ISOPERIMETRIC INEQUALITY FOR SOME EIGENVALUES OF AN INHOMOGENEOUS, FREE MEMBRANE
 by
 Catherine Bandle
 Research Report 71-26

MAY, 1971

```
ISOPERIMETRIC INEQUALITY FOR SOME EIGENVALUES
    OF AN INHOMOGENEOUS, FREE MEMBRANE
    Catherine Bandle
```


Abstract

Szegös inequality concerning the second eigenvalue of a homogeneous, free membrane is extended to the case of an inhomo \rightarrow geneous free membrane. With the help of a variational principle and the conformal mapping technic upper bounds are constructed for the sum $V j U_{2}+V{ }^{\wedge} \wedge>$ where \wedge and \wedge denote the second and third eigenvalue. These bounds only depend on the total mass of the domain and on a simple expression involving the mass distribution and its logarithm.
(*)
v 'This work was supported by the NSF Grant GU-2056

ISOPERIMETRIC INEQUALITY FOR SOME EIGENVALUES OF AN INHOMOGENEOUS, FREE MEMBRANE

Catherine Bandle

1. This paper is concerned with the eigenvalue problem
(A)

$$
A_{z} c p+p p c p=0 \quad \text { in } \quad G \quad\left[{ }_{\mathbf{z}}^{A}=\frac{\partial^{2}}{\partial x}-\frac{a^{2}}{\partial y}+\frac{-j J}{\partial y}\right.
$$

$I S-0$ on Γ,

where G is a simply connected domain in the z-plane (z=x+iy), T is its boundary and n denotes the outer normal. $p(z)>0$ is the mass distribution. We assume that there exists a countable set of eigenvalues $0=/ \boldsymbol{i}_{\boldsymbol{L}}<\mathrm{fi}_{2}<\ln ^{\wedge} 3 \leq \ldots$

Szegö [5] proved for membranes with constant p the isoperimetric inequality
$n 1$
$\underset{\mu_{2}}{J_{2}}+\underset{\mu_{3}}{i-N} \frac{2 M}{\pi p_{1}}$
where $M=\hat{J J}^{\wedge} p$ dxdy $\pm S^{\wedge}$ the total mass, $J_{\mathcal{L}}(r)$ denotes the G
Bessel function of order 1 and $\mathrm{p},=1.8412 \ldots$ is the smallest value such that $J_{n}{ }^{\prime}(\mathrm{p})=$.0 . Equality holds if and only if G is a circle. In his proof, Szegö uses conformal transplantation. Weinberger [61 extended this theorem to an N-dimensional not
necessarily simply connected membrane with constant mass distribution. This result can be stated as follows:

For all N -dimensional domains G of given total mass the N dimensional sphere yields the maximum of $\mathrm{JU}_{<}{ }^{\bullet}$

The aim of this paper is to generalize the inequality of SkegS to the case of an inhomogeneous membrane.
2. Problem (A) is equivalent to the eigenvalue problem
 Beltrami operator of an abstract surfact T given by G and 22 . 2 "五-1i . the line element $d s=p(z)|d z|$. Here, $V=V P \sim{ }^{n}$ is the unit normal with respect to the metric of $£$. By the Theorem Egregium it follows that the Gaussian curvature is $K^{G}-(-A l n p) / 2 p$. We shall assume, that the inequality (-A In p)/2p $\overline{<} . \hat{K}$ holds in $G U T$ and that $2 V-K M>0$. In addition to problem (A) we consider in the w-plane (w=u+iv) the auxiliary problem
(B)

$$
\begin{aligned}
\mathbf{A}_{w} \hat{C D}+{ }^{\wedge} \mathrm{jug}(w) \hat{\mathrm{C} p} & =0 & & \hat{G}=\{w ;|w|<\hat{R}] \\
\frac{\partial \hat{\varphi}}{\partial \hat{D}} & =0 & & \text { on } \quad \hat{T}=(w ;|w|=\hat{R}\}
\end{aligned}
$$

where $g(w)= \begin{cases}\frac{4 c^{7}}{\left(1 \pm r^{2}\right)^{2}} & \text { if } K_{o}= \pm c^{-2} \\ 1 & \text { if } \quad K_{o}=0\end{cases}$
[r, 8 polar coordinates of the w-plane] and $\hat{\wedge}=\sqrt[v g n_{\sim}^{l}]{n}$ is the unit normal with respect to the metric $d s^{\wedge}=g(w)|d w|^{\sim} . \quad R$
 elementary calculation yields

$$
\hat{R}^{2}= \begin{cases}\frac{M}{47 T C^{2}+M} & \text { if } K_{o}= \pm c^{-2} \\ \frac{M}{\pi} & \text { if } K_{o}=0\end{cases}
$$

