condition, this follows from the fact that H (N) = 0,

since this implies that the projection of N on the hyperplane

x. = 0 is an £ .-null set.
I n-1

Let I be an open subinterval of r H 0 such that I c r H Q

It is sufficient to show that u = g«w has the (N) property

on I.

By (2.17) and (2.19) we obtain:



(3.22) |n(xM-M(x")

x1!

x1.
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a(x)dx. + (b»w)(x') x'.-x'I

m
[a.

k=l

m

(1) w)(x' )

(2) w) (x") )-wk(x")

for every x 1, x"el. (Here we use the fact that I does not

intersect N.)

Let Q be an ^L-null subset of I. We have to show that

M(Q) is a null set.

Let:

(3. 23) (xel| ak(x) £ I, . • w.) (x) £ I for k, j = 1,... ,m;

j ) ,

CD

where I = 1,2,... Then I = U J and we set Q, = Q fl J
I

In the next part of the proof we shall keep I fixed. It

is sufficient to prove that M(Q#) ^s a null set.

Given €> 0, let 0 be an open subset of I containing

Q such that (0) < ft . The set 0 may be written as a

countable union of disjoint open intervals {I } . We may

assume that every interval I contains at least one point of
v
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Q ; we pick such a point in I and denote it by x

Let x'el H Q . Then by (3.22) and (3.23):

v

(3.24) VU(x! )-jU(x ) f a(x)dx + X-,(1
1 1

V
bo

V

m v,
4- c I £ w (x1 ) - w (x )

1 k=l * *

m
S

k=l

v

where c is a constant depending only on m. Note that

is continuous on r H Q so that sup b o w < oo.

Denote s =v
sup fi(x! ) - ji(x )|. Then, by (3.24):

oo
(3.25) E sv

a(x)dx. + 6-sup (bow)
0 1 I

m

k=l 0
dx.

l

m J
k=l 0

dx.
l

All the integrals in (3.25) are integrals of functions

belonging to L (I). Hence, they tend to zero when €»—* o.

Obviously (i(Q.) is covered by a countable family of closed

oo
intervals whose total length is 2 E s . Hence, the outer measure

of u(Q.) is bounded by twice the right side of (3.25), which

tends to zero when 0. Hence (Ut(Q,) is a null set. This
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completes the proof of the lemma.

Theorem 3.3. Let p = 1 and q = (q ,...,q) with q. ^ 1.

Suppose that n, g and u are as in Theorem 2.1 with p and

q as above. In addition suppose that g is continuous in Q x R ,

that M .(N) = 0 (where N = N ) and that the functions a. ,
n-1 g k

b- ., (k,j = l,...,m;k ̂  j) are finite everywhere in Q and R
K, j 1

respectively.

Then v = g* UGW. - (Q) .

Proof. By Theorem 3.2 veB1 (fi). Let u^ be a function in A(0)

such that u, = u a.e. in Q. If v = g o u, then v = v

a.e. in Q. Furthermore v is continuous on T 0 Cl, for a.e.

*
line r parallel to one of the axes in R . Therefore, v eB(O),

(see Definition 1.1).

By Lemma 3.1, g has the (N ) property with respect to u.

Hence, for a.e. line T parallel to one of the axes in R ,

v has the following properties: it is continuous, it has

the (N) property and it is locally of bounded variation. Therefore,

by a theorem of Banach-Zarecki (see Saks [15], p.227) v

is l.a.c. on r H n. Hence v eA(w) .

rnn

dv*
Again by Theorem 3.2, -^—GL. (Q) , (i = l,...,n). Hence,

by Lemma 1.4, veW- . (0) . This completes the proof of the theorem.
1,1
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§4. Demicontinuitv of G : W (0)—> Wn (Q)
l,q

In this section we describe first a general class of conditions
i
i

on g which ensure that G is a demicontinuous (i.e. " strong —•"*

weak" continuous) mapping from W (0) to W (0). Then in
n ~ l^P
l,q

order to illustrate the scope of our theorem we give a relatively

explicit result in which g is assumed to satisfy power type

growth conditions. The methods are based on those used in proving
Theorem 2.1.

Our main result follows. Recall that a bounded transformation

between normed spaces is one which maps bounded sets to bounded

sets.

Theorem 4.1. Let Q be a bounded domain in R possessing the

cone property and let p > 1, q = (q1j«.«,q), q. >̂ p, be given.

