/cs

M NI MAL- PROGRAM COVPLEXI TY
OF PSEUDO- RECURSI VE AND
PSEUDO- RANDOM SEQUENCES

by
R. P. Daley

Report 71-28

May, 1971

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY

80. Introduction

Throughout the history of the theory of recursive
functions diverse hierarchies have been proposed in order
to study and classify both constructive and non-constructive
objects. Recently, attenpts to classify recursive functions
according to their conplexity of conputation have exposed
many i nportant aspects of the relationship between these
functions and the devices used to conpute them, The objects
under investigation in this work will be finite and infinite
bi nary sequences. The infinite binary sequences, which one
may regard as the characteristic functions of sets, provide
a neans of studying the limting behavior of finite sequences
as their length increases. Several m nimal-program conplexity
nmeasures have been proposed (see Kol nogorov [6,7] Chaitin [1,2]
Lovel and [8,9]) which in a certain sense neasure the information
content of finite, and as a limt, infinite binary sequences.
Recur si ve sequences are known to have extrenely |ow m ni mal -
program conpl exity and random sequences (e.g. in the sequentia
test sense of Martin-L6T) high conplexity. In this paper the
m ni mal - program conpl exity of several formulations of pseudo-
recursive sequence (a pseudo-recursive sequence is one which
I n sone sense approximtes a recursive sequence) and of pseudo-
random sequence. |ldeally, one would hope that the pseudo-
recursive sequences would have relatively |ow m ninmal -program
bonplexity and the pseudo-random sequences relatively high

conplexity. However, such is not the case for these formulations

suggesting that these are not adequate notions of pseudo-
recursive or pseudo-random sequence at |l east with regard
to this conplexity neasure. This wll be discussed further
In a subsequent paper entitled "M ni mal-Program Conpl exity of
Sequences with Restricted Resources”, which will deal with
the m ni mal - program conpl exity of sequences when the resources
used for their conputation are restricted.

In section 1 we present the basic definitions for the
m ni mal programconplexity, previous results and some sinple
| emmas which will sinmplify the conmputations in |ater proofs.

In section 2 we study several definitions of pseudo-
recursive sequences and determ ne upperbounds for them-in the
m ni mal - program conpl exity hierarchy. W fornulate two new
definitions of pseudo-recursive sequences, called near re-
cursive and strongly near recursive, and give tight upperbounds
for them Also considered are the al nbst recursive sequences
defined by Vuckovic [16], the recursively approxi mabl e sequences
defined by Rose and U lian [13], and the retraceabl e sequences
defined by Dekker and Myhill [4].

In section 3 we present an exanple of a pseudo-random
sequence with extrenely |ow conplexity and show that it is
possi ble to nake a di stinction anong sone types of pseudo-

random sequences within the m ni mal -program conpl exity hierarchy.

81. M nimal ProgramConplexity Hierarchy

The m nimal program conplexity was originally proposed
bot h by Kol nogorov [6,7] and Chaitin [1,2], If Xx 1is an
infinite binary sequence then we denote by x(n) the nth
menber of x and by x" the initial segnment of x of
length n, i.e. x"=x(l)...x(n). If p is a string
(finite sequence) then we denote by |p| the length of p

(i.e. number of synbols of p). W give now Kol nmogorov's

ori gi nal definition.

KA (x")

|IN.3p(lpl =1 and G(p) = x"), where G
is an algorithm (conputing device) and p

is a binary string (encoding of sonme program.

00, if no such p exists.

One may regard C as a digital conputer and p a conputer
program such that when p is runon G the result is x¥ i.e.
p contains the necessary information and procedure for the
computation of x" on G Thus intuitively, Kg(x“) neasur es
the informati on needed to conpute x ™ Kol onbgor ov al so

i ntroduced the notion of conditional conpl exitys whi ch nmeasures

the information (other than n) needed to conpute x".

A(xAn) = [i*.3p(lpl =1 and G(p,n) =x"),
where G is an algorithmand p
is a binary string.

= 00, if no such p exists.

For our investigation we will use a fornulation of
m ni mal - program conpl exity proposed by Loveland (see [8,9])

called the uniform m ninal -proaram conplexity and which is

intended to insure that the only information provided by n
to the'progran1which conputes x" is that n is the length

of x".

A(x~n) = [it.IK(lpl =1 and VigEn.G(p,i) =x'),
where G is an algorithm p is a binary

string and x' is the first i bits
of x".
=00, if no such p exists.

One can show by the sanme nethod that Kol nobgorov used for
his formulation of m ninmal programconplexity that there is
Ill

a "universa algorithm G such that for any other algorithm (3

there is a constant ¢ such that VXVn.ICé>@;n) <£ Kg(x”;n) + C,
Therefore the m nimal - program conplexity of a sequence relative
to two universal algorithnms cannot differ by nore than a
constant. W fix a universal algorithm G for the remainder

of this investigation and in so doing will delete the subscript,,
Briefly, K(x";n) is the length of a shortest programwhich

conput es x T, given i, for each i £ n.

11

For each x by considering the programwhich has x"

stored in its finite control and which prints out x{
given i, one easily shows that every sequence x has a
wel | defined mnimal-programconplexity for each of its initia

segment s.

We can associate in a natural way with each infinite
bi nary sequence x a set of positive natural nunbers X
by the condition n€X4="x(n) =1. W say that a sequence x
satisfies a property P of sets if and only if the set X
associated with x satisfies P. For exanple, a seguence X
is recursive (recursively enunerable, etc.) if and only if

the set X 1is recursive (recursively enunerable, etc.).
00 0o

By "3n." and "Vn." we nean "there exist infinitely many n€N

such that" and "for all but finitely many neN' respectively.

If f : N->NU {0} then we define the conplexity class

nanmed by f,
00
df] = {x|Vn.K(x"7n) £ f(n))
Since we will consider classes naned by functions we
2
w |l make use of A notation. For exanple, [An.n] is the
nanme of the function f such that f(n) = n . W wll denote

the greatest integer ~ n by [n].

W& now present sone well known properties of the m ninmal-

program conpl exi ty hierarchy.

Theorem 1.1; 300 Vx.xeC[An.n+c0].