Because of our assumptions, we have in the case $K \hat{o} 0 \quad \mathrm{R}^{\wedge} \hat{K}^{\wedge} 1$. \hat{G} with the metric $d \hat{S}^{2}$ can be interpreted as a geodesic circle on a surface of constant Gaussian curvature $K_{0} .$. The eigenfunctions of problem (B) have the form

$$
\begin{equation*}
\hat{\varphi}_{\mathrm{k}}(r, \theta)=R_{\mathrm{m}}\left(\hat{\mu}_{\mathrm{k}} ; r\right) \underbrace{\sin 8}_{\sin \mathrm{m} \theta} \tag{2}
\end{equation*}
$$

$$
m=1,2, \ldots,
$$

$$
\begin{equation*}
\$_{k}(r, 0)=R_{0}\left(l^{\wedge} . \therefore ; r\right) \tag{3}
\end{equation*}
$$

$R_{\text {in }}(\underset{\sim}{f}$; r) is an eigenfunction of
(4)

$$
R^{\prime}(\hat{R})=0, \quad R(0) \ll D
$$

PROPOSITION. The second eigenvalue $\hat{J U}_{2} 2 J L$ problem (B) degenerated; the corresponding eigenfunction are $\$_{2}(r, 9)=R_{/_{\perp}}\left(\hat{U}_{2} ; r\right) \sin \theta$ and $\hat{Q} \hat{Q_{L}}(r, 9)=R,(\hat{L} L ; r) \cos 0$.
 (4) corresponding to $m=1$ is smaller than the second eigen-

 zero. We introduce the new variable $z=\frac{\mathbf{r}^{2}-r \frac{\mathbf{l}}{\mathbf{1}}}{\mathbf{1}+\mathbf{r}^{2}}$ if $\left.k \quad\right\rangle 0$, or $z=\frac{r^{2}}{\boldsymbol{Z}} \underbrace{\mathbf{1}_{5}}_{£>}$ if $\underset{0}{K}<0$. The interval $[0, \hat{R}]$ is then trans-- r _
 tial equation takes the form

$$
\begin{equation*}
\pm\left\{\left(1-Z^{2}\right) R^{\prime}\right\}^{\prime}+\frac{m^{2}}{1-}-\frac{z^{2}}{R}+\hat{\mu} c^{2} \tilde{R}=0 \tag{5}
\end{equation*}
$$

with the boundary conditions

$$
R(\nleftarrow 1)<\infty, \quad R^{\prime}(b \pm)=0
$$

If $m=1$, then the solutions of (5) can be written as $\tilde{R}(z)=\ \neq \pm\left(1-z \mathrm{p}^{\prime}(z) \quad\right.$ where $\mathrm{p}(\mathrm{z})$ is a solution of the Legendre equation

$$
\begin{equation*}
\left.\pm\left\{\left(1-z^{2}\right) p^{\prime}\right\}^{\prime}+£^{(1)} c^{2} p=0 \text { in } \overline{(+} 1, b \pm\right) \tag{6}
\end{equation*}
$$

with the boundary conditions

$$
p(\overline{+} 1)<\infty, \quad p^{\prime}(b \pm)= \pm\left(£^{(1)} \varepsilon b+\perp p(b+)\right.
$$