Suppose that g is an l.a.c. caratheodory function in Q x R

which fulfills the estimates of Theorem 2.1 with functions a, b,

a , b . which satisfy (2.3)-(2.1) 9 a and b . being every-

where finite. Suppose also that b. , is continuous, k = I5...,m,

and that under functional composition the functions b, b,K 3

= lj...jin, satisfy:



47

(4.1)

. . defines a mapping from L (Q) to L . (0) •k, j * qT

* = ^ n

j ~n-

b defines a mapping from L (Q) x...x L (0) to L (0) .

Then G maps W (Q) into W_ (Q) and is demicontmuous.

Moreover G is continuous as a mapping from W (Q) to L (0).
P

Remark 4.1. it is implied by (4.1) that the following estimates

hold ([7], Theorem 1 (slightly modified)):

(4.2)
+ a*.

qi/qj

b(a ,. .
1 m

a. a

j = •.•

am

Thus all the composition mappings in (4.1) are bounded. In

addition, the mappings associated with b . (k = l,...,m) and

with b are continuous ([9], [11], [13]) .

Proof. In order to prove demicontinuity we must show that for

any sequence u = (u-,...,u ), v ̂  1, convergent to a limit

o , o ox .u = (u.,...,u ) in W
~ i m

weakly to v = Gu° in W

v v
9 the functions v = Gu converge

(Q) .
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We show first that the sequence v converges to v in

L (0). According to (2.17) we have for all xeQ-N,

V
m

(4.3) g(x,u (x))-g(x,u (x)) S ta^(x) +
k=l

(1) (u (x))

m v

k=l

where the ]3 are defined as in (2.13). Now by Sobolev* s

imbedding theorem, v ̂ _ 0, and the convergence of

v o .
u to u xn W (Q) implies that

V
u. —> u in L k = I5...,m

Thus (4.1 ) and Corollary 1.2 give

(4.4) , v = 0,1,....

Moreover by using Remark 4.1 we also deduce that

i n

Applying this result to (4.4) we obtain:
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v, V
o uk - b_ . okk u_ II

qk
n) X

0.

Moreover, we obtain from (4.2.) the following estimate

(4.6) |/3k(a')-j8k((7") b,_ ,.(a)da

)•] a"-a1

v
This ensures that the sequence /?, o u converges in L (0) :

<^v V
/q

o

!
k

(0)
V O

k

O

k

Q)

where
1 1

* q! n
qk

 qk



5b

Utilizing this fact in conjunction with (4.1 ) we obtain from

(4. 3) the estimate

(4.7) ||v*-v°||L (fl) i j t l l ^ 1 ' . uV<2». u°||L

m
o

P

0.

In order to complete the proof it suffices, by reflexivity

of L (0) , to show that for each i the functions d v form
p x.
^ I

a bounded set in L (0). For it then follows, by a standard
p

argument, that d v —> d v weakly in L (0) and hence v — ^ v
1 1 ^

weakly in W- (Q) . However, by (2.22) we have for any open
1 P

subset Q! of Q such that fl1 c Q the estimate

<4-8) Kv\
P

m

m

k=l l p

By (4.2) and (4.5) the right side of (4.8) is bounded uniformly

in v, and hence by Lemma 1.6 we have the requisite boundedness
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for v
v

P
i = 1,. . . ,n, v ̂  0.

The next result can be regarded as a corollary to Theorem 4.1.

As mentioned above it is stated primarily for illustrative

purposes.

Theorem 4.2. Let Q be a bounded domain in R possessing the

cone property and let p > 1, q = (q.. ,•••*<* ) with q.

be given. Suppose that g is an l.a.c. Caratheodory function

in 0 x R which satisfies the following estimates for certain
m

functions aeL (0) ,
P

(I)

(II)

m

= l,...,m:

v.
1 g(x,t)| <̂  a(x) + b S | t. | ̂  a.e. in Q, where
X. ^ • i "1
1 j=l

. = q./p, (i = 1,...,n);

a_ (x) + b
m v.

t. for all (x,t)€(Q-N) x R
m

at which the left side exists, where vn . = q./q}9 k j ^j ^

(k = 1,... ,m) •

Here N = N is the null set mentioned in Definition 2.1.
g

Then G maps W (Q) into W. (Q) and is demicoritinuous.
^ l P

Moreover G is continuous as a mapping from W (Q) to L (fi).
P
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§5. Chain Rules

In the present section we describe certain results in which

the mapping G has the additional feature that a chain rule holds

That is, one has, for each i = l,...,n, equality between the

derivative d (g 6 u) and the (properly interpreted) coiribination
x. ~
l

g) o u + [(7 g) o u]d u. Associated with the existence ofx. ~ u ~ x.~
i ~ I

such a chain rule are, as is clear, stronger continuity

properties than in previous sections.

