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Introduction

It is a fundamental tenet of neurophysiology that sensory

receptors of a given type do not operate independently; the ultimate

response associated with a point is affected by the stimulation of

other, nearby, points.

For example, in vision the magnitude of the signal reported to

the central nervous system by the photoreceptors at a point is not

completely determined (even in a steady state) by the intensity of the

light received at that point, but is instead influenced by the signals

from other points. The psychophysical experiments of Ernst Mach [1865, l]

JL

[1866, l] [1868, ll suggested to him that this is true in human vision.

___

English translations of these and related papers of Mach are given in

the treatise of Ratliff [1965, 2l.

Employing the methods of modern electrophysiology, Hartline [1949, 1J

utr.Cf. Hartline & Graham [1932, l], and Hartline, Wagner, & MacNichol

[1952, 1].

demonstrated the phenomenon for the ommatidia of the compound eye of the

horseshoe crab Limulus, and Hartline & Ratliff [1954, l] [1957, 3] [1958, 2]

See also Hartline, Wagner, & Ratliff [1956, l], Ratliff & Hartline

[1959, 5], Kirschfeld & Reichardt [1964, 3], and Ratliff [1965, 2J.

T
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gave a quantitative description of the steady state interactions of T

these ommatidia. The individual ganglion cells of vertebrate retinae j

often exhibit a specialized sensitivity to temporal changes in illumination.

"Cf. Hartline [1938, l]. For a detailed psychophysica1 investigation of

temporal properties of human vision, with the emphasis on spatially

uniform fields, see Kelly [1961, 2] [1969, l].

These transient responses can be attributed to the integration of lateral

excitatory and inhibitory influences, and detailed electrophysiological

""The experiments of Ratliff, Hartline, & Miller [1963, l] on Limulus

illustrate that lateral inhibition can cause pronounced sensitivity to

the onset of illumination, even for invertebrate compound eyes. See

also Ratliff, Knight, Toyoda, & Hartline [1967, l] and the discussion

of Cornsweet [1970, 1, Chapter 14],

measurements have been made of such lateral interactions for the retinae

#i

of goldfish, l fWir frogs, cats. and many other vertebrates. In

Cf. Wagner, MacNichol, & Wolbarsht [1963, l\ .

Cf. Hartline [1939, l], Barlow [1953, l], Lettvin, Maturana,

McCulloch, & Pitts [1959, 4], and Lipetz [1961, 3] [1962, l].

Cf. Kuffler [1953, l\, Barlow, FitzHugh, & Kuffler [1957, l], and

Baumgartner [1961, l].

v/
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mammals the retinal ganglion cells are third-order neurons. A typical

ganglion cell appears to receive signals from many receptors; some of

these signals may, perhaps, be inhibitory. This so-called receptive

field of a ganglion cell is usually large, and there is considerable

overlap of neighboring fields. Furthermore, several types of horizontal

cells and amacrine cells appear to help spread the influence of receptors

over large lateral areas. Of course, for most mammals, including the

primates, the eyes are in continual motion, even when the animal attempts

steady fixation. Thus, when a human observer views a temporally constant,

but spatially non-uniform, field of illumination, although he "sees" the

field as temporally constant, the individual ganglion cells which form

the observer's optic nerves are not firing at a constant frequency, but

are instead exhibiting a transient behavior. In the presence of

time-dependent "self-inhibition", retinal image motion can give rise to

an apparent lateral interaction; for, in a spatially non-uniform field

of illumination, the average degree of adaption to light for an individual

ganglion cell is not determined by the intensity of light at one point in

the visual field, but is instead influenced by the intensity distribution

in the region -=x> swept across the receptive field of that ganglion cell.

In an apparent steady state, *£ could be large even if the receptive field

of the ganglion cell contained but one photoreceptor. It is clear from

this that observed lateral interactions in steady state psychophysical

experiments, of the type performed by Mach, result from combined effects
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fit

of retinal motion and the anatomical overlap (and/or horizontal

interconnection) of the receptive fields of the ganglion cells.

JL
In the sense of hearing in mammals, as Be'ke'sy [1928, ll"

#,See also [1955, l] [1959, l].

pointed out, mutual interaction of nerve fibers serving adjacent regions

of the basilar membrane of the cochlea can account for the sharpness of

pitch discrimination in the presence of a high degree of damping.#

^"Cf. Be'ke'sy [1955, l]

[1959, 3l.

receptors of fixed type

™ " c f . Be'ke'sy [1964, 1

[1958, 1]

may occur

,2].

[1959,

in the

1], and

senses

Mountcastle

of smell and

& Powell

taste7"""^ and

enhance the ability of an animal to use chemoreceptors to determine the

direction of the source of an odor.5

[1964, ll.

Inhibitory interaction in auditory pathways has been observed by

Galambos & Davies [1944, l]. See also Katsuki, Watanabe, & Suga [1959, 2]. !

Lateral interactions of the nerves carrying impulses from the

sensory cells of the skin play a role in the localization of the sense

of touch. There is also some evidence that lateral interaction of

v
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In this essay I attempt to construct a phenomenological theory

of the lateral interactions of sensory receptors. The mathematical

framework employed appears appropriate to those senses, such as vision

and touch, for which the "sensory inputs" can be described by real-valued

functions on a continuum.

The emphasis here is laid on the sense of vision. Now, in

vision, particularly monocular vision, the sensory domain, often called

the "field of vision" is a part of a spherical surface 0. The center

of curvature for 0 is (in the case of simple vertebrate eyes) the nodal

point P of the ocular lens; this "optical center" P lies between the

cornea and the retina; (in humans P is about 7 mm behind the foremost

point of the cornea)."7' The sensory input to the eye is usually considered

" C f . [1970, 1, pp. 10 6. 447].

a function i on }O , with i(x) the intensity of the light received by the

eye from all sources lying on the line from P which intersects yO at x.

Here, in the interest of simplicity, I shall suppose that yJ can be

represented approximately by a subset of a flat plane E.

Under a much more severe approximation, one may also describe

the sensory input to cutaneous pressure and temperature sensors by employing

functions on a two-dimensional flat space; thus some of the results
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obtained here, albeit presented in a terminology appropriate to the sense

of vision, may suggest psychophysical experiments for the sense of touch.

