
GENERAL MODELS, DESCRIPTIONS

AND CHOICE IN TYPE THEORY

by

Peter B. Andrews

Report 71-29

June, 1971

£ cs/

HUMT LiSRABY
£ARNE6IE-UEHeN UttiVEASITY



General Models, Descriptions, and Choice

in Type Theory

by

Peter B. Andrews

§1. Introduction

In [4] Alonzo Church introduced an elegant and expressive

formulation of type theory with A-conversion. In [8] Henkin

introduced the concept of a general model for this system,

such that a sentence A is a theorem if and only if it is

true in all general models. The crucial clause in Henkin1s

definition of a general model to is that for each assign-

ment cp of values in to to variables and for each wff A,

there must be an appropriate value If A of j\ in to.

Hintikka points out in [10,p.3] that this constitutes a

rather strong requirement concerning the structure of a general

model. Henkin draws attention to the problem of constructing

non-standard models for the theory of types in [9,p.324].

We shall use a simple idea of combinatory logic to find

a characterization of general models which does not directly

refer to wffs, and which is easier to work with in certain

contexts. This characterization can be applied, with appropriate

minor and obvious modifications, to a variety of formulations

of type theory with A-conversion. We shall be concerned with

a language £ with extensionality in which there is no de-

scription or selection operator, and in which (for convenience)
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the sole primitive logical constants are the equality

symbols Q for each type a*

We shall give two applications of this characterization.

First, we show that the Axiom of Descriptions (D) is in-

dependent of £. This axiom is very natural since a general

model for £ with a finite domain of individuals is standard

if and only if D is true in it. Secondly, we show how the

Fraenkel-Mostowski method ([7],[11],[12]) can be adapted

to £. We state our fundamental lemma concerning this method

in fairly general form to facilitate possible future applica-

tions (analogous to those for axiomatic set theory mentioned

in [11]), but confine ourselves here to simply showing that

the Axiom of Choice is not derivable in £, even if the Axiom

of Descriptions is assumed.

When a description operator l«/ o l\ ^s included among

the primitive symbols, the axiom of descriptions may be taken

in the form

so that i^Qtj[Axt A Q ] (which is abbreviated (12^ AQ)) denotes

the unique x such that J\ , when there is such an x .

Church showed in [4] that description operators for higher

types can be introduced by definition, using the operators

for lower types. Specifically, l
aj3(o(ag)) ™ay be defined as

tAho(a/3) A X0 la(oa) Aya 3f h f A y = f X]



R. 0. Gandy has pointed out (in a private communication)

t h a t lo/?(o(o/3)) C a n b e d e f i n e d a s

[Aho(o0) Ax/3 3fo0 * ho(o0) fo0 A fo0 V '

so description operators for certain higher types can be

defined without using those for any other type. Also,

Henkin noted in [9] that l
o/ o o)

 c a n be defined as

[ A hoo' hoo = [ A x o X o ] ] •

(A number of other definitions of i , * are also possible,

of which the shortest is perhaps the closely related

Qo(oo)(oo) [ A x o x o ] •>

Thus it is seen that description operators for all types can

be introduced once one has t , x. The argument in [2,pp.22-24]

shows that the description operator i , v cannot be intro-

duced by definition for the simple reason that there are no

closed wffs of this type, and that the axiom of descriptions

mentioned above is independent, since it is the sole axiom

which describes the special characteristics of t , *.

If no description operator is included in the list of

primitive symbols, the axiom of descriptions may be taken in

the form

3it(ot) VPot' ai xtPoi xt 3Poi [ it(ot) Pot]*

or equivalently

a i t ( o i ) V V it(ot) [ Qoti xt 1 = xt-



(The equivalence results from the theorem

ai xtPot Xt = a x f P o t = = - Q o n X t - )

Since in many logical systems descriptions can be eliminated,

it is very natural to ask whether the wff D, which asserts

the existence of a description operator, is in fact derivable.

It will be seen that our independence proof below is con-

ceptually very simple, and is compatible with any axioms

concerning the cardinality of the domain of individuals which

permit it to have at least two members.

Church mentions in [5] an unpublished proof by Lagerstrom

of a closely related independence result using a complete

non-atomic Boolean algebra for the domain of truth values.

