GENERAL MODELS, DESCRIPTIONS
AND CHOICE IN TYPE THEORY
by
Peter B. Andrews
Report 71-29

June, 1971

General Models, Descriptions, and Choice

in Type Theory

by
Peter B. Andrews ${ }^{1}$

$\$ 1$.

Introduction

In [4] Alonzo Church introduced an elegant and expressive formulation of type theory with A-conversion. In [8] Henkin introduced the concept of a general model for this system, such that a sentence A is a theorem if and only if it is true in all general models. The crucial clause in Henkin ${ }^{1}$ s definition of a general model to is that for each assignment $c p$ of values in to to variables and for each wff $\underset{A}{A}$, there must be an appropriate value $\operatorname{If} \varphi \mathbb{A}$ of il in to. Hintikka points out in $[10, p .3]$ that this constitutes a rather strong requirement concerning the structure of a general model. Henkin draws attention to the problem of constructing non-standard models for the theory of types in [9,p.324].

We shall use a simple idea of combinatory logic to find a characterization of general models which does not directly refer to wffs, and which is easier to work with in certain contexts. This characterization can be applied, with appropriate minor and obvious modifications, to a variety of formulations of type theory with A-conversion. We shall be concerned with a language $£$ with extensionality in which there is no description or selection operator, and in which (for convenience)

[^0]the sole primitive logical constants are the equality symbols Q for each type $a *$

We shall give two applications of this characterization. First, we show that the Axiom of Descriptions (D) is independent of $£ . \quad$ This axiom is very natural since a general model for $£$ with a finite domain of individuals is standard if and only if D is true in it. Secondly, we show how the Fraenkel-Mostowski method ([7], [11], [12]) can be adapted to $£$. We state our fundamental lemma concerning this method in fairly general form to facilitate possible future applications (analogous to those for axiomatic set theory mentioned in [11]), but confine ourselves here to simply showing that the Axiom of Choice is not derivable in $£$, even if the Axiom of Descriptions is assumed.

When a description operator ${ }^{1}</ L_{1}$. \wedge^{s} included among the primitive symbols, the axiom of descriptions may be taken in the form
so that $i^{\wedge_{Q t}}{ }^{j}\left[A x_{\infty} A_{\alpha}\right]$ (which is abbreviated $\left(12^{\wedge} A_{Q}\right)$) denotes the unique x_{\imath} such that $J \bigvee_{o^{\prime}}$ when there is such an ${\underset{\sim}{\imath}}^{q} \cdot$ Church showed in [4] that description operators for higher types can be introduced by definition, using the operators for lower types. Specifically, ${ }^{l}{ }_{\text {aj3 }}(\circ(a g)) \quad{ }^{\pi M^{a}} y$ be defined as
R. 0. Gandy has pointed out (in a private communication)
that ${ }^{1} 0 / ?(0(0 / 3))$ Canbe defined as

$$
{ }^{[A h} O(O 0)^{A x} / 3^{3 f} O 0 * h o(O 0)^{f} O 0^{A f} O 0 V^{\prime}
$$

so description operators for certain higher types can be defined without using those for any other type. Also, Henkin noted in [9] that ${ }^{1}$! oo) canbe defined as
(A number of other definitions of iotoó are also possible, of which the shortest is perhaps the closely related

Thus it is seen that description operators for all types can be introduced once one has $t\{(0, x$. The argument in [2,pp.22-24] shows that the description operator $i^{\prime}\left(\begin{array}{l}\text { it }\end{array}\right)$ cannot be introduced by definition for the simple reason that there are no closed wffs of this type, and that the axiom of descriptions mentioned above is independent, since it is the sole axiom which describes the special characteristics of t ' $^{\prime} 0$ i). If no description operator is included in the list of primitive symbols, the axiom of descriptions may be taken in the form

$$
{ }^{3 i} t(o t){ }^{\text {V Pot }}{ }^{a_{i}}{ }^{x} t P o i^{x} t^{3} \text { Poi }^{[i} t(o t) \operatorname{Pot}^{]} *
$$

or equivalently
(D)

$$
{ }^{a i} t(o i)^{v} V^{i} t(o t)^{10} o t i^{x} t^{1=x} t-
$$

(The equivalence results from the theorem

$$
{ }^{a_{i}} x^{x} P \circ t^{x} t=x^{x} f P \circ t^{=}=-8 n^{x} t-1
$$

Since in many logical systems descriptions can be eliminated, it is very natural to ask whether the wff D, which asserts the existence of a description operator, is in fact derivable. It will be seen that our independence proof below is conceptually very simple, and is compatible with any axioms concerning the cardinality of the domain of individuals which permit it to have at least two members.

Church mentions in [5] an unpublished proof by Lagerström of a closely related independence result using a complete non-atomic Boolean algebra for the domain of truth values. It seems unlikely that Lagerstrom*s proof applies to $£$, since in $£$, unlike the system treated by Lagerström, there is a strong axiom of extensionality for type o (Axiom 1 below) which permits one to derive $\left[p_{0}=q_{0}\right] \quad z>p_{0}=q_{0}$.

\$2. The Language $£$

The language $£$ is essentially the result of dropping the description operator from the language Q_{o} of [2], and is closely related to the system discussed in [9]. For the convenience of the reader we here provide a description of $£$.

We use $a, j 3, y$, etc., as syntactical variables ranging over type symbols, which are defined inductively as follows:
(a) 0 is a type symbol (denoting the type of truth values).
(b) i is a type symbol (denoting the type of individuals).
(c) $(\infty \mid 3)$ is a type symbol (denoting the type of functions from elements of type 0 to elements of type a).

The primitive symbols of $£$ are the following:
(a) Improper symbols: [] A

We shall use f,g,..., x ,y \quad z, etc., as syntactical variables for variables of type a.
(c) For each a* Q//Moalah is a comstant of type ((oa)cc).