Theorem 1.2; x is recursive if and only if 3cX€C[An.c],

Mor eover, Lovel and has constructed a separating

function E,

Theorem 1.3: x is recursive if and only if xeC[E]-®

Theorem 1.4: If x is recursively enunerable then there

is a constant c¢ such that xeC[An.log2(n)+c].

Since there are less than 2n+1 prograns of length <£ n
it follows that the nunber of sequences x® for which
K(x";n) >n - c is greater than (1-2°%') « 2", It therefore
follows that {x|3c.x*JAn.n-c]} 1is a set of neasure 1.
Martin-LOf [11] has shown that such sequences pass al

constructive stochastic tests for randommess.

Theorem 1.5: If 3c.x*JAn.n-c] then x 1is random (in

the sequential test sense of Martin-Lot [11]).

In particular these sequences satisfy the strong |aw

of |arge nunbers (Iin1(4}S (x)) = o3 , Where S (x) = nunber

- »00 n n z n
of I's in x") and the law of the iterated logarithm
Sn(x) -2 1 -
(liﬂb§Bp(n1|og Iogrm) =—). Lovel and and Martin-Lof have

~

shown that random sequences necessarily have extrenely high

conpl exi ty,

Theorem 1.6; If x is randomin the sequential test sense

of Martin-L6f then for every non-decreasi ng unbounded

total recursive function £, x"(JAn.n-f(n)] .

Lovel and and Kol nogorov have proposed as a definition of
randommess that a sequence x is randomif and only if
3c.XxEC[An.n-c]. Schnorr [14] has shown that there cannot
exist a function f which separates the random sequences

fromthe non-random sequences,

Theorem 1.7: If f is any unbounded non-decreasing function

then there is a sequence x such that x"C An.n-f(n)]
and whi ch does not satisfy the strong |aw of |arge

nunbers.

The foregoing results are very pleasing inasnmuch as
effectively conputable sequences are characterized by the
fact that they require a mniml anount of information for
their conputation and random sequences a nmaxi mal anount.

Many of the proofs of subsequent theorens will involve
showi ng that the initial segnment of sone sequence X 1S
conputabl e fromcertain "pieces! of information. In order
to calculate K(x";n) t hese several pieces of information
nmust be encoded into a single binary string. The follow ng

| emmas are concerned with calculating the length of this

binary string in terns of the lengths of the original
information strings. W make this precise in the follow ng

manner. Let N denote the set of positive natural nunbers,

X denote the set of all binary strings and let | NXN- A X

and s : N- N W say that the infinite binary string x
Is uniformy conputable from I in s pieces if and only
if there is an algorithm ft such that for every n,
Vi<;nJd(l(njl)~(n,2)", .. (n,s(n)), i) :xl., where *
is the concatenation operation and the synbol $ (intended
as a separating synbol) belongs to the al phabet of the

algorithm ft. We will also say in this case that x" is

uniformy conputable from I(n,1), .., I(n"s(n)) .

Lemma 1.8; If x is uniformy conputable from | in
one piece (i.e. s(n) =1 for each n) then there is
a constant c¢ such that Vn.K(x"n) <. |I(n,)] + c.

Proof; For sone algorithmft, Vn.Kg(x";n) <€ |I(n, 1)]
and so the lemma follows by the universality of C,

3c VxVn. Kj.:: (x";n) <; Kg(x";n) +c.

Lemma_1.9; If x is uniformy conputable from | in s
pi eces then there is a constant ¢ such that

s(n)-1
Vn.K(x";n) £ 2- £ (JM(nyi)|+) + |[I(n,s(n))| +c.
i =l

Proof: Let (B be an algorithmsuch that for every T
Vi£n. B(I(n,1)*O...*...*I(n,s(n)),i) = x*.
Define 1 = 117 0 = 00 and for an arbitrary binary

string 1T = "eseon” where at =0 or ax =1,

T =rHCf-T*...*O~h Define the information function

T — e ———— e
Il(n,l) = I{n,l)*0Ll*I{n,2)*0l*...*XI(n,s(n)-1)*10*I(n,s(n)).

Clearly™ there exists an algorithm R, such t hat
for every n, \/1<§n.RJ_(Irjl_(n"1)>i) =x.1. The | emma

now follows fromLemma 1.8 and the fact that

|Il(n,1)] = 2-?§§)_1(|I(n,i)|+1) + |I(n,s(n))
o=

Lenma 1, 10: 3cVxVn.K(x";n) ~K(x"| n) + 2*log(n) + c.

Proof: Let | be such that 1(n3l) = n and
11(n2) | =Kx"n) and GI(n 2),n) = xu

Clearly x" is uniformy conputable from I(n,I)

and 1(n"2).

10

82. Pseudo- Recursi ve Sequences

Theorem 1,3 and Theorem 1.5 in essence describe the
sequences at the extrene |ow and high ends of the m nimal -
program conpl exi ty hierarchy. However, only Theorem 1.4
gives any indication of the types of sequences in the
m ddl e region of the hierarchy. In this section an attenpt
is made to fornmulate a definition of pseudo-recursive sequence
and to characterize such sequences in terns of the hierarchy.
In the process we will encounter sequences whose conplexity
-falls into the internediate regions of the hierarchy.

If x and y are sequences then the sequence x = vy
is defined by the condition, (x=y) (n) =12x(n) =y(n) ; X

by "x(n) =1 - x(n). If x is a binary sequence then we
n n
define S (X = £ x(i), the nunber of 1's occurring in x .

n

The ||n1t|ng_re&at|ve Trequency of a sequence X 'S dgfined
by 3$(x) = lim-S (x). If x and y are binary strings
t hen we mﬁit2:o%<-<:y for MiE|x] (x(i) =y(i)), i.e. y 1is
an extension of x. Also if y denotes a string then by "|j,y."
we nean "the least string y wth respect to the |exicographical
ordering of binary strings such that'. By "#j's." we will
mean "the nunber of integers | such that".
One criterion for a sequence to be pseudo-recursive is
that it nmust eventually resenble sone recursive sequence.

We make the follow ng definition which was originally sug-

gested by Lovel and.

Definition 2.1: W say that a sequence x is near

recursive (n.r.) if and only if there exists a

recursive sequence r such that $(x=r) = 1.

