NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.
EXTENSIONS OF AN INEQUALITY BY PÓLYA AND SCHIFFER FOR VIBRATING MEMBRANES

by

Catherine Bandle Research Report 71-25

MAY, 1971

EXTENSIONS OF AN INEQUALITY BY PÓLYA AND SCHIFFER FOR VIBRATING MEMBRANES
 Catherine Bandle ${ }^{(*)}$

Abstract

The inequality by Pólya and Schiffer considered in this paper is concerned with the sums of the n first reciprocal eigenvalues of the problem $\Delta u+\lambda u=0$ in $G, u=0$ on ∂G. First we extend this inequality to the problem of an inhomogeneous membrane $\Delta u+\lambda \rho u=0$ in $G, u=0$ on ∂G. Then we prove a sharper form of it for a class of homogeneous membranes with partially free boundary. The proofs are based on a variational characterization for the eigenvalues and use conformal mapping and transplantation arguments.

${ }^{(*)}$ The work was supported by NSF Grant GU-2056.

EXTENSIONS OF AN INEQUALITY BY PÓLYA AND SCHIFFER FOR VIBRATING MEMBRANES

```
Catherine Bandle
```

INTRODUCTION.
The inequality by pólya and Schiffer considered in this paper is concerned with the eigenvalue problem $\Delta \varphi+\lambda \varphi=0$ in a Jordan domain $G, \varphi=0$ on ∂G. It can be stated as follows: Among all domains with given maximal conformal radius \dot{r}, the circle yields the minimum of the expression $\dot{r} \sum_{i=1}^{n} \lambda_{i}^{-1}$. This theorem is related to the geometrical inequality

$$
\begin{equation*}
\pi \dot{r}^{2} \leq A \tag{1}
\end{equation*}
$$

where A denotes the total area of G. The aim of this paper is (i) to extend the inequality by Pólya and Schiffer to the problem of an inhomogeneous membrane fixed on the boundary, (ii) to sharpen it for certain kinds of elastically supported, homogeneous membranes. Instead of considering the problem of an inhomogeneous membrane we will study the equivalent eigenvalue problem $L u+\lambda u=0$ where $L=\frac{\Delta}{\rho}$ is the Beltrami operator of an abstract surface with the line element $d s^{2}=\rho\left(d x^{2}+d y^{2}\right)$. With the help of inequalities by Alexandrow [l], we will derive first some relations between r, ρ and the Gaussian curvature of the surface. These results will be needed for the theorem
concerning the eigenvalue problem. Its proof is essentially based on a method indicated by Hersch in [6] which uses conformal mapping and transplantation arguments. In the last part, we give an isoperimetric inequality for a class of plane membranes. The extremal domain is in this case the circular sector.

§1. Geometrical preliminaries.

1.1 Definitions: Let Σ be an abstract surface given by a Jordan domain G in the z-parameter plane $(z=x+i y)$, and by the metric $d s^{2}=\rho(z)|d z|^{2}$ where $\rho(z)$ is an arbitrary positive function in $C^{2} . A(B)=\iint_{B} \rho d x d y$ is the area of a domain $B \subseteq \Sigma$ and $L(\gamma)=\int_{\gamma} \sqrt{\rho}|d z|$ is the length of a arc $\gamma \subseteq \Sigma$. The Gaussian curvature has the form $K_{G}=\left(-\Delta_{z} \ln \rho\right) / 2 \rho$ $\left[\Delta_{z}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right]$. We shall assume that the inequality $K_{G} \leq K_{0}$ holds in G. Consider a surface $M_{K_{O}}$ of constant curvature K_{0} given in the following isothermic representation:
(i) w -plane ($\mathrm{w}=\mathrm{u}+\mathrm{iv}$) with the metric

$$
d s^{2}=\frac{4 c^{2}}{\left(1+|w|^{2}\right)^{2}}|d w|^{2} \text { if } K_{o}=1 / c^{2}
$$

(ii) interior of the unit circle $\{w ;|w|<1\}$ with the metric $d s^{2}=\frac{4 c^{2}}{\left(1-|w|^{2}\right)^{2}}|d w|^{2}$ if $K_{o}=-1 / c^{2}$.
(iii) w-plane with the metric $d s^{2}=|d w|^{2}$ if $K_{0}=0$

We shall define the metric of $m_{K_{0}}$ by $d s^{2}=g(w)|d w|^{2}$. Let $f_{a}(z)$ be the conformal mapping from G onto the unit circle $\{w ;|w|<l\}$ with $f_{a}(a)=0$ and $f_{a}^{\prime}(a)>0$. The conformal radius of the point a with respect to G is then defined as $r_{a}(G)=l / f_{a}{ }^{\prime}(a) \quad[9, p .16]$. We set

$$
R_{a}(G)=\left\{\begin{array}{l}
\frac{1}{2} \sqrt{\rho(a)\left|K_{0}\right|} r_{a}(G) \text { if } K_{0} \neq 0 \tag{2}\\
\sqrt{\rho(a)} r_{a}(G) \text { if } K_{0}=0
\end{array} .\right.
$$

Example: If G is a circle with the radius r_{0}, the center in the origin and $\rho(z)=g(z)$, then $R_{0}(G)=r_{0}$.
$w_{a}(z)=R_{a}(G) f_{a}(z)$ maps G onto the circle $\left\{w ;|w|<R_{a}(G)\right\}$, and $\mathrm{z}_{\mathrm{a}}(\mathrm{w})$ denotes its inverse. We shall denote the circle $\{w ;|w|<\varepsilon\}$ by $C_{\varepsilon} . \quad R_{a}(G)$ has been chosen in such a way that

$$
\begin{equation*}
\iint_{C_{\epsilon}} g(w) d u d v=\iint_{z_{a}\left(C_{\epsilon}\right)} \rho(z) d x d y+o\left(\epsilon^{2}\right) \tag{3}
\end{equation*}
$$