We write $\underset{\alpha}{\text { wff }}$ as an abbreviation for wff of type g》 and use $\underset{\sim}{A} \alpha^{\prime}{ }_{\sim}^{B} \alpha^{\prime} \stackrel{C}{\sim} \alpha^{\prime}$ etc., as syntactical variables ranging over wffs ${ }_{\alpha}$, which are defined inductively as follows:
(a) A primitive variable or constant of type a is $a w f f_{\alpha}$
(b) $\quad[\wedge V$ is a Wffa
(c) UjSj.jAJ ^ a wff
(aW

An occurrence of x_{α} is bound (free) in jự iff it is
 $\overline{\text { free }} \overline{\text { for }} \vec{x}^{\alpha}$ in $\overrightarrow{\mathrm{B}}_{g}^{r}$ iff no free occurrence of \vec{x}^{α} in $\overline{\mathrm{J}}_{g}^{r}$ is in a wf part of B_{Q} of the form [Ay C.] such that y * is a free variable of \bar{A}^{α}.

Brackets, parentheses in type symbols, and type symbols may be omitted when no ambiguity is thereby introduced. A dot stands for a left bracket whose mate is as far to the
right as is consistent with the pairing of brackets already present and with the formula being well formed. Otherwise brackets and parentheses are to be restored using the convention of association to the left.

We introduce the following definitions and abbreviations:
$\left[A_{\alpha}=B_{\alpha}\right]$ stands for $\left[Q_{o \alpha \alpha} A_{\alpha}{\underset{\sim}{B}}_{\alpha}\right]$.
T_{Q} stands for $\left[Q_{000}=Q_{00 Q}\right]$.
F_{Q} stands for $\left[A p_{\circ} p_{Q}\right]=\left[A p_{\circ} T_{Q}\right]$.

∂_{000} stands for $\left[\lambda p_{0} \lambda q_{0} \cdot p_{0} \wedge q_{0}=p_{0}\right]$.

Other connectives and quantifiers are introduced in familiar ways.
$K^{\alpha \beta}$ and K_{a} stand for $\left[A x A y_{\ell} x\right]$. apo $\quad a{ }^{J} p \quad a^{J}$
$s^{\alpha \beta \gamma}$ and $S_{\alpha \gamma(\beta \gamma)(\alpha \beta \gamma)}$ stand for
$\left[\lambda_{\alpha \beta \gamma}{ }^{\lambda} y_{\beta \gamma}\right.$

$c^{\alpha \beta \gamma}$ and $c_{\alpha \gamma \beta(\alpha \beta \gamma)}$ stand for

$$
\left[\lambda f_{\alpha \beta \gamma} \lambda x_{\beta} \lambda y_{\gamma} \cdot f_{\alpha \beta \gamma} y_{\gamma} x_{\beta}\right] .
$$

$W^{\alpha \beta}$ and ${ }^{w}{ }_{\alpha} \beta(\alpha \beta \beta)$ stand for $\left[\lambda f_{\alpha \beta \beta} \lambda x_{\beta} . f_{\alpha \beta \beta} x_{\beta} x_{\beta}\right]$.
X
 at all free occurrences of $\%$ in $B_{f t}$.
$£$ has a single rule of inference, which is the following:
 replacing one occurrence of $£_{a}$ (which is not an occurrence of a variable immediately preceded by X) in $\stackrel{C}{C}^{\circ}$ by an occurrence of $\overline{\mathrm{B}}$.

The axioms and axiom schemata for $£$ are the following:

$3 \quad f_{\alpha \beta}=g_{\alpha \beta}=\forall x_{\beta} \cdot f_{\alpha \beta} x_{\beta}=g_{\alpha \beta} X_{\beta}$
$4 \quad\left[A x \quad B_{0}\right] A=S_{A}^{-\alpha} B_{0}$ where A is free for x in B^{\wedge}.

Let us denote by J\& the system obtained when the axioms of extensionality (6. LI of [3]) are added to the list of axioms of the system JT of [3]. This is essentially the system of [8] or [4] using axioms $1-6,10^{\circ}, 10^{\text {a }}$, and with the selection operators deleted. fee differs from $£$ in having primitive
constants ~oo ${ }^{\wedge}$ ooor and IIo(oa) instead of Q^{\wedge}. There are natural translations A from $£$ into 2T\& and 7 from ! If into $£$ which involve replacing the primitive constants of one language by appropriate closed wffs of the other language. For example ${ }_{\iota}$ if A is a wff of $£$, $A A$ is the result of replacing each occurrence of $Q_{n} a a^{i n}$ iL ${ }^{b} y$ thewff
 that \& and Ji\& are equivalent in the sense that for each wff A of $£$ and B of $f f C, k, A$ iff .L.p AA.
 Hence our independence proofs below apply also to JT\&.

Definition. $E_{\boldsymbol{\gamma}}$ is contractible to $D_{\boldsymbol{\gamma}} \quad\left({ }_{\boldsymbol{\gamma}}^{\boldsymbol{\gamma}}\right.$ contr $\left.\mathrm{D}_{\boldsymbol{\gamma}}\right)$ iff $p_{\boldsymbol{\gamma}}$ can be obtained from $£_{\boldsymbol{\gamma}}$ by a sequence of zero or more applications of the following two rules of A-conversion: I. (Alphabetic change of bound variables). To replace any wf part $\left[A{\underset{\sim}{x}}_{\alpha} B_{f 1}\right]$ of a wff by $\left[A y_{\alpha} S_{y}^{x_{a}} B_{f}\right]_{5}$ provided that y_{α} is not free in B_{0} and y is free for x in B_{ℓ}.
II. (A-contraction). To replace any wf part [[Ax $\left.\left.\mathcal{A g}_{\alpha}\right]_{\alpha}\right]$ of a wff by $\underset{S_{-}}{\boldsymbol{X}_{01}} B_{0}$. provided that A is free for x in B_{a}.