Near recursive sequences have the nice closure property
that if x 1is near recursive and y is such that $(x=y) =

then y is near recursive.

Proposition 2ql: If x is a sequence for which dXx =0

then for every G > 0, xeC[An.e-n].

Proof: For any sequence X, X' can be conput ed by
specifying its position (with respect to the

| exi cographi cal ordering) anong all sequences of

length n wth exactly sn(x) I's. It then follows

by Lemma 1¢9 t hat

00 n. n

Vn.K(x ;n) £ log(sE(x)) + 2-log(sn(x)) + 2-log(n) + c,
for sone constant c.

Suppose $(x) = 0 and let e > 0. Choose m

such that (m2)*2""™ <, Since $(x) = 0,

00 -m 00 n -m

VnoSn(x) £ 2 -n and also Vn. log(Sy(x)) £ (mtl) «2 <n,
00 n o

Thus, Vn.K(x";n) £ (m2)-2- - n” e»n.

Jheorem 2. 2: If x 1is near recursive then for every e > o0
xeCt An. e-n] .

Proof: Since x is n.r. there is a recursive r such

that <£(x=r) = 1 and consequently 3>(x*r) = 0.

1

11

12

Clearly, x 1is uniformy conputable from T and x =r
00 ¥l I =N

so we have Vn.K(x ;n) 2~ K((x=7) ;n) + 2K"r :;n) + cl.

By Proposition 2.1 and Theorem 1.2 it follows that for
00 n .

every e >0 Vn.K(x ;n) £ e»n, i.e. for every e >0

xeC[An. e*n] .

Theorem 2.2 provides an upperbound for the class of
near recursive sequences in the mnimal-program conplexity
hierarchy. Since in our definition of near recursive sequence
we did not specify how fast a near recursive sequence mnust
approach some recursive sequence we are able to obtain the
following result showi ng that the upperbound of Theorem 2.2
is a tight upperbound. W first define the set of functions

£ = ff|f is unbounded, non-decreasing, total

recursive function}

whi ch represents the set of effective nanes for the conplexity

cl asses.

3
Theorem 2. 3; If fef£ and lim 8- = 0 then there
n-oo "

exi sts a near recursive sequence Xx such that x"C[f].
Broof.: Let y be a sequence such that y*C[An.n-c]
for sone constant c¢. By Theorem 1.5 y is random
and so $(y) :-ﬁ « W will construct the desired
sequence x from y by adding sufficiently nmany ifs
to y so that $(x) = 1, but at a rate slow enough

to insure that the difference between the conplexity

of x and the conplexity of y wll be small.

13

Let fe& Define g by g(n) = [2~fTnf™" where
m= |ip.n N 2-f (p) . Cearly gel and g(2-f(m) £ J:é%ay .

W define the sequence x as follows: W replace

the nth 1 occurring in the sequence y by g(n) |Ts
and each 0 by one 0. Since g is unbounded,
$(x) =1 and so x is near recursive ($(x=r) = 1,

where r is the recursive sequence of all |'s).

y" is uniformy conputable from xonn: ! SO
that Tn.Kfy~rn) £ K(x"#9(" :n.g(n)) + C, since n-g(n)
is computable from n. Since (ga.K(yn;n) >n - c,

?n.2-f(n) - c - ¢ <Ky M;2-f(n)) - ¢ £K(x"n).

W remark that the class of f's satisfying the hypothesis
of Theorem 2053 contain all the effective bounds which grow
strictly slower than every constant nmultiple of n. Thus
there exist near recursive sequences whose conpl exity approaches
t he upperbound of Theorem 2.2 as closely as can be effectively
measured. The following corollary to Theorem 2.3 makes this

poi nt cl earer.

Corollary 2.4; There is a near recursive sequence X

such that for every' p <1, x~C[An.nP].

+1
Proof: Let f(n) = [rp] and apply Theorem 2. 3.

Because we have placed no restrictions on how fast a

near recursive sequence approaches a recursive sequence we

HONT LIBRARY
CARNEGIE HELLON. GHNERSITY

14

have obtai ned near recursive sequences of rather high conplexity.
We therefore fornmulate a nore restrictive definition of
pseudo-recursive sequence. |If x is a sequence then we

defi ne 1X(n) = position of the nth 1 occurring in x and

OX(n) = position of the nth 0 occurring in x. Thus 1X

enunmerates the menbers of X in increasing order and 9

— X
enunerates the nmenbers of X in increasing order. A

sequence Xx is dense if and only if for every feg&,
00

Vn.9X(n) N f(n). (See Martin [10]).

Definition 2.2; A sequence Xx 1is strongly near recursive

s.n.r. if and only if there is a recursive

sequence r such that x s r is a dense sequence.

Proposition 2.5; Every strongly near recursive sequence

i'S near recursive.

Pr oof ; Let x be s.n.r., then there is a recursive r
cD
such that Vn.9- «n) <" f(n), for every feE£.

Let f(n) = 2" then Sy(x=r) 2" ~ log(n) - c
for sone constant c. Thus <€(x=r) =1 so X

is n.r.

Strongly near recursive sequences have the closure property
that if x is s.n.r. and y is such that x =y is dense

then y is s.n.r.

Briefly, a sequence is strongly near recursive if and
only if it approaches some recursive sequence faster than
can be measured by any recursive function. Because of
this it is possible to obtain a lower upperbound for the
complexity of strongly near recursive sequenées than was

obtainable for near recursive sequences.

Proposition 2.6: If x 1is a dense sequence then for

every fef, xeC[An.f(n)-log(n)].

Proof: We remark first that if x is dense then
for every fe&, #j's(j<n and x(j) = 0) < £(n)

for all but finitely many n. (This can be proved
by considering the "inverse" g of f defined
by g(n) = uj.£(3) > n.)

Let x Dbe dense and let fe&, then by the
above remark, %On.(#j's(j_gn and x(j) = 0) < ﬂir—ll).
Thus we can compute (uniformly) %" by specifying
each j < n for which x(j) = 0. It then follows

@
by Lemma 1.9 that Vn.K(xn;n).g f(n)*log(n).

