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Abstract

The inequality by Polya and Schiffer considered in this

paper is concerned with the sums of the n first reciprocal

eigenvalues of the problem Au + Tui = 0 in G, u = 0 on SG.

First we extend this inequality to the problem of an inhomoge-

neous membrane Au + Apu = 0 in G, u = 0 on SG. Then we

prove a sharper form of it for a class of homogeneous membranes

with partially free boundary. The proofs are based on a varia-

tional characterization for the eigenvalues and use conformal

mapping and transplantation arguments.

'The work was supported by NSF Grant GU-2056.



EXTENSIONS OF AN INEQUALITY BY POLYA AND SCHIFFER

FOR VIBRATING MEMBRANES

Catherine Bandle

INTRODUCTION.

The inequality by Polya and Schiffer considered in this paper

is concerned with the eigenvalue problem Atp + A <p = 0 in a Jordan

domain G, <p = O on SG. It can be stated as follows: Among all

domains with given maximal conformal radius r, the circle yields

n

lated to the geometrical inequality

the minimum of the expression r £ A. . This theorem is re-

(1) irr2£A,

where A denotes the total area of G. The aim of this paper

is (i) to extend the inequality by Polya and Schiffer to the

problem of an inhomogeneous membrane fixed on the boundary,

(ii) to sharpen it for certain kinds of elastically supported,

homogeneous membranes. Instead of considering the problem of an

inhomogeneous membrane we will study the equivalent eigenvalue

problem Lu + Au = 0 where L == •= is the Beltrami operator

2 2 2

of an abstract surface with the line element ds = p (dx + dy ) .

With the help of inequalities by Alexandrow [1], we will derive

first some relations between r, p and the Gaussian curvature

of the surface. These results will be needed for the theorem



concerning the eigenvalue problem. Its proof is essentially-

based on a method indicated by Hersch in [6] which uses con-

formal mapping and transplantation arguments. in the last

part, we give an isoperimetric inequality for a class of plane

membranes. The extremal domain is in this case the circular

sector.



§1. Geometrical preliminaries.

1.1 Definitions: Let S be an abstract surface given by

a Jordan domain G in the z-parameter plane (z = x + iy), and
2 2

by the metric ds = p(z) |dz| where p (z) is an arbitrary
positive function in C . A(B) = JJ pdxdy is the area of a

B

domain B c £ and L (y) = J ̂ p* |dz| is the length of a arc

y c= T> . The Gaussian curvature has the form K =(~A In p)/2p

r &2 S2 -
£_ = — 5 — + — 7 - . We shall assume that the in equality

L Z Bx2 ay2 J "

K <, K holds in G. Consider a surface lU of constant
VJ O j\

O
curvature K given in the following isothermic representation;

(i) w-plane (w = u+ iv) with the metric

2
ds2 = 4 c

 9 9 |dw|
2 if K = 1/c2

d + | w | 2 ) 2 °

(ii) interior of the unit circle {w; |w| < 1} with the

2
metric ds2 = 4 c „ o |dwl

2 if K = -1/c2 .
(1- |w| 2) 2

2 9
(iii) w-plane with the metric ds = |dwj if K = 0



2 2
We shall define the metric of TtV by ds = g(w) dwl

Ko
Let f (z) be the conformal mapping from G onto the unita

circle {w; |w| < 1} with f (a) = 0 and f T (a) > 0. The
a a

conformal radius of the point a with respect to G is then

defined as r (G) = 1/f T (a) [9, p. 16] . We seta a

(2) R (G) = <
a.