Definition. E. is a KS-combinatorial wff iff every
 form $v^{*} t$ or $s^{\alpha \beta \gamma}$.
\mathbf{E}_{8} is a KBCW-combinatorial wff iff every occurrence of A in E. is in a wf part of E. of the form $K^{*}{ }^{\boldsymbol{\beta}}, B, c^{\alpha \beta \gamma}$, or $W^{\alpha \beta}$.

Clearly $\mathrm{K}^{\wedge} \wedge^{\mathrm{S}^{01}}{ }^{\beta \gamma}$, and all primitive constants and variables are $K S$-combinatorial wffs. Also, [A, QBQ] is such a bf jiff ${\underset{\sim}{\alpha}}_{\underset{\alpha}{A}}$ and $\underset{\sim}{B}$, are.

We next show that every mf of $£$ is convertible to a KS-combinatorial wff_{5} and to a KBCW-combinatorial mf. This requires only a simple translation into the present context of familiar facts about combinatory logic (see [6], [13], for example).

Lemma 1. For any K - combinatorial mf $\underset{\boldsymbol{r}}{\mathrm{B}_{\mathrm{f}}} \underset{\boldsymbol{\gamma}}{ }$ and variable $\underset{\boldsymbol{x}}{\boldsymbol{x}}$

Proof: By induction on the number of occurrences of [
in B_{β}.
Case a: B_{0} is x.
——~~~ ${ }^{3}$ - y
Let $P_{\gamma \gamma}$ be $S^{y(y y) y} K^{y(y y)} K^{y y}$. Thus $\boldsymbol{R}_{\boldsymbol{\gamma}}^{\boldsymbol{\gamma} \boldsymbol{\gamma}}$

Case b: B_{o} does not contain x free. Let P_{r},

Case c: B_{ℓ} has the form [Dofi $E \wedge$]. By inductive $\sim . p \quad \wedge$ po \longrightarrow
hypothesis there are KS-combinatorial offs $\mathrm{G}_{\mathrm{o}}{ }^{*}$ and H_{f}

Since every KS-combinatorial mf Bg, falls under at least one of these three cases, this completes the proof of the lemma.

Proposition 1, For every mf jd\& of $£$ there is a KS-combinatorial mf P. such that P contr $A \cdot$.

Proof: by induction on the number of occurrences of in A. .
~ 0
Case: Ab is a primitive constant or variable.
Let P. be A. .
Case b: A_{c} has the form $\left[D_{f t D} E_{D}\right] «$ By inductive hypothesis there are KS-combinatorial offs D_{0}^{t}.
 Let P_{6} be $\left[D^{\wedge} s p\right]$.

Case c: A_{e} has the form $\left[\begin{array}{ll}\mathrm{Ax} & B_{o}\end{array}\right] \bullet$
By inductive hypothesis there is a KS -combinatorial mf $\underset{\wedge}{B_{Q}}$ such that $\mathcal{B e n}_{\boldsymbol{p}}$ contr $\mathcal{P}_{\boldsymbol{p}}$. Then by Lemma 1 there is a KS-combinatorial mf P_{0} such that P^{\wedge} contr $\left[\begin{array}{ll}A x & B_{0}\end{array}\right]$, ~j3y $-j 5 y \quad-y-\mid 3^{J}$
Thus P_{o} contr A_{c}. LU

$$
-p y \quad-6
$$

Proposition 2. For every mf $\underset{\sim}{A}$ of $£$ there is a

Proof: it can be verified that
$\left.{ }_{B}(\operatorname{ccy}(j 3 y))(a y(j 3 y) y)(a] 3 y\right)_{[B}(a y(j 3 y))(a y y(/ 5 y))(\alpha \gamma(\beta \gamma) \gamma)$

$$
\left.{ }_{[B}(\text { day })(\text { dy }) \circ r\right)_{w} \operatorname{ar}_{j c}(a y)(\mid 3 y)_{y_{] ~}(\mathrm{By}(j 5 y))}(\alpha \beta) \gamma_{B^{\alpha}}^{\alpha} \gamma_{]} \text {contr } s^{\alpha \beta \gamma} .
$$

If one replaces $S^{a \hat{\wedge} y}$ by this wff everywhere in the wff JP_{δ} of Proposition $1 /$ one obtains the desired wff JDo.

§3. General Models for £o

We next define the general models for $£$ by modifying appropriately the definition in [8].

Definition* A frame is a collection $\left\{\alpha_{\alpha}\right\} \boldsymbol{\alpha}$ of non-empty domains (sets), one for each type symbol a/ such that $\varepsilon_{o}=\{t, f\}$ and $\varepsilon_{\text {cccp }}$ is a collection of functions mapping ε_{μ} into \& 0 The members of $\$$ are called truth values and a the members of $\& 2$ are called individualso

Definition. Given a frame \{\$ \} , an assignment (of values a a in the frame to variables) is a function cp defined on the set of variables of $£$ such that for each variable $x_{z}>$ a qpx G\&. Given an assignment $q^{\star}{ }^{\text {a }}$ variable x, and an element ze\& α_{9} let ($\mathrm{q}::_{\mathrm{x}} / \mathrm{z} / \mathrm{z}$) be that assignment 0 such that