Theorem 2.7: If x 1is strongly near recursive then

for every fe&, xeC[An.f(n)-log(n)].
The proof is similar to the proof of Theorem 2.2

and so will be omitted.

If we knew that for each dense sequence x that not
@
only erS.Vn(ex(n).2 f(n)) but also that there is a

constant M such that for every fed,

15

16

0\O/n(#j's(f(n) £9 (j) £f(ml)) £M (in other words the

Os of x cannot cluster together in arbitrarily large
groups), then it seens reasonable that we could show t hat

for sone constant c¢, xedAn.c*log(n)]. (e.g. if f(n) = 2"
then the information needed to conpute x" in this case
produces the series,, log(n) + log log(n) + log log log(n) +...)-
Howeverj as the proof of the foll ow ng proposition shows, the
0's of a dense sequence may indeed cluster together in

arbitrarily large groups.

Proposition 2.8; There exists a dense sequence x such

that for every constant c¢ > 0, x*"C[An.c-log(n)].
Proof; Let y be a dense sequence. W will construct
a dense sequence X by regrouping the 0's of y. The
particul ar regrouping we use will enable us to show
that for each constant ¢ > 0 and for infinitely
many n, x" is different fromevery sequence of
length n conputable by a programof length <* ol og(n).
If y is a dense sequence then it can be shown
that there exists a sequence {p.} such that
Pi > P | +J and gy(Pj) ~ APj - 1) >2#Oy(Pj) D+l+1
X is constructed by induction as follows; For
A sLey(FhL) " define x(n) = y(n) .
Suppose we have constructed x" for n <2 9};p.J-I).
There are at nost 2e 27 "109(0y(pPj 33 = 2-9)§p-JP'

prograns of l|ength <M j»l og(%,(pj))« O the other

hand there are R (9 (py) - 9 (p.-1)-k) strings
®—-KA Y J Y J

°V(p1- 1)

of length 9 (p.) which extend x' and

whi ch have exactly | + 1 0's occurring between

Yy J1-—- Yy 1

9 (p. -j) and 9 (p.., alowgf which occur between

Yy 3

9 E%,(l-:}?) and y(PJ[;_k) 2 (9.AP)-9.(p-1)-j)i+

and by our definition of [pj],

(9(Pj) ~ &ytP-D-J)>*"112.9,(p)' so that

there is at |east one string of length 9 (p.) which
9 (p.-1) v
extends x ~ ~ and which has exactly j + 1 0's

occurring between 9Y(p?-l) and 9y(p?) and which is

not conput abl ¢, by, any programof |ength <A j *1og(9 (p.)):
Y 3

9 (P.)
VW define x «* 7 to be the |east such sequence (with
respect to the | exicographical ordering).

It fellows fromour construction that for
every kJ> j~ *CQng) Is different fromevery program
K

Y
of length £ j«log(9 (p.)). Hence, for each
constant ¢ >0, x"CfAn.c-log(n)] .

It can be shown by a straightforward induction
t hat Vn 9 (n) A %((n) so that™ x 1is dense,

Theorem 2.9: There exists a strongly near recursive

sequence x such that for every constant c,
x| [An. c«l og(n)].
Proof; This follows imediately from Proposition 2.8

since every dense sequence is strongly near recursive.

17

18

{(x=x) = x for the recursive sequence r of all |'s).

Theorem 2.9 shows that the upperbound for strongly near
recursive. sequences of Theorem 2.7 is a tight one, that in
fact there are such sequences whose conplexity approaches
that upperbound as closely as can be effectively neasured.

W wi |l now consider another restriction to the definition

of near recursive sequences. The notion of a recursively
appr oxi mabl e function was fornul ated by Rose and U lian [13].
If x 1is a sequence and g : N—N then we define the

sequence xog by (xog) (n) = x(g(n)).

Definition 2.3; A sequence x IS recursively approximble

if and only if for every 1-1 total recursive function ¢
there exists a recursive sequence r such that

$(xog = rog) = 1.

If we take g to be the function g(n) = n we have

i medi at el y»

Proposition 2.10; Every recursively approxi mabl e sequence

i'sS near recursive.

The next theorem shows that recursively approxi mabl e
sequences extend at |least as high into the conplexity hierarchy

as do the strongly near recursive sequences. A set X is

19

cohesive if and only if 1) X is infinite and 2) for every
recursively enunerable set Y either X O0Y is finite

or XflY is finite. A set X is quasi-cohesive if and

only if X is the union of a finite (non-zero) nunber of
cohesive sets. In [13] Rose and U lian showed in essence

t hat every quasi-cohesive sequence is recursively approximabl e.

Proposition 2,11; For every constant ¢ there is a

quasi-cohesive sequence x such that x~C[An.c«log(n)].
Proof: This proof is simlar in many respects to
that of Proposition 2.8. The proof relies strongly
on the follow ng fact about cohesive sets.
Fact; (Dekker and Myhill (See Rogers [12])). Every
infinite set possesses a cohesive subset.

Let ¢ >0 and let y be a dense sequence. W
define the sequence {pj} as foll ows;
Pl = 1

AT W (P>Pj e 2t g (p) - (p-l) > 2-G(p)°

€.

L'+ ¢).

We define a sequence z as follows;
For n <t 9y(p1) we define z(n) =y(n) . Assumng
that we have defined z°Y(Pj) we define sz(PA+1)
to be the | east strihg of length 9y(pj;i) (with
respect to the |exicographical ordering) which extends

© (p.) . . .
zYy A and Which has exactly ¢ + 1 0's occurring

between Q(P-;.1-!) and <Dyﬁp?]f‘ and which is not

conput abl e by any programof length c-10g(9 &p.J;l))-

20

W are guaranteed the existence of such a string by
the fact that there are less than 2*G (P-.i)~

Y Jra
prograns of length < c"log(9Y(F>:|-+JLT)) and that

c
there are kn=o(©\.((p:],.;l_,*) - 9.(%’..;’_!_'_- 1)-k) strings
eV(E’,)

extending z7Y
between ©,(Pj+1- D and ©y(Pj.q1)-

with exactly ¢ + 1 0's occurring

We define the function t(i,j) for each
1£i £¢c+1 and jeN by, t(l,j) = |in(@,(pj.-l) £n”™Q(PR)
and z(n) =0).
t(i+l,j) =]in(t(i,j) <n£%(Pj) 2and zan) =)
Define T = {t(l,j) | jeNt. T is infinite so by
the above stated Fact there is a cohesive subset

of T, \ = ft(l,j) | JENk ¢ N}.