Since $\iint_{C_{\epsilon}} g(w) d u d v=\left\{\begin{array}{ll}4 \pi c^{2} \varepsilon^{2}+o\left(\epsilon^{2}\right) & \text { if } K_{o} \neq 0 \\ \pi \epsilon^{2} & \text { if } K_{o}=0\end{array}\right.$,
it follows that
(4) $\quad \lim _{\epsilon \rightarrow 0} \frac{1}{\epsilon^{2}} \iint_{C_{\epsilon}} g(w) d u d v=\lim _{\epsilon \rightarrow 0} \frac{1}{\varepsilon^{2}} \iint_{z_{a}\left(C_{\epsilon}\right)} \rho(z) d x d y$
1.2. Some Properties of $R_{a}(G)$.
(a) $R_{a}(G)$ is invariant under conformal mapping.

Proof: Let $\boldsymbol{\xi}(z): \Sigma \Rightarrow \hat{\Sigma}$ be a conformal mapping and let $\mathbf{z}(\boldsymbol{\xi})$ be its inverse. We set $\boldsymbol{\xi}(\mathrm{a})=\mathrm{a}$ and $\boldsymbol{\xi}(\mathrm{G})=\hat{\mathrm{G}}$. The line element of $\hat{\Sigma}$ is $d \hat{s}^{2}=\hat{\rho}(\xi)|d \xi|^{2}$ with $\hat{\rho}(\xi)=\rho(z(\xi))\left|\frac{d z}{d \xi}\right|^{2}$. Since K_{G} is a conformal invariant, we have
(5) $\quad R_{\hat{a}}(\hat{G})=\frac{1}{2} \sqrt{\hat{p}(\hat{a}) \mid K_{o}{ }^{\prime} r_{\hat{a}}}(\hat{G})=\frac{1}{2} \sqrt{\rho(a)\left|K_{o}\right|}\left|\frac{d z}{d \xi}\right|_{\xi=\hat{a}} \quad r_{\hat{a}}(\hat{G})$

Because of the relation $\left|\frac{d z}{d \xi}\right|_{\xi=\hat{a}} \quad r_{\hat{a}}(\hat{G})=r_{a}(G)$ [9], it follows that $\mathrm{R}_{\hat{a}}(\hat{G})=R_{a}(G)$.
(b) If $K_{0}<0$, then $R_{a}(G)<1$ for any $a \in G$

Proof: The function $\hat{\rho}(w)=\rho\left(z_{a}(w)\right)\left|\frac{d z_{a}}{d w}\right|^{2} \quad$ satisfies in

$$
c=\left\{w ;|w| \leq R_{a}(G)\right\} \text { the inequality } 厶_{w} \ln \hat{\rho}(w) \geq \frac{2}{c^{2}} \hat{\rho}(w) .
$$

By a theorem of Osserman [7]
(6) $\quad \hat{\rho}(w) \leq \frac{4 c^{2} R_{a}^{2}}{\left(R_{a}^{2}-r^{2}\right)^{2}} \quad\left(r=|w|, \quad R_{a}=R_{a}(G)\right)$ for any $\left.w \in C\right)$.

Since $\hat{\rho}(0)=4 c^{2}$, (6) implies $R_{a} \leq 1$.
(c) Let $\mu_{\boldsymbol{\varepsilon}}=\mu\left(\partial C, \partial C_{\boldsymbol{\varepsilon}}\right)$ be the modul of the annulus $D=C \backslash C_{\epsilon}\left[C=\left\{w ;|w|<R_{a}\right\}, \quad \partial C\right.$ the boundary of $C ; C_{\epsilon}=\{w ;|w|<\varepsilon\}$, ∂C_{ε} the boundary of C_{ϵ}]. Let h be the solution of the Dirichlet problem $\Delta h=0$ in $C \backslash C_{\epsilon}, \quad h=0$ on $\partial C_{\epsilon}, h=1$ on ∂C and let $D(h)$ denote the Dirichlet integral of h. Then $\mu_{\varepsilon}=\{D(h)\}^{-1}$. In an analogous may we define $\mu\left(\Gamma, \Gamma_{\boldsymbol{\varepsilon}}\right)$, where I and $\Gamma_{\boldsymbol{E}}$ are the boundaries of G and $z_{a}\left(C_{\varepsilon}\right)$. Since the module is invariant under conformal mapping, we conclude that

$$
\mu_{\epsilon}=\mu\left(\Gamma, \Gamma_{\varepsilon}\right)=\frac{1}{2 \pi} \ln \frac{R_{\mathrm{a}}}{\varepsilon}
$$

and thus

$$
\begin{equation*}
\mathrm{R}_{\mathrm{a}}=\boldsymbol{\varepsilon} \mathrm{e}^{2 \pi \mu_{\varepsilon}}=\lim _{\boldsymbol{\epsilon} \rightarrow 0} \varepsilon e^{2 \pi \mu_{\epsilon}} \tag{7}
\end{equation*}
$$

$$
[10, \mathrm{p} .45]
$$

If G is contained in G^{\prime}, then it follows from (7) and the Dirichlet principle that $R_{a}(G) \leq R_{a}\left(G^{\prime}\right)$.
(d) Let $A=A(G)=\iint_{G} \rho d x d y$ be the total area of G with respect to the metric $d s^{2}=\rho|d z|^{2}$, and let $A_{C}=\iint_{C} g(w) d u d v$ be the total area of C with respect to the metric $d s^{2}=g(w)|d w|^{2}$. ${ }^{A_{C}}$ takes the values
(8)

$$
A_{C}= \begin{cases}4 \pi c^{2} R_{a}^{2} /\left(1+R_{a}^{2}\right) & \text { if } K_{o}=c^{-2} \\ 4 \pi c^{2} R_{a}^{2} /\left(1-R_{a}^{2}\right) & \text { if } K_{o}=-c^{-2} \\ \pi R_{a}^{2} & \text { if } K_{o}=0\end{cases}
$$

The following result is an extension of a classical theorem [9, problem 125 IV]. We have

$$
\begin{equation*}
A \geq A_{C} \tag{9}
\end{equation*}
$$

Equality holds in (9) if and only if G is a geodesic circle on a surface of constant curvature K_{0}. (If $K_{0}>0$ we have to assume that $A<4 \pi / K_{0}$.)