If h is a function of which x is an argument, we write the value of h at x as $h x$ or (hx). If $h x$ is itself a function of which y is an argument, we may write (hx)y simply as hxy, using the convention of association to the left in our meta-language. We shall use dots to denote parentheses in our meta-language in the manner of our convention for brackets in $£$. We shall also use A-notation informally
in our meta-language* Thus when A is an expression of our meta-language involving a variable x of our meta-language, then (Ax) shall serve as a name for the function whose domain is the range of the variable x and whose value at each argument x is A. In contexts where a frame has been specified, if a is a type symbol it will be understood that $x, y . z_{\text {. }}$.etc., range over the domain $\$$ of the frame • However, we reserve a as a name for the identity relation over $\$$; i.e., $q \quad x y=t$ if $x=y$, and $q \quad x \quad y=f$
 a ' Ja a a
then $q \quad x$ is fix \} , ~ t h e ~ u n i t ~ s e t ~ w h o s e ~ o n l y ~ m e m b e r ~ i s ~ x 。 oar a a \propto Definition A frame $\{\&\}$ is a general model for $£$
\qquad
iff there is a binary function ls such that for each assignmont 9 and mf A, VA e\& and the following conditions ~a 9~a a
are satisfied for all assignments cp and all wffs:
(a) $1 s \mathrm{x}=q \mathrm{x}$
(b) V Q $=q$
甲 oar oar
(c) $v_{\varphi}\left[A_{\alpha \beta} B_{\beta}\right]=\left(v_{\varphi} A_{\alpha \beta}\right)\left(v_{\varphi} B_{\beta}\right)$
(d) $v_{\varphi}\left[\lambda x_{\alpha} B_{\beta}\right]=\left(\lambda y_{\alpha}{ }^{\mathrm{l}}\left(\varphi: x_{a^{\prime}} / y_{\text {"a }} \quad p\right.\right.$

Remark. Clearly the crucial requirement above is that lr $\left[A x \quad B_{Q}\right] e \varepsilon_{Q}$ « Note that in a general model the 9 a p pa function ,V is uniquely determined.

Definition. A frame $\{\&\}$ is a standard model for a a

```
iff for all a and | 3, & & is the set of all functions
from &a into & •
    p a
```

Clearly a standard model is a general model, and is uniquely determined by $\&^{\mathfrak{\imath}}$.

A wff A is in a general model iff $1 s, A=t$
 for all assignments qp. It can be shown by an easy modification of the argument in [8] that $a \operatorname{wff} \underset{A}{\text { A }}$ is a theorem of $£$ iff it is valid in every general model. Also, the rule of inference of Z preserves validity in a general model.

Definition. A wff A is significant in a frame \{\& \} iff there is a function ls such that for every assignment cp and for every wf part $B_{f i}$ of ${ }^{-}{ }_{\alpha}$ (including ${ }^{3} \alpha$ itself), If $B_{0} e \&_{o r}$ and V satisfies conditions (a)-(d) (in the中 *' p p definition of general model).

Thus a frame is a general model iff every wff is significant in it.

Before proving the next proposition we state the following lemmas, which can be proved by a straightforward induction on the construction of B_{0}.

$$
\sim P
$$

Lemma $2 \ll$ if B_{r}^{\wedge} is significant in a frame and $C p$ and 0 are assignments which agree on the free variables of $\mathrm{JB}_{\mathrm{fi}}$

$\underline{\text { Lemma 3>> }}$ If $\underset{\sim}{A}$ and $\underset{x}{B \sim}$ are significant in a frame

$$
\text { Proposition } 3 \lll{ }_{\sim}^{C} \gamma \text { is significant in a frame and }{ }^{\wedge} \underset{\gamma}{\gamma}
$$ contr $D_{\boldsymbol{\gamma}^{\prime}}$ then $\mathrm{D}_{\boldsymbol{\gamma}} \boldsymbol{\gamma}$ is significant, and for any assignment $\quad \mathrm{P}$,

Proof: Clearly it suffices to prove this proposition for the case where $\underset{\boldsymbol{D}}{\boldsymbol{D}}$ is obtained from $\underset{\boldsymbol{\gamma}}{\boldsymbol{\gamma}}$ by a single application of rule I or II of A-conversion* In either case the proposition follows easily by induction on the construction of $\underset{\sim}{C} \boldsymbol{\gamma}$ once one establishes it for the mf part of C to which the rule is actually applied.

$$
\text { Thus in the case of rule } I \text { one may suppose } \underset{\sim}{C}
$$

is $\left[A x \quad B_{Q}\right]$ and D is $\left[A y \quad S{ }^{\text {a }} B_{0}\right]$ g where y is not
free in \vec{B}^{κ} and ${\underset{y}{y}}^{\alpha}$ is free for \vec{x}^{α} in $\underset{B}{\boldsymbol{B}} \underset{\text {. }}{ }$. We may assume

Lemma $3 \quad S^{m} B_{a}$ is significant,

- $y_{a} \sim P$

Note that for any z e \& we have V, .., . $x \quad v=z$
so

$$
\begin{aligned}
& { }^{r}\left(\varphi: y_{\alpha} / z_{\alpha}\right) \quad S_{\underline{Y}_{\alpha}}^{X_{\alpha}}{\underset{\sim}{B}}_{\beta}={ }^{v}\left(\left(\varphi: y_{\alpha} / z_{\alpha}\right): x_{\alpha} / z_{\alpha}\right)^{B} \quad \text { (by Lemma 3) } \\
& { }^{=}{ }^{v}(\mathrm{cp}: \mathrm{x} / \mathrm{Z}) 5_{3} \quad{ }^{\mathrm{b}} \mathrm{~V} \text { Lemma 2). Hence }
\end{aligned}
$$

which is the desired value for V B^, so B is significant
and $V C=\operatorname{lr} D$.

$$
\Phi \sim Y \quad \Phi \sim \mathcal{Y}
$$

In the case of Rule II one may suppose that $\mathcal{S}_{\boldsymbol{\gamma}}$

for x in B_{o}. Since C is significant, \dot{A} and B_{R} are, so by Lemma $3 D^{\gamma}$ is significant/ Also

Remark: It is not true that if $£_{\boldsymbol{\gamma}}$ is significant in a frame and D contr C, then D must be significant.

Proposition 4. For any frame to, the following conditions are equivalent:
(a) to is a general model for $£$.
(b) Every KS-combinatorial mf of $£$ is significant in too
(c) Every KBCW-combinatorial mf of $£$ is significant in to.