Define T, = {t(2,j)|jeN'}. Simlarly there is a
cohesive subset of T~ T, = {t(2,])]]€N2 c_zN,L},
W thus obtain ¢ + 1 cohesive sets T,,Al - ,‘r‘c+—l.
Defi ne T. = {t(i,j) | JGQ_‘_i}. T:. I S cohesive

si nce Nc_|_,l (_:_N.l for 1 <~c + 1 and every infinite
subset of a cohesive set is cohesive.

Define X = U T. . X being the union of
ide+l U

finitely rfany cohesive sets, is quasi-cohesive. Let. x
be the characteristic sequence of X If jeNc

then X(n) = z(,) for Oy(p"-l) An £ (P))

+1’

so that for infinitely many n, K(X";n) > c-log(n)

and so x"C[An.c*log(n)]. Therefore we have shown

.>)

d
=

that for every constant ¢ >0 there is a quasi-
cohesi ve sequence x such that "x*d An.clog(n)] .
But surely this also shows that for every constant
c >0 there is a quasi-cohesive sequence X such

that x " An.c*log(n)] .

Theorem 2.12; For every constant ¢ >0 there is a

recursively approxi mabl e sequence x such that

x"C[An.c-1og(n)].

Proof; This follows inmediately from Proposition 2.15
since, as we renarked before, every quasi-cohesive

sequence i s recursively approxi mabl ee

There is a slight difference between Theorem 2. 12
and Theorem 2.9 in that we are able to find a strongly
near recursive sequence x such that x~C[An.c*log(n)]
for any c¢ whereas the recursively approxi mabl e sequence vy
for which y~C[An.olog(n)] depends on the choice of c.
Theorem 2.2 provi des an upperbound for the class of
recursively approxi mabl e sequences in light of Propsitions 2.10.
However, a tight upperbound is still unknown and it renains
uncl ear how the additional condition in Definition 2.3 can
be used to find a tight upperbound.

We now consi der anot her definition of pseudo-recursive
sequence based on the notion of alnost recursive set

i ntroduced by Vuckovic [16].

Definition 2, 4; A sequence Xx is alnost recursive if and

only if there is a partial recursive function cp
such that if x(n) =1, then cp(n) = #ms (m< n and

x(m =1).

The follow ng theorem gives an upperbound for the

conpl exity of al nbst recursive sequences.

22

Theorem 2.13; If x is alnost recursive then for every e > 0,

xed An. (J‘+e) *nj .

Proof; Let x be alnost recursive and let cp be
a partial recursive function such that if x(n) =1
then cp(n) = #ms(m<n and x(m = 1).

Define u_= #ms(m<n and cp(n) is defined)

n

v = #ms(m<n and x(m = 1)
n e

1, = #nms(msAn and cp(m =i) for O£ i <£ vy -

Clearly £ 1. <Mn.
i=0 *

Gven g 4, and vV, We can conpute 1.I for

OE£i "vpy- 1. Amng the 1, values m for which

cp(m =i there is precisely one value e such

1
that x(e, = 1. To specify e,3 therefore® we need
log(l,) bits of information. Since for m</ n,
x(m = 1&"m=-¢e, for some i <€y, - 1" x" is

conput abl e fromthe e.

, s for i < V- 1. Therefore

1

since we know |e.| for each i, x" is uniforny-

conputable from u , v and the concatenation of

C

t he e.}'s. Thus,

V'l

K(x"?n) £ 2-log(u.) + 2-log(v) + B log(l.) + c.

=11

I =0

It can be shown that £ Iog(l.)l<’_‘_-§ , fromwhich

I =0

it follows that for every e >0, Vn.K(x ;n) <£ (-g+e) «n.

The next theorem shows that

upper bound.

00 n i

this is in fact a tight

Theorem 2.14; There exists an al nost recursive sequence X

such that for sone constant

c > 0N x*QAn.-j"- c] .

Proof; Let y be a sequence such that y<& An. n-c']

for some constant c¢'. Define x(2n) = y(n) and

x(2n+l) =1 - y(n) . Define cp(n = [Lﬂ . Clearly x

is alnost recursive. Also

from x?" so that K(y" n)
o0

y? is uniformy conputable

<€ K(x2";2n) + ¢" and
I'g

consequently 3n.K(x";n) J=K(y"™ ;n/2) Jz r] - C.

We consi der now one further

recursive sequence due to Dekker

Definition 2.5; A sequence X

fornul ati on of pseudo-

and Mhill [4].

Is retraceable if and only

If there exists a partial recursive function cp

23

24

such that if x(n) =1 then 1) if 1 (1) =n
X
then cp(n) = n and 2) if 1 (nM =n for m>1

then cp(n) = 1X(m1) .

Theorem 2.15: If x is a retraceable sequence then

there is a constant ¢ > 0 such that xe(An.log(n) + c].
Proof; Let x be retraceable and let cp be a

partial recursive function such that if x(n) =1

then 1) if Ix(l) =n then cp(n) = n and

2) if 1 (M =n for m>1 then <p(n =1l,(ml) .

Let m, be the largest m such that m<£ n

and x(m = 1. Gven m, we can use cp to retrace

all the ms for which m<f€ n and x(m = 1. Therefore,
since myp<[n, by Lenma 1.8 it follows that there

is a constant ¢ such that xe(An. | og(n)+c]o

W now direct our attention toward the |ow end of
t he m ni mal - program conpl exity hierarchy, in an attenpt
to discover the properties of sequences with extrenely |ow
complexity. However, contrary to our intuition we wll
find sequences with extrenely |ow conpl exity which possess
properties of randommess. The follow ng theoremwill play
a nost inportant part in constructing sequences of extrenely

| ow conpl exity.

25

Theorem 2, 16; If x 1is a dense recursively enunerable

sequence then for every fef, xe(f] .

Proof; Fundanentally the proof is very sinple.