It seems unlikely that Lagerstrom*s proof applies to £, since

in £, unlike the system treated by Lagerstrom, there is a

strong axiom of extensionality for type o (Axiom 1 below) which

permits one to derive [p = q ] z>.p = q •

§2. The Language £

The language £ is essentially the result of dropping

the description operator from the language Q of [2], and

is closely related to the system discussed in [9]. For the

convenience of the reader we here provide a description of £.

We use a,j3,y, etc., as syntactical variables ranging

over type symbols, which are defined inductively as follows:

(a) o is a type symbol (denoting the type of truth values).

(b) i is a type symbol (denoting the type of individuals).



(c) (cc|3) is a type symbol (denoting the type of functions

from elements of type 0 to elements of type a ) .

The primitive symbols of £ are the following:

(a) Improper symbols: [ ] A

(b) For each a, a denumerable list of variables of type

1 1 1 2f g h . . . x y z f g . . . z f . ..
a a a a ̂ a a a ̂ a a a

We shall use f ,g,...,x ,y , z , etc., as syntactical

variables for variables of type a.

(c) For each a* Q// \ \ is a constant of type ((oa)cc).

We write wff as an abbreviation for wff of type g»

and use A ,B ,C , etc., as syntactical variables ranging

over wffs , which are defined inductively as follows:

(a) A primitive variable or constant of type a is a wff

(b) [^ V is a W f fa •
(c) UjSjjAJ ^ a wff (aW

An occurrence of x is bound (free) in j3g iff it is

(is not) in a wf part of Bft of the form [Ax C.] . A is
~"P *"~(X "~0 CX

free for x in Bg iff no free occurrence of x in JBg

is in a wf part of BQ of the form [Ay C.] such that y

is a free variable of A .

Brackets, parentheses in type symbols, and type symbols

may be omitted when no ambiguity is thereby introduced. A

dot stands for a left bracket whose mate is as far to the



right as is consistent with the pairing of brackets already

present and with the formula being well formed. Otherwise

brackets and parentheses are to be restored using the con-

vention of association to the left.

We introduce the following definitions and abbreviations:

TQ stands for [Q Q O O = Q o o Q ] .

FQ stands for [ApopQ] = [ApoTQ]

[Vx A ] stands for [Ax A ] = [Ax T ]
*a oJ a~"o a oJ

Aooo s t a n d s f o r [APo A < V tAgooo'goooPo qo ] = lAgooo'goooTo

oAB o]t3oABo] stands for

s t a n d s f o r

[A DB ] stands for [3 A B ]•L~o -oJ ooo-o-oJ

Other connectives and quantifiers are introduced in familiar

ways.

and K a stand for [Ax AyQ x ].
apa a Jp aJ

s t a n d f o r

and B a y ( f t 0 ( o p ) stand for [ A f ^ AgpyAxy. f^.g^y xy]



a n d

a n d W

X
S A

a Bfi stands for the result of substituting A^ for ^x

a ~ P

at all free occurrences of x in Bft.

£ has a single rule of inference, which is the following

Rule R: From C and [A =B ] to infer the result of
~o ~a ~a

replacing one occurrence of £a (which is not an occurrence

of a variable immediately preceded by X) in C by an

occurrence of B .

The axioms and axiom schemata for £ are the following:

1 [q T A g F 1 = Vx ,g xiyoo o yoo oJ o yoo o

2 x = y z>»h x = h y
a a o a a o a a

4 [Ax BO]A = SA Bo9 where A is free for x in B^.

Let us denote by JT& the system obtained when the axioms

of extensionality (6. LI of [3]) are added to the list of axioms

of the system JT of [ 3] . This is essentially the system of [8]

or [4] using axioms 1-6,10°,10a^, and with the selection

operators deleted. ff£ differs from £ in having primitive
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constants ~ o o ^ o o o , and IIo(oa) instead of Q ^ . There are

natural translations A from £ into 2T& and 7 from !I£

into £ which involve replacing the primitive constants

of one language by appropriate closed wffs of the other language.

For example, if A is a wff of £, AA is the result of

replacing each occurrence of Qnaa
 in iL by t h e w f f

\J p p v-k
[Ax. Ay« Vf^.f-j x. z> fQg y^] of ff£. It is easy to establish

that & and JT& are equivalent in the sense that for each

wff A of £ and B of ffC, k, A iff L.p AA.

and K f f £B o iff h£ VB Q; moreover, h ££ Q = VA Ao and |^e BQ =

Hence our independence proofs below apply also to JT&.