The present work is concerned with spatial interactions only,

and throughout my discussion of vision I have in mind achromatic or

monochromatic fields. Thus, neither time nor wavelength occur explicitly.

The results obtained may be applied to either steady-state experiments or

to experiments in which the stimulus (light) is briefly flashed. I assume

that in application to steady-state experiments on human vision, the

natural retinal tremor will be present; as mentioned above, it is not

intended that "steady-state" should imply a "constant rate of firing" for

each neuron of the optic nerve.

In accord with the experiments of Hartline & Ratliff [1957, 3]

[1958, 2l on Limulus and the general type of circuitry suggested by the

microscopic anatomy of primate retinae, I assume that the lateral

interactions "fall off gradually with distance"" and are, furthermore,

n

This expression is rendered precise in my article [1971, l] on

"retardation theorems". Definitions and results given there will be

employed here.

"recurrent" in the sense that the response at a point is determined by

Tnf,Cf. [1965, 2, p. 108].

the excitation at that point and the response (rather than the excitation)
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at other points. As will become apparent when the present theory is laid

out, "recurrent systems" have the property that the "excitation field" e

is mathematically determined when the "response field" if/ is specified,

but not always vice versa. In the asymptotic limit of "spread-out fields",

if one is given e on a large region /? in E, calculation of if/ requires the

solution of a field equation which need not have a unique solution on A?

unless certain data for ty are specified at the boundary of /£. This

suggests that the present theory may supply a mathematical framework for

the discussion of certain primitive optical illusions.
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2. Basic Assumptions

Let the "field of vision" be represented by a flat plane E,

i.e. a two-dimensional Euclidean point-space, and let V be the translation

space of E. Thus the difference x— y of two points x, y in E is an

element of the vector space V, and V has a positive definite inner product

"'"• A field 0 on E is here a Lebesgue-measurable function mapping E into

the real numbers R.

Two fields of particular importance are the intensity field i

and the response field ip; i(x) is the intensity of light at the point x,

and ^(x) is the animal's visual response, at the point x, to the field i;

i.e. ^(x) is the "intensity seen at x" when the "actual" intensity

distribution is given by i. One may interpret ^(x) as the number of

impulses per second in the neuron or neurons of the optic nerve associated

with the point x in E. This interpretation is not necessary to the theory,

however. In humans, ^(x) can be identified with the "apparent brightness"

an observer sees at x. Various matching tests and threshold experiments

"Cf., e.g., Davidson [1968, 2].

^Cf., e.g., Schade [1956, 2], Campbell & Green [1965, l], Campbell &

Robson [1968, l].

have been designed to enable a person to communicate to others quantitative
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information about the apparent brightness he sees at each point in a

#
given intensity field. In the theory to be developed here, the field i

"A survey is given in Chapters 11-13 of [1970, ll.

is determined (by a relation not yet stated) when the field i// is given on

E, albeit specification of i may not yield a unique ty.

It is assumed that for each visual system there is a strictly

increasing function f which gives the intensity ic corresponding to a

given constant response field i//°:

i° = f(V°). (2.1)

Whether or not ty and i are constant on E, one may state that knowledge of

the field i is equivalent to knowledge of the excitation field e defined

by the equation

e(x) »== f~ (i(x)), (2.2)

which holds for each x in E; e is, in a certain sense, a "normalized form"

of i. If i is given, then, for each x, the number e(x) is the value of

the (unique)77" constant response field ip° corresponding to the constant

^Although i need not always determine ty, it follows from (2.1) and the

strict monotonicity of f that, when a constant intensity field is

specified, there is one and only one constant response field corre-

sponding to it.
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intensity field i° whose value is the number i(x). As f is single-valued

and strictly increasing, each intensity field i determines a unique

excitation field e and vice-versa. Thus, € (x) is a measure of the

intensity at x in the units employed for ty, and it is meaningful to

discuss the "difference" between ^(x) and e(x): #(x) ~ e(x) measures

the effect, on the response at x, of spatial variations in response.

Throughout this article I shall take as the basic fields the

excitation € and the response f. Because of its importance to applications

and because of differences between this and other definitions of "excitation",

I should like to emphasize a consequence of the definition (2.2): If ^(x)

is interpreted as the rate of firing of certain neurons of the visual

pathway, then e(x) must be identified with the rate of activity which

would be manifested by the same neurons if ^ and the intensity of light

were spatially constant and the intensity had the value it presently has

at x.

Let S be the set of all real-valued Lebesgue-measurable functions

on V. The elements 0^ of ® are called centered fields. If 0 is a field

on E and x a point in E, then 0 may be "centered on x" by defining a

function 0 in © by

The main postulate of the present theory is that for each visual

system and each c > 0, there is a real-valued function 3(-;c) which is
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defined on a subset S of 6, and which relates the response field i\i to

the excitation field € through the following basic constitutive equation:

e(x) (2.4)

This equation is assumed to hold at each point x in E.

Although it is not important for some of the results to be

obtained here, for simplicity I assume that the functional 3 in (2.A),

as well as the function f in (2.1), is independent of x, i.e. that the

visual system under consideration is intrinsically homogeneous.

"As Cornsweet [1970, 1, p.328, 329] remarks: Although the optical parts of

human eyes are usually homogeneous near the optic axis, retinae and visual

pathways do show anatomical inhomogeneities. For example, for humans the

densities of rods and cones vary with position.

To describe the domain of 3(-;c), let p be in [1,00]^ and let h be a

positive continuous function on [0,») such that, for some numbers r > 0

and A > 0,

s h(s) is monotone decreasing for s > A. (2.5)

By Remark 3 of [1971], h(|v|), as a function of veV, is then an "influence

function of order r" for V. For each centered field 0 , put

"*"h,p
V

ess sup|0 (v)|h(|v|), if p = ~f

supK(v)|h(|v|).