Proof: Let $A_{1}(\varepsilon)$ and $A_{1}{ }^{\prime}(\varepsilon)$ denote the area of $z_{a}\left(C_{\varepsilon}\right)$ and $\mathrm{C}_{\boldsymbol{E}}$. By (7) and Corollary 2 [3] it follows that

$$
\begin{equation*}
\mu\left(\Gamma, \Gamma_{\epsilon}\right)=\frac{1}{2 \pi} \ln \frac{R_{\mathrm{a}}}{\varepsilon} \leq \frac{1}{4 \pi}\left\{\ln \frac{\mathrm{~A}}{4 \pi-\mathrm{K}_{0} \mathrm{~A}}-\ln \frac{\mathrm{A}_{1}(\varepsilon)}{4 \pi-\mathrm{K}_{0} A_{1}(\varepsilon)}\right\} \tag{10}
\end{equation*}
$$

Equality holds only if Γ and Γ_{ϵ} are two "concentric" circles on a surface of constant curvature K_{0}. Suppose that $K_{0} \neq 0$. From (8) we have $A_{1}^{\prime}(\varepsilon)=4 \pi c^{2} \varepsilon^{2}+o\left(\epsilon^{2}\right)$. Substituting this expression in (10), we obtain

$$
\frac{4 \pi c^{2} R_{a}^{2}}{A_{1}^{\prime}(\epsilon)+o\left(\epsilon^{2}\right)} \leq \frac{A\left(4 \pi-K_{o} A_{1}(\epsilon)\right)}{A_{1}(\epsilon)\left(4 \pi-K_{o} A\right)}=\Phi(\epsilon)
$$

Since $\lim _{\boldsymbol{\epsilon} \rightarrow 0} \frac{\mathrm{~A}_{1}{ }^{\prime}(\boldsymbol{\epsilon})}{\mathrm{A}_{1}(\boldsymbol{\epsilon})}=1 \quad$ (cf. (3), (4)), it follows that

$$
\begin{equation*}
R_{a}^{2}=\frac{A_{C}}{c^{2}\left(4 \pi-K_{o} A_{C}\right)} \leq \lim _{\epsilon \rightarrow 0} \frac{A_{1}^{\prime}(\epsilon)+o\left(\epsilon^{2}\right)}{4 \pi c^{2}} \Phi(\epsilon)=\frac{1}{c^{2}} \frac{A}{\left(4 \pi-K_{o}^{A}\right)} \tag{11}
\end{equation*}
$$

This inequality implies $A_{C} \leq A$. The case $K_{0}=0$ can be treated in exactly the same way and will therefore be omitted.

Remarks: (1) Let $g_{z}(z, a)$ be the Green's function defined by $\Delta_{z} g_{z}(z, a)=-\delta_{a}(z) \quad$ in $G, g_{z}(z, a)=0$ on $\Gamma . \quad g_{w}(w, 0)$ is the corresponding Green's function in C. We shall use the following notations $G(t)=\left\{z \in G ; g_{z}(z, a)>t\right\}, C(t)=\left\{w \in C ; g_{w}(w, 0)>t\right\} ;$ $A_{z}(t)=\iint_{G(t)} \rho d x d y$ and $A_{w}(t)=\iint_{C(t)} g(w) d u d v$. By the same rasoning as before we can show that

$$
\begin{equation*}
A_{z}(t) \geq A_{w}(t) \tag{12}
\end{equation*}
$$

Equality holds if and only if G is a geodesic circle on a surface of constant curvature K_{0}. If $K_{0}>0$, we have, of course, to assume that $A_{z}(t)<4 \pi / K_{0}$.
(2) We define $\dot{R}(G)=\max _{a \in G} R_{a}(G)$. If G is a circle of radius r with the center at the origin and the metric $d s^{2}=g(w)|d w|^{2}$, then $R_{a}(G)=\frac{r^{2}-|a|^{2}}{\left(1 \pm|a|^{2}\right) r} \quad[9]$. In this case, $\quad \dot{R}(G)=R_{0}(G)$.

Because of (ll) we have the isoperimetric inequality:
Among all domains with given total area A and with given K_{o}, the geodesic circles on a surface of constant curvature K_{0} have the largest value of $\dot{R}(G)$.

From (11) it follows that

$$
\begin{equation*}
r_{a}^{2}(G) \leq \frac{4 A}{p(a)\left(4 \pi-K_{o}^{A}\right)} \tag{13}
\end{equation*}
$$

If ρ is constant, then (13) reduces to $\pi r_{a}^{2}(G) \leq A$.
82. Bounds for the eigenvalues of an inhomogeneous membrane.

