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Abstract

Construction of a general model falsifying the Axiom of

Extensionality shows that the general models of Henkin1 s

article "Completeness in the Theory of Types" are not all

sound interpretations of the system. A modification of the

definition of general model remedies the situation.
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§1. Introduction.

It is well known that equality is definable in type theory.

Thus, in the language of [2], the equality relation between ele-

ments of type a is definable as [Ax Ay Vp .p x => p y ] , i.e.,
OC OC OOk O ^ CL OCX OC

x = y iff every set which contains x also contains y . How-
a Ja 2 a ^a

ever, in a non-standard model of type theory, the sets may be so

sparse that the wff above does not denote the true equality re-

lation. We shall use this observation to construct a general mo-

del in the sense of [2] in which the Axiom of Extensionality is not

valid. Thus Theorem 2 of [2] is technically incorrect. However,

it is easy to remedy the situation by slightly modifying the defi-

nition of general model.

Naturally, our construction provides an independence proof for

the Axiom Schema of Extensionality.

We shall assume familiarity with, and use the notation of,

[2] and §§2-3 of [1] .
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§2. A non-extensiona1 general model.

The language of [2] has primitive logical constants _N . ,

A, x , II , x , i , x . whereas the language £ of [1] has primi-—(oo)o' o(oa)' a(oa)' ^ ^ i y r

tive logical constants Q \ >• BY modifying the proof of
V (OCX) (X)

Theorem 1 of [1] in the obvious way, one obtains the following:

Proposition. A frame [A } is a general model in the sense
ex oc

of [2] iff it satisfies all of the following conditions (for all

type symbols a, $3 y) :

(a ) A contains the negation function n such that nt = f

and nf = t.

(a^) & contains (Ax t) and (Ax x ). Also, $, x containsv 2' oo v o v o o (oo)o

the alternation (disjunction) function a such that

at = (Ax t) and af = (Ax x ).

(ao) S , x contains a function ir , x such that for allv 3 o(oa) o(oa)

g e & , IT , g = t iff g = (Ax t) .
^ oa' o(oa)^ ^ v a '

(a.) & contains a function i , x such that if g is anyv 4 a(oa) a(oa) ^ *

non-empty set in A , i g is in g.

(b) For all *€ &a, (Aypx) e A .

(c) (Ax Ay^x ) € & o .
v a -̂ p a apa

(d) For all xe $ Q and y e A , (Az . xz .yz ) e A .
apy u gy Y Y Y ^Y

(e) For all x e A o 9 (Ayo Az . xz . yrt z ) e A
apy *PY Y Y 3Y Y CC
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(apY)'

Theorem. There is a general model in the sense of [2] in

which the Axiom of Extensionality

Vx [f x = g x ] => . f = g
i i i t t i t t i 1 1

is not valid.

Proof. We construct a frame to = {& } by induction on a.
1 2 3

Simultaneously we define three equivalence relations =, =9 and

on each of the & . When it is more convenient to do so, we shall
1

define = in terms of the partition (set of equivalence classes)

a i i
P. of & induced by =. A statement about = is meant to apply

1 2 3
to each of =9 =3 and

i
* = ft,f}. x = y iff x = y .
o ^ o Jo o Jo

$ = {£,m,n}, where L, m, n are distinct individuals.

Given A and & , let & be the set of all functions g

1
from $ into & such that for all u and v in fi , if u = v

p a p
1 2 2 3

then gu = gv, and if u = v then gu = gv, and if u = v then
3 i

gu = gv. If g and h are in & , let g = h iff for all
ccp

i
x G & 9 gx = hx.

P

Having defined the frame to, we use the Proposition above to

show that it is a general model.



1
(a) Since = is trivial on $ , $ contains all functions

from $ into $ . Hence (a.) and (a_) are satisfied. Al-
O OC 1 2

i
so, if u and v are in $ , then u = v iff u = v.

Hence & , x contains all functions from fi into $ .
OC(OY) OY a

Thus (a ) and (a ) are satisfied.