\ (2.6)
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The integration and essential supremum shown above are taken with respect

to Lebesgue measure on V. Let oZ, be the set of all 0^ in 6 for which

||0||, is finite, and let C, be the set of continuous functions 0. in 6
"h,p h *

with ||0j|l finite. Clearly, Q is a Banach space with norm ||"|L • If we

agree to consider the same two elements of «£. which differ on no more

~hp
than a set of zero Lebesgue-measure, then, for each p in [l,°°], oZ is a

Banach space with norm ||'||,

For each number c, let c be the constant function with value c,

i.e.

c+(v) = c, for all veV. (2.7)

The present theory holds under either one of the following two (distinct)

hypotheses about $:

(I) Let it be assumed that there exists p in [l,°°], an

integer m > 0, and a positive continuous function h obeying

(2.5) with

r > m + - f- - 0 if p - »), (2.8)

P \P 7

such that for each c > 0, there is a 6 > 0 for which

i.e. such that the domain S) of 3(-;c) is a spherical neighborhood

of the positive constant function c in jC
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(II) Let it be assumed that there exists an integer

m > 0 and a positive continuous function obeying (2.5) with

r > m, (2.8)'

such that for each c > 0 there is a 6 > 0 for which
c

The value required for the integer m in (2.8) [or (2.8)'] will

be given in the formulation of subsequent theorems. The larger m, the

stronger the hypothesis on h. Whether one uses the relations (2.8) and

(2.9) of (I) or the relations (2.8)" and (2.9)' of (II), none of the

theorems to be given here require that m be greater than 4.

For compatibility with the definition (2.2) of e, it is assumed

that for each c > 0,

^(cV) = 0. (2.10)

This relation, when combined with (2.4), states that, if the

response i\i is constant on E, then the excitation e must be a constant

equal to ty.

In the terminology employed in [1971, ll, 3 is said to be a tame

function of type n if: (1) the relation (2.8) [or, under the hypothesis

(II), the relation (2.8)'] holds with m = n, and (2) for each c > 0, 3

is n-times Frechet-differentiable at the constant function c in S . The

c

m
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differentiability assumption means that for each c > 0 there are on

^c, [or on C, 1 bounded homogeneous polynomials 6 o l"l °f degree

k » l,...,n such that for every 0^ with c + 0^ in 3)^ with c + 0^ in 3)

n

^ in* 6\[0J + o(||0jn), (2.11)
k=l

where ||-|| stands for ||-||h if (2.9) holds and for \\-\\'h if (2.9)' holds.

In writing (2.11) use is made of (2.10). The polynomial 6 \$ ['), or its

polar form (i.e. the symmetric bounded k-linear form 6 t$ ('*") defined

by 6̂ 3 (0*, ...,0J = 6^ [0j) is called the kth Frechet-derivative of 3

at c .. For each 0^, the function c\-Af—»6 o t^*^ a s a real"Valued

function on (O,")^ is assumed to be (n-k)-times differentiable, and

c »-V-*3 [0^;c] is assumed to be n-times differentiable.

Throughout this paper, unless the contrary is stated, it will

be assumed that 3 is a tame function of type 4; i.e. that (2.8) [or (2.8)']

holds with m = 4, and (2.11) holds with n » 4. Occasionally theorems will

be stated employing a weaker hypothesis about 3.

Let (/ be the orthogonal group on V; that is, the group of all

linear transformations G of V into V for which Gv = v for every v in

V. If G is in & and if 0^ is a function in 6, one writes V°G for the

function defined by

(V°G)(v) = V(G(v))j for all veV. (2.12)G)(v)



15.

The idea that there are no "built-in preferred directions in the visual

system" is rendered precise by assuming that 3 is an isotropic functional,-

that is, that 3 has U for its symmetry group. Thus, I assume: For

#See [1971, 1, §6].

each G in U, 3 obeys identity

30V<3;c) - 3(0*;c), (2.13)

##for every c > 0 and for all 0^ in S .""

It appears, from the psychophysical experiments of Campbell, Kulikowski,

& Levinson [1966, l] (see also Cornsweet [1970, 1, pp. 329, 330]), that,

even after the optics of the eyes are corrected for possible astigmatism,

the human visual system is not perfectly isotropic. At high spatial

frequencies, measured thresholds of contrast for vertical and horizontal

gratings are lower than for oblique gratings. This observed anisotropy

is not very large for gratings with spatial frequencies less than

10 cycles per degree.
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3. Retardation Theorems

Let n be either zero or a positive integer. A centered field

0. in £c, is said to be n-times differentiable at v a 0, if, after

suitable alteration of 0^ on a set in V of measure zero,

n

k=l

where

0° = lim 0.(v) (3.2)
TV | | f% o >
TV

is sometimes called the zeroth derivative of_ 0 at_ v = 0, and V 0

called the k gradient of 0̂ . at̂  v = 0, is a symmetric k-linear form on

,

V. The existence, in the classical sense, of the ordinary gradient of

order n at v = 0 implies that (3.1) holds without any alteration of 0^.

If 0^ is continuous at 0, then 0^ is "zero-times differentiable" at 0,

and 0°, defined in (3.2), is just 0*(O), the value of 0^ at 0. If 0^ is

in C,i then 0. is automatically continuous, and one says that 0 is

n-times differentiable if (3.1) holds without any alteration of 0+.

Let S n be the set of all 0. in S that are n-times differentiable.

c we
2 1

When V 0^ exists, it is a second-order tensor on V, and V 0^, written V0 A,

is represented by a vector in V. Of particular importance here are the

trace of V 0., written A0 , and the magnitude of V0^, written |v0^|. If

., written A0 , and the magnitude of V0^, written |v0^|

0 is a field on E, then at each point x where 0 (i.e. 0 centered on x)
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2
has first and second gradients, V0 , V 0 , one uses the notation

X X

A0(x) = trace V 0 ,
XX

(3.3)

|V0

A0(x) is the Laplacian of 0 at x. Of course, with respect to a Cartesian

coordinate system (x,y) on E,

(3.4)

Given a centered field 0^ and a number a in (O,lJ, one may

define a new centered field 0^ ' by

(3.5)

^̂ is called the a-retardation of 0+. Roughly speaking, retardation

replaces a centered field by one which is similar but more "spread out".

If, for some n > 0, 0^ is in 5^, then for sufficiently small a > O, so

also is 0^ a )/ It follows from (3.5) and (3.1) that

"Cf. [1971, I, Theorem 2, and Remarks ? & ji] .