Let Σ be an abstract surface given in an isothermic representation (cf. §l.l). We consider the following eigenvalue problem

$$
\frac{\Delta_{z}}{\rho} \varphi(x, y)+\lambda \varphi(x, y)=0 \text { in } G
$$

$$
\varphi=0 \text { on } \Gamma \quad \text { (boundary of } G)
$$

Here, n is the outer normal, and s is the arc length. n is a unit vector with respect to the metric of Σ given by the line element $d s^{2}=\rho\left(d x^{2}+d y^{2}\right) \cdot \frac{\Delta_{z}}{\rho}$ represents the Beltrami operator of Σ. Suppose that a countable number of eigenvalues $0<\lambda_{1}<\lambda_{2} \leq \ldots$ exists. $R[v]=D(v) / \iint_{G} v^{2} \rho d x d y$ $\left[D(v)=\iint_{G} g r a d^{2} v d x d y\right]$ is the Rayleigh quotient of Problem I. Let L_{n} be a n-dimensional linear space of continuously differentiable functions which vanish on Γ, and let v_{1}, \ldots, v_{n} be an orthogonal basis in L_{n} with respect to the Dirichlet metric, i.e., $D\left(v_{i}, v_{j}\right)=\iint_{G} \operatorname{grad} v_{i} \operatorname{grad} v_{j} d x d y=0$ if if j. Following [6] we define $T \operatorname{Rinv}\left[L_{n}\right]=\sum_{i=1}^{n}\left\{R\left[v_{i}\right]\right\}^{-1}$. For the sums of the reciprocal eigenvalues we have the variational characterization [5,6]

$$
\begin{equation*}
\sum_{i=1}^{n} \lambda_{i}^{-1}=\operatorname{Max}_{L_{n}} T \operatorname{Rinv}\left[L_{n}\right] \tag{14}
\end{equation*}
$$

The maximum is attained if $v_{i}=\varphi_{i} \quad i=1, \ldots, n$ are the first n
eigenfunction of Problem I. Assume that $\left(-\Delta_{z} \ln p\right) / 2 p \leq K_{0}= \pm c^{-2}$ in G, where K_{0} is any real number. In addition to problem I we consider the auxiliary problem

II

$$
\begin{aligned}
\frac{\Delta_{w}}{g(w)} \hat{\varphi}+\hat{\lambda} \hat{\varphi}=0 & \text { in } c=\left\{w ;|w|<R_{a}\right\} \\
\hat{\varphi}=0 & \text { on } \quad \partial C=\left\{w ;|w|=R_{a}\right\}
\end{aligned}
$$

Here, n is the outer normal in the metric $d \hat{s}^{2}=g(w)|d w|^{2}$; $g(w)$ depends on K_{0} and was defined in §1.1; and $R_{a}=\sqrt{\rho(a)} r_{a} / 2 c$ or $R_{a}=\sqrt{\rho(a)} r_{a} \quad$ (cf. §l.l). The eigenfunctions of this problem are either of the form

$$
\begin{equation*}
\hat{\varphi}_{k}(r, \theta)=R_{o}\left(\hat{\lambda}_{k}, r\right) \quad \text { or } \tag{15}
\end{equation*}
$$

(16) $\hat{\varphi}_{k}(r, \theta)=R_{m}\left(\hat{\lambda}_{k}, r\right) \cos m \theta$ and $\hat{\varphi}_{k+1}(r, \theta)=R_{m}\left(\hat{\lambda}_{k}, r\right) \sin m \theta$

$$
m=1,2, \ldots
$$

In $\left(0, R_{a}\right), R_{m}\left(\hat{\lambda}_{k}, r\right)$ satisfies the differential equation

$$
\begin{equation*}
\left(r R^{\prime}\right)^{\prime}-\frac{m^{2} R}{r}+\frac{4 \hat{\lambda}_{k} c^{2} r R}{\left(1 \pm r^{2}\right)^{2}}=0 \tag{17}
\end{equation*}
$$

$$
\left(1=\frac{d}{d r}\right)
$$

if $K_{o}= \pm \mathrm{c}^{-2}$, and

$$
\begin{equation*}
\left(r R^{\prime}\right)^{\prime}-\frac{m^{2} R}{r}+\hat{\lambda}_{k} R=0 \text { if } K_{0}=0 \tag{18}
\end{equation*}
$$

The boundary conditions are

$$
\begin{equation*}
R^{\prime}(0)<\infty \text { and } R\left(R_{a}\right)=0 \tag{19}
\end{equation*}
$$

We shall call m the order of R.
By introducing the new variable

$$
z=\left\{\begin{array}{lll}
\left(r^{2}-1\right) /\left(1+r^{2}\right) & \text { if } & k_{0}>0 \tag{17}\\
\left(r^{2}+1\right) /\left(1-r^{2}\right) & \text { if } & K_{0}<0
\end{array}\right.
$$

transformed into the Legendre equation

$$
\pm \frac{d}{d z}\left[\left(z^{2}-1\right) \frac{d}{d z} y(z)\right] \mp \frac{m^{2} y(z)}{z^{2}-1}+\hat{\lambda}_{k} c^{2} y(z)=0
$$

The following result is a generalization of a theorem of pólyaSchiffer [8]. We shall use a method of proof devised by Hersch [6].

THEOREM 1. If $(-\Delta \ln \rho) / 2 \rho \leq K_{0}, 2 \pi-K_{o} A>0$, and n is a natural number, then we have the isoperimetric inequality

$$
\begin{equation*}
\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\ldots+\frac{1}{\lambda_{n}} \geq \frac{1}{\hat{\lambda}_{1}}+\frac{1}{\hat{\lambda}_{2}}+\ldots+\frac{1}{\hat{\lambda}_{n}} \tag{20}
\end{equation*}
$$

where $\hat{\lambda}_{i}$ is the $i^{\text {th }}$ eigenvalue of problem II.