Definition. £ is contractible to D (C contr D )

iff p can be obtained from £ by a sequence of zero or

more applications of the following two rules of A-conversion:

I. (Alphabetic change of bound variables). To replace any
x

wf part [Ax Bfl] of a wff by [Ay S a Bg]5 provided that y

is not free in Bo and y is free for x in BQ .

II. (A-contraction). To replace any wf part [[Ax Bg]A ] of

a wff by S,01 Bo. provided that A is free for x in Ba .

Definition. E. is a KS-combinatorial wff iff every
_ _ _ _ _ ~ § .«_____----__-_--______.

occurrence of A in E. is in a wf part of E of the

form v*t or

is a KBCW-combinatorial wff iff every occurrence of A

in E. is in a wf part of E of the form K*p, B



Clearly K^^S01 , and all primitive constants and

variables are KS-combinatorial wffs. Also, [A QBQ] is

such a wff iff A g and Bg are.

We next show that every wff of £ is convertible to

a KS-combinatorial wff5 and to a KBCW-combinatorial wff.

This requires only a simple translation into the present

context of familiar facts about combinatory logic (see [6],

[13], for example).

Lemma 1. For any KS-combinatorial wff Bfi and variable x

there is a KS-combinatorial wff Pg such that JPfi contr [Ax Bfl]

Proof: By induction on the number of occurrences of [

in

Case a: Bo is x .
~ j3 -y

Let P be s y ( y y ) y
 K

y ( y y ) Kyy. Thus P

contr [Az .Ky^yy^ z .K y yz ] contr [Az z ] contr [Ax B ] .

Case b: Bo does not contain x free. Let P,,

By
be KH/ gg. Then Pg contr [Ax Bg] .

Case c: BQ has the form [DOfi E^]. By inductive
~.p ^ po —o

hypothesis there are KS-combinatorial wffs Go* and Hft

— p^y —5y
such that G^6y contr [Axy p ^ ] and Hfiy contr [Axy Efi]

Let P3y be [ S ^ 6 y G ^ y H 6 y ] . Thus JP^y contr [S^
5y[Axy

contr [Axy. [Ax yD^] xy.[Ax^E6] xfi] contr
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Since every KS-combinatorial wff Bg falls under at

least one of these three cases, this completes the proof of

the lemma. LJ

Proposition 1, For every wff j\& of £ there is a

KS-combinatorial wff P. such that P contr A .

Proof: by induction on the number of occurrences of [

in A..
~ o

Case a: A is a primitive constant or variable.

Let P. be A. .

Case b: Ac has the form [DftDED] «
t

B y i n d u c t i v e h y p o t h e s i s t h e r e a r e K S - c o m b i n a t o r i a l w f f s D.g

and EQ such t h a t D o c o n t r D«Q and E^ c o n t r EQ .
- p ~ 6 P ~ o p ~ p ~ p

Let P6 be [D^ S p] .

Case c: Ae has the form [Ax Bo] •
!

By inductive hypothesis there is a KS-combinatorial wff BQ

^P
T

such that Bo contr Bo . Then by Lemma 1 there is a~p ~p
t

KS-combinatorial wff Po such that P^ contr [Ax Bo],
~j3y - j5y - y - | 3 J

Thus Po c o n t r Ac . LJ
- py - 6

Proposition 2. For every wff A. of £ there is a

KBCW-combinatorial wff D. such that p. contr Ae .
^ 0 0 ^0

Proof: it can be verified that

B(ccy(j3y)) (ay(j3y)y) (a]3y) [B(ay(j3y)) (ayy(/5y))

[B(ay) (ayy) Or) war ] c(ay)(|3y)y] [B(ay(j5y))
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If one replaces S a^ y by this wff everywhere in the wff JP

of Proposition 1/ one obtains the desired wff JD-. Q

§3. General Models for £o

We next define the general models for £ by modifying

appropriately the definition in [8].

Definition* A frame is a collection {& } of non-empty

domains (sets), one for each type symbol a/ such that

& = {t,f} and & Q is a collection of functions mapping &„
o ccp P
into & o The members of $ are called truth values and

a o
the members of & are called individualso

Definition. Given a frame {$ } , an assignment (of values
a a

in the frame to variables) is a function cp defined on the

set of variables of £ such that for each variable x >
a

cpx G & . Given an assignment cp* a variable x , and an

element ze& 9 let (cp:x /z) be that assignment 0 such that

= z and ihy^ = CDV^ if v^ £ x .