(3.6)
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and hence that

|v0<a)|2 - a ? f a j 2 , A^a) - a*A0*. (3.7)

In view of the normalization and isotropy conditions, (2.10),

and (2.13), one may read off, from Theorem 7 of [1971,l] the following

(ct)
asymptotic approximation for 3(0 ,$(x)).

Theorem 1 (retardation theorem for smooth fields). Suppose 3 is a tame

function of type n, with n > 2. For each centered[0 (field/ in S with

c, one has, for small OL > 0,

<3-8>

where

' •(Q2) if n = 2,

.(O3) if n = 3, (3.9)

.0(a4) if n > 4;

P(') a n^ 7(-) are continuous real-valued functions on (0,°°) and are

uniquely determined by 3; P(") is, (n-2)- and 7(-) is (n-1)-times

differentiable.

To have a concise way to describe the manner in which 3

determines (3(*) and 7(-), let a be an arbitrary element of V, let A be

an arbitrary symmetric linear transformation of V into V, and employ the
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symbols at-] and At*] for the homogeneous polynomials on V defined by

a[v] =^= a-v, Atv] =̂ =» v-Av, veV. (3.10)

Now, it can be shown that the real-valued functions at'] and A["l belong

to u_, [or C, if (2.9)' is used] and that the isotropy of 3 implies

£
that 523 [ a t ' ] ] and 63 I~A [" Jl have the forms*wcl~ J cL~ J

^See [1971, I, Lemma 1, and eqs. (5.25), (7.6)].

623 FaI-ll - 2p(c)a-a ")
I (3.11)

63c[At-]J = 27(c)traceA. j

2
That is, the restriction of 6 3 to linear functions of the type (3.10)..

and the restriction of 63 to quadratic forms of the type (3.11) ? are

determined by certain numbers P(c) and 7(c) as shown in (3.11), and these

numbers P(c), 7(c), as functions of c, give the functions &(•), 7(') in

the retardation theorem.

It follows from (3.7) that the terms shown explicitly on the

right in (3.8), i.e. P(c)|v0^ a )| 2 and 7(c)A0^ a ), are of order 0(0?). By

(3.9), the remainder term /c(a) is of higher order in a. Even if

0^ is only twice differentiable at 0, this remainder is o(CT). If 0^ is

44f A

four-times, or more, differentiable at 0, then77" ru («) is 0(O ). Hence,

MM.
It is assumed that 3 is a tame function of type 4.

for a centered field 0 that is "smooth and spread out" in the sense that
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0. is several-times differentiable at 0 and does not vary rapidly on V,

3(0 ;0°) is given, to an apparently good approximation, by the value of

the functional © obeying

®(0*) |V0. |2 +7(0°)A0.. (3.12)

If 0. = tl/ with ip a smooth response field on e, then
fC X

i i O O

), and (3.12) becomes

Thus, it follows from (2.4) and the retardation theorem for

smooth fields that, when there is reason to believe that the response

field if/ is at least twice differentiable and does not vary rapidly from

point to point in E, as a first correction to the "zeroth-order relation"

we have

e(x)

(3.14)

(3.15)

If the field ip is several-times differentiable, this last equation should

serve as a good approximation to the basic constitutive equation (2.4).

Indeed, if f is four-times, or more, differentiable, the error will be of

order four in "the scale of distance".

In Cartesian coordinates (3.15) takes the form

2 , 2 • (3.16)
dx By
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Throughout the remainder of this section it will be assumed

that i// varies only in one direction, i.e. that if/ is independent of y.

Then

V * ̂ (x), € = e(x), (3.17)

and (3.16) reduces to

(3.18)

2 2
where V' = d^/dx, f" = d ̂ //dx . It is interesting to see how this

equation must be modified at points where there are jumps in the

derivatives of ty, i.e. at points where the left- and right-hand deriva-

tives of if/ exist but are unequal.

Let n be an integer equal to or greater than zero, let c be

positive, and let e,., e be an orthonormal basis in V, so that each v in

#n
V can be written v = Xey+^e . Let ®c be the set of centered fields 0^

in S that are constant in the direction e and are n-fold regular at

X = 0, in the sense that when 0 is regarded as a function of X, one

has

llm 0.(X) = Urn 0 (X) - 01, (3.19)

X->0+
k k

and the right-hand derivatives, 0^_^ and the left-hand derivatives, 0^
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defined by
*\

x ->o+ x

0:*+

»;.

L

lim
X-»0-

X-»0- X*1

(3.20)

, then (3.19) holds automaticallyexist for k «= l,...,n. Of course, if S c

for each 0. in 5) : if 3) c <5f, , then we should say that a function 0. in S
* c c h,p * c

is also in ® c if and only if (3.19) and (3.20) hold after suitable alteration

of 0^ on a set of measure zero. For the Q!-retardation of 0 , there hold the

relations

0
(ay
*+ 0.

(a)'
*- C< , 0,(a)" ar0" etc. (3.21)

It follows from Theorems 10 and 11 of [1971, ll that, as a consequence of

(2.10) and (2.13), we have here the following supplement to Theorem 1.
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Theorem 2 (retardation theorem for fields with one-sided derivatives).

If 3 is a tame function of type n, with n > 2, then for each 0. in 3D with 0° = c,

(3.22)

where

fo(«2) if n = 2,
(3.23)

(QT) if n > 3;

P(')> y(') are as in Theorem 1; 0(.) and n(-) are also continuous

functions determined by 3; #(') is (n-1)- and JI(-) ̂s_ (n-2)-times

differentiable.

Let ey, £ be again a fixed orthonormal basis in V, and let X

be the following function on V:

(X, if Xe[0,«0,
X(Xe^+ ie ) = ) (3.24)

X ^ | 0 , if X6(-~,0).

The new visual functions occurring in (3.22), ©(•) and rt(-), are

determined by 3 through the relations

e(c) = 63 IXJ,
C + ' (3.25)

which, like (3.11), hold for each c > 0. By the isotropy of Q (i.e. the
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assumption that (2.13) holds for all orthogonal tensors G), the right-hand

sides in (3.25) are independent of the choice of (ey, e .