Proof: by Propositions 1,2, and 30 L

We now rephrase condition (b) to obtain a simple criterion for a frame to be a general model.

Theorem 1. A frame $\begin{array}{r}{[\&\}} \\ \in \alpha a\end{array} \quad$ is a general model for $£$ iff it satisfies all of the following conditions (for all type symbols $\langle x, j 3, y)$: (a) $\mathrm{q}_{\mathrm{oaa}} e^{\varepsilon_{0}}{ }_{\alpha \alpha}$.

(c) $\quad\left(\lambda x_{\alpha} \lambda y_{\beta} x_{\alpha}\right) \in \theta_{\alpha \beta \alpha}$ -
(d) Formally $\wedge^{\wedge} \mathbf{e}^{*} \wedge$ and $\mathrm{y}_{\beta \gamma} \in \boldsymbol{\theta}_{\beta \gamma}$,
$\left(\lambda z_{\gamma} \cdot x_{\alpha \beta \gamma}{ }^{z_{\gamma}} \cdot y_{\beta \gamma} z_{\gamma}\right) \in \otimes_{\alpha \gamma}$.
(e) Forallx ${ }_{y} \in \mathbb{N}_{\alpha \beta \gamma}$,
${ }^{(A y} P>{ }^{A} V^{x} a 0 y V^{y} 3 y{ }_{\gamma}{ }^{z^{\prime} \in A_{a \gamma}(\beta \gamma)}$.
(f) $\quad\left(A x_{\alpha \beta \gamma} \lambda y_{\beta \gamma} \lambda z_{\gamma} \cdot x_{\alpha \beta \gamma} z_{\gamma} \cdot y_{\beta \gamma} z_{\gamma}\right) \in \|_{\alpha \gamma(\beta \gamma)(\alpha \beta \gamma)}$.

Proof: Clearly if the frame is a general model, the conditions (a)-(f) must be satisfied. To show they are sufficient, we show they imply condition (b) of Proposition 4. Since every variable is significant in every frame, and a
 are, it suffices to show that the wffs $Q, K^{a} 0$ and $S^{a \wedge}$ ola * are significant in the frame. This is assured by conditions (a)-(f)e (We note that condition (a) implies that for all $x e \& .(q \quad x$)e\& .) a a* ^oar ${ }^{\text {D }}$ on'

Remark; We leave it to the reader to state the analogous theorem using $B^{a \wedge r}, C^{a \wedge y}$, and $W^{0 \wedge}$ in place of $S^{a \wedge y}$. Such a theorem may be useful since $B^{a \hat{\wedge} y}, C^{a \hat{\lambda} y}$, and $W^{0} \hat{\wedge}$ are each conceptually simpler than $S^{\hat{\wedge} \hat{y}}$.
\$4. The Axiom of Descriptions
We remind the reader that the Axiom of Descriptions is

Theorem 2« ${ }^{\ll}$ is not a theorem of

Proof: We partition the type symbols into two sets, \$o and JT_{t} as follows: oe JT but ${ }_{\mathrm{o}}{ }^{\mathrm{A}}{ }^{\wedge} \mathrm{ff} ; \mathrm{I}_{\mathrm{t}} \mathrm{GJ}$ butt $\mathrm{i} j L Z_{\mathrm{o}}$; (o t/3) is in whichever set contains a^{*} We then let $\mathrm{C}=\left\{(\mathrm{ccP}) \mid \mathrm{a} € \mathrm{ff}_{\mathrm{t}}\right.$ and pe $\left.Z_{Q}\right)$.

We next define a frame $I U=\{\&\}$ by induction on a. a a
$\delta^{0}=\{t, f\} . \delta^{\mathbf{t}}=\{m, n)$, where m and n are distinct individuals. (Actually $\delta^{\boldsymbol{\imath}}$ may be taken to have any cardinality greater than one.) If (oc 3) $€ C, \& \rho_{\rho}$ is the set of all constant cp
functions (i.e., functions with the same value for all arguments) from ε_{Q} into \& • If (a) 3)/C, $\& a$ is the set of all functions from ${ }_{\&_{S}}^{P}$ into ti ${ }_{a}^{a}$.

We next use Theorem 1 to verify that $I U$ is a general model for $£$.
(a) Since $\left(O_{a}\right) / C$ and $\left(O_{a} a\right) / C, q^{-} \therefore \ell_{o \alpha \alpha}$.
(b) $\left(A y_{Q} x\right)$ is a constant function, and so is in \& a.
P a aP
(c) (aj3a)/C whether ae JT or $a € S^{1 \wedge}$. Hence (Ax By ft x) e\& \propto • $\mathrm{t} \quad \mathrm{o} \quad \mathrm{oc} \quad \mathrm{p}$ oc apoc
(d) We need consider only the case where $(\alpha \gamma) \in C$.

We must show that if xefi e and yezo, then

$$
\text { aby } \quad * \text { fiy }
$$

$\left(\mathrm{Az}^{\boldsymbol{\gamma}} \cdot \mathrm{xz}^{\boldsymbol{\gamma}} \mathrm{Y}_{\mathrm{z}}^{\mathrm{q}}\right)^{\text {) }}$ is a constant function. So we let $\mathrm{z}^{1}, \mathrm{z}^{2}$ e $\boldsymbol{\$}^{\boldsymbol{\gamma}}$
and show that $\left(x z{ }_{\text {o }} y z\right)=(x z . y z)$. Since $\mathfrak{a} € 3^{\wedge}$ and $y e Z \quad x$ (aj3y)eC so $x z^{1}=x z^{2}{ }_{0}$
Case 1: fie $Z^{\boldsymbol{z}}$. Then (fin)eC so $\mathrm{yz}=\mathrm{yz}^{1}$ so $\left(x z^{\wedge} y z^{1}\right)=\left(x z^{2} \cdot y z^{2}\right)$.