If h is a function of which x is an argument, we

write the value of h at x as hx or (hx). If hx is

itself a function of which y is an argument, we may

write (hx)y simply as hxy, using the convention of association

to the left in our meta-language. We shall use dots to denote

parentheses in our meta-language in the manner of our convention

for brackets in £. We shall also use A-notation informally
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in our meta-language* Thus when A is an expression of our

meta-language involving a variable x of our meta-language,

then (Ax A) shall serve as a name for the function whose

domain is the range of the variable x and whose value at

each argument x is A. In contexts where a frame has been

specified, if a is a type symbol it will be understood

that x ,y .z .etc., range over the domain $ of the frame•
a ^a/ a* * * a

However, we reserve a as a name for the identity relation

over $ ; i.e., q xy =t if x = y , and q x y = f
a Moaa a ̂ a a ^a oaa a Ja

if x ^ y o We note for future reference that if x e& ,
a ' Ja a a

then q x is fx }, the unit set whose only member is x o
oaa a a oc

Definitiono A frame {& } is a general model for £
a a —

iff there is a binary function \s such that for each assign-

ment 9 and wff A , V A e& and the following conditions
~a 9~a a

are satisfied for all assignments cp and all wffs:
(a) \s x = cpx

(b) V Q = q
cp oaa oaa

"a' "a p

Remark. Clearly the crucial requirement above is

that lr [Ax BQ] e&Q « Note that in a general model the
9 a p pa

function ,V is uniquely determined.

Definition. A frame {& } is a standard model for
a a
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iff for all a and |3, & g is the set of all functions

from &a into &
p a

Clearly a standard model is a general model, and is

uniquely determined by & .
A wff A is valid in a general model iff \s A = t

"""*• Q ' ~* CD "̂" O

for all assignments cp. It can be shown by an easy modification

of the argument in [8] that a wff A is a theorem of £

iff it is valid in every general model. Also, the rule of

inference of Z preserves validity in a general model.

Definition. A wff A is significant in a frame {& }

iff there is a function \s such that for every assignment cp

and for every wf part Bfi of A (including 3 itself),

If Boe&o, and V satisfies conditions (a)-(d) (in the
cp **" p p

definition of general model).

Thus a frame is a general model iff every wff is significant

in it.

Before proving the next proposition we state the following

lemmas, which can be proved by a straightforward induction on

the construction of Bo .
~ P

Lemma 2« if B^ is significant in a frame and cp and 0

are assignments which agree on the free variables of JBfi,

then \s Bo = ̂ ,Brt .

HUNT L1BRASY
CARNE6IE-MELLIII UNIVEBSITY
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Lemma 3» If A and B~ are significant in a frame

and A is free for x in Bas then SA
a Ba is significant-a -a ~fi - A a fi

x
and for any assignment cp, V S n

a Brt = V, A & \ Bo •
Cp*A**"P ^(D!X / U n j p

~ci ""a cp "*"cc

Proposition 3« If C is significant in a frame and ^C

contr D , then D is significant, and for any assignment cp,

IT C = U D .
cp ~y cp ~y

Proof: Clearly it suffices to prove this proposition for

the case where D is obtained from C by a single application

of rule I or II of A-conversion* In either case the proposition

follows easily by induction on the construction of C once

one establishes it for the wf part of C to which the rule

is actually applied.

Thus in the case of rule I one may suppose C

x ^

is [Ax BQ] and D is [Ay S a Bo] 9 where y is not

free in B^ and y is free for x in B«. We may assume

that y 7^ x . BQ is significant since C is, so by

-= oc "**oc ~* p y
Lemma 3 S Ba is significant,,

•ya ~P

Note that for any z e & we have V, , x v = z

a a (cp:y /z ) JTa a

SO

= V(cp:x /Z ) 53 <bV Lemma 2). Hence

-<x a K

which is the desired value for V D^, so D is significantD^, so D
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and V C = lr D .
cp ~y cp ~y

In the case of Rule II one may suppose that C
x

is [[Ax BQ]A ] and Dv is S a
a 3R , where A is free

~a ~ P ~a 7 •£>_ p a
\X

for x in Bo . Since C is significant, .A and BR

are, so by Lemma 3D is significant/ Also
V ^ c p \ = Ncp:* A A ) ^ = % fiy by Lenuna 3. •

cc ™ ex

Remark: It is not true that if £ is significant in

a frame and D contr C , then D must be significant.