By (3.21), the term e(c)(0*!f ~ 0*^) In (3.22) is of order 0(a);

the other terms shown explicitly on the right in (3.22) are 0(0T). Even

if 0^ is only 2-fold regular at x = 0, the remainder a*(a) is o(QT)j if 0 A

is 3-fold regular and 3 is a tame function of type 3, then ctf-(OL) is 0(0r).

Hence, if the response field if/ does not vary rapidly from point to point

and is known to have one-sided, rather than classical, derivatives of

orders 1 and 2, the equation,

ip = g + (3(^)^' + "y(ip)hpif\ + 9(^)1 V'l "*• rt (VOll'̂ 'll ) (3*26)

generalizes (3.18) and holds as an approximation to the basic constitutive

equation (2.4); here [JV''J] is the "jump" in the first derivative of ty, (̂ ")

is the "mean value" of the second derivative, and if/' is the square of the

"geometric mean" of the first derivative; i.e.

/TI £ M

def

+1 . fright-hand) . . , . , \ T+ I ^, (right-hand
. . V the i, % , . \ f i rst derivative, and I . . I the i. z. , , >
<j'_( \left-hand j \yL\ (left-hand j

second derivative of y/:

= lim r

(3.28)

lim J~
h-»0+ h
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etc. By Theorem 2, if if/ is such that, at each x in E, f is in £> , then

(3.26) gives an approximation to (2.4) that holds to within an error of

order three "in the scale of distance".

Both electrophysiological measurements on the compound eye of

# ##
Limulus and psychophysical studies of the visual system of humans ,

"Particularly the studies of Hartline & Ratliff [1954, l] [1957, 3]

[1958, 2); see also [1959, 5l.

////
Starting with the work of Mach [1865, l] [1866, l] [1868, l] and

continuing to modern measurements of spatial transfer functions and

thresholds of contrast for periodic patterns; cf. Schade [1956, 2],

Campbell & Green [1965, l], Davidson [1968, 2], and the monographs

[1965, 2] [1970, 1].

suggest that the primary effect of lateral interaction in vision is

inhibition rather than excitation, more precisely, that for each c,

the linear functional 63 is negative semi-definite in the sense that,

for each 0^ in «Zh (or

^(v) > 0 for all v in V = > 63 [0j < 0. (3.29) i

!

It further appears that for humans and also for Limulus (when c is not i

I
too small), (3.29) should be strengthened to !

j

0*(v) > 0 for all v in V, ||0j| * 0, = > 63 (#*) < 0, (3.30) ic 1/
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where ||-|| stands for ||'||. or IHL, as appropriate. In view of (3.10)2,

(3.11)2, (3.24), and (3.25)^ the assertion (3.30) yields

7(c) < 0, e(c) < o. (3.31)

The inequalities (3.31) are clearly compatible with the phenomena

called "Mach bands". For example, from (3.26) and (3.31) one may conclude

that for each c > 0 there exists a_ positive number 6 = 6(c) such that

when e and ip are continuous a_t x with ^(x) - c, with iLV'Jl ^ 6(c) (a£ x),

r and with either ̂ '(x) a 0 or |»'(x) • 0, then at. x the following implications

hold:

rr -n

> 0 —> V < e ,

0,

(if,") < 0, []>'] < 0 > €,

<o

(3.32)

indeed, one may take 6(c) • ^rk (6(c) • » if «(c) » o\ I shall

discuss the theory of Mach bands in detail in a future article.

The electrophysiological data of Hartline & Ratliff [1957, 3l

[1958, l\ indicate that, for the compound eye of Limulus, 6 3 is

negative semi-definite, i.e. that for each c > 0 and for each 0. in the

domain of 6 3 ,

6 3ct0j < 0. (3.33)
i
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It follows from (3.11) 1 and (3.25) 2 that the relation (3.33) implies

p(c) < 0, it(c) < 0. (3.34)

I know of no conclusive evidence, however, indicating that

(3.33) holds in general in human vision. In fact, some data obtained by

JL
Fiorentini & Radici [1957, l\" for the subjective brightness experienced

•....• On Anisotropic Visual Systems

Theorem 2, which justifies the asymptotic forms (3.18), (3.26)

of the constitutive equation (2.4), applies, of course, to fields which

vary in only the x-direction. To prove Theorem 2, one does not need to

assume that 3 is a n isotropic functional. For the validity of (3.22) and

its consequences (3.18), (3.26), it suffices that the symmetry group of 3

"See Figure 2.12 of Ratliff's survey [1965, 2, p. 58].

by human observers of Mach patterns, suggest that «(c) is positive, at
I

least for some observers under, perhaps, special conditions; these data \

are, however, compatible with (3.31). Of course, neither the inequality •

(3.33) nor its consequences (3.34) are essential to the present theory.
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contain the central inversion, i.e. that the identity (2.13) hold when

G = g, where

Qv = -v, for all veV. (3.35)

However, under this assumption (which is weaker than the assertion that

(2.13) hold for all G in &), the coefficients &(&), 7(^0, G(VO, rc(̂ ) in

(3.26) and (3.18) depend on the inclination of the x-axis. To give

definite formulae for these coefficients, let e,,, e be an orthononnal

basis with £ Y pointing in the x-direction, let X be as in (3.24), and

put

If (2.13) holds only for G = jg, the relations (3.11) must be replaced by"

#,Cf. Theorem 11 of [1971, ll.

(3.37)
1 0 0 0 1

7(c)

9 and A are given again by the formulae (3.25), and there is no argument

to show that the right-hand sides of (3.37) and (3.25) are independent of
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4. Solutions of the Approximating Field Equation

If the response field i// is twice differentiate, the basic

constitutive equation (2.4) is approximated by the second-order partial

differential equation (3.15), which, in turn, reduces to the ordinary

differential equation (3.18) when ty varies only in the x-direction.

It is clear that, in the theory of (3.15)-(3.18), specification

of the excitation field alone in a region does not determine the response

field in that region. In particular, when € is given as a function of x

on an interval of the form I = (0,X), 0 < X < <», and it is assumed that

f is also a function of x for x in I, then (3.15) reduces to (3.18) on I,

and, clearly, one cannot expect if/ to be determined on this interval unless

some information is given about the behavior of ip near the boundary of I.

