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81. Introduction

In [4 Alonzo Church introduced an el egant and expressive
formul ation of type theory with A-conversion. In [8] Henkin
i ntroduced the concept of a general nodel for this system
such that a sentence A is a theoremif and only if it is
true in all general nodels. The crucial clause in Henkin's
definition of a general nodel to is that for each assign-
ment cp of values in to to variables and for each wif A
t here nust be an appropriate val ue lf¢49 of jl) iqto.
Hi nti kka points out in [10,p.3] that this constitutes a
rather strong requirement concerning the structure of a general
nodel . Henkin draws attention to the problem of constructing
non-standard nodels for the theory of types in [9,p.324].

We shall use a sinple idea of conmbinatory logic to find
a characterization of general nodels which does not directly
refer towffs, and which is easier to work with in certain
contexts. This characterization can be applied, with appropriate
m nor and obvious nodifications, to a variety of fornulations
of type theory with A-conversion. W shall be concerned with
a language £ with extensionality in which there is no de-

scription or selection operator, and in which (for conveni ence)

1This research was partially supported by NSF Grant GJ-580.



the sole primtive logical constants are the equality
synmbols Q for each type a*

We shall give two applications of this characterization.
First, we show that the Axi omof Descriptions (D is in-
dependent of £. This axiomis very natural since a general
nodel for £ wth a finite domain of individuals is standard
if and only if D is true init. Secondly, we show howthe
Fraenkel - Most owski method ([7],[11],[12]) can be adapted
to £. W state our fundanental |enma concerning this method
in fairly general formto facilitate possible future applica-
tions (analogous to those for axiomatic set theory nentioned
in [11]), but confine ourselves here to sinply show ng that
the Axi omof Choice is not derivable in £, even if the Axi om
of Descriptions is assuned.

When a descri ption operator 'ﬁﬂq'h AS incl uded anong
the primtive synbols, the axi omof descriptions may be taken

in the form
1JrPcn.'al X, Por ¥4 me.[ 11.(01) pot] 2

so that i "qj[Ax: Ag] (which is abbreviated (12" Ag)) denotes
the unique x, such that J\o, when there is such an X,
Church showed in [4] that description operators for higher
types can be introduced by definition, using the operators

for lower types. Specifically, Img(o(ag)) ™y be defined as

tAg(a/3) AX0'a(oa) Yal aB " olaB) aBY & &B B -



R 0. Gandy has pointed out (in a private comuni cati on)

that IO/?(O(O/3)) Can be defined as

Ao 00) #3300 * "o(00) '00*" 00 V'

so description operators for certain higher types can be
defined wi t hout using those for any other type. Also,

Henkin noted in [9] that '0(00) canbe defjned as

[ Ah ' h = [ Ax

oo' "oo oXoll e

(A nunber of other definitions of i ., _* are also possible,
0100}

of which the shortest is perhaps the closely rel ated

(00) (00) [**0%0! o>

Thus it is seen that description operators for all types can

be introduced once one has t z\Ot}' The argunment in [2, pp. 22- 24]
shows that the description operator i tioty cannot be intro-

duced by definition for the sinple reason that there are no
closed wifs of this type, and that the axi omof descriptions
nmenti oned above is independent, since it is the sole axiom
whi ch descri bes the special characteristics of t tiOt:'

If no description operator is included in the list of
primtive synbols, the axi omof descriptions may be taken in

the form
8t (ot) YPot "' 2i Xt Poi *t *Poil't (ot) Pot!*
or equivalently

(D) ait (0i)VV 't (ot)!Qti*tt=*t-



(The equival ence results fromthe theorem
3 Xt Pot Xt = 2*f Pot ==- %on*t -

Since in many |ogical systens descriptions can be elim nated,
it is very natural to ask whether the wif D, which asserts
the existence of a description operator, is in fact derivable.
It will be seen that our independence proof'below IS con-
ceptually very sinple, and is conpatible with any axi ons
concerning the cardinality of the domain of individuals which
permt it to have at |east two nenbers.

Church mentions in [5] an unpublished proof by Lagerstrom
of a closely related independence result using a conplete
non-at om ¢ Bool ean al gebra for the domain of truth val ues.

It seems unlikely that Lagerstronfs proof applies to £, since
in £, unlike the systemtreated by Lagerstrdm there is a
strong axi om of extensionality for type o (Axiom 1 bel ow) which

permts one to derive [pO:qJ z>.p =0

82. The Lanquage £

The language £ is essentially the result of dropping
t he description operator fromthe |anguage (Qo of [2], and
is closely related to the systemdiscussed in [9]. For the
conveni ence of the reader we here provide a description of E£.
W use a,j3,y, etc., as syntactical variables ranging
over type synbols, which are defined inductively as follows:
(a) o is a type synbol (denoting the type of truth val ues).