Case 2;) $3 € \mathrm{ff}_{\mathrm{o}}$. Then $(<\mathrm{x} 0) \mathrm{eC}$. Since $\mathrm{x} \mathrm{z}^{1}=\mathrm{x} \mathrm{z}^{2} \in \boldsymbol{\theta}_{\boldsymbol{\alpha} \boldsymbol{\rho} \text {, }}$, $x z^{1}\left(y z^{2}\right)=x z^{2}\left(y z^{2}\right)$.
(e) Suppose $(\operatorname{cxy}(/ 3 y)) \mathrm{eC}$ and $\mathrm{x} \in \boldsymbol{N}_{\alpha \boldsymbol{\beta} \boldsymbol{\gamma}}{ }^{\cdot}$

We must show that $\left(X y^{\wedge}{ }_{y} \backslash z_{y} \cdot x z_{y} \cdot y^{\wedge}{ }_{y} z_{y}\right)$ e day $\left.\wedge_{y}\right)$. So
suppose $y^{1}, y^{2} \epsilon_{\dot{p} \boldsymbol{\gamma}}^{*}$. We must show that

for an arbitrary efl $\boldsymbol{y}(x z \cdot y z)=(x z \cdot y \quad z)$. But $a € t f_{t}$ and $\left(3 € \underset{0}{7}\right.$ so $(a 0) e C$ and $x \exists_{\|_{\alpha_{r}}}$, which contains only constant functions. Hence $x z\left(y^{1} z\right)=x z\left(y^{2}\right)$.
(f) (ayOy) (aj3y))/C whether $a € 3 \%$ or $a \operatorname{ffo}$ so

$$
\left(\lambda x_{\alpha \beta \gamma} \lambda y_{\beta \gamma} \lambda z_{\gamma} \cdot x_{\alpha \beta \gamma} z_{\gamma} \cdot y_{\beta \gamma} z_{\gamma}\right) \in S_{\alpha \gamma}(\beta \gamma)(\alpha \beta \gamma)
$$

 order that D be valid in $I U$ there must be a function $h \in \theta_{\text {(ot) }}$ such that $h\left(q_{o i t} m\right)=m$ and $h\left(q_{\text {ot }}^{n}\right)=n$. However, (i(ot))ecj so there is no such function in $\$,{ }_{x}$ • Thus D is not valid i (oi)
in the general model to, and so is not a theorem of $£$ •

T*he idea behind the following theorem is contained in [9], but the proof is short, so we give it here.
 a \propto

in which ${ }^{\text { }}$ is finite. Then to is a standard model diff D is valid in to.

Proof: The domains ${ }_{\alpha}{ }_{\alpha}$ must, of course, all be finite. If to is standard one can enumerate the elements in \& , ,
to see that D is valid in to.
Suppose D is valid in to. We show that ${ }^{A}{ }_{\alpha}{ }^{9}$. must contain all functions from $\$_{p}$ to \& • So let g be any
 $p \quad P \quad P$ tioned in $\$ 1$ one sees that there must be a description operator
 Let cp be an assignment with values on the variables

 Then $\quad 9=V_{\mathrm{cp}}\left[A \mathrm{x}_{\mathrm{J} 3} \cdot \mathrm{i}_{\mathrm{a}(\mathrm{Oa})} \cdot \mathrm{A} \mathrm{y}_{\mathrm{a}} \cdot\left[\mathrm{x}_{\wedge}=\mathrm{w}_{\boldsymbol{\beta}}^{\mathbf{l}} \wedge \mathrm{y}_{\alpha}=\mathbf{z}_{\alpha}^{\mathbf{l}}\right]\right.$
 a general model

Remark, Theorem 3 provides a strong argument for always assuming the Axiom of Descriptions. If one does this by introducing a description operator $1_{\text {t'(Ois }}$ and modifies the definition of general model in the natural way by introducing an appropriate requirement for $\operatorname{Ix} 1$, * (thus getting closer to the definition in [8]), one can again prove that the theorems are precisely the wffs valid in all general models. Thus it appears that the language Q° of $[2]$ is more natural than $£$.
§5. The Axiom of Choice
The Axiom of Choice (for individuals) is
(E) ${ }^{3 i} t(o t){ }^{v}$ Pot ${ }^{a x} t$ Pot $x_{t}=>P_{O i} \cdot i_{i(O i)} p_{O \imath}$.

Clearly [E ZD D] is a theorem of Z. We use the FrankelMostowski method to show that its converse is not. Thus E is not provable in Z, even if D is added to the list of axioms.

We first establish the following lemma, which is fundamental for applications of the Fraenkel-Mostowski method to Z. The lemma is true but trivial if $\&_{\imath}$ is finite, since in this case the conditions on 3 assure that to will be the standard model over $\&_{\mathfrak{\imath}}$. We use 0 to denote the composition of functions.

Lemma 40 Let $\$_{1}$ be an infinite set of individuals and P a set of permutations a of $\varepsilon_{\mathfrak{\imath}}$ such that or aa $=\left(\operatorname{Ax}_{i} x_{i}\right)$ Let 3 be a family of subsets of P such that
(a) for each me $\&^{\wedge}$ there is a set $K € 3$ such that om $=m$ for all $\propto e \mathrm{~K}$, and
(b) for all H, Re 3 there is a set de 3 such that J cnn fl K_{0} Let the frame to $=\left[\delta_{\alpha}\right\}_{\alpha}$ be defined, and each permutation $a € P$ be extended to a permutation of $\$_{\alpha}$ (which we may denote by a^{a}) such that $\left.a^{a} \circ \mathbb{C r}^{(A x} x\right)$ for each a, as follows by induction on a :

$$
*_{0}=[t, f\} ? C r^{\circ}=\left(A x_{Q} x_{Q}\right) \text { for all } a € P .
$$

Given ε_{a} and ε_{β} and any function h from ε_{β} into A_{a}, let oh = a^{a} oho" ${ }^{*}$, and let $\& e$ be the set of all functions h op
from $\varepsilon_{q_{p}}$ into $\&$ a such that there is
some $K e 3$ such that $a h=h$ for all ae k.
Then tn is a general model for Z in which D is valid.