Since x isr.e. there is a total recursive
function h which enunmerates the |I's of x. Al so X

is dense so that for each fe& there are at nost

f(n) 0's occurring in x™ By specifying how

many 0's occur in x™ we can deternine when h

has enunerated all the I's in x". Thus,

K(x"|n) £ log(f(n)) + c £ f(n). However, Lemma 1.10

is of no use to us in calculating K(x";n) since

we are interested in functions fefE with f(n) « log(n).
In order to conpute x® uniformy we nust know how

many 0's occur in x! for each i <" n. \& acconplish

this by, having defined an inverse gef for -f,

constructing an information string 6 which will

. ml\

enabl e us to conpute the number of 0's in xA7
where g(m J>n. Thus to conpute xX for each
i ~'n we compute x% ‘™ ' where nllf lj.mg(m J> i.
W now present the formal proof.

Let fef and define g(n) = |imf(m) > 3*n

Clearly gef. Thus for som n, 0 (n) J>g(n) for
£{ n.'_ 0] X
every n ~> Ng. Also g(Y?) Y Let h be a

total recursive function which enunerates the I's

of x. W define the sequence 6 by

6(n) = I<E£g(n-Sy (6)) ™ 9 (S, (6)+1). Define t(n)

ri"~x X n~i

to be the largest t such that 9 _(t) £ g(n).

Thus t(n) = #0's in x%'™ . Furthernore it

can be shown that °,.t (n)" =feannx

VW& now show how to conpute X Yfor i <£n.

Let m be the least m such that g(m J> n.

" M+t (M)
W can conpute x from g, h and 6

as foll ows:
1) Find the least k, call it k» such that g(k) J>i.
Clearly k. £ m_.

h n
2) Calculate h(j) for each j ~> 1 wuntil the nunber
of values of h, which are less than or equal to g(k.l),

is equal to g(k.) - S ., X(6). W wll then know

. . %o
t hat we have conputed all the |I's occurring in x9% e

and hence have conputed xg’\'ki). x.l Is then sinply

the first i bits of x9(k*)
00 n My rtimp)
Thus by Lemma 1.8" Vn.K(x ;n) <" |6 | +c.
_ PR
=AWV
Now t(mn) £mn+ ng and since ¢ 3) > n,
g V m+t(m) -,V
mpn <M~ - Hence | 6" "| Ay-"N-+n, and

consequently xeC[f].

Al t hough the follow ng proposition is a consequence of
subsequent theorens; we present it here to denonstrate the
useful ness of the previous theoremand to illustrate the

techni ques which we wi Il be using.

27

Proposition 2,17; There is a sequence x such that x is

not near recursive and for every fef, xeC[f].
Proof; In order to construct a sequence x which is
not n.r. we nust insure that $(x=r) ~ 1 for every
recursive sequence r, Let {cp.l} be an effective
enuneration of all partial recursive functions.
Ve wi Il arrange to know which cpy are in fact total
recursive 0-1 functions since these functions yield
the recursive sequences. Furthernore, we nust manage
our construction process so that the nunber of re-
cursive functions which we are considering at any
given tinme is sufficiently small so that the anount
of information needed is extrenely small.

Let y be a dense r.e. sequence and let fe£e
By Theorem 2. 16, ye(C| An.fLTP-'}-J e Also we know t hat
there are at nopst £n Os occurring in y" W
define the sequence 5 by, 6(n) = |4:$>CR is atotal
recursive 0-1 valued function. Define t(i,j) = 2" %i« 28
for every 1 J>0 and j J>1. Cearly VnH 3] .t(i,]) =n
and t(i,j) =t(k, 1) inplies that i =k and | = 1.
We define x as follows;

\' - cpj(n), if n=1t(i,j) and n>0,(j) and 6(j)=I.

x(n) =

y(n), otherw se.

x® can be uniformy conputed from y" and 6(j)

for each | such that 9y(j) <M n. Therefore x" is

6 £f(n), 3

uniformy conputable from y" and so that

28

vn. K(x"n) <; J6" (M3 + 2.K(y";n) + ¢ and
consequently xeC[f]e

W now show that $(x=r) ~ 1 for every
recursive r. Let r be a recursive sequence so
that for sone |, r(n) :c%.(n). It foll ows that
x(t(i,j)) £cpj(t(i,j)) for every t(i,j) >9y(j).
Thus Sn(xzr) <M no- 2"::).n + gy(j) for every

n > 9y(j). Therefore $(x=r) <; 1 - 2~°A 1.

83. Pseudo- Random Sequences

In this section we exam ne the rel ationship between
certain formul ati ons of pseudo-random sequence and the
m ni mal - program conpl exity hierarchy.

Interpreting each binary sequence as the sequence of
outcones of a coin tossing event, a subsequence sel ection
rule for a sequence x 1is a function f which selects
certain nenbers of x in such a way that whether or not f
selects the nth nenber of x depends only on n and the

n_1l

first n-1 outcones, i.e. x"~7. W make this precise.

Let <*> be an effective bijection between X and N

Definition 3.1; Let f : N X N->{0,1} and x be a

bi nary sequence. W define the selection sequence vy of

f for x by vy(n) = £(n,<x"~*>). W call xoly t he

subsequence of x selected by f.

Definition 3.2; A sequence x is Church (1) randomif and

only if for each infinite subsequence y of x

selected by a total recursive function, $(y) = -%.

Definition 3.3; A sequence x is Church (11) randomif

and only if for each infinite subsequence y of X,

selected by a partial recursive function, <fy) = "%.

29

The intuitive distinction between Church (1) random
and Church (I1) random sequences iies in the observation
that Church (1) random sequences are "randon’ w th respect
to all effective subsequence selection rules which are
defined for all sequences, wheareas Church (11) random
sequences nust in addition be "random with respect to
effective subsequence selection rules which may be undefined
for certain sequences.

Church (1) random sequences are the original sequences
proposed by Church [3] as a definition of random sequence.
Ville [15] showed that for any countable collection of
selection rules one can always construct a sequence X
(koll ektiv) which is randomw th respect to these selection
rul es and whose initial segnents always possess nore |'s
than 0°s, so that x does not satisfy the |law of the iterated
logarithm Thus there are Church random sequences ((I) and
(1)) which are not "truly" random

The follow ng theorem which is due to Lovel and, shows
that there are Church (1) random sequence with extrenely | ow

m ni mal - program conpl exity.