(b) i is a type synmbol (denoting the type of individuals).



X (c) (d3 is a type synbol (denoting the type of functions

fromelenents of type 0 to elenents of type a).

The primtive synbols of £ are the follow ng:

(a) Inproper synbols: [ ] A

(b) For each a, a denunmerable list of -variables of type as

fgh...xyzfgll...zflz...
a a a aa a a’a a a
We shall use f ,q9,...,x,y , 2z, etc., as syntactical

variables for variables of type a.

(c) For each a* Qyiodia) Iis a-eenstant of type ((o0a)cc).

W wite wif as an abbreviation for wif of type g»
-

- and use éa’ I§_a, Q_a, etc., as syntactical variables ranging
over vvffsa, whi ch are defined inductively as follows:
(a) Aprimtive variable or constant of type a is awffOL

(b) [/\V isanfa 5

(c) Uj;sj,j.fd Na wf (aW

An occurrence of )'('a Is bound (free) in j3g iff it is

(is not) inaw part of By of the form [Ax C] . A is
~"P *{(X " ~0 X

T A O

free for x° in §g iff no free occurrence of Xx% in JB;
is inaw part of By of the form [Ay C] such that y-
is a free variable of A%
Brackets, parentheses in type symbols, and type synbols
- may be omtted when no anbiguity is thereby introduced. A

dot stands for a left bracket whose mate is as far to the




right as is consistent with the pairing of brackets already
present and wth the fornmula being well forned. Gherw se
brackets and parentheses are to be restored using the con-

vention of association to the |eft.

VW introduce the follow ng definitions and abbreviations:

[A =B ] stands for (Q A B].

-0 =-Q oo =0~ gt
To stands for [ Qooo = Qooq] -
Fo stands for [ Apopg = [Ap.Tq -

[V;(aAO]] stands for [Az(-aﬁ‘o] = [Ag_(a To].

A0o0 stands for  [ApgA<y\/tAdq00' 9900P0%0! *'*000' Y0000

t 3448s] stands for [A_.__A_ B_]

Q00 ~0—~0C

DOOO stands for [Npo?\qo-po/\qo=P°]-

[A/DBp stands for [3,,,A,B.be

QG her connectives and quantifiers are introduced in famliar

ways.

B and K, stand for [Ax Ayo x ].
apa a'p a

a.By
S and Say (By) (aBy) stand for

“xcﬁ')’ 7\YB)’

8%AY  and Bay(fto(op) sStand for [ af ™ AgpyAXy. f7. 0%y Xy]

T.11.

o]



o By
C and ca‘yﬂ(aﬁ‘y) stand for
[?\faBy ?\xﬁ ?\yy'faﬁ‘y Y, xB] .
B
w* and W, B(o BB) stand for [)\faﬁﬁ )\xB.faBB xﬁ xﬁ].

X
Sa% By stands for the result of substituting A for /¥,
- P

a ~

at all free occurrences of in By,

£ has a single rule of inference, which is the follow ng:

Rule R From C and [A =B ] to infer the result of

~0 ~a -~a

repl acing one occurrence of £, (which is not an occurrence
of a variable immediately preceded by X) in & by an
occurrence of B .

The axi ons and axi om schemata for £ are the follow ng:

1 [ﬂoo To A‘%o I:oJl = V)§) y8o B

2 X =y 2z>h X =h vy
a a oaa 0aa

3 £

aB =~ JuB VxB.fanB = 98 *8

4 [AX BJA S By where A is free for x in B,

Let us denote by J& the system obtained when the axions
of extensionality (6. LI of [3]) are added to the list of axions
of the system JT of [ 3] . This is essentially the systemof [8§]
or [4] wusing axions 1-6,10°, 10""’:, and with the selection

operators deleted. ff£ differs from £ 1in having primtive




constants ~,0"co00, and |1 g(oa) instead of Q~*. There are
natural translations A from £ into ZI& and 7 from !I£
into £ which involve replacing the primtive constants

of one | anguage by appropriate closed wifs of the other |anguage.
For exanple, if A is awif of £ AA is the result of

repl acing each occurrence of Qaa '" |L by the whi

[Axb Ays Vf/\,'fbj XF-" z> f?g y \Jgfp ffE. Vlft is easy to establish
that & and J& are equivalent in the sense that for each

wf A of £ and B of ffC k, A. iff L, AA.

and KirgBo iff hg VBq, noreover, hgfqo= VaA, and |[”"eBo= avBo.