To determine ip on I, one may, for example, specify ^(0+) and ^'(0+), the

limiting values of ty and ty' as x approaches zero from the right.

"If, in addition to V(°+)> o n e attempts to specify ^(X-), instead of ^

then the problem of determining if/ on I, given e on I, becomes a non-linear

"two-point problem" which does not always have a unique solution.

In this section I should like to discuss, in a preliminary way,

the theory of equation (3.18), assuming that neither € nor if/ varies greatly
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on I, so that P and 7 may be treated as constants. Thus, here we are

concerned with the second-order non-linear differential equation

Tp = € + P^'2 + "fl/**, f - #(x), xe(0,X). (4.1)

So as to have a non-trivial theory, let us assume that neither P nor 7 is

zero, and, in accord with the expectation that the lateral interaction is

an "inhibition of response", let us choose 7 negative [see (3.29)-(3.31)].

Thus,

N O , 7 < 0. (4.2)

By inverse methods one easily obtains some special solutions of

(4.1) corresponding to particular choices for the field e. A few of these

special solutions may be worth mentioning, for they appear to provide

methods of determining P and 7.

First, it is clear that if e is a linear function, i.e.,

e(x) = A + Bx, (4.3)

then (4.1) has a linear solution for i// which has the same slope as € but

j !•£,_ J (downward*^ , *. lali»2 ._ o . /negative) ,, .is shifted < , \ by the amount P B if P is J . . V: that is(.upward J J '̂ ' K ^positive)'

V(x) - A + PB2 + Bx. (4.4)

Of course, the solution (4.4) is not the only solution of (4.1) corre-

sponding to (4.3), but it is the only such linear solution. Hence, on



31.

comparing the "perceived brightness" ty of several linear intensity

patterns with different slopes B, if one finds that f varies linearly

2
with x, then, at each fixed x, f should be a linear function of B , and

2
the slope of a plot of if/ versus B , with A in (4.3) held fixed, equals

the parameter p. [More generally, it follows from (4.1) and

(4.2) that, for 4 j P, whenever if/" is zero at a point x, ^(x)

lies (be°oWl
 e(x> by t h e amount

Second, one may ask which excitation fields e give response

fields f that vary sinusoidally with x. It is readily verified that to

have

^(x) = a + b sin o>x, (4.5)

one must have

with

e (x) = A + B sin CJDX + C cos 2oox (4.6)

A

B

C

03

= b(l+7o3),

_ I 6b2co2

2

(4.7)

Furthermore, whenever € has the form (4.6) with

a 2r>2
POD B

(4.8)
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among the solutions of (4.1) is one of the form (4.5) with

a = A + C,

B
2 '

1 + 7a>

It follows from (4.6) and (4.7) that observation of a response field if/

of the simple sinusoidal form (4.5) implies that the excitation field e

is approximately of the same form, if and only if |c| « |B| in (4.6),

that is, if and only if gbcu2 7o>2|. (4.10)

It is clear that (4.10) holds, in particular, in the limit of small co,

and, in view of Theorem 1, one expects (4.1) to hold with good accuracy

in this limit.

It appears from this that for small 0) one may identify b/B with

#
the type of transfer function F measured for human subjects by Davidson

*See [1970, 1, Chapter 12] where the term "modulation transfer function"

is used.

[1968, 2l; hence, for such a transfer function,

F(a>) = 1—T + O(co4) - 1 - 7a>2 + 0(a>4). (4.11)

Of course, that we here have F(0) = 1 is a consequence of the definition

(2.2) for e; this definition requires that € = f when ip is spatially
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constant. Davidson uses different units for the excitation, and in his T

His use of intensity fields of the form i == io exp{c sin cox) is, however, >

consistent with excitation fields e of the form A + B sin cox, if (as ;

seems in accord with experience) the response to nearly uniform fields

varies as the logarithm of the intensity i. i

i

units F(0) is much less than 1. The relation (4.11) states that, for j

2 !

small co, F(co) should increase as co with the limiting slope of a plot of J

2
F versus co equal to -7. Thus, in principle, it should be possible to

i

determine 7 experimentally. [Davidson found that the behavior of F at low

spatial frequencies varied with the subject tested; one subject showed

an (approximately) linear dependence of F on co. Clearly, more experimental

work is called for.]

If one takes the equations (4.6)-(4.9) seriously for values of

co of the order 7-1/7, then one is led to the conclusion that the threshold

of contrasr^at which a person perceives the presence of a periodic pattern

""Michelson [1927, l] defined the contrast of a grating to be the difference

between the maximum and minimum luminance divided by twice the mean

luminance. Schade [1956, 2], Campbell & Green [1965, l], and Campbell

& Robson [1968, l], have devised methods of experimentally determining

Schade's contrast sensitivity function, which gives the reciprocal of

the threshold of contrast for perceiving the presence of a periodic

grating pattern as a function of the spatial frequency of the pattern.
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A should be a minimum at a spatial frequency near T-T/7. These results

I would also indicate that for spatial frequencies co near the "critical

i frequency", v-l/Y, it should be difficult for an observer to judge,

| within a factor of two, the "true frequency" of a periodic excitation

field, even if the field describes a pattern of high contrast: for such rf

frequencies, C/B is large, and the response field (4.5) differs in shape ]

from the excitation field (4.6). It is, however, dangerous to draw such |
t

conclusions from formulae which rest on Theorem 1 and are, therefore, •

valid only for low spatial frequencies. j
v-

The equation (3.18) implies that if, for xe (-«>,<»), the response

field ^ has the form

A + | $ 2 5 (4.12)

with <t>_ the second derivative of the error integral,A i.e.

2 , 2 dV
<f> (x) = - z e ~ X , *?(x) = ^ e"X , * (x) = — ~ , (4.13)

then e must have the form

6 = if - p^'2 - 7^" - A + i-fo2- P<D
2 -7* 4) . (4.14)

Assuming, as we have been doing in this section, that 7 and P are constant,
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and choosing the values 7 =-10 and p =-10 for these visual parameters,

_ _

If x is measured in degrees, then 7 has the dimension of degrees . If

-1 i—
-7 = 10 , then the quantity x/V-7 equals 1 when x is approximately 19'

(i.e70.316°) or when x equals the visual angle subteinded by a marker of

length 0.32 cm viewed at a distance of 58 cm. Of course, the magnitude

of (3 depends on the units used for ty (and e).

one may easily draw graphs of response field (4.12) and the corresponding

excitation field (4.14). Such graphs (with A put equal to 1) are shown

""The tables of Jahnke and Emde [1945, l] facilitate the calculations.

in Figure 1. Note that here the primary effect of lateral inhibition is

to produce, as expected, an intensification of contrast; that is the

response field shows a higher maximum and lower minimum than the

excitation field . However, the maximum and the minimum in Tp are

displaced slightly from the corresponding extrema in c.

