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Catherine Bandle

Abstract

Szego1s inequality concerning the second eigenvalue of

a homogeneous, free membrane is extended to the case of an inhomo-

geneous free membrane. With the help of a variational principle

and the conformal mapping technic upper bounds are constructed

for the sum VjU2 + V j ^ > where ^ and ^ denote the

second and third eigenvalue. These bounds only depend on the

total mass of the domain and on a simple expression involving the

mass distribution and its logarithm.

(*)
v 'This work was supported by the NSF Grant GU-2056
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1. This paper is concerned with the eigenvalue problem

2 a2
(A) Acp+ppcp = O in G [A = —2 + —j J

IS -
where G is a simply connected domain in the z-plane (z=x+iy),

T is its boundary and n denotes the outer normal. p(z) > O is

the mass distribution. We assume that there exists a countable

set of eigenvalues 0 = /i, < fi2 <. ̂ 3 <.

Szego [5] proved for membranes with constant p the isoperimetric

inequality

n\ JL. + i- N 2M

where M = JJ p dxdy ±s^ the total mass, J, (r) denotes the

G

Bessel function of order 1 and p, = 1.8412... is the smallest

value such that Jn'(p ) = 0. Equality holds if and only if G

is a circle. In his proof, Szego uses conformal transplantation.

Weinberger [61 extended this theorem to an N-dimensional not



necessarily simply connected membrane with constant mass distri-

bution. This result can be stated as follows:

For all N-dimensional domains G .of given total mass, the N-

dimensional sphere yields the maximum of JLU •

The aim of this paper is to generalize the inequality of SzegS

to the case of an inhomogeneous membrane.

2. Problem (A) is equivalent to the eigenvalue problem
A^

L c p + u c p = O in G, -f-̂ - = 0 on T, where L = — is the
o v P

Beltrami operator of an abstract surfact T given by G and

2 2 /""-1'

the line element ds = p(z)|dz| . Here, v =VP~ n is t n e

unit normal with respect to the metric of £. By the Theorema

Egregium it follows that the Gaussian curvature is K - (-Alnp)/2p.

We shall assume, that the inequality (- A In p)/2p <. K holds

in G U T and that 2v - K M > 0.

In addition to problem (A) we consider in the w-plane (w = u + iv)

the auxiliary problem

cp + jug(w)cp =0 G = {w;|w| < R]

= 0 on T = (w; |w = R}



( 4c'

where g(w) ='

,_ 2,2(1 + r )
if K = + co —

if K = 0o

-2

[r, 8 polar coordinates of the w-plane] and \> =vg~ n is

the unit normal with respect to the metric ds = g(w)|dw| . R

is determined such that jj g(w) dudv = Jj p(z) dxdy = M. An

elementary calculation yields

M
47TC + M

R2 =

if K = + co —

if K = 0o

-2

Because of our assumptions, we have in the case K ^ 0 R" <^ 1.

G with the metric ds can be interpreted as a geodesic circle

on a surface of constant Gaussian curvature K
o

The eigenfunc-

tions of problem (B) have the form

(2)

1
sin m 8

cos m

m = \}2, . . . ,

or



(3) $k(r, 0) = Ro(l^. ; r)

R (LL ; r) is an eigenfunction of
in ic

2_
(r Ri)i _ 1S_R + £ rg(w) R = 0 in (0,R)

(4)

R' (R) = 0 , R(0) < <D

PROPOSITION. The second eigenvalue JU2 2JL problem (B) is

degenerated; the corresponding eigenfunctions are $2 (r, 9) = R-, (|U2;r) sin

and cp_ (r, 9) = R, (LL ; r) cos 0.