Hence our independence proofs below apply also to JT&

Defi ni tion. £7 IS contractible to _D,y (ngp_n;_L_Dy)
i ff py can be obtained from £7 by a sequence of zero or
nore applications of the followng two rules of A-conversion:
. (Al phabetic change of bound variables). To replace any
wf part [Ax, Bi]l of awf by [A Sia B_q_]5 provided that vy

is not free in B, and vy is free for x in Bg.

1. (A-contraction). To replace any W part [[Axaﬁg]Aa] of

a wf by S',301 B,. provided that A is free for x in B, .
~a

Definition. E is a KS-conmbinatorial wif iff every
~ 8 .« .

occurrence of A in E is inaw part of E of the
form vt or g3B7 |

Ey is a KBCWconbinatorial wif iff every occurrence of A

~
in E is inaw part of E of the form K*°, B ,C“‘ﬂy,orwaﬂ.



Clearly K"’;S"lﬁy, and all primtive constants and
vari abl es are KS-conbi natorial wifs. Also, L%,Sﬁg IS
such a wff iff "'A‘cc? and Qq are.

Ve next show that every wif of £ is convertible to
a KS-conmbinatorial wifs and to a KBCWconbi natorial wff.
This requires only a sinple translation' into the present
context of famliar facts about conbinatory logic (see [6],

[13], for exanple).

Lemma 1. For any KS-conbinatorial wif B; and variable X,

there is a KS-conbinatorial wff _Eg_y such that Jﬂiy contr [A)_(y_l%d .

Proof: By induction on the nunber of occurrences of [

in .EB'
Case a: B, is Xx .
~]3 -y
Let Ry, be sY(yy)y y(yy) KYY  Thus B yy

contr [Az_ . KYAYYA 7z KYYzZ contr [Az z contr [Ax B
[ Y P4 ‘)'] [ ‘J’Y] ["')"""J

Case b: B, does not contain Xx free. Let P,

be K'Esygg. Then Egy contr [Ax__ylgg].

Case c: Bg has the form [Dgi E™]. By inductive

~p "po —o
hypothesis there are KS-combinatorial wffs Gg* and H; -

A S
such that G‘sy contr [Axy, p"] and Hiy cdheY [ Axy ﬁ){
Let Psy be [SA®YGAyHgy]l. Thus JPY, contr [S"Y[Ax, D es]“‘ %)

contr [Agy. [ AXyD"] Xy. [AX"Es] x1i] contr [2x, Bgl -
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Since every KS-conbinatorial wif Bg falls under at
| east one of these three cases, this conpletes the proof of

the | emma. LJ

Proposition 1, For every wif j\g of £ there is a

KS-conmbi natorial wif P. such that P contr A~ .

Proof: by induction on the nunber of occurrences of |

inA. .
~0

Case—a A is a primitive constant or variable.

Let P. be A.
Case b: A. has the form [DspEp] «

t
By inductive hypothesis there are KS-combinatorial wffs __Do.g

and Eg such that D , contr D« and E™ contr - Eg
- P 1~6P ~op ~P ~p
Let Ps be [D”"gp]

Case c: Ae has the foom [AXx Bg] -*
|

By inductive hypothesis there is a Ké—combinatorial wff Bo
AP

such that B_(i) contr —BI?) Then by Lemma 1 there is a

t
KS-combi natorial wif P, such that P contr [Ax B], —

~j3y -j5y -y-|3’
Thus P, contr Ac. LJ
- py -6
Proposition 2. For every wf A‘o of £ there is a
KBCW combi natorial wif D. such that p.. contr A
A0 0 ~O
Pr oof : it can be verified that

g cey(j 3y)) (ay(j3y)y) (al3y)e(ay(j 3y)) (ayy(/5y)) (ay (BY))
s(ay) (ayy) Or)war @) (13y)y ay(j5y) *P7 8% 1 coner s*BY |
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|f one replaces sany by this wif everywhere in the wff JP6

of Proposition 1/ one obtains the desired wff J0; Q

83. General Models for £o

We next define the general models for £ by modifying

appropriately the definition in [8].