The extrema in response are here closer together than those in excitation.

Perhaps an experimentor will find it possible to construct "optical

illusions" which make use of such theoretically predicted shifts in the

locations of extrema upon passage from luminance to subjective brightness .'tm

In a subsequent article I shall discuss this point more fully and give

solutions of (3.15) which bear on the demonstrations of O'Brien [1958, 3]

and Cornsweet [1970, 1, page 274].



Figure 1. Dashed curve: graph of the response field (4.12) with A = 1.

Solid curve: graph of the corresponding excitation field (4.14),

-1 -2
assuming 7 =-10 and P =-10 .
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For each number D, let & be the class of excitation fields €

for which there exist response fields ijj such that

e - f = D, (4.15)

i.e. for which (4.1) has solutions if/ which differ from e by a constant

shift downward, equal to D. It is clear that, if £D is not positive, linear fields

(4.3) are in E , but <£ contains less trivial fields.

It follows from (4.1) and (4.15) that the elements € of £ obey

the equation

-Pe'2 -7e" = D. (4.16)

Putting now

P , x 17 Z , E = § D, (4.17)
7-7 "

one may write (4.16) in the form

£' + £" = E. (4.18)

If E is positive, the solutions of this equation are

log denotes the natural logarithm (with base e).

= c ±7iX , if £'(0+)2 = E, (4.19a)

= c + log sinh(±i/EX + <5), if £'(0+) > E, (4.19b)

= c + log cosh(±v^X+6), if £'((H-)2 < E. (4.19c)
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When E is negative, for each choice of £'(0+), (4.18) has a solution of

the form

= c + log sin(±/^EX+6), 6e[0,rt). (4.20)

When E is zero, (4.18) has the solutions

coo

log(X+6)

(4.21a)

(4.21b)

In (4.19)-(4.21), c and 6 are constants.

The following proposition follows immediately from (4.17), and

(4.19)-(4.21): The linear excitation field (4.3) is in £_, if and only
_ _ — — — . _ — _ _ _ _ _ — _ _ _ _ _ _ _ _ u • — —

2
if, PD < 0 and e ' (0+) = -D/P, in which case,

B = V-D/P, A = e(0+). (4.22)

If PD < 0, and e'(0+) > -D/P, the field

e(x) = A + -J- log sinhm ± x/-PD/72V

B = ±ctnh

(4.23)

A = e(0+) - | log sinh B

is inE D. If PD < 0 and e'(0+) < -D/P, then the field

e(x) = A + ^ log cosh^B ± x/-pD/7 2 ) ,

B = ±tanh

A = e (0+) - ± log cosh B
P

(4.24)
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is. in £ . If £D > 0, then an excitation field e is in E_ if and only if

—— u — — — — — — — — __ _ u ___ ____ -—

e (x) = A + £ log

B = i c t n ^ ^ - ^ - L \ (4.25)

A = e(0+) - -g log sinB.

If D = 0, then 6 is jji £ = <£_ if and only if either the equation (4.3)

holds with B = €'(0+) = 0, or e'(0+) 4 0 and e has the form

B =

£(x) = A + | log(B±x/-/o'),

A = e(O-t-) - ̂  log B.+ y-

(4.26)

The fields (4.3), (4.23)-(4.26) are the only excitation fields for which

(4.1) has a_ solution ty obeying (4.15) with D constant.

The proposition just given leads naturally to the following

general problem: Given 7t , a region in E, and given f, a real-valued

function on 7c, find SS(Ttjf), the set of all twice-differentiable response

fields ifl on l£ which obey (3.15) with

iKx)-e(x) = f(x) for all x e ^ . (4.27)

When P and 7 are constants, independent of i//, this problem of finding the

response fields which differ from the corresponding excitation fields by
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a prescribed function can be reduced to the problem of solving a linear

second-order differential equation. This is the content of the following

Remark. Let p and 7 be_ constants obeying (4. 12-)-, ft, an open subset of E,

xo a_ fixed point in E, and 77 the image in E of_ fj under the linear transformation

y = x0 + ~ £ - . (4.28)

Suppose f is_ a_ prescribed real-valued function on

A twice-differentiable real-valued function if/ on % obeys the equation

f(x) - p(v^(x)) 2 + 7A^(x) (4.29)

[i.e. is in S3(/x :f)], if and only if the positive function u, defined by

u(y) = exp|^(/=7(y-x o)+x o)|, (4.30)

obeys, at each y in ~?c > the equation

Au(y) + g(y)u(y) = 0 (4.31)

with

7 f(l/Z^^"2°)+S»)' (4>32)

To verify the remark, one need merely note that if u is defined

on f( by (4.30), then u is twice-differentiable, and, whenever x and y
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are related by (4.28),

Au(y) = -[(p2W)2+^ A^e^77] = -^[pC^)2+ W j u(y). (4.33)

Let g be as in (4.32). Clearly (4.29) and (4.33) imply (4.31).