(b) Clearly (Ayox ) e & since this is a constant function.
p (X OC p

i i
(c) If u,ve& and u = v, t h e n (Ayou) = (AyQv) , so

a p p
(Ax Ay x ) e « .v a 2p a apa

1 2 1 i 2
( d ) S u p p o s e x e l o , y e l o , z ^ z e - S , , a n d z = z . T h e n

OtpY pY Y
l i - 2 1 ^ 2 l l : ' - 1 2 i 2 2

xz = xz and yz = yz so xz (yz ) = xz (yz ) = xz (yz )

so (Az . xz .yz ) e &
Y Y Y &y

1 2 1 ^ 2
(e) Suppose x e J , y ,y e S ^ and y = y . Then fo r each

1 i 2 1 i- 2
z e ^ , y z = yz so xz(y z) = xz(y z) , so

1 i 2
(Az . xz .y z ) = (Az . x z .y z ) . H e n c e

Y Y Y Y Y Y

(Ayo Az . x z . y z ) e A
• ^ P Y Y Y 3 Y Y OC

1 2 1 i 2
(f) Suppose x ,x G & _ and x - x • Then for each z€ $

1 i 2 1 - ^ 2
and y € * 5 x z = x z s o x z (yz ) = x z (yz) s o

1 i 2(Az .x z .y z ) = (Az .x z .y z ) so
Y Y Y Y Y Y

i so

(aPY) '

Thus H\ is a general model in the sense of [2].

We next examine some of the domains & . & contains only
a oi •*



5.

the constant functions (Ax t) and (Ax f). Hence for any wffs
1 I

A and B and any assignment <p, V [A4 = B ] = t, since

[A = B ] is equivalent to Vp [p A => p B ] , where p

does not occur free in A or B . Consequently

U V x f f x = g x 1 = t for any assignment (p.

It can be seen that & = { (Ax x ) , (Ax I) , (Ax m) , (Ax n) } .
it t t t i i

1 2
To verify this, note that geiS iff gm - gn, gl = gn, and

g-t, = gm. One can examine the twenty-seven functions from &

into £ to see that only the identity and constant functions

satisfy all three of these properties. Alternatively, one can
2

reason as follows: Suppose gt = m. Then gl = gn so gn = m.
1 3

Also gm = gn so gm e (m,n)^ and gl = gm so gm € {£,m}; hence

gm = m. Thus if gl = m, then g = (Ax m) . Similarly, if

g£ = n, then g = (Ax n) . Thus if gl 7^ I, then g is a con-

stant function. Similarly if g m ^ m or g n ^ n , then g must

be a constant function. Thus the only members of & are the

constant and identity functions.
Note that P 1 1 = {{(Ax m) , (Ax n) } , ( M ) , {(Ax x ))),

j_ i \ \ x» i

9XX = {((^t),(kn)), {(Axm)}, {(Ax x )}}, and

P31 = {{(Ax^),(Axtm)}5 {(Axtn)}, {(Ax^^}}.

& contains a function h such that h(Ax x ) = t but

h(Ax I) = h(Ax m) = h(Ax n) = f. Hence if cp is an assignment
\ \ \

such that <pf = (Ax x ) and <pg = (Ax I) , then
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1/ [f = g ] = \s Vp [p f 3 p g ] = f. Hence
<p L 11 t t O ^o(it) Lro(tt) 11 *o ( i i) ̂  i i

V FVx Ff x = g x ] => . f =g ] = f, and the Axiom of Ex-
cpl t L t t t ^ 1 1 i t t ^ 1 1

tensionality is not valid in the general model to. O

§3. General models.

We suggest that the definition of general model in [2] should

be modified by adding the following requirement:

(a ) For each a, & contains the identity relation q on

$ (and hence $ contains the unit set q x for

a oa ^oaa a
each x e $ ) .

a a'
Of course, if this is done, clauses (a ), (a ), and (a ) of

the Proposition above become redundant. Indeed, n = q f,
ooo

a = (Ax Ay .n. q . . x x , . x N (Ag . g x y ) (Ag .g ff) ) ,
o Jo ^ofo(ooo))(o(ooo)) ooo ooo oJo ooo ooo

and ir , x = q , x , x (Ax t) . Thus the modified definition of
o(oa) ^o(oa)(oa) v a

general model is equivalent to the result of adding a requirement

concerning \s t . x to the definition of general model in [1] .^ <p a(oa)

With this definition, the general models constitute sound

interpretations of the system of [2]. Moreover, the model con-

structed in the proof of Theorem 1 of [2] actually satisfies (a ),

since it can be seen that $ ( [Q ]) = q^^ (in the notation of

that proof). Thus Theorem 2 of [2] becomes correct under the new

definition of general model.
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One of the appealing properties of the definition of general

model in [2] is that it is generated in a very natural way by the

formation rules for the language. Our modified definition no long-

er has this property for the language of [2], although it has it

for a language in which Q is taken as a primitive constant.

Thus it appears that in contexts where one wishes to assume ex-

tensionality and discuss general models, a language such as £ of

[1], augmented by a description or selection operator, is more

natural than the language of [2].
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