Proof: Let $\hat{\varphi}_{1}(w), \ldots, \hat{\varphi}_{n}(w)$ be the first n eigenfunctions of problem II and let $U_{1}(z), \ldots, U_{n}(z)$ be the transplanted functions $U_{i}(z)=\hat{\varphi}_{i}\left(w_{a}(z)\right)$. Because of the invariance of the Dirichlet integral under conformal transformation, we have $D_{G}\left(U_{i}, U_{j}\right)=D_{C}\left(\hat{\varphi}_{i}, \hat{\varphi}_{j}\right)=0$ if $i \neq j . \quad U_{i}(z) \quad i=1, \ldots, n$ can therefore be used as trial functions for the variational characterization (14). Thus,

$$
\begin{equation*}
\sum_{i=1}^{n} \lambda_{i}^{-1} \geq \sum_{i=1}^{n}\left\{R\left[U_{i}\right]\right\}^{-1}=\sum_{i=1}^{n} \frac{\iint_{C} \hat{\varphi}_{i}^{2}\left|\frac{d z_{a}}{d w}\right|^{2} \rho\left(z_{a}(w)\right) d u d v}{D_{C}\left(\hat{\varphi}_{i}\right)} \tag{2I}
\end{equation*}
$$

Let $\hat{\varphi}_{k}(w)$ and $\hat{\varphi}_{k+1}(w)$ be two functions of the type (16). In this case

We observe that

$$
\begin{equation*}
\hat{\varphi}_{\mathrm{k}}^{2}(\mathrm{w})+\hat{\varphi}_{\mathrm{k}+1}^{2}(\mathrm{w})=\Phi(r) \tag{23}
\end{equation*}
$$

is independent of θ. By the Schwarz inequality,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\frac{d z_{a}}{d w}\right|^{2} \frac{\rho\left(z_{a}(w)\right)}{g(w)} r d \theta \geq\left(\int_{0}^{2 \pi}\left|\frac{d z_{a}}{d w}\right| \sqrt{\rho} r d \theta\right)^{2} / \int_{0}^{2 \pi} g(w) r d \theta \tag{24}
\end{equation*}
$$

We note that for fixed r

$$
\int_{0}^{2 \pi}\left|\frac{d z_{a}}{d w}\right| \sqrt{\rho \quad r d \theta=L_{z}(t), ~}
$$

where $L_{z}(t)$ is the length of the level line $g_{z}(z, a)=t=\frac{1}{2 \pi} \ln \frac{R_{a}}{r}$ in the metric of Σ. We also observe that $\int_{0}^{2 \pi} g(w) r d \theta=\frac{L_{w}{ }^{2}(t)}{2 \pi r}$,
where $L_{w}(t)$ is the length of the level line $g_{w}(w, 0)=t$ with respect to the metric of m_{K}.

In order to estimate $L_{z}{ }^{2}(t)$, we use the following geometrical isoperimetric inequality of Alexandrow [1]: If G is a domain on Σ homeomorphic to a circle, and if $K_{G} \leq K_{o}$, then the following relation holds between the area A of G and the length L of the boundary $\partial G:$

$$
\begin{equation*}
L^{2} \geq A\left(4 \pi-K_{0} A\right) \tag{25}
\end{equation*}
$$

Equality holds if and only if G is isometric to a geodesic circle on a surface of constant curvature $K_{0} .^{(1)}$ From this inequality we conclude that

$$
\begin{equation*}
L_{z}^{2}(t) \geq A_{z}(t)\left(4 \pi-K_{0} A_{z}(t)\right)=f\left(A_{z}\right) \tag{26}
\end{equation*}
$$

$A_{z}(t)$ has been defined in §1.2. If $K_{0} \leq 0$, then $f\left(A_{z}\right)$ is a monotone increasing function; if K_{o} is positive then $f\left(A_{z}\right)$ is monotone increasing in the interval $\left[0, \frac{2 \pi}{K_{0}}\right] . B y$ (26), (12) and our assumption on A, it follows that

$$
L_{z}^{2}(t) \geq A_{W}(t)\left(4 \pi-K_{o} A_{z}(t)\right)=L_{w}^{2}(t)
$$

This implies

$$
\int_{0}^{2 \pi}\left|\frac{d z_{a}}{d w}\right|^{2} \frac{\rho\left(z_{a}(w)\right)}{g(w)} r d \theta \geq 2 \pi r
$$

From this inequality and from (22) and (23)

$$
\left\{R\left[U_{k}\right]\right\}^{-1}+\left\{R\left[U_{k+1}\right]\right\}^{-1} \geq 2 \hat{\lambda}_{k}^{-1}
$$

(1)

This inequality is valid for more general surfaces. A brief summary can be found in [1, pp. 509, 514].

If $\hat{\varphi}_{n}$ and $\hat{\varphi}_{n+1}$ belong to the same order m [cf. (16)], we denote by $\hat{\varphi}_{n}(w)$ the function for which

$$
\begin{equation*}
\left\{R\left[U_{n}\right]\right\}^{-1} \geq \hat{\lambda}_{n}^{-1} \tag{27}
\end{equation*}
$$

By the same arguments as before, (27) holds also for the functions $\hat{\varphi}_{k}(w)$ of order 0 [cf. (15)]. This establishes the theorem.

REMARKS. If ρ is constant we obtain the theorem of pólyaSchiffer [8, 6]. It is easy to see that (20) is optimal if we choose a such that $R_{a}(G)=\max _{P \in G} R_{P}(G)$.

§3. Generalization.

Let Σ^{\prime} be a piece of an abstract surface with the line element $d s^{2}=|z-a|^{-\omega / \pi} \nu(z)|d z|^{2}$ where $\nu(z) \in c^{2}$ and $0 \leq \omega<2 \pi . \quad \Sigma$ includes the regular surfaces in the usual sense which have at the point a a corner of curvature ω [cf. 1]. We assume that $\left(-\Delta_{z} \ln \nu\right) / 2 \nu \leq K_{0}$. In this case we define
(28) $\quad R_{a}(G)= \begin{cases}\frac{1}{2-\omega / \pi} \sqrt{\nu(a)\left|K_{0}\right|} r_{a}(G) & \text { if } K_{0} \neq 0 \\ \frac{2}{2-\omega / \pi} \sqrt{\nu(a)} r_{a}(G) & \text { if } K_{0}=0\end{cases}$