Furthermore, as u is, by (4.30), never zero, the relations (4.31) and

(4.33) imply (4.29).
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5. On Infinitesimal Variations

In this section I assume that 3 is a tame function of type

n > 2 and that, for each c > 0, the domain S of 3(-;c) is a set of the

form (2.9) with 1 < p < °°. Thus, for some p in [l,«°) and some positive

2
continuous function h obeying (2.5) with r > 2+ — , 5) is, for each c,

a subset of *£,,

If X is in S) , then, by (2.11), +
* C "A - C1

\

(5.1)

It follows from the fundamental representation theorem for continuous

linear functionals on function spaces of type L , that for each c there

*F. Riesz [1910, 1, §11]. See also Riesz & Sz.-Nagy [1955, 2, p. 78] .

exists a real-valued, measurable function K on V such that

J Kc(v)0*(v)dv, for every) p; (5.2)

if 1 < p < oo, then
K (v)
c ~ dv < oo with q = r »'

p - 1
(5.3)

if p = 1, then

ess sup
V

Kc(v)
< 00. (5.4)
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It is a consequence of (2.3> and (5.1) that, for each G in V,

63ct<VG] = 63ct0j, f o r 0 ^ e ^ p , (5.5)

which, by (5.2), implies that K obeys, for each G in ff, the identity

K (v) - K (Gv), for all veV. (5.6)

However, this can be the case only if there exists a function k (•) on

tO,») such that

Kc(v) = kc(|v|), for all veV. (5.7)

Now, let if/ be a response field, let |a be a positive number, and

suppose that

tM l ) - ^ (5.8)
E

is finite. Then for each x in E,

where, by (2.6) and (2.A) (with r > 2 + | ) ,

||̂  — |i ||, < Bi, (5.9)

5

B - P/ / h(|v|)Pdv < oo. (5.10)

(5.0 ^ V
Hence (2.4) and (5.1Q-) yield the following relation between ^ and the

excitation field € determined by if/:

*(x) = 6(x) + 63 [̂  - n+l +53(n+iH)(V(x)-u) + 0(L2), (5.11)
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where

t , def
(5.12)

Now, if ^(x) = b for all x, then, by the definition of 6, we must have

e(x) = b, and, therefore, by (5.11), 3 must be such that

4. 4- +

63 tb — u J + oQ(ix ;u.)(b —|a) = 0. (5.13)
l-t

This equation, which also follows directly from (2.10), yields, by (5.2)

and (5.7),

v (5.IM;

Employing (2.3), (5.2), (5.7), and (5.4"), one may write (5.11) in the form

V(x) = €(x) + /"k^(|v|)(^(x+v)-^(x))dv + 0(t
2). (5.15)V

The integral over V appearing here is 0(t), and hence if V'(x) is close

to the constant p. for all x, the equation obtained by striking out the

term 0(t2) in (5.15), i.e.

*(x) - e(x) +y[^z)-^(x)]k(a(|z-x|)dz, (5.16)
E

approximates the basic constitutive equation (2.4).

Linear equations related to (5.16) have been studied by

Davidson [1968, 2] and Ratliff, Knight, & Graham [1969, 2J; of course, in

5
the present theory (5.1^) holds only for infinitesimal variations from a

uniform response field u..
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When 3 and (j, are specified, the function k (•) in (5.1£) is

determined almost everywhere on [0,»). The relation (3.29) is here

equivalent to the assertion that

k (s) < 0 for almost all s > 0, (5.17)

while (3.30) is equivalent to

k (s) < 0 for almost all s > 0. (5.18)

For fields which vary only in the x-direction, (5.1$) becomes

(x) + T k (|s|)[V(x+s)-^(x)]ds + 0(l2), (5.19)
-00

with

/

°° / 2 2 i\
k ([a + T] l2)dTi, a > o, c > 0.
cV ) -kc(a) « / k,,([cf+rf J2)dT), a > 0, c > 0. (5.20)

The functions 7(0 and /(•) occurring in Theorem 2 are given by (3.25)..

and (3.11)_, which equations can here be written

r°° 2-
7(c) = / a kc(a)da, (5.21)

0
00r0

/
0

-

akc(a)da. (5.22)0

As an application of (5.19), suppose that ip has the form

V(x) = n + b sinosc (5.23)

with |i > 0 and 0 < b < |a. Then (5.8) yields I = b, and (5.19)
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becomes

H + b sin cox = e
- o o

that i s ,

r°°- 2
(x) + b k (| s | ) [sin(cox+cos) - sin(cox) Jds + 0(b ) ; (5.24)

e(x) = |a + b[l+k (0)-k (co)] sin cox - 0(b2), (5.25)

where

k (co) = 2/ k (a) cos coa da, (5.26)

0
and

£ (0) = 2/ k (a)da = /k (|v|)dv = lim k(co). (5.27)

0 V a w

Conversely, if it is known that e has the form

e(x) = n + B sin cnx, (5.28)

2
then, under neglect of terms 0(b ), (5.19) has a solution of the form

(5.2 3) with

jj- = F (CD) = i—^ . (5.29)
B ^ 1+k (0)-k (co)

The function F may be called the "spatial transfer function for

infinitesimal variations about |a". If we use primes to denote the

derivatives of k , then, in view of (5.26) and (5.21), we have

k^(0) = 0, k*(0) = 27(u); (5.30)
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indeed,

k (OD) k.(O)

and (5.3$-)0 yields

F (a>) =

(5.31)

(5.32)

in agreement with (4.11).

Employing the number k (0) of (5.27), one may write the general

relation (5.15) in the form

e(x) = 0(L2). (5.33)

The function k occurring here, and in (5.15)-(5.20), is a Hankel transform

of the function k in (5.26)-(5.31):

Va)
2«J

0

(5.34)

The linear theory derived in this section by neglecting terms

2
0(L ) has a different range of applicability than the asymptotic theory

obtained in Section 3 as a consequence of Theorems 1 and 2.

A theory based on (5.16) is valid only for response fields i

which are infinites imally close, for all x, to a uniform field \i. In

deriving (5.16) one neglects the term in (5.1) arising from the second

Frechet-derivative 3, of 6 \$c- This second derivative determines the

quantities f3 and rt occurring in the theory of Section 3, and knowledge

of the function k in (5.16) does not yield p and rt. I
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The field equations (3.15) and (3.26), on the other hand, as

they are derived from retardation theorems, are valid only for response

fields which do not vary rapidly from point to point in E, albeit these

equations do not, in principle, require that ^/remain close to a constant

field for all x in ZJ \

In Section 4 it is assumed, however, that if/ remains close to a constant

on a subregion of the visual field; this assumption permits one to treat

P and If as constants.

In summary: For fields that are four-times differentiable, the

non-linear equation (3.15) is valid to within an error of order four in OC, the

"scale of distance", while (5.16) is, in general, valid to within an error

of order two in t, the "variation from a constant field".
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