Assume that $\mathrm{p}^{\prime}(\mathrm{z})<0$ in $\left(\overline{+}^{-} 1, \mathrm{~b} \pm\right)$. Because of the boundary condition at $\mathrm{b} \pm$ we have $\mathrm{p}(\mathrm{b}+\perp>0$, and thus, $\mathrm{p}(\mathrm{z})>0$ in the interval $(\overline{+} 1, b \pm)$. According to the definition, $\hat{M} 9^{(0)} \star_{\sim}^{s}$ the second eigenvalue of $\left.- \pm\left\{\left(1-z^{2}\right) p^{\prime}\right)^{\prime}+j \rho\right) \underset{c}{2} p=0$ in $\left.\overline{(+1}, \mathrm{b} \mathfrak{j}^{+}\right)$with $\mathrm{p}(\overline{+1})<\mathrm{OD}$ and $\mathrm{p}^{\prime}(\mathrm{bj} \underset{\mathrm{f}}{ })=0$. The corresponding eigenfunction vanishes at some point in ($\overline{+} 1, b \pm$). By the Sturm

3. THEOREM, if ($£$ In p$) / 2 \mathrm{p} \leq \mathrm{K}_{\mathrm{o}}$ if GUT and if $2 i r-\mathrm{K}_{\mathrm{Q}} \mathrm{M} £ 0$, then the following inequality holds between the eigenvalues of the problems (A) and (B)
(7)

$$
\frac{1}{\mu_{2}}+\frac{1}{\mu_{3}} \geq \frac{1}{\hat{\mu}_{2}}+\frac{1}{\hat{\mu}_{3}}
$$

Proof. The proof is based on the variational principle
(8)

$$
\begin{aligned}
& 1 \begin{array}{llll}
1 & 2 & 1
\end{array}
\end{aligned}
$$

is the Rayleigh quotient- v_{2} and v_{3} range over all piecewise continuously differentiable functions with

$$
D\left(v_{2}, v_{3}\right)=\int_{G}^{J} \text { grad } v_{2} \text { grad } v_{3} d x d y=0
$$

and

$$
\underset{\mathbf{G}}{\mathrm{JJ}_{i}} \mathrm{P} \text { dxdy }=0 \quad i=2,3
$$

Let $z(w)$ be a conformal mapping from G onto \hat{G}, and let $\mathrm{U}_{2}(\mathrm{z})=\hat{\mathrm{Cp}}_{2}(\mathrm{w}(\mathrm{z}))$ and $\mathrm{U}_{3}(\mathrm{z})=\$_{3}(\mathrm{w}(\mathrm{z})) \quad[\mathrm{w}(\mathrm{z})$ inverse function of $z(w) J$ be the transplanted eigenfunctions. In [5] it is
shown, that there always exists a function $z(w)$ such that $\hat{J} \mathfrak{j} U_{i} p$ dxdy $=0$ for $i=2,3$ 't', \quad Because of the invariance G
of the Dirichlet integral under conformal mapping, we have $D_{G}\left(U_{2}, U_{3}\right)=D g\left(\$_{2}, \hat{C p}_{3}\right)=0$. Therefore, U_{2} and U_{3} are admissidle functions for the variational characterization (8). Since $D_{\underline{\circ}}\left(U_{0}\right)=D_{-}(U \sim)$, we conclude from (8) that
(9) $j{ }^{1}{ }_{2}{ }^{+1} j \frac{f^{2}}{3}$
$J J\left(\begin{array}{ll}\breve{E} & \left.U_{i}^{2}\right) p d x d y \\ \hline\end{array}\right.$
\qquad $\underline{G}^{\mathrm{i}=2}$
$2 i r \hat{R}$
JJ R ${ }_{1}{ }^{2}\left(\mathbb{M}_{2} ; r\right) p(z(w)) \|\left. g\right|^{2} r d r d 9$

0
$\left.\hat{T}_{.}=\{w ;|w|=' t\}, \hat{G}_{e}=f w ;|w|<t\right\}, \quad T_{T}=z(f)$ and

0
Integration by part yields
(1)

In [5] the existence of such a function $z(w)$ has only been proved for $p=1$, but it is easy to see that the proof remains the same if p is an arbitrary positive and continuous function.