(G) if Ko ^ 0

\/p(a) 'ra(G) if K Q = 0

Example; If G is a circle with the radius r 3 the center

in the origin and p(z) = g(z), then R (G) = r .

w (z) = R (G)f (z) maps G onto the circle {w; Iwl < R (G)}.a a a. a

and z (w) denotes its inverse. We shall denote the circlea

{w; |wI < e} by C . R
a(

G) h a s bean chosen in such a way

that

(3) Jj g(w)dudv = JJ p(z)dxdy -f o(c2).
c

Since JJ g(w)dudv = <

^47rc2c2 + o(€
2) if K Q £ O

C€ W e 2 if



it follows that

(4) lim -ijg— JJ g(w)dudv = lim ~~ JJ p(z)dxdy

1.2. Some Properties of R (G) .
a

(a) R (G) is invariant under conformal mapping,

Proof: Let £(z) : £ =» £ be a conformal mapping and let

be its inverse. We set |(a) = a and ^ (G) = G . The

with p (£) = p (z(§) ) |-r|line element of £ is ds =

Since K_ is a conformal invariant^ we have
G

(5) RJG) = f
a

K |rjG) = -| \/p (a) K.

Because of the relation dz
r (G) =r (G) [9], it follows

<̂  a.

a
that R (G) = R (G).

a

(b) Ij: K < 0, then R (G) < 1 for any aeG

Proof: The function p(w) = p(z (w) )
dz 2a
dw satisfies in

C = {w; |w| < Ra(G)} the inequality
c^



By a theorem of Osserman [7]

2 24c R Z

(6) p(w) < — (r=|w| , Ra = Ra(G)) for any wee)

(R_2 - r2)
d

Since p(0) = 4c2 , (6) implies Ra < 1.

(c) Let u = (̂dC,,3C ) be the modul of the annulus

D = C\C [C = (w; |w| < R }, dC the boundary of C; C = (w; |w|<e),
€ a €

9C the boundary of C ] . Let h be the solution of the Dirichlet

problem Ah = 0 in C\C , h = 0 on 3C , h = 1 on SC and

let D(h) denote the Dirichlet integral of h. Then JU = {D(h)}" .

In an analogous may we define \i{Y,T )3 where T and T are

the boundaries of G and z (C ) . Since the modul is invariant
a £

under conformal mapping, we conclude that

Me = M<r,rc> = ^- m ^ ,

and thus

2TTU 2ru

(7) Ra = ce e = lim ee e [10, p . 4 5 ] .
e-*o

If G is contained in G', then it follows from (7) and the

Dirichlet principle that R (G) < R (G' ).
a —"• a



(d) Let A = A(G) = JJ p dxdy be the total area of

with respect to the metric ds = p|dz| , and let Ac = JJg(w)dudv

2 o

be the total area of C with respect to the metric ds =g(w) |dw| .

A takes the values

(8)

4TTC2 R 2 /(I + R 2)

a. a.

4TTC2 R 2 / ( I - R 2)

irR.

-2
i f

i f

i f

Ko

Ko

Ko

= c

= - c

= 0

-2

The following result is an extension of a classical theorem

[9, problem 125 IV]. We have

(9) A > AC #

Equality holds in (9) if and only if G is a geodesic circle

on a surface of constant curvature K . (If K > 0 we have to

assume that A < 47r/K .)

Proof; Let A- (e) and A.. f (e) denote the area of z (C ) and
• "" x J- a £
C . By (7) and Corollary 2 [3] it follows that

d o ) M (r , r f t ) - l ^ m -f < ^ A , ( € )
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Equality holds only if T and T£ are two "concentric" circles

on a surface of constant curvature K . Suppose that KQ ^ 0.

2 2 2
Prom (8) we have A ^ (c) = 4TTC e + o(c ). Substituting this

expression in (10), we obtain

4TTC2 R 2 . A(4TT - K A. (c))
a y* o i

(4TT - K A)

A ' (6)
Since lim . , > = 1 (cf. (3), (4)), it follows that

2 AC A'(€)+o(c 2) ! A

(11) R 2 = -5 ^ < lim -± 2 l ( € ) = A 2 - (4Tr - K A)
a c2 (4TT - K A ) € - 0 4irc c (47r K o A )

This inequality implies AQ ^ h . The case KQ = 0 can be treated

in exactly the same way and will therefore be omitted.