We consider a circular cone $C_{K_{O}}$ in a three-dimensional space of constant curvature K_{0} with the curvature w at the corner [1]. It can be represented by
(i) sector $0<\theta<2 \pi-\omega \quad(\theta, r$ polar coordinates of the w-plane) with the lines $\theta=0$ and $\theta=2 \pi-\omega$ identified, and the metric $\quad d s^{2}=\frac{4 c^{2}}{\left(1+|w|^{2}\right)^{2}} \quad|d w|^{2} \quad\left(K_{0}=1 / c^{2}\right)$
(ii) sector $0<\theta<2 \pi-\omega, \quad 0<r<1$ with the lines $\theta=0$ and $\theta=2 \pi-\omega$ identified, and the metric $d s^{2}=\frac{4 c^{2}}{\left(1-|w|^{2}\right)^{2}}|d w|^{2}$ $\left(K_{0}=-1 / c^{2}\right)$
(iii) wedge $0<\theta<2 \pi-\omega$ with the lines $\theta=0$ and $\theta=2 \pi-\omega$ identified and the metric $d s^{2}=|d w|^{2} \quad\left(K_{0}=0\right)$

With the help of the function $\xi=w^{2 \pi /(2 \pi-\omega)}$, the sector $0<\theta<2 \pi-\omega$ is mapped into the ξ-plane. $g(w)$ is then transformed into $\tilde{g}(\xi)=g(w(\xi))\left|\frac{d w}{d \xi}\right|^{2}$ which is $\tilde{g}(\xi)=\frac{c^{2}(2-\omega / \pi)^{2}|\xi|^{-\omega / \pi}}{\left(1 \pm|\xi|^{2-\omega / \pi}\right)^{2}}$
if $K_{0}= \pm c^{-2}$ or $\tilde{g}(\xi)=\left(\frac{2 \pi-\omega}{2 \pi}\right)^{2}|\xi|^{-\omega / \pi}$ if $K_{0}=0$.

EXAMPLE. Let G be a circle with the radius r_{o}, the center in the origin and the metric $d s^{2}=\tilde{g}(\xi)|d \xi|^{2}$. In this case $\mathrm{R}_{\mathrm{o}}(\mathrm{G})=\mathrm{r}_{\mathrm{o}}$. Let $\mathrm{C}=\left\{\boldsymbol{\xi} ;|\boldsymbol{\xi}|<\mathrm{R}_{\mathrm{a}}(\mathrm{G})\right\}$ be a circle on the cone $C_{K_{0}}$. The line element is then $d s^{2}=\tilde{g}(\xi)|d \xi|^{2}$. In this metric

$$
A_{C}=\iint_{C} \tilde{g}(\xi) d \xi d \eta= \begin{cases}2(2 \pi-\omega) c^{2} R_{a}^{2-\omega / \pi /\left(1 \pm R_{a}^{2-\omega / \pi}\right)} \text { if } K_{o}= \pm c^{-2} \\ \frac{2 \pi-\omega}{2} R_{a}^{2-\omega / \pi} & \text { if } K_{0}=0\end{cases}
$$

is the total area of $C . A=\iint_{G}|z-a|^{-\omega / \pi} \nu(z) d x d y$ represents the total area of G. All properties (a), (b), (c) and (d) remain valid in this case. The proofs are the same as in §l.2 except for (d) where we use Theorem 2 [3] instead of Corollary 2 [3].

We now consider on Σ^{\prime} the eigenvalue problem I, and on $C \in C_{K_{o}}$ the auxiliary problem II (cf. §2). By transplanting the last into the w-plane, it becomes equivalent to the following eigenvalue problem:

$$
\begin{aligned}
& \frac{\Delta w}{g(w)} \hat{\varphi}+\hat{\lambda} \hat{\varphi}=0 \text { in }\left\{w ;|w|<R_{a}^{l-\omega / 2 \pi} \text { and } 0<\arg w<2 \pi-\omega\right\} \\
& \hat{\varphi}=0 \text { on }|w|=R_{a}^{1-\omega / 2 \pi}, \\
& \left.\hat{\varphi}\right|_{\theta=0}=\left.\hat{\varphi}\right|_{\theta=2 \pi-\omega}
\end{aligned}
$$

By a separation of the variables it follows that $\hat{\varphi}(r, \theta)$ is either of the type $\hat{\varphi}_{k}=R_{o}\left(\hat{\lambda}_{k}, r\right)$, or else $\hat{\varphi}_{k}=R_{m}\left(\hat{\lambda}_{k}, r\right) \cos m \theta$ and $\hat{\varphi}_{k+1}=R_{m}\left(\hat{\lambda}_{k, r}\right) \sin m \theta$ with $m=\frac{2 \pi n}{2 \pi-\omega} \quad(n=1,2, \ldots)$. In ($\left.0, R_{a}^{l-\omega / 2 \pi}\right) \quad R_{m}\left(\hat{\lambda}_{k}, r\right)$ satisfies the differential equation with the boundary conditions (18). In the same way as in $\S 2$ we can prove

THEOREM I': If $(-\Delta \ln v) / 2 v \leq \mathrm{K}_{0}$ and $2 \pi-w-\mathrm{K}_{\mathrm{O}} \mathrm{A}>0$, then $\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\ldots+\frac{1}{\lambda_{n}} \geq \frac{1}{\hat{\lambda}_{1}}+\frac{1}{\hat{\lambda}_{2}}+\ldots+\frac{1}{\hat{\lambda}_{n}} \quad$ This inequality is valid for arbitrary n.
§4. Bounds for the eigenvalues of plane membranes with partially free boundary.

Let G be a Jordan domain in the z-plane. Suppose that its boundary consists of three analytic arcs $\overparen{O A}, \overparen{A B}$ and $\widehat{B O}$
where \hat{A} and BO are concave with respect to G. We assume further that $O A$ and $\hat{B O}$ meet in O at an angle $\alpha(0<\alpha \leq \pi)$.