$$
=\mathrm{R}_{\mathrm{I}}^{2}(\mathrm{R}) \mathrm{M}-2 \underset{\mathrm{O}}{\mathbf{J} \mathbf{R}_{[}^{\mathrm{R}}} \boldsymbol{I}\left(\begin{array}{ll}
\boldsymbol{\delta} \boldsymbol{g} & \mathrm{R}_{1}
\end{array}\right) \mathrm{m}(\mathrm{r}) \mathrm{dr}
$$

The next step will be to estimate $\mathrm{m}(\mathrm{r})$. Consider the model $H\left(T, \mathrm{~T}_{\mathrm{t}}\right)=\{\mathrm{D}(\mathrm{h})\} \sim^{\perp} . \mathrm{h}$ is the solution of the Dirichlet problem $\mathrm{Ah}=\mathrm{O} \quad$ in $\mathrm{G} \backslash \mathrm{G}_{\tau}, \quad \mathrm{h}=0 \quad$ on T and $\mathrm{h}=1$ on T_{t}. The model is invariant under conformal transformation, therefore

$$
\mu\left(\Gamma, \mathbf{r}_{t}\right)=n\left(t, \mathbf{f}_{\mathbf{t}}\right)=j f t \text { in }
$$

$$
\hat{\mathrm{m}}(\mathrm{t}) \cdot \int_{\mathrm{O}}^{2 \pi \mathrm{~J}} \mathrm{o} \mathrm{~g}(\mathrm{w}) \mathrm{r} \operatorname{drd} 9= \begin{cases}\left(4 i r c^{2} t^{2} /\left(1+\mathrm{t}^{2}\right)\right. & \text { if } \mathrm{K}=+\mathrm{c}^{\prime 2} \\ \pi \mathrm{t}^{2} & \text { if } \mathrm{K}_{\mathrm{o}}=0\end{cases}
$$

denotes the total mass of $G^{\tau}=[w ;|w|<t\}$ with respect to the mass distribution of the problem (B). By Corollary 2 [1] we have

$$
\left.\begin{array}{rl}
\mu\left(\Gamma, r_{t}\right\rangle= & \frac{1}{4 \pi}\left\{\operatorname{In} \frac{M}{47 \mathrm{TC}^{2} \pm \mathrm{M}}-\operatorname{In} \frac{\hat{\mathrm{m}}(\mathrm{t})}{47 \mathrm{rc}^{2} \pm \hat{\mathrm{m}}(\mathrm{t})}\right\} \tag{11}\\
\leq & \frac{1}{4 \mathrm{TT}}\left\{\ln \frac{\mathrm{M}}{4 \mathrm{TTC}{ }^{2} \pm \mathrm{M}}-\operatorname{In} \frac{\mathrm{m}(\mathrm{t})}{4 \mathrm{TTC}} \mathrm{im}(\mathrm{t})\right.
\end{array}\right\}
$$

or else
(12)
$\mathrm{Mr}, r_{\mathrm{t}}>-\mathrm{fcmJ} \frac{\mathrm{A}}{4 \pi} \ln \mathbf{f}_{(\mathrm{t})}$

Therefore we obtain the estimation

$$
\begin{equation*}
m(t) \leq \hat{m}(t) \quad \text { for all } t . \tag{13}
\end{equation*}
$$

If $r e[0, \hat{R}]$, then $\underset{\sim}{R-j J r)}{ }^{\boldsymbol{d}}{ }_{\wedge} R_{1}(r) \wedge 0$. This statement is equivalent with $R_{x}(z) R\left[(z) \wedge 0\right.$ in $I=\left(T l^{\wedge} b+J \quad(c f . \sec .1(5))\right.$. It follows immediately from the next result.

LEMMA. Let $f(z)$ be the first eigenfunction of the eigen-
 $f(a)=0$ and $f(b)=0$. UIf $O(z)>0$ and if $e(z)$ is â nonincreasing function, then we have $f(z) f^{\prime}(z) \wedge 0$ jii (a, b).