V #y ~y ~.y
For x is always s i g n i f i c a n t , but [[Ax x ]x ] might not be .

i i l l

Proposition 4. For any frame to, the following conditions

are equivalent:

(a) to is a general model for £.

(b) Every KS-combinatorial wff of £ is significant in too

(c) Every KBCW-combinatorial wff of £ is significant in to.

Proof: by Propositions 1,2, and 3o L1

We now rephrase condition (b) to obtain a simple criterion

for a frame to be a general model.

Theorem 1. A frame [& } is a general model for £
ex a

iff it satisfies all of the following conditions (for all

type symbols <x,j3,y):
(a) q e&

oaa



16

(b) For a l l x e& , (Ay f lx )e& fta a p a ap

(d) For a l l x ^ e * ^ and

(e) For all ̂ y

(AyP> AV xa0y V y 3 y

(f) (A

Proof: Clearly if the frame is a general model, the

conditions (a)-(f) must be satisfied. To show they are

sufficient, we show they imply condition (b) of Proposition 4.

Since every variable is significant in every frame, and a

wff [A o Bo] is significant in a frame iff A a and BQ-ap - p ~otP ~P
are, it suffices to show that the wffs Q ,Ka0 and S a ^

oaa *
are significant in the frame. This is assured by conditions (a)-(f)e

(We note that condition (a) implies that for all x e & .(q x )e& .)
a a* ̂ oaa a oa '

D
Remark; We leave it to the reader to state the analogous

theorem using Ba^r, Ca^y, and W 0^ in place of Sa^y. Such

a theorem may be useful since B a^ y, C a^ y, and W 0^ are each

conceptually simpler than S a^ y .

§4. The Axiom of Descriptions

We remind the reader that the Axiom of Descriptions is

(D) 3 i , x Vx . i , . [Q x ] = x
t ( o i ) t i ( o t ) o t i t J i
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Theorem 2« D is no t a theorem of £<>

Proof: We partition the type symbols into two sets, $o

and JT as fo l l ows : o e JT bu t o^ff ; I G J bu t i jL Z ;t o t t o

(ot|3) is in whichever s e t c o n t a i n s a* We then l e t

C = {(ccP) | a € fft and pe ZQ).

We next de f ine a frame IU = {& } by induc t ion on a.
a a

& = {t,f}. & = {m,n), where m and n are distinct in-

dividuals. (Actually & may be taken to have any cardinality

greater than one.) If (oc3)€C, & Q is the set of all constant
ccp

functions (i.e., functions with the same value for all arguments)
from &Q into & • If (a)3)/C, & a is the set of all functions

P a &p
from &o into fi .

P a

We next use Theorem 1 to verify that IU is a general

model for £.

(a) Since (oa)/C and (oaa)/C, q €

(b) (AyQx ) is a constant function, and so is in & a .
P a aP

(c) (aj3a)/C whether a e JT or a € S1^ . Hence (Ax Ayft x )e& Q

t o oc p oc ocpoc
(d) We need cons ide r only the case where

We must show that if xefi Q and ye&o , then
apy * fiy

1 2
(Az .xz Y z

y) is a constant function. So we let z ,z e$
1 1 2 2

and show t h a t (xz o yz ) = (xz . y z ). S i n c e a € 3^ and yeZ x

(aj3y)eC so x z 1 = x z 2
o

1 2
Case 1: fie Z. . Then {fiy)eC so yz = yz so
( x z ^ y z 1 ) = ( x z 2 . y z 2 ) .
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1 2
Case 2; )3€ffo. Then (<x0)eC. Since xz = xz

o
* ,

xz (yz ) = xz (yz ).

(e) Suppose (cxy(/3y))eC and x €

We must show that (Xy^y \zy.xzy.y^y zy)e&ay{^y) . So

1 2
suppose y , y €&* . We must show that

(Az .xz .y z ) = (Az .xz .y z )o To do this we show that

1 2
for an arbitrary zefl , (xz.y z) = (xz.y z) . But a€tft

and (3 € 7 so (a0)eC and xz€# g, which contains only constant

1 2
functions. Hence xz(y z) = xz(y z) .