There exists a conformal mapping $f(z)$ from G into the circular sector $0 \leq \theta \leq \alpha, \quad r \leq 1 . \quad(r, \theta$ polar coordinates of the w-plane) such that $f(0)=0, f(A)=1, f(B)=e^{i \alpha}$ and $f^{\prime}(0)>0 \quad\left[4\right.$, p. 378]. If we put $r_{0}=\left\{f^{\prime}(0)\right\}^{-1}$, then $w(z)=r_{0} f(z)=z+a_{2} z^{2}+\ldots$. Its inverse will be called $z(w)$. We consider the following eigenvalue problem of the membrane with partially free boundary:
(A) $\Delta_{z} \varphi+\lambda \varphi=0$ in G

$$
\varphi=0 \text { on } \AA B
$$

$$
\frac{\partial \varphi}{\partial n}=0 \text { on } \hat{O A} \cup B O
$$

These eigenvalues will be compared with the eigenvalues $\hat{\lambda}$ of the problem
(B) $\mathrm{A}_{\mathrm{w}} \hat{\varphi}+\hat{\lambda} \hat{\varphi}=0$ in $\hat{G}=\left\{\mathrm{w} ;|\mathrm{w}|<\mathrm{r}_{\mathrm{o}}\right.$ and $\left.0<\arg \mathrm{w}<\alpha\right\}$

$$
\begin{aligned}
\hat{\varphi} & =0 \quad \text { on } r=r_{0} \\
\left.\hat{\varphi}\right|_{\theta=0} & =\left.\hat{\varphi}\right|_{\theta=\alpha}
\end{aligned}
$$

The solutions of (B) are $\hat{\varphi}_{k}(r, \theta)=J_{0}\left(\sqrt{\lambda_{k}} r\right)$ or $\hat{\varphi}_{k}(r, \theta)=\frac{J_{2 \pi m}}{\alpha}\left(\sqrt{\hat{\lambda}_{k}} r\right) \cos \frac{2 \pi m}{\alpha} \theta$ and $\hat{\varphi}_{k+1}(r, \theta)=$
$J_{\frac{2 \pi m}{\alpha}}\left(\sqrt{\hat{\lambda}_{k}} r\right) \sin \frac{2 \pi m}{\alpha}$ e $m=1,2, \ldots . J_{\beta}(r)$ is the Bessel
function of order β. (B) can be interpreted as the problem of a vibrating membrane on a circular cone.

THEOREM II. For an arbitrary integer n we have

$$
\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\ldots+\frac{1}{\lambda_{n}} \geq \frac{1}{\hat{\lambda}_{1}}+\frac{1}{\hat{\lambda}_{2}}+\ldots+\frac{1}{\hat{\lambda}_{n}}
$$

Proof. Let $f(w)=f(r)$ be a function depending only on r. We first show that every function $F(z)=f(w(z))$ satisfies the inequality

$$
\begin{align*}
\iint_{G} F^{2}(z) d x d y & =\int_{0}^{r_{0}} f^{2}(r) r d r \int_{\theta=0}^{\alpha}\left|\frac{d z}{d w}\right|^{2} d \theta \tag{29}\\
& \geq \alpha \int_{0}^{r_{0}} f^{2}(r) r d r=\iint_{\hat{G}} f^{2} d u d v
\end{align*}
$$

By the Schwarz inequality, we have

$$
\begin{equation*}
\int_{0}^{\alpha}\left|\frac{d z}{d w}\right|^{2} d \theta \geq \frac{1}{\alpha t^{2}}\left(\int_{0}^{\alpha}\left|\frac{d z}{d w}\right| t d \theta\right)^{2} \tag{30}
\end{equation*}
$$

We observe that $L(t)=\int_{0}^{\alpha}\left|\frac{d z}{d w}\right| t d \theta$ is the length of the arc $z\left(c_{t}\right)$ where c_{t} is the circular arc $w=t e^{i \theta} \quad 0 \leq \theta \leq \alpha$.

Let $A(t)$ denote the area of the domain $z\left(\hat{G}_{t}\right)$, where \hat{G}_{t} is the circular sector $0 \leq r \leq t, \quad 0 \leq \theta \leq \alpha$. Because of the concavity of the arcs δA and $B O$ it follows from a reflection argument and an isoperimetric inequality by Alexandrow [1] that

$$
\begin{equation*}
L^{2}(t) \geq 2 \alpha A(t) \tag{1}
\end{equation*}
$$

The function $\xi=w^{2 \pi / \alpha}$ maps the sector $0 \leq \theta \leq \alpha$ onto the ξ-plane. Let $\tilde{\theta}$ and \tilde{r} be the polar coordinates of the ξ-plane. We have

$$
\begin{align*}
A(t) & =\int_{0}^{t} \int_{0}^{\alpha}\left|\frac{d z}{d w}\right|^{2} r d r d \theta \tag{31}\\
& =\left(\frac{\alpha}{2 \pi}\right)^{2} \int_{0}^{t} \tilde{r} \frac{\alpha-2 \pi}{\pi} \tilde{r} d \tilde{r} \int_{0}^{2 \pi}\left|\frac{d z}{d w}(w(\xi))\right|^{2} d \tilde{\theta} \\
& =\frac{\alpha t^{2}}{2} \cdot \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{d z}{d w}(w(\xi))\right|^{2} d \tilde{\theta}
\end{align*}
$$