Theorem 3.1: There exists a Church (1) random sequence X

such that for every fef, xeC[f].

Proof; This proof refies strongly on the LMS al gorithm
which is a well known t echni que for produci ng pseudo-
random sequences by considering at each successive stage

of construction successively larger finite sets of

30

31

subsequence sel ection rules and generating a sequence
which is "randomt! with respect to each selection rule
in the set. Let {c%} be an enuneration of all two
argunent partial recursive functions. Since our
selection rules are total recursive functions we can
enunerate the selection rules effectively using {cp"}
by speci fyi ng which cp, are total recursive. W wll
increase the cardinality of the sets of selection rules
at a rate slow enough to insure that the information
requirenments will be extrenely |ow

Let y be a dense r.e. sequence and let fe£.
It follows that there are fewer than *\%- 0s occurring
in yn and by Theorem 2. 16" yeC| An.f—(:&}“ We define
t he sequence 6 by* 6(n) = 1A= cR, is a total recursive
0-1 function. W construct Xx in stages. At each
stage m we define x(n) for ne(9y(m|)"Gy(m)]. (Here
we use (ijj] to denote [klkeNand i <kj£ij}) . Qur
construction process at stage m wll use the set of
sel ection rul es An= {cprl n<dn and 6(n) = 1}. It

will followthat A is conputable from 6™ and
n M

consequently X wil.l be uniformy conputable

from (M4 14 (M4 and so xeC[f].
We now give the LM5 algorithmwhich we will use.

Define J Vn/_S), i a|) =1
z.(n) = <

(j§ otherw se

W define the patterns at stage m to be the followi ng strings
ir of length m: ir =zl(n)...zm(n) wher e ne(9y(m|),G§rr)] .

32

We say that the above pattern rr occurs at the
nth step in the construction of x. W note that
only stage m patterns can occur at the steps n
for nﬂQémlLOéM]. W define x(n) = 1<~
the pattern occurring at the nth step has occurred
at an even (or zero) nunber of earlier steps.

To showthat x is Church (1) randomlet cp
be a total recursive 0-1 valued function of two
variables. Now cp = Q? for sone j. Since for
each pattern T, X takes alternating values of Os
and |1's on each succeeding occurrence of ir, it

follows that for every step n at every stage mJ: j,

§- I 2" - 0 i) < s,((m%) A§i+:§'< 2t +0(j) .

i 5 J
00 2" . T
Therefore® since Vn.0 (n) >2 , *(xol ¥ ="0 «
y Z "

Theorem 3.1 presents us with sonewhat of a dil emm
at this stage of our investigation. One m ght argue that
such a result shows that there is very little relation
bet ween information and randonmess, or that such sequences
are very poor fornul ations of pseudo-randommess, or that
our conplexity does not accurately reflect the information
content of sequences. Since it is our conviction that
there is indeed a relation between information and randomess
and that this conplexity does accurately reflect infornmation

content, we nust viewthis result as a rather disturbing

33

one. However, our investigations in a subsequent paper show
in essence we are able to keep our information requirenments
low for the conputation of such sequences only by making
the requirenments of conputation resources (tinme, menory, etc.)
non-determ nistically |arge.

In several of the argunents to followwe will, in
addition to selecting nenbers of a sequence x by sone
sel ection rule, also want to guess by betting (according to
sonme betting strategy) the value of the selected nenber. The
foll owi ng proposition shows that the Church random sequences

are "random' also with respect to these "betting™ schenes.

Proposition 3.2: Let f : NXN->{0O 1} ?nd g : N3->{0, 1}

and let x be a binary sequence. Let y be the

sel ection sequence of f for x. Define the betting
sequence z relative to g by

z(n) = g(n, <yr(MWs <xly(Mm1y Define the

functions f~ and f, by

fo(n,<x"™'» = 14=y(n) =1 and z(my = 1, where m=le(m),
fo(n,<x"™'» = 14=»y(n) = 1 and z(nm = 0, where n = 1y(n),

If *(xol _=z) ? 4 then *(xol _) / L or *(xol) "™\,
wher e Zl and z" are t he subsequences of x selected

by f,; and f, respectively.
Proof; The sequences z, ‘and z* sinply select the
pl aces where we bet |'s and 0's respectively. The

proposition follows fromthe sinple observation that

if $(xol) :~.3: and *(xol _) :~;then *(xol =2z) = -] o
zl z 22 Y

W now show that in order for the LMs al gorithm

construction used in Theorem 3.1 to be successful it is

necessary that the sequences used in the construction be

sel ected by total recursive functions.

Theorem 3.3: If x is Church (Il) randomthen for sone

constant c¢, x<E(3[A. log(n) -c] .

Proof: Let x be a sequence such that xe(An. log(n) -3] .

W will construct a selection sequence y and a betting
sequence z such that $(xol =z) 7]y . In fact we

y z
define y(n) =1 for all n so that we will attenpt

to guess each nenber of x. The strategy defining zg
which will rely strongly on the fact that XGC[An.|log(n)-3]o
is as fol |l ows.
XeK .
Lgt Kf = {wW'|K(w',n) £ log(n) -3}, then
Let wl be the first sequence whose conputation by

a program of Ier:lgth <£Igg(n) - 3 termnates. Ve wll .
suppose that wl is x , by setting z(j) = w(j),
unitl we discover otherwise, i.e. until we find the
first j for V\/nich'x(j) [w(j). |f and when we

di scover that w3 is not x", we find as before the
next menber v\/rl1 of Kn and suppose until proven
otherwise that we is x". W continue this procedure

I

" is found. Thus after at nobst -j

until the real X

I ncorrect guesses™ assum ng xneKn, we are certain
to find x". Therefore® S (X=7) ’\>_-f * n. Ve now
present the formal proof.