Remarks: (1) Let g (z,a) be the Green's function defined by

Ar,gr,(z,a) = - 6 (z) in G, g (z,a) = 0 on r. gTT(w,0) is the

corresponding Green's function in C. We shall use the following

notations G(t) = {zeG; g,,(z,a) > t}, C(t) = {weC; g1T(w,0) > t};

A (t) = JJ pdxdy and A (t) = JJ g(w)dudv. By the same rea-
G(t) C(t)

soning as before we can show that

(12) Az(t) 2 A w(t).



Equality holds if and only if G is a geodesic circle on a

surface of constant curvature KQ. If KQ > 0, we have, of

course, to assume that A (t) < 4TT/K .
z o

(2) We define R(G) = max R_(6). If G is a circle of

radius r with the center at the origin and the metric ds =g(w)|dw|

2 2
then R (G) = - — l a l — [9]. In this case, R(G) = R (G).

a (1 + |a|2)r

Because of (11) we have the isoperimetric inequality:

Among all domains with given total area A and with given KQ,

the geodesic circles on a surface of constant curvature K have

the largest value of R(G) .

From (11) it follows that

r

2 AA
( G ) ^a KV3) ^ p(a) (4ir- KQA)

2
If p is constant, then (13) reduces to Trr (G) <C A .

§2. Bounds for the eigenvalues of an inhomogeneous membrane.

Let E be an abstract surface given in an isothermic represen-

tation (cf. §1.1). We consider the following eigenvalue problem
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~ cp(x,y) + Acp(x,y) = 0 in G

cp = 0 on F (boundary of G)

Here, n is the outer normal, and s is the arc length.

n is a unit vector with respect to the metric of £ given

2 2 2 z
by the line element ds = p (dx + dy ) . — represents the

Beltrami operator of £. Suppose that a countable number of

j v p dxdy

G

[D(v) = JJ grad v dxdy] is the Rayleigh quotient of Problem I.

G

Let L be a n-dimensional linear space of continuously differ-
n

entiable functions which vanish on r 9 and let vi* # # #J v
n ke

an orthogonal basis in L with respect to the Dirichlet metric,

rr

i.e., D(v.,v.) = J j grad v. grad v. dxdy = 0 if i ^ j. Follow-

ing [6] we define T Rinv [Ln] = £ {Rtv^] }~ • For the sums

of the reciprocal eigenvalues we have the variational characteri-

zation [5,6]

n -l
(14) £ A. x = Max TRinv[L J

i=l x L n

n

The maximum is attained if v i = cp. i = l,...,n are the first n



1 1

- 2
eigenfunctions of Problem I . Assume that (-/^ In p)/2p < KQ=;fC

in G, where K JLS anY real number. In addition to Problem I

we consider the auxiliary problem

II —r^V cp + A c p = O in C = fw; w < R ]
g(w) ^ ^ ' a J

Cp = 0 on 3C = {w; |w| = R } .

Here , n i s t he o u t e r normal in t h e m e t r i c ds = g(w) |dw| ;

g(w) depends on K and was def ined in § 1 . 1 ; a n d

R = \Tp7aT1 r / 2 c or R = \/pTa7r (cf. §1.1). The eigen-
a T a a * a
functions of this problem are either of the form

(15) cpk(r,6) = R
o ( V r ) o r

(16) cpk(r,9) = R m ( \^ r ) c o s m6 a n d $k+l ( r^6 ) = R m ( > V r ) s i n m 9

m = 1,

A

In (0,R ), R (\ ,r) satisfies the differential equationa m KL

_2 4A c2 r R
(17) ( r R ' ) 1 - 2 ^ + — 2"T = °

r 2



_ 2
if K = + c , and

d
dr

12

(18) (r
2

r K R i f

TTie boundary conditions are

(19) R ! (0) < OD and R(R ) = o.
a

We shall call m the order of R.