(f) (ayOy) (aj3y))/C whether a € 3% or a e ffo, so

Now q m and q n are elements of A , so in

order that D be valid in IU there must be a function h € t(ot)

such that h(q m) = m and h(q n) = n. However, (i(ot))eCj

so there is no such function in $ , x • Thus D is not valid
i (oi)

in the general model to, and so is not a theorem of £• Q

T*he idea behind the following theorem is contained in [9]

but the proof is short, so we give it here.

Theorem 3« Let to = {£ } be a general model for £
a oc

in which & is finite. Then to is a standard model iff D

is valid in to.

Proof: The domains & must, of course, all be finite.

If to is standard one can enumerate the elements in & , ,
t (oi)
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to see that D is valid in to.

Suppose D is valid in to. We show that A g must

contain all functions from $p to & • So let g be any
P a

such function. Let «fl = {nu, ... ,1^}. By the methods men-
p P P

tioned in §1 one sees that there must be a description operator

h , K£& , v such that for each n e& 9 h , x[q^ n ] = n .
a(oa) a(oa) a a a(oa) oaa a a

Let cp be an assignment with values on the variables

^ ( o a ) ' ^ ' - - - ' ^ ' - - " ^ - - - ' ^ a s f o l l o w s : cPia(oa)
=ha(oa) '

1 1 k k 1 1 k k
= m^9 . .. 9 cpWg = m^, cpz = 9

mg* • • • 9 an(^ V2 = 9m

Then 9 = Vcp[AxJ3.ia(oa).Aya.[x^ =

k kv##.V[xD = wD Ay = z ]], so g must be in & Q since to is
P p a a ap

a general modelo

Remark, Theorem 3 provides a strong argument for always

assuming the Axiom of Descriptions. If one does this by

introducing a description operator 1 , , and modifies the

definition of general model in the natural way by introducing

an appropriate requirement for Ix 1 , * (thus getting closer
cp t ̂ ot)

to the definition in [8]), one can again prove that the theorems

are precisely the wffs valid in all general models. Thus it

appears that the language Q of [2] is more natural than £.

§5. The Axiom of Choice

The Axiom of Choice (for individuals) is

3it(ot) VPot'axt Pot xt =>
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Clearly [E ZD D] is a theorem of Z. We use the Fraenkel-

Mostowski method to show that its converse is not. Thus E

is not provable in Z, even if D is added to the list of

axioms.

We first establish the following lemma, which is funda-

mental for applications of the Fraenkel-Mostowski method to Z.

The lemma is true but trivial if & is finite, since in this

case the conditions on 3 assure that to will be the standard

model over & . We use o to denote the composition of

functions.

Lemma 4O Let $ be an infinite set of individuals

and P a set of permutations a of & such that

or ©a = (Ax x ) o Let 3 be a family of subsets of P such

that

(a) for each me &^ there is a set K€ 3 such that orm = m

for all cr e K, and

(b) for all H,Ke 3 there is a set Je 3 such that J c H fl Ko

Let the frame to = [& } be defined, and each permutation a € P

be extended to a permutation of $ (which we may denote by aa)

such that aa o cra = (Ax x ) for each a, as follows by induction
ex a

hat aa o cra

on a:

*o = [t,f}? cr° = (AxQxQ) for all a € P.

Given & and &Q and any function h from &o into A
a P p a

let orh = a aohoa", and let & Q be the set of all functions h
ocp
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from &a into & such that there is
P a

some K e 3 such that ah = h for all a e K.

Then tn is a general model for Z in which D is valid.

Proof: For notational convenience, if hefi we let 1^

denote some K € 3? such that ah = h for all o e K. Clearly

such a set K, always exists. Note that if he & g

and a
P
, then x) = aa(hx).

We use Theorem 1 to verify that to is a general model.