Since $\quad \Delta_{\xi}\left|\frac{d z}{d w}(w(\xi))\right|^{2}=4 \frac{\partial}{\partial \xi} \frac{\partial}{\partial \bar{\xi}}\left|\frac{d z}{d w}(w(\xi))\right|^{2} \geq 0, \quad$ it follows
that $\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|\frac{d z}{d w}\right|^{2} \mathrm{~d} \tilde{\theta} \geq\left|\frac{d z}{d w}\right|_{w=0}^{2}=1$ and hence

$$
A(t) \geq \frac{a t^{2}}{2}
$$

(32) and (30) imply

$$
\begin{equation*}
\int_{0}^{\alpha}\left|\frac{d z}{d w}\right|^{2} d \theta \geq \alpha \tag{33}
\end{equation*}
$$

which proves (29).
The remaining part of the proof proceeds as in Theorem I (§2).
We transplant the eigenfunction $\hat{\varphi}_{i}$ into the z-plane. $U_{i}(z)=\hat{\varphi}_{i}(w(z))$ are admissible for the variational characterzation (14), and we thus have

$$
\begin{equation*}
\sum_{i=1}^{n} \lambda_{i}^{-1} \geq \operatorname{Trinv}\left[L\left(U_{1}, \ldots, U_{n}\right)\right]=\sum_{i=1}^{n} \frac{\iint_{G} \hat{\varphi}_{i}^{2}\left|\frac{d z}{d w}\right|^{2} d u d v}{D_{\hat{G}}\left(\hat{\varphi}_{i}\right)} \tag{34}
\end{equation*}
$$

If $\hat{\varphi}_{k}(r, \theta)=J_{\frac{2 \pi m}{\alpha}}\left(\sqrt{\hat{\lambda}_{k} r}\right) \cos \frac{2 \pi m \theta}{\alpha}$ and $\hat{\varphi}_{k+1}(r, \theta)$
$=J_{\frac{2 \pi m}{\alpha}}\left(V \hat{\lambda}_{k} r\right) \sin \frac{2 \pi m}{\alpha} \theta$, then (29) implies

$$
\begin{equation*}
\left\{R\left[U_{k}\right]\right\}^{-1}+\left\{R\left[U_{k+1}\right]\right\}^{-1} \geq 2 \hat{\lambda}_{k}^{-1} \tag{35}
\end{equation*}
$$

For functions $\hat{\varphi}_{k}$ which depends only on r we have $\left\{R\left[U_{k}\right]\right\}^{-1} \geq \hat{\lambda}_{k}$. It is always possible to choose $\hat{\varphi}_{n}(r, \theta)$ such that the last inequality remains true for $k=n$. These relations together with (34) establish the theorem.

The first eigenvalue $\hat{\lambda}_{1}$ of problem (B) is the same as the first eigenvalue v_{1}, of the problem $\Delta_{w} \tilde{\varphi}+\nu \tilde{\varphi}=0$ in $G, \tilde{\varphi}=0$ on $r=r_{0}, \frac{\partial \tilde{\varphi}}{\partial n}=0$ on $\theta=0$ and $\theta=\alpha$. Theorem II and Theorem III in [2] yield the

COROLLARY. If A denotes the total area of G and $j_{o}=2,4048 \ldots$ is the first zero of the Bessel function $J_{0}(r)$, then

$$
\begin{equation*}
\frac{\alpha}{2 A} j_{0}^{2} \leq \lambda_{1} \leq\left(\frac{j_{0}}{r_{0}}\right)^{2} \tag{36}
\end{equation*}
$$

Equality holds in both cases if and only if G is a circular sector.

The right-hand side of (36) is a generalization of an inequality by Pólya and Szegö [8]. The following characterizatimon of r_{0} is based on the one indicated in [8] for the conformal radius. Let $\mu\left(\widehat{A B}, I_{\varepsilon}\right)$ be the modul of the domain $G_{\epsilon} \subseteq G$ bounded by $A B, ~ B O, ~ C A$ and $\Gamma_{\epsilon}=\{z ;|z|=\epsilon\}$. It is defined as $\mu\left(A B, \Gamma_{E}\right)=1 / D(h)$ where $\Delta h=0$ in $G_{\varepsilon}, \quad h=1$ on I_{ε} and $h=0$ on \AA. An easy computation (cf. §l (c)) yields

$$
\begin{equation*}
r_{0}=\lim _{\epsilon \rightarrow 0} \epsilon e^{\alpha \mu\left(\hat{A B}, \Gamma_{\epsilon}\right)} \tag{37}
\end{equation*}
$$

Let D denote the shortest distance from the arc $A B$ to the origin 0 . By (37) and the monotonicity of $\mu\left(\AA B, \Gamma_{\epsilon}\right)$ it
follows that $D \leq r_{0}$. This inequality together with the Corollary implies $\quad \lambda_{1} \leq\left(\frac{j_{0}}{D}\right)^{2}$.

References

[1] Alexandrow, A.D., Die innere Geometrie der konvexen Flächen, Berlin, 1955.
[2] Bandle, C., "Extremaleigenschaften von Kreissektoren und Halbkugeln", (To appear in Comm. Math. Helv.).
[3] , "Konstruktion isoperimetrischer Ungleichungen der Mathematischen Physik aus solchen der Geometrie", (To appear in Comm. Math. Helv.).
[4] Behnke-Sommer, Theorie der analytischen Funktionen einer komplexen Veranderlichen, Berlin, Gơttingen, Heidelberg 1955.
[5] Courant, R. and D. Hilbert, Methods of Mathematical Physics, New York 1965, vol. 1.
[6] Hersch, J., "On Symmetric Membranes and Conformal Radius: Some complements to Pólya's and Szegö's Inequalities", Arch. Rat. Mech. Anal. 20 (1965), 378-390.
 (1957), 1641-1647.
[8] Pólya, G. and M. Schiffer, "Convexity of Functionals by Transplantation", J. d'Anal. Math. 3(2'Mc partie) (1953/54) 245-345.
[9] Pólya, G. and G. Szegö, Aufqaben und Lehrs"́tze aus der Analysis II, Berlin, Springer-Verlag, 1964.
[10] Mathematical Physics, Princeton University Press, 1951.