* (l)Proof. We have to show that the first eigenvalue Mi °f

(4) corresponding to m = 1 is smaller than the second eigen-

value M2 ̂
0) of (4) w i t h m ~ 0# If Ko = ° ' t h e n ^l^1^85!1^"

R

(3*^54 ) •and w2
(0) = (3*^54 ) • Let K Q = +. c"

2 be different from

2
zero. We introduce the new variable z = — — I — r - if K > 0 ,

1 + r °

2
or z = ——^—5- if K < 0. The interval [0,R] is then trans-

1 £» O

- r
A2 —

formed into [ + 1, b +] where b+ = -—±-i , and the differen-
~ 1 + R2

tial equation takes the form



^ 2
(5) + {(1- Z2)R'}' + —

1-

with the boundary conditions

R(~ 1) < OD , R' (b+) = 0 .

If m = 1, then the solutions of (5) can be written as

(— 2R(z) = \f±(l- z ) p' (z) [2] where p(z) is a solution of

the Legendre equation

(6) ± {(1 - z2)p'}' + £ ( 1 ) c2p = 0 in (+ l,b±)

with the boundary conditions

£ ( 1 ) 2 b + ) p(b+)

Assume that p'(z)<0 in (+ 1, b+). Because of the boundary

condition at b+ we have p(b+) > 0 , and thus, p(z) > 0 in

the interval (+ 1 , b+) . According to the def inition, M9 *~s

the second eigenvalue of _+ { (1 - z )p')' + jl̂  c p = 0 in

(+1, bj+) with p(+1 ) < OD and p' (bjf) = 0. The corresponding

eigenfunction vanishes at some point in (+ 1 } b+ ). By the Sturm

Comparison Theorem it follows that £L * ' < Mo



3. THEOREM, if (-£ In p)/2p<; K i£ G U T and if 2ir - KQM £ O,

then the following inequality holds between the eigenvalues of the

problems (A) and (B)

Proof. The proof is based on the variational principle

1 1 2 1
(8) TT- + 77- = Max E {R[v.]}~X

v

-11R[f] = — ^^ [D(f) = JJ grad^f dxdy]

f2p dxdy G

is the Rayleigh quotient- v2 and v3 range over all piecewise

continuously differentiable functions with

= JJ grad v2 grad v3 dxdy = O

and

JJ vi P dxdy = 0 i = 2,3 .

Let z(w) be a conformal mapping from G onto G, and let

U2(z) = cp2(w(z)) and U3 (z) = $3(w(z)) [w(z) inverse function

of z(w)J be the transplanted eigenfunctions. In [5] it is



shown, that there always exists a function z(w) such that

Jj U. p dxdy = 0 for i = 2,3 * '. Because of the invariance

G

of the Dirichlet integral under conformal mapping, we have

DG(U2,U3) = Dg($2,cp3) = 0 . Therefore, U2 and U3 are admis-

sible functions for the variational characterization (8). Since

D_(UO) = D_(U~) , we conclude from (8) that

JJ( E U 2)p dxdy
1 1 G i = 2

(9) jr + jf 2
2 3 W

2ir R

J J R1
2(M2;r)p(z(w))||g|

2 r drd9
o o

2 7T
d P idzi2

We shall use the notations -r- m(r) = J p (z (w)) |^| rd8 ,

0

T. = {w; |w| ='t} , G. = fw; |w| < t} , I\ = z(f) and
t

<• p dG, = z(G.). m(t) = I -T- m(r)dr is the total mass of G .
t t •* CUT t

o

Integration by part yields

(1)
In [5] the existence of such a function z(w) has only been

proved for p = 1, but it is easy to see that the proof remains
the same if p is an arbitrary positive and continuous function.
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A
R

A
R

m(r) | -2 J
° 0

A
R

(R) M - 2 J R[ I $g
O

m(r) dr

m(r)dr

The next s tep w i l l be to est imate m(r) . Consider the modul

H(T, Tt) = {D(h)}~ . h is the solut ion of the Di r i ch le t problem

A h = O in G \ G. , h = 0 on T and h = 1 on T . The

modul is invar ian t under conformal transformation, therefore

, rt) = n(t, ft) = jft in
A

ff .