Definition* A frame is a collection {&a}a of non-empty

domains (sets), one for each type symbol a/ such that

&O = {t,f} and &béb Is a collection of functions mapping &P
into & o The members of $ are called truth values and
a 0

the members of &t are called +rAeHveaetso

Definition. Given a frame {$ } , an_assignment (of values
a a
inthe frame to variables) is a function cp defined on the

set of variables of £ such that for each variable x >

a
cx G& . Gven an assignment g 2 variable x , and an
el ement ze&% let (cpx®™z) be that assignment 0 such that
Y =z and imP = & it IRET*

If h is a function of which x 1is an argument, we
write the value of h at x as hx or (hx). If hx 1is

itself a function of which y is an argument, we may

wite (hx)y sinmply as hxy, using the convention of association
to the left in our meta-language. We shall use dots to denote
parentheses in our meta-language in the manner of our convention

for brackets in £ W shall also use A-notation informally



I n our neta-language* Thus when A is an expression of our
met a- | anguage involving a variable x of our meta-I|anguage,
then (AxA) shall serve as a nanme for the function whose
domain is the range of the variable x and whose val ue at
each argument x is A |In contexts where a frame has been
specified, if a is a type synbol it will be understood

that x ,y .z .etc., range over the domain $ of the framee

a "al a* * * a
However, we reserve a as a name for the identity relation
over $ ; i.e., ( xy =t if x =y, and q xgl = f
N N
ifox R y o WeOnao"%eafoarl future refaerenc?a1 t hat ifoail ea&a,
a' ‘a a a
then q X is ftx }, the unit set whose only menber is X,
oaa a a @
Definitiono A frane {& } Is a general nodel for £
a a —_

iff there is a binary \function \s such that for each assign-

ment 9 and wif A, V A e& and the follow ng conditions
~a 9~a a
are satisfied for all assignments cp and all wffs:
(a) \s x = gx
(b) VvV Q =g
@ oaa oaa
s = {U
(<) cp["%aB"B“B] (cp‘aaﬁ)(unpgﬁ)

(@) v [Ax, Bl = MYO‘B(‘P%Sa/%a :

Remark. Clearly the crucial requirement above is

that Ir [AX Bg €& « Note that in a general nodel the
9 a p pa
function ,V is uniquely determ ned.

Definition. A frame {& } is a standard nodel for &
a a

12
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iff for all a and |3 &4 is the set of all functions

from & into & .
p a

Clearly a standard nodel is a general nodel, and is

uni quel y determ ned by &1.
AwWf A is vakd-in a general nodel iff \s A =t

o) @™ 0

for all assignnents c¢p It can be shown by an easy nodification

of the argunent in [8] that a wif -:5\0 is a theoremof £

iff it is valid in every general nodel. Also, the rule of

inference of Z preserves validity in a general nodel.
Definition. Awf A is significant in a frame {& }

iff there is a function \s such that for every assignnment cp

and for every wf part ,Bfl_i of Ay (i ncl udi ng 3a itself),

| f wBoe&o, and V satisfies conditions (a)-(d) (in the

d(caplzin?tipon of general nodel).

Thus a frane is a general nodel iff every wif is significant

init.

Before proving the next proposition we state the foll ow ng
| emmas, which can be proved by a straightforward induction on
the construction of B, .

~P

Lemma 2« if B* is significant in a frane and cp and O

e

are assignments which agree on the free variables of JB;,
-

then \'s Bo=",B,; .
o=p b~p

HUNT L1BRASY
CARNEGIE-MELLIIl UNIVEBSITY




14

Lema 3» If ___,%\' ad ___I%—- are significant in a frame

X
and A5 is free for X5 in L= 2 then _%a Ha is significant
~t a
X

and for any assignment @, V S:a B:i =V, ..A.& \Bo -
Cp*Ax*"Pp AMDIX /U njoop
~Ci ""a @ "™M'a

Proposition 3« If Q'y is significant in a frame and A'-Cy
contr Q'y’ t hen -D'y is significant, and for any assignment cp
IT.C =U D.
P~y P~y

Proof : Clearly it suffices to prove this proposition for

the case where _I_Dy is obtained from 'Q'y by a single application
of rule I or Il of A-conversion* In either case the proposition
follows easily by induction on the construction of 'C-:-y once
one establishes it for the wf part of C to which the rule

is actuall y applied.