By introducing the new variable

z ==
(1 + r2) if K Q > 0

Ur2+1)/(1- r2) if KQ < 0

(17) is

transformed into the Legendre equation

z - 1
= 0

The following result is a generalization of a theorem of Polya-

Schiffer [8]. We shall use a method of proof devised by Hersch [6]



THEOREM 1.

13

p)/2p <. K Q , 2ir - K Q A > 0, and n

is a. natural number, then we have the isope rime trie inequality

(20)

where is the ii eigenvalue of problem II.

Proof; Let cp. (w) , . . . „ cp (w) be the first n eigenfunctions

of problem II and let U1(z)3 ...,Un(z) be the transplanted

functions U. (z) = cp. (w (z) ) . Because of the invariance of the
x 1 a

Dirichlet integral under conformal transformation, we have

D (U. .U.) = D_ (fi>. ,$ .) = 0 if i ^ j . U.(z) i = 1, . . . ,n can
G 1 3 C l j i

therefore be used as trial functions for the variational charac-

terization (14). Thus,

n
(21) , n n

dz
P(za(w))dudv

E (R[U ]}

Let cp, (w) and

In this case

(22) (R[Uk]}
 a +

(w) two functions of the type (16).

R 2TTa

00

dz.

dw rdrde

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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We observe that

(23) 8 k
2 (w) + (w) = $ (r)

is independent of 6. By the Schwarz inequality,

(24) J
2 7 r dz_ 2 p(za(w))

a
dw g(w)

rd6

2ir

J
0

dw )2 2TT

/ J g(w)rd9
0

We note that for fixed r

2TT

I
0

a
dw \Jp rd6 = L z ( t ) ,

where L (t) i s the length of the level line g (z,a) = t = •=— In ——
z z cLu r

2TT 2
r w ( t )

in the metric of 2. We also observe that J g(w)rd9 = 2lrr >
0

where L (t) is the length of the level line g (w, 0) = t
V\7 vv

with respect to the metric of to. .

In order to estimate L (t)9 we use the following geome-
z

trical isoperimetric inequality of Alexandrow [1]: If G is a

domain on

the following relation holds between the area A of G and the

length L of the boundary SG:

homeomorphic to a circle,, and if K <C K 9 then
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(25) L 2 2 A(4TT- K A) .

Equality holds if and only if G is isometric to a geodesic

circle on a surface of constant curvature K . From this

inequality we conclude that

(26) h2
zW 2Az(t)(4ir - KQAz(t)) =

A (t) has been defined in §1.2. If KQ £ 0 , then f(Az)

is a monotone increasing function; if K is positive then

f(A ) is monotone increasing in the interval [0, ~— ]. By
z o

(26) , (12) and our assumption on A, it follows that

Aw(t)(47T - KQAz(t)) = L
2
w(t)

This implies

2y

J'dz

0

From this inequality and from (22) and (23)

> 2\~1

This inequality is valid for more general surfaces. A brief
summary can be found in [1, pp. 509, 514] .
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If cp and $ , belong to the same order m [cf. (16)],

we denote by cp (w) the function for which

(27)

By the same arguments as before, (27) holds also for the

functions cp, (w) of order 0 [cf. (15)]. This establishes

the theorem.

REMARKS. If p is constant we obtain the theorem of Polya-

Schiffer [8, 6]. It is easy to see that (20) is optimal if

we choose a such that R (G) = max R (G).
a P€G p

§3. Generalization.