Proof: For notational convenience, if hefiy we let 1^{\wedge} denote some $K € 3 ?$ such that $a h=h$ for all oe k. Clearly such a set K_{n} always exists. Note that if he $\alpha_{\alpha}{ }_{\alpha}$, and $x \in \boldsymbol{A}_{\mathcal{P}^{\prime}}$ then $\left(\sigma^{\boldsymbol{\alpha} \boldsymbol{\beta}} \mathbf{h}\right)\left(\boldsymbol{\sigma}^{\boldsymbol{\beta}} \mathrm{x}\right)=a^{a}(\mathrm{hx})$.

We use Theorem 1 to verify that to is a general model.
(a) If $x, y \in Q_{a}$ and $\operatorname{aeK} K_{X}$ then $\left(c^{\circ a} \cdot q_{\text {Da }} x\right) y=$ $=a^{\circ}\left(a_{\text {oat }} x . a y\right)=q_{\text {baa }} x(a y)$ which is $t \quad$ of $a y=x=a x$ iff $x=y$, so $\left(C T^{\circ a} \cdot q_{\text {oas }} x\right) y=\left(q_{o_{\alpha \alpha}} x\right) y$ for all $y € \otimes_{\alpha}$

 $\left(a^{o a} \cdot q_{o \alpha^{a}}-a^{a} x^{x}\right)^{\frac{a}{2}} y=q q_{q^{a^{a}}}\left(a^{a} x\right)\left(a^{a} y\right)$, which is t° of ${ }^{\text {oacx }}$ $a x=$ may of $x=y$, so $\mathrm{aq}_{o_{\alpha \alpha}}=q_{O_{\alpha \alpha}} \quad$ and $q_{O_{\mathrm{a}} a} \quad e_{O_{a} a} \quad$.
(b) For any $\mathrm{x} e \& \quad$ and $a e K_{-\ldots} \mathrm{a}\left(\mathrm{Xy}^{\wedge} \mathrm{x}\right)=\left(\mathrm{Ay}_{\mathrm{p}} \mathrm{ax}\right)=(\mathrm{Ay} \quad \mathrm{x})$, so $\quad\left(\lambda y_{\beta} x_{\alpha}\right) \in \otimes_{\alpha \beta}^{a \mathrm{a}}$.
(c) For any a e P, a(Ax $\left.\lambda y_{o x}\right)=\left(A x a \cdot A y_{o} a x\right)=$
 Before checking (d)-(f) we observe that if
 $=a^{a} \cdot\left(0^{\hat{\wedge}} \cdot \hat{x} z\right) \cdot a^{\beta} \cdot y z=a^{a} \cdot a^{a} \cdot x z y_{o} y z=x z \cdot y z$.
(d) Suppose $X € \&_{\boldsymbol{\alpha}, \boldsymbol{\gamma}} \boldsymbol{\gamma}$ and ye \& $\boldsymbol{\mu} \boldsymbol{p} \boldsymbol{\gamma}$ Let J be a member of $\boldsymbol{\gamma}$
such that $J \subseteq K_{x} n K y$ For any ae J, ax $=x$ and $a y=y$
 $=\left(A z \gamma_{\boldsymbol{\gamma}} \cdot \mathrm{xz} \cdot \mathrm{yz}\right)$, which must therefore be in $\#_{\alpha \boldsymbol{\gamma}}$.
(e) If xe\& α_{1}, γ and $a \in K_{x}$, then $c x\left(A y g, A z_{y} \cdot x z \cdot y z\right)=$ $=\sigma\left(\lambda y_{\beta^{\prime}} y \mathrm{Az}_{\gamma^{\prime}}(\mathrm{ax}) \mathrm{z} \cdot \mathrm{yz}\right)=\left(\mathrm{Ayg}_{\gamma^{\#}} \mathrm{a} \cdot \mathrm{Az}_{\gamma^{\prime}} \cdot(\mathrm{ax}) \mathrm{z}_{\mathrm{o}}(\right.$ by z$)=$ $\left.=\left(\lambda y g_{y} A z_{\gamma} \cdot a^{a} \cdot(a x)(a z) \cdot(a y) \cdot a z\right)=\wedge Y \& y A z_{y} \cdot x z \cdot y z\right)$, which must therefore be in $\&_{\alpha \gamma \gamma_{\Gamma} \mathrm{fi}_{r} \gamma}{ }^{\mathrm{x}}$ •
(f) For any ae P_{5} a(Ax $\left.\underset{\alpha_{1}, \gamma}{ } \mathrm{Ayg}_{\boldsymbol{\gamma}} \mathrm{Az}_{\boldsymbol{\gamma}} \cdot \mathrm{xz} . \mathrm{yz}\right)=$ $=\left(A x{ }_{a} \wedge_{r}{ }^{A y} \operatorname{Pr} \wedge V^{0} \wedge *(a x)(a z) \bullet(a y) _a z\right)=\left(A x a p y{ }^{A Y} P Y{ }^{A z}{ }_{Y^{-}}^{x} \quad z \cdot y z\right)$, which must therefore be in $\& \alpha_{y}(f f y) \cdot\left(\mathcal{F}_{\mathrm{E}} \mathrm{f}\right)^{m}$

Thus to is a general model for $£$.
We next verify that D is valid in to. Let n e \& .
We shall construct a description operator h mapping dor to \& as follows. For each unit set $\mathrm{q}_{\mathbf{n}} \quad \mathrm{x} \underset{i}{ }$, we let
 Now we verify that he fl, n. Let ae k. For each unit - * \boldsymbol{x} (01) \quad n

so $(a h)\left(q_{o t i} x_{t}\right)=a\left(h \cdot a \cdot q_{Q i 1} x^{\wedge}=\right.$ ordi. $q^{\wedge} \cdot c^{\wedge} x^{\wedge}=$

then ag ox (ie. $g_{O x} \circ \mathrm{Cr}^{1}$) is not either so
$(a h) g_{\ell t}=a\left(h \cdot g_{Q}{ }^{\wedge}\right)=a n=n=h g_{Q 1} \cdot$ Thus ah $=h$, and hefi $\boldsymbol{f}_{\left(O_{i}\right)^{\circ}}$ It is now easy to see that D is valid in to.