Our first result applies to functions g which are independent

of x.

Lemma 5.1. Let I be anopen interval in R_ . Let g = g(t-,...,t )

be an l.a.c. Caratheodory function (i.e. g is continuous in R

and the restriction of g to any line parallel to one of the

axes in R is an l.a.c. function).
m

Suppose that the inequality:

m
(5.1) l-rr-l 1 a + Sb (t), (k=l,...,m),

holds at every point in R at which the estimated derivative

exists, where a are constants and the functions b . satisfy
K K, J

the conditions described below.

(5.2) 0 £ b, . is a real valued Borel function on R ,
K , j 1

(k,j = 1,...,m;k ̂  j).
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(5.3) 0 £ b
k k

e L i ° C ( R
1 ) ' (k=l,...,m).

loc
Let w. : I *-* Rn be an l.a.c. function such that W'GL (I)

k 1 k q

(k = 1 , . . . 5m) , fo r some q, 1 <£ q < GO . Denote w = ( w . , . . . ,w ) .
~ 1 m

Suppose that g has a differential at each point of the

set T = w(I) c R except for an & -null set.
w ~ nr * 1

Finally suppose that:

(5.4) b k d w €L ?°(I). (k,j = 1,...,m;k ̂  j), where — + - = 1,

(5.5) ( bkk° Wk ) wk € Li° C ( I ) j

Then (Lt = g P w is l.a.c. on I and the chain rule holds, i.e.

(5.6) M! = 2 (fj-^w)wj^, ^ - a.e. on I,
k=l k ~

the products on the right being interpreted as zero whenever

their second factor is zero.

loc
Proof. By Theorem 3.3 (for the case n = 1) , fî W (I) .

1 j J_

But \x is continuous on I; hence \i is l.a*c. on I. (Recall

that every function in W. .(I) coincides a.e. in I with an
1,1

l.a.c. function.)

Denote by a a general point in R . Let J = [a,b] be

a compact subinterval of I. Let s be the arc length of the

absolutely continuous curve w = w(cr) , a <£ a £ b, with s(a) = 0.
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Then s is a monotonic increasing, absolutely continuous function

in J and s! = w1 a.e. in J. Denote by J the interval
r-J

0 s(b).

There exists a unique function w = w (s), (s$J ), such

that w (s(a)) = w(a) , (aej) . Indeed, if or , ao are two distinct

points in J such that s(cr ) = s(a ), it follows (by monotonicity)
JL 4mt

that s(cr) = const, in the interval between a- and a and
JL. £»

hence s1 (cr) = | w1 (a) | = 0 in this interval. But an absolutely

continuous function whose derivative is zero a.e. in an interval

is necessarily a constant in that interval. Hence w(a.) = w(ao)

Furthermore w (s.) - w v~o
sr s

2
, (see

• *

Saks [13], p. 123). Hence w is absolutely continuous and in

fact Lipschitz in J . Therefore, by Lemma 1.9, we have:

(5.7)
dw(cr) dw

da ds
(s(a) ) • s1 (a) , a.e. in J

Noting that by (5.4) (b . Ow.)|w! (a) | GL (J) , we have (by
x D D ^ 1

a known theorem on change of variables; see for instance Federer

[5], p. 245) :

(5.8) (b^ _. o w ) (s)ds (b . o w.) (a) s! (a) da,
3 3

1
- a.e. in J. Hence, by

so that b, .Ow.eLn(J ).
k.1 i 1 *

By Lemma 1.8, wf = [——
k ds

dw
(5.5), (bv v * w v ) [—— o s]s

r €Ln (J) . Therefore, by the same theorem
CIS
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on change of variables we have:

s(b) ^ dw*(s) b dw*(s(<x))

<5-9) I ( V f l w k»( s ) - d T - ds = J ^ k - V ^ — d S — s ' ( a ) d C T

o a *

so that (b owk) ̂ V J ) .
•X- k y?