Let r1 be a piece of an abstract surface with the line

element ds = |z-a |~ a 5 '7 r y(z) |dz| where v (z) € C and

0 < co < 2TT . S1 includes the regular surfaces in the usual

sense which have at the point a a corner of curvature u) [cf. 1]

We assume that (-A In v)/2p < K • In this case we define
• z ' o

(28) Ra(G)

i f

i f KQ = 0
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We consider a circular cone C_ in a three-dimensional space
Ko

of constant curvature K with the curvature co at the corner [1]
o

It can be represented by

(i) sector 0 < 0 < 2TT - OJ (6,r polar coordinates of the

w-plane) with the lines 0 = 0 and 0 = 2v - co identified, and

2
the metric ds = =—o |dw| (K = 1/c )

( 1 + | w | 2 ) 2 °

( i i ) s e c t o r 0 < 8 < 2 i r - GO , 0 < r < l w i t h t h e l i n e s 0 = 0

2 4c 1 12
and 0 = 2TT - co identified, and the metric ds = ~ o dw

( 1 - | w | 2 ) 2

( K Q = - 1 / c 2 )

( i i i ) w e d g e 0 < 0 < 2TT - co w i t h t h e l i n e s 0 = 0 a n d 0 = 2TT - co
2 2

identified and the metric ds = |dw| (K = 0)

With the help of the function § = w27r' ̂ 2lT" ̂  , the sector

0 < 0 < 2v - a? is mapped into the £-plane. g (w) is then trans-

formed into g(§) = g(w(|)) |^| 2 which is g(|) = c (2~^A) U

(1 ±

if K o = + C or g(j) = ('"-,*> ) | C r W / " if K Q = 0.
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EXAMPLE. Let G be a circle with the radius r , the center

2
in the origin and the metric ds =
RQ(G) = rQ . Let C = {£; |£|

In this case

< Ra(G)} be a circle on

2 ~ 2
the cone C . The line element is then ds = g(£) |d£| . In

o

this metric

AC =

if
o —

if K =0
o

is the total area of C. A = JJ |z- af^^ i;(z)dxdy represents

G

the total area of G. All properties (a), (b) , (c) and (d)

remain valid in this case. The proofs are the same as in §1.2

except for (d) where we use Theorem 2 [3] instead of Corollary

2 [3J.

We now consider on E1 the eigenvalue problem I, and on

C e CK the auxiliary problem II (cf. §2). By transplanting
o

the last into the w-plane,, it becomes equivalent to the following

eigenvalue problem:
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= o in {w; |w| < R 1 ' ^ 2 r and 0<argw< 2TT - «}

= 0 on |w| = R
a

6 = 0 ' 0 = 2TT - 03

By a separation of the variables it follows that cp(r,,0) is

either of the type cp. = R (T^r), or else qL = Rm(A^.^r)cos m0

and cpv,1 = R (A, ) sin m0 with m = ̂ r-p— (n = 1,2,...)• In

I _ t y / 2 T T ^
(0,Ra

 a / ) R
m ( \ ^

r ) satisfies the differential equation (17)

with the boundary conditions (18). In the same way as in §2 we

can prove

THEOREM I1 : i £ (~Alni/)/2i/ < KQ and 2ir - u - KQA > 0 , then

~— + ~ + . . . + Y " >̂  7— + ~— 4- . . . + ^— . This inequality i s

valid for a rb i t ra ry n.

• Bounds for the eiqenvalues of plane membranes with partially

free boundary.

Let G be a Jordan domain in the z-plane. Suppose that

its boundary consists of three analytic arcs OA, AB and Bo
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where 6k and BL) are concave with respect to G. We assume

further that 6k and £6 meet in 0 at an angle a (0<a<Tr)

There exists a conformal mapping f(z) from G into the

circular sector 0 <, 0 <. a , r <C 1 . (r, 6 polar coordinates

of the w-plane) such that f (0) = 0, f (A) = 1, f (B) = e10t

and f1 (0) > 0 [4, p. 378]. If we put rQ = {f
1 (0)}""1, then

o
w(z) = r f(z) = z + a2z + ... . Its inverse will be called

z(w). We consider the following eigenvalue problem of the mem-

brane with partially free boundary:

(A) A,, cp + 7\ cp = 0 in Gz

cp = 0 on AB

| = 0 on 6^ U £>

These eigenvalues will be compared with the eigenvalues "h of

the problem

(B) A^ cp + A cp = 0 in G = {w; |w| < r and 0<arg w < a )

)̂ = 0 on r = r

.A A,

cp 1 = cp I
'e =0 ' 9 =a

The solutions of (B) are cpk(r,9) = J Q ( V ^ r> o r

> c o s ^ 6 a n d $

a

(\TZTr) s i n ^ e m = 1,2,... . Jfl (r) is the Bessel

a
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function of order j3. (B) can be interpreted as the problem

of a vibrating membrane on a circular cone.