Theorem 4. [D 3 E] is not a theorem of $£$.

Proof: Let 9 be an infinite index set and for all je 9 let $\backslash \dot{x}$? and x ? be distinct individuals, so chosen that $m^{j} \wedge m^{1}$ and n^{j} fi n^{1} if j/i. Let $A,=\left\{m^{j} \mid j € 9\right\} U\left\{n^{D} \mid j \in 2\right\}$. Let P be the set of all mappings a from $\$_{2}$ to J_{i} such that for all $j \in 9$, oxx? $=\dot{x C}$? and on? $-\dot{v}$?, or $\dot{a} \dot{m}^{3}=\dot{n^{*}}$ and $\dot{n}^{3}=m^{\dot{3}}$. Thus for each a eP we have $0 * 0=\left(A x^{\wedge} X_{i}\right)$. Let 3 be the family of all subsets K of P such that there is a finite subset j of 9 such that $K=\left\{a e p \mid\right.$ for all $j \in j$, $o w ?=T O^{3}$ and $\left.a n^{\dot{3}}=n^{n^{3}}\right\}$. It is easily checked that $3^{*} \ll$ satisfies the conditions of Lemma 4, so let to be the general model constructed as in Lemma 4.

We must see that E is false in to. Suppose it were true. Then there would be a choice function $h e \&$, x such that i (oi) for every non-empty set $g € A$ or $h g$ is in q, i.e., $g(h g)=t$. For each $j € 9 \$^{\text {iet }} 9^{\wedge}=\left(A x . x=m^{3} \text { or } x=n^{\wedge}\right)^{\circ}$, i.e., $g^{\dot{-1}}=\left\{m^{-}, \dot{n^{\prime}} \dot{J}^{J}\right\}$. It is easy to see that $\dot{e r g}^{-\dot{*}}=\dot{g^{5}}$ for all $a \in P$, so each $g^{j}{ }^{\text {eil }} \mathbf{o t}^{\text {. }}$ Now for any $k e 3$ there is some $j € 9$ which is not in the finite subset of 9 which determines K, and hence some $a \operatorname{ek}$ such that $a m^{3^{\dot{3}}}=n^{\dot{\wedge}}$ and $a n^{-^{5}}=m^{-\dot{1}}$. Then $(a h) g^{\dot{D}}=a\left(h \cdot a g^{\dot{D}}\right)=c r\left(h g^{\dot{D}}\right) / h g^{\dot{D}}$, so ah $\wedge h$. Thus there can be no choice function $h € \&, x$, so E is false i (ot)

in to.

Thus [D z> E] is not valid in the general model to and so is not a theorem of $£$.

Bibliography

[1] Peter B. Andrews, "A reduction of the axioms for the theory of propositional types ${ }^{11}$, Fundamenta Mathematicae, vol. 52 (1963), pp.345-350.
[2] Peter B. Andrews, A Transfinite Type Theory with Tvpe Variables, North-Holland, 1965, 143 pp.
[3] Peter B. Andrews, "Resolution with Merging", Journal of Symbolic Logic, vol. 36, no. 1 (1971).
[4] Alonzo Church, "A Formulation of the Simple Theory of Types", Journal of Symbolic Logic, vol. 5 (1940), pp. 56-68.
[5] Alonzo Church, "Non-Normal Truth-Tables for the Propositional Calculus", Boletin de la Sociedad Matematica Mexicana, vol. X (1953), pp. $\overline{41}-\overline{52}$.
[6] Haskell B. Curry and Robert Feys, Combinatory Logic vol. 1, North-Holland, 1958, 1968, 433 pp.
[7] Abraham A. Fraenkel, "Der Begriff ${ }^{f}$ definit! und die Unabhängigkeit des Auswahlsaxioms", Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse \quad
(1922), pp. 25 3-257^; translated in Jean van Heijenoort, From Frege to Godel, Harvard University Press, 1967, pp. 284-289.
[8] Leon Henkin, "Completeness in the Theory of Types", Journal of Symbolic Logic, vol. 15 (1950), pp. 81-91; reprinted in [10], pp. 51-63.
[9] L. Henkin, "A theory of propositional types", Fundamenta Mathematicae, vol. 52 (1963), pp. 323-344; errata, ibid., vol. 53, p. 119.
[10] Jaakko Hintikka, editor, The Philosophy of Mathematics, Oxford University Press, 1969 , 186 pp.
[11] Azriel L^vy, "The Fraenkel-Mostowski Method for Independence Proofs in Set Theory", The Theory of Models, Proceedings of the 1963 International Symposium at Berkeley, edited by J. W. Addison, $\frac{\text { Leon Henkin, }}{\text { and Alfred Tarski, }}$ North-Holland Publishing Company, 1965, pp. 221-228.
[12] Andrzej Mostowski, "Üẻber die Unabhängigkeit des Wohlordnungssatzes vom Ordnungsprinzip\% Fundamenta Mathematicae vol. 32 (1939), pp. 201-252.
[13] Luis E. Sanchis, "Types in Combinatory Logic ${ }^{11}$, Notre Dame Journal of Formal Logic, vol. 5 (1964), pp. 161-180.

[^0]: 1
 This research was partially supported by NSF Grant GJ-580.