Finally w is Lipschitz in J and -:— <£ 1 *£,- a.e. in J,
-*

so that w GW . (J) , (k = l,...,m).
K. 1,1

Hence g and w satisfy all the assumptions of Theorem 3.3

i n J so t h a t g e w = u i s l . a . c . i n J .

Now, if a is a point in J such that — exists at a
o * da <

and the differential of g exists at y = w(a ), then (5.6)

holds, as can be verified by an elementary computation. Let M

be the set of points in J where at least one of these conditions

does not hold. Then M consists of a null set, plus a set M1

such that w(M! ) is an M -null set. Hence, by Lemma 1.8,

dw M

-r^ = 0 #T, - a.e. in M. It follows that s! = 0 A*. - a.e. in M,
da ^1 1

so that s(M) is a null set (Saks [15], p. 227). This implies
#

that JU(M) = jut (s(M)) is a null set. Here we use the fact that

jLt isl.a.c. on J. Appealing once more to Lemma 1.8, and

du
using the fact that \x is a.e. in J, we conclude that -p = 0

- a.e. in M. Therefore (5.6) holds oL - a.e. in M and

everywhere in J-M. Since J was an arbitrary compact sub-

interval of I, the proof is completed.
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T h e o r e m 5 . 1 . L e t Q b e a d o m a i n i n R . L e t g = g ( t ' , . . • , t )
n ^ ^ v 1 ' 9 m

be an l.a.c. Caratheodory function which satisfies all the

assumptions of Lemma 5.1.

loc
Let u. €W (fi) , for some q, 1 :£ q < oo , (k = 1 , . . . ,m)

K l q

Denote u = (u...«..u ).
~ 1 m

Letting S denote the set of points in R where g does
^ g * m ^

not possess a differential, suppose that S intersects every

absolutely continuous curve in R , on an M-null set.J m l

Finally suppose that:

(5.10) b k 0 ueL?°(fi) , (k, j = 1, . . . ,m;k ^ j) , where — + -

K I or

(5.11) ( b k k o u k ) ^ G L ^ °
C ( n ) , (k =

9 i
loc

Then v = go u is in W_ _ (Q) and the chain rule holds:
~ 11

m
(5.12) S v = 2 ( T ^ - O U ) S U, , a.e. in fi,

i k=l k I

the products on the right being interpreted as zero whenever their

second factor is zero.

Proof. By Theorem 3.3, veW O(T(fi) . If u. is a function in A(fi)

such that u, = u, a.e. in fi then v = g o u is continuous on

T H fi for a.e. line r parallel to one of the axes in R .

Furthermore v = v a.e. in fi. Therefore, by Lemma 1.4,

v eA(fi) .



57

Let T be a line parallel to the x.-axis such that u
1 ~

i s l . a . c . on r H Q and such that:

dx. rnn
eL1OC(T fl 0) ,

q

( 5 . 1 3 ) b. . o u .
k 3

lOC . n
' ( T n (k,j=

k O U k )

rnn
6LJO C(T n (k=l,

Since
i i

a.e, in n, (k = l,...,m), it is clear that

these conditions are satisfied by a.e. line r parallel to the

x.-axis,
I

B y L e m m a 1 . 5 , v i s l . a . c . o n T O Q a n d :

(5.14)
m

k=l
- a.e. on r fl fl,

As g is continuous on every line parallel to one of the axes

in R , g is a Borel function (see Caratheodory [4]). Hence

is a Borel function (Marcus and Mizel [12], Lemma 4.1).

Therefore, the right side of (5.14) is a measurable function

in Q, and of course, the same is true of the left

side of (5.14) (by Lemma 1.2). Since (5.14) holds jf. - a.e. on

T H Q for a.e. line r parallel to the x.-axis, it follows
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that it holds a.e. in 0.

dv*
Finally, since -=r— = S v a.e. in Q (Lemma 1.4), (5.12)

OX • X t
1 1

follows from (5.14). This completes the proof of the theorem.

Remark. Other cases in which the chain rule holds, for composition

of functions of the form discussed above, are presented in Marcus

and Mizel [12]. As noted in the Introduction, the methods used

there are quite different from those of the present paper. We

mention in particular that if g depends not only on t but

also on x and if it is a locally Lipschitz function in Q x R ,

then under a hypothesis on s as above,, the chain rule holds
y

loc
for v = g o u with u,€W (0) , (k = l,...,m), ([12], Theorem 2.1).

^ Jc JL, _L
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