(a) If
a

and aeK then (cr°a.q_ x)y =
x oaa

= a°(a x.ay) = q x(ay), which is t iff ay = x = ax
^oaa oaa

T°ai f f x = y, so (CT

so a(q x) = q x

least maps & into fi

a

q o a a x)y = x)y for a l l y €

Thus (q x)e& , and q
oaa oa J ^

a °oc

a t

Also , for any aePs (aq ) xy =
oacx

(a°a
-aax)y = qQ a ( a a x ) ( a a y ) , which is t iffqo a - a x ) y qQ a

ax = ay iff x = y, so aq and q e &
oaa oaa

(b) For any x e& and a e K. a(Xy^x ) = (Ay pax ) = (Ay x )
aa x Pa pa pa

s o

(c) For any a e P , a(Ax
a

o x ) = (Ax a . Ayo ax ) =
pa a pa

= (Ax AyQ oax ) = (Ax Ayo x L so (Ax AyQ x ) e & aa p a a p a ' a p a apa

Before checking (d)-(f) we observe that if

, and

.a .yz = a a . a a . x z o y z = x z . y z .

x € & o .yefi.

= aa. (o^^xz) a

* , then aa. (ax) (az) o (ay) .az =

(d) Suppose X€ & Q and ye &„ . Let J be a member of
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such that J c Kx n K . For any a e J, ax = x and ay = y

so a(Az .xz.yz) = a(Az .(ax)z.(ay) z) = (Az .aa. (ax) (az) . (ay) .az)

= (Az .xz.yz) , which must therefore be in # .

(e) If xe& g and a e Kx, then cx(Ayg Azy.xz.yz) =

y Az (ax)z.yz) = (Ayg # a. Az . (ax) zo (ay) z) =

gy Az . a a . (ax) (az) .(ay) .az) = ^Y&y Azy .xz.yz), which

must therefore be in & ,fi x •

(f) For any ae P5 a(Ax g Ayg Az .xz.yz) =

= (Axa^r AyPr ^ V 0 ^ * ( a x ) ( a z ) • ( a y ) - a z ) = (Axapy AYPY
 A z

Y-x

which must therefore be in & y(ffy)( fty) m

Thus to is a general model for £.

We next verify that D is valid in to. Let n e & .

We shall construct a description operator h mapping &

to & as follows. For each unit set q x , we let
t ^o11 i *

h(q x ) = x . If ge & is not a unit set, let hg = n.
O It \ X X O X

Now we verify that he fl , N . Let a e K . For each unit
-* x (01) n

s e t qott V f f ( q o t t \ } = ( C T q o l i
) ( a X t ) = %ti (CTXt^

so (ah)(q o t i x t ) = a(h.a.qQ i l x^ = ordi.q^.crx^ =

= acrx = x- = h(q x ) . If g is not a unit set,
X X O t I t O t

then ag (i.e. g o crl) is not either3 soox ox

(ah)gQt = a(h.agQ^) = an = n = hgQl • Thus ah = h, and hefi , .o

It is now easy to see that D is valid in to . •

Theorem 4. [D 3 E] is not a theorem of £.
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Proof: Let 9 be an infinite index set and for all j e 9

let \x? and x? be distinct individuals, so chosen that

mj ^ m 1 and n j fi n 1 if j / i. Let A, = {mj | j € 9} U {nD | j € 2}.

Let P be the set of all mappings a from $ to JD such that

for all j € 9, oxx? = xc? and on? - v?, or am3 = n*3 and an3 = m3.

Thus for each a e P we have o*o = (Ax^ x.). Let 3 be the family

of all subsets K of P such that there is a finite subset j of

9 such that K = {aep| for all j € j, ow? = TO3 and an3 = n"3}.

It is easily checked that 3« satisfies the conditions of Lemma 4,

so let to be the general model constructed as in Lemma 4.

We must see that E is false in to. Suppose it were true.

Then there would be a choice function h e & , x such that
i (oi)

for every non-empty set g€ A , hg is in q, i.e., g(hg) = t.

For each j€ 9$ i e t 9^ = (Ax .x = m] or x = n^), i.e.,

g-1 = {m-',n-J}. It is easy to see that erg-* = g-5 for all a € P,

so each g]ei) . Now for any K e 3 there is some j € 9

which is not in the finite subset of 9 which determines K,

and hence some a e K such that am3 = n^ and an-5 = m-1.

Then (ah)gD = a(h.agD) = cr(hgD) / hgD, so ah ̂  h. Thus

there can be no choice function h € & , x , so E is false
i (ot)

in to.

Thus [D z> E] is not valid in the general model to

and so is not a theorem of £. rn
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