W define z in stages. At each stage m we
define z(n) for ne(em_l'enﬂj wher e e, = 27 % by
z(n) =w(n), where w is the first (with respect to
time of conputation) string of |ength &, conput abl e
by a programof |ength <* Iog(em) - 3 and which

Uel' gipnce there are at nost 2- 2'°9aema w3

extends x
prograns of length £ Iog(em) - 3, and since x°™ is

conput abl e by a programof length <* Iog(en? - 3
e
there can be at nost -j~ values |, for AC(%. i~ %,

for which z(j) ~ x(j). Hence
Se (ZHX) M| -en-f-e=f .en Itfollcws
m

that $(z=x) ’_>—5Q Aa o, Clearly we can define z

by z(n) = g(n’\<l“%’/\<;"‘_n“>)

for sonme partial recursive
function g” since the procedure is recursive in the
chosen w and w can be found by a partial recursive
function. Therefore by Proposition 3.2 x is not

Church (I1) random

In order to see that' this result is consistent with
Theorem 3.1 it nust be observed that the above procedure
Is not total recursive. Cearly if x 1is any sequence
such that x*"JAn.log(n)-3] then for infinitely nmany

stages m there is sonme ne(em_rl"em] for which we are

e
m

4

35

36

e
unable to find a w ™ (i.e. we have exhausted Ky and

m
so we wi Il search forever unsuccessfully). Thus z(n) is

undefined and the procedure cannot be total recursive.

Thus we are able to nake a strong distinction between
the class of Church (1) random sequences and the class of
Church (Il) random sequences by using the m nimal - program
conplexity hierarchy. W now show that the | owerbound for
the conplexity of Church (Il) random sequences of Theorem 3.4

is nearly a tight | owerbound.

Theorem 3.5: There is a Church (11) random sequence x

such that for every fef, xeC[An.f(n)elog(n)].
Proof: The proof is very simlar to that given in
Theorem 3.1. Since we nust be concerned with &l11
partial recursive functions, to assure that the LNMS
al gorithm proceeds successfully we must specify
when a particular partial recursive function wll
not be defined if we attenpt to use it as a selection
rule. It does not suffice to specify which parti al
recursive functions will eventually be so undefined
since by neglecting to consider themas selection
rules for the values for which they are defined wll
in general alter the sequence which we are con-
structing.

W now proceed with the construction. Let vy

be a dense r.e. sequence and let fef£. Then we

have yeC[An.A"-] and #0's in y'£-~" We

&

37

construct x in stages. At each stage m we
construct x(n) for ne(9y(m1)39y(r®]. For

each j < m et k':l = |ak(k"9y(rr) and cpj(k,<x"~1>)
is undefined) , where {cg.} I's an enuneration of

all two-variable partial recursive functions. Let

k.3 = 9Y(n) +1 if no such k exists. For
each j A~ m define
-1 .
cpj(n,<xn >, if n<kj
Zj(n) =

0, otherwise.

W say that IT = z-ﬁn)...z l(ﬂn), for ne(9 (le), 9§n)] :
is a pattern at stage m and that |IT occurs at the
nth step in the construction of x. W define x(n) = 1&
the pattern IT occurring at step n has occurred at
an even (or zero) nunber of earlier steps.
W now show that x 1s Church (Il) random
Let cp be a partial recursive function of two
vari abl es. Suppose that cp(n,<x“"1 » Is defined
for every n (otherwise cp does not select an
infinite subsequence of x) . Now cp = c% for
sone j. Since for each pattern IT X takes
al ternating val ues of 07s and 1's on each succeedi ng

occurrence of IT, we conclude as in Theorem 3.1 that

=

$(xol) =z so that x is Church (I1) random

J
Clearly x® s conmputable from y" and k.j

for 9y(j) <A~ n. Thus by lemma 1.9 we concl ude,
%’Dn.K(xn:n) < K(y™ n) +2¢(N A=) elog(n) +c
< f(n)-1og(n)

10.

11.

12.

13.

Bi bl i oqr aphy

Chaitin, G, "On the Length of Prograns for Conputing

38

Finite Binary Sequences", JACM JL3 (1966) No. 4, pp.547-569,

Chaitin, G, "On the Length of Prograns for Conputi ng
Finite Binary Sequences: Statistical Considerations”,
JACM 16 (1969), No.I|, pp.145-159.

Church, A., "On the Concept of a Random Sequence"
Bul letin AMS, 46. (1940), pp. 130-135.

Dekker, J. and J. Myhill, "Retraceable Sets", Canadi an
J. of Math., JLO (1958), pp. 357-373.

Dal ey, R, "Pseudo-Recursiveness and Pseudo- Randommess
Wthin Mninml Program Conplexity Hierarchies",
Ph. D. dissertation, Carnegie-Mllon Univ., 1971.

Kol nogorov, A., "Three Approaches for Defining the
Concept of Information Quantity", Information Trans-

m ssion, 1 (1965), pp.3-11, (also) Selected Translations
inMath., Stat. and Prob., 1 ; AMS Publications (1968).

Kol nogorov, A., "Logical Basis for Information and
Probability Theory", |EEE Transactions on |Information
Theory, 1T-14 (1968), pp.662-664.

Lovel and, D., "M nimal-program Conplexity Measure",
Conf erence Record ACM Synposi um on Theory of Conputi ng,
May (1968) p.61-65.

Lovel and, D., "A Variant of the Kol nogorov Concept of
Conpl exity", Info, and Control, J5 (1969), pp.510-526.

Martin, D, "Classes of R E. Sets of Degrees of
Unsol vabi lity", Zeitschrift fur Math. Logic, J2 (1966),
pp. 295- 310.

Martin-Lof, P., "The Definition of Random Sequences",
I nformation and Control, 9. (1966), pp.602-619.

Rogers, H., _Theory of Recursive Functions and Effective
Conputability, MGawH Il (1967).

Rose, P. and. J. Ulian, "Approximtion of Functions on

the I ntegers", Pacific J. of Math., JL3 (1963), pp.693-701.

39

14. Schnorr, C, "A Unified Approach to the Definition of
Random Sequences'!, To Appear.

15. Ville, J., Etude Critique de la Notion de Collectifg

Paris, Gauthiers-Villars (1939).

16. Vuckovic, V., "Anost Recursive Sets", Proceedi ngs AMS,
23 (1969), No. 1, pp.114-1109.

Depart ment of Mathematics
CARNEG E- MELLON UNI VERSI TY /cs
Pi ttsburgh, Pennsylvania 15213 5/ 18/ 71