THEOREM II. For an arbitrary integer n we have

*1 *2 '" \ ~ ^ \2 '" \

Proof. Let f(w) = f(r) be a function depending only on r.

We first show that every function F(z) = f(w(z)) satisfies the

inequality

(29)

a 2

F2(z)dxdy = J f2(r)rdr J
G 0 9=0

dz
dw de

ro

a J f2(r)rdr = \\ f2 dudv
G

By the Schwarz inequality, we have

2 JJ if I2 « i V <J ifat
o

a
= J | ^ | tWe observe that L(t) = J | ^ | t de is the length of the arc

0
iSz (C. ) where C. is the circular arc w = t e O ^ B ^ a .
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Let A(t) denote the area of the domain z(G.), where G.

is the circular sector 0 < ^ r < ^ t , 0 < 0 <, a . Because of

the concavity of the arcs <5A and 62) it follows from a re-

flection argument and an isoperimetric inequality by Alexandrow [1]

that

L2(t) > 2a A(t) (!)

The function £ = w maps the sector 0 < 0 < a onto the

£-plane. Let 6 and r be the polar coordinates of the £~Pl-ane'

We have

(31)

Since A>.

t a

A(t) = j m,
o o

27T

that 2ir J
dz
dw

2ir/a
a - 2ir

o

a t
2

2TT

i r
2TT J

0

= 4 85 »7

e 2
dz
dw

2TT

J
0

it follows

= 1 and hence

w=O

(1)
A detailed proof with more general results can be found in [2]
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(32) A(t) a t
2

(32) and (30) imply

(33)

a

I dz
dw

a

which proves (29).

The remaining part of the proof proceeds as in Theorem I (§2).

We transplant the eigenf unctions cp. into the z-plane.

U. (z) = cp. (w(z)) are admissible for the variational characteri-

zation (14), and we thus have

(34)
n
E 2 Trinv [L(U,, . . .,U

2idz|2
1 d u d v

= J27rm
a

(35)

a

and

r ) sin ̂ jis 9 , then (29) implies

""1+ (R[Uk+1])""
1 1 2 T ^

For functions cpk which depends only on r we have {R[U,J } ;> X

It is always possible to choose $ (r,0) such that the last in-

equality remains true for k = n. These relations together with

(34) establish the theorem.
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A
The first eigenvalue X. of problem (B) is the same

as the first eigenvalue i> of the problem A cp + v cp = 0

in G5 cp = 0 on r = r . ^ ̂  = 0 on 6 = 0 and 8 = a .
3 ^ o 3 b n

Theorem II and Theorem III in [2] yield the

COROLLARY. £f A denotes the total area of G and j = 2,4048...

is the first zero of the Bessel function JQ(
r)> then

Equality holds in both cases if and only if G JLS 3L circular

sector.

The right-hand side of (36) is a generalization of an

inequality by Polya and Szegb [8] . The following characteriza-

tion of r is based on the one indicated in [8] for the con-

formal radius. Let fj(AB, I\) be the modul of the domain G c

bounded by AB, BO, OA and T = [z; |z| = e) . It is defined

as ii(£&, T ) = 1/D(h) where Ah = 0 in G , h = 1 on r

and h = 0 on £h. An easy computation (cf. §1 (c) ) yields

(37) r = lim e
€ -•O

Let D denote the shortest distance from the arc f̂e to the

origin 0. By (37) and the monotonicity of u(AB, T ) it
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follows that D <̂  r . This inequality together with the Corollary

implies ^n <. I ̂ r)
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