Thus in the case of rule I one may suppose C
X N
is [Ax Bd and D is [Ay S? By where vy i s not
free in B and §a is free for x% in Eg We may assume
that 'y 7% x . Bo is significant since T is, so bi/
-=oc e ~*p y
Lemma 3 & Bo is significant,,
oya ~P
Note that for any z e & we have V, ., x VvV =1z
a a (cpy / z ) JITa a
SO
Ba
I (by Lemma 3)

S —
(9:¥./2) %y, B8 = Vitry /2 ) ix /2 )08

“Mcep:x1Z ) 535 <"V Lemmm 2). Hence

VvV Cc o= (A2 VU, By = (Az_ ¥ % B,
@<y o (qa-zsa/za) B a (:p-_}:‘a/za) Y, “B

which is the desired value for V Ph g B is significant
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and VvV C =Ir D

P~y @~y
In the case of Rule Il one rray suppose t hat ,C,y
. X .
IS [[Afal::’_ ALA and Q7 3Rp, wher e Aa is free

for x in B, . Since C is significant, . A and Bg

are, so by Lamma 3DY is significant/ Also
Vo Sy = W IMZ VAcp \ T Nep* A A) ~ = % fiy by Leum 3.

cc ™ ex
Remark: It is not true that if £Y is significant in
a frame and D contr C , then D nust be significant.

For X Vis am/ays sing%icant, B’u¥ [[AX xi]?<|] might not be.

Proposition 4. For any franme to, the follow ng conditions

are equival ent:

(a) to is a general nodel for £

(b) Every KS-corbinatorial wif of £ s significant into,
(c) Every KBCWconbinatorial wif of £ is significant into.

Proof: by Propositions 1,2, and 30 L1

We now rephrase condition (b) to obtain a sinple criterion

for a frame to be a general nodel.

Theorem1l. A frane [& } is a general nodel for £
& a

iff it satisfies all of the follow ng conditions (for all

type syrrbol S <X, 13 y):
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(b) For all xae&a, (A%ﬂé)e&ab.

{c) (?\xa }\yB xa)eaaﬂa .

* »
(d) For all xt’\ e N and YB,),E By *

(A2 X By %y Yoy %) € Pay
N 8
(e) For al l y €8 gy

AYp> Av*a0y VY3y ¥ Pay(sy

YEB v (By) (aBy) -

() AXypy My My Xopy %y Yy %
Proof: Clearly if the frane is a general nodel, the

conditions (a)-(f) nust be satisfied. To showthey are

sufficient, we showthey inply condition (b) of Proposition 4.

Since every variable is significant in every frame, and a

wif [f\ 138] is significant in a frame iff Aﬁpand B

are, it suffices to showthat the wifs Q ,K! and S22
oaa *
are significant in the frane. This is assured by conditions (a)-(f)e

(VW note that condition (a) inplies that for all x e & .(q X )e& )
a a* ’\oaa[sl oa'

Remark; W leave it to the reader to state the anal ogous
theoremusing B*A", C*Y, and W~" in place of S?\Y. Such
a theorem may be useful since Ba"hy, Ca’:y, and WA are each

conceptual Iy sinmpler than S27AY |

84. _The Axiomof Descriptions

We remnd the reader that the Axiom of Descriptions is

(D) i, X Vx .i, . [Q X]=x
t(oi) t i(ot)otit!? i
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Theorem 2« D is not a theorem of £

Proof: W partition the type synbols into two sets, $,

and JT as follows: o0eJT  but oo’\ff , 1,GJ bu[t ijLZO;

(@3 is in whichever set contains a* We then let
C = {(ccP) |a€ ff, and pe Zo).

We next define a frame 11U = {& } by induction on a
aa

& = {t,f}. & = {mn), where m and n are distinct in-
di vi dual s. (Actual ly & may be taken to have any cardinality

greater than one.) If (0oc3)€C & o is the set of all constant
ccp

functions (i.e., functions with the sane value for all argunents)

from & into & e« If (&83)/C &, is the set of all functions

f P o fi a &p
rom into fi .

% a

W next use Theorem 1l to verify that [U is a general
nodel for £

R .
(a) Since (0)/C and (0.,a)/C, g —€ %o
(b)  (Aygox ) is a constant function, and so is in &,.

P a aP
(c) (aj3a)/C whether ,eJT or a€S*. Hence (AX Ayt X )e& g
t o] oC p oCc apx
(d) We need consider only the case where (ay)eC.
VW nust show that if xefi o and ye& , then
apy *fiy

t A A _ 1 2,

(Az .xz Y*y) is a constant function. So we let z ,z e$
11 2 2 v o)

and show that (xz o,yz ) = (xz .yz ). Since a€ 3" and yeZ ,
(aj3y)eC so xz' = xz%,
1 2
Caset. fie Z3 . Then {fiy)eC so yz = yz SO
(xz~yz') = (xz%.yz?).
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Case 2; )3€ff,. Then (<x0)eC  Since le=x22<-:8a5

le(yzl) = ng(yzz) :

(e) Suppose (cxy(/3y))eC and x € 8(157 .

We nmust show that (Xy™y \zZy. XZy. YNy Zy) €&ay™y