This lemma will be proved by contradiction. Since f(z)
is the first eigenfunction, it has constant sign in (a^b). We may assume that $f(z)>0$. Suppose that $f(z)<0$ in some interval. Because of the boundary conditions there exists a 1
${ }_{x} I^{\prime}$ '(11) and (12) are generalizations of a theorem by T. Carleman, Math. Z. 1 (1918), pp. 208-212 for the capacity of a condenser. They hold only under the assumptions $(-\mathrm{A} \operatorname{In} \mathrm{p}) / 2 \mathrm{p}<_{\text {i }} \mathrm{K}_{0}$ and $(4 T T-K M)>0$.
point $x_{o} e^{(a, b]}$ such that $f^{\prime}\left(X_{Q}\right)=0$ and $f »\left(x_{0}\right) \wedge 0$. Bymultiplying the differential equation with $f(z)$ and integrating,

x	x
0	0

we obtain $-J a(z) f^{\prime 2}(z) d z+J \quad(K-e(z)) f^{2}(z) d z=0$.
a a
From this relation it follows that $A_{1}>\inf e\left(z^{\wedge}\right.$ and because $z e\left(a, x_{Q}\right)$
of the monotonicity of $e(z)$

$$
\lambda_{1}>e\left(x_{0}\right)
$$

At $X_{Q}, f(z)$ satisfies $f f\left(X_{0}\right) f »\left(X_{0}\right)+\left(\lambda-e\left(X_{Q}\right)\right) f\left(X_{Q}\right)=0$. Since $a\left(x_{0}\right)$ and (Ale($\left.x_{0}\right)$) are positive, $f "(z)$ and $f(z)$ must vanish at x_{o}. By the uniqueness theorem the only solulion for which $f\left(x_{0}\right)=0$ and $f^{\prime}(x \quad \underset{b}{ }=0$ is $f(z)=0$. But this is no eigenfunction of the eigenvalue problem.
(13) and the monotonicity of $R_{1}(r)$ together with (10) yield

and hence by
(9)

4. The following corollaries are some immediate consequences of the theorem in the previous section.

COROLLARY 1. Consider the eigenvalues $\wedge\left(K_{Q}\right)$,of problem
(B) ais ja function of the Gaussian curvature K_{0}. Suppose that the total mass M is fixed. If $2 v-K M>0$, then $u^{\wedge} \approx^{1}(K)+$ $\hat{\mu}_{3}{ }^{-1}\left(K_{0}\right)$ is a monoton decreasing function of K.

COROLLARY 2. JEfe $2 \mathrm{TT}-\mathrm{K}_{\mathrm{O}} \mathrm{M}^{\wedge} \mathrm{O}$, then
(14)

$$
\begin{aligned}
& \mathrm{i}- \\
& \mathrm{M}_{2}
\end{aligned}+\frac{\mathrm{I}-}{\mathrm{M}_{3}}{ }^{\wedge} \underset{27 \mathrm{r}}{\mathrm{f}--}
$$

Proof; From the theorem in section 3 and Corollary 1 we

$=M \quad \underset{\wedge}{A}(2 \pi / M)$ correspond to the eigenvalues of the half-sphere with the radius $\underset{\sim}{\substack{M}}$.

Corollary 2 can also be obtained from the inequality

[3] where $A^{\wedge}{ }_{\mathbf{t}}$ is the first eigenvalue of the membrane $A u+A p u=0$ in $G, u=0$ on T. This result together with the inequality $\wedge \geq \wedge$ [1] leads to Corollary 2.

References

1. Bandle, C.,"Konstruktion isoperimetrischer Ungleichungen der mathematischen Physik aus solchen der Geometrie", (To appear in Comm. Math. Helv.)
2. Courant, R., and D. Hilbert, Methods of Mathematical Physics. Vol. 1, New York.
3. Hersch, J., "Quatre propriéte"s isopérimétriques de membranes sphériques homogėnes ${ }^{\mathrm{M}}, \mathrm{C}$. R. Acad. Sc. Paris, t. 270 (1970) pp. 1645-1648.
4. Ince, K., Ordinary Differential Equations: Dover, 1956.
5. Szegö, G.,"Inequalities for Certain Eigenvalues of a Membrane of Given Area", J. Rat. Mech. Anal., 2 (1954), pp. 45-54.
6. Weinberger, H. F., "An Isoperimetric Inequality for the $N-$ Dimensional Free Membrane Problem", J. Rat. Mech. Anal. $S_{\text {, }}$ (1956) pp. 633-636.