m(t) - J
2TT t

J g(w)r drd9
O O

(4irc2t2 / (1 + t 2 ) if K = + c"2

i f Ko = 0

A . .

denotes the t o t a l mass of G. = [w; |w| < t} with respect to the

mass d i s t r i b u t i o n of the problem (B). By Corollary 2 [1] we

have

(11) rt> I n
M

47TC + M
I n

m(t)

1
4TT

4TTC + M
- In

47rc +_ m(t)

m(t)
4TTC i m(t)

i f K = + co —
- 2



or else

Mr, rt> - fc m J^ f

Therefore we obtain the estimation

(13) m(t) < m(t) for all t .

If r e [0,R] , then R-jJr) ^ R1(r) ^ 0. This statement is

equivalent with Rx (z) R[ (z) ^0 in I = (Tl^b + J (cf. sec. 1(5))

It follows immediately from the next result.

LEMMA. Let f(z) be the first eiqenfunction of the eigen-

value problem {cr (z) f' (z) }' + (A - e(z) ) f (z) =0 _in (a,b),

f (a) = 0 and f (b) = 0 . JIf o(z) > 0 and if e(z) _is â  non-

increasing function, then we have f (z)f' (z) ^ O j-ii (a,b) .

This lemma will be proved by contradiction. Since f(z)

is the first eigenfunction, it has constant sign in (a^b).

We may assume that f(z) > 0. Suppose that f (z) < 0 in some

interval. Because of the boundary conditions there exists a

* '(11) and (12) are generalizations of a theorem by T. Carleman,
Math. Z. 1 (1918), pp. 208-212 for the capacity of a condenser.
They hold only under the assumptions (-A In p)/2p <; K and
(4TT - K M ) > 0.
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point x e (a,b] such that £' (XQ) = 0 and f» (x ) ^ O. By-

multiplying the differential equation with f(z) and integrating,

x x

o o

we obtain - J a (z) f' 2 (z)dz + J (7v - e (z)) f2 (z)dz = 0.
a a

From this relation it follows that A, > inf e(z^ and because
z e (a,xQ)

of the monotonicity of e(z)

e ( xo ) '

At XQ , f(z) satisfies ff(xo)f»(xo) + (7\ - e (XQ) ) f (XQ) = 0 .

Since a(x ) and (A- e(x )) are positive, f" (z) and f(z)

must vanish at x . By the uniqueness theorem the only solu-

tion for which f(x ) =0 and f'(x ) = 0 is f(z) = 0. But

this is no eigenfunction of the eigenvalue problem.

(13) and the monotonicity of R (r) together with (10) yield

A A

JRl
2(r) fB(r)dr 2 J R 2 CD $»(Ddr

0 0

and hence by (9)

R RR R

JRl
2(r)f(r)dr J R,2 (r) ||(r)dr

0M 2 |

i=2 X Dg($2) D£(cp2) i=2
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4. T*he following corollaries are some immediate consequences

of the theorem in the previous section.

COROLLARY 1. Consider the eigenvalues ^ (KQ) ,of problem

(B) ajs ja function of the Gaussian curvature K . Suppose that the

total mass M is fixed. If 2v - K M > 0 , then u ~ (K ) +

is a monoton decreasing function of K .

COROLLARY 2. JEf 2 T T - K M ^ O , then

(14) i- + I- ^ f-
M 2 M 3

 27r

Proof; From the theorem in section 3 and Corollary 1 we

have •=— + -i— ^> - + — ;> — +
^2 ^3 jL(K ) u, (K ) uo(27r/M) U, (27T/M)

M A
^ ^ correspond to the eigenvalues of the half-sphere

with the radius \|~- .
V27T

REMARKt Corollary 2 can also be obtained from the inequality

~ + TT" + "~~ J> -̂- [3] where Â . is the first eigenvalue of

the membrane A u + A p u = O in G, u = 0 on T. This result

together with the inequality ^ > ^ [1] leads to Corollary 2.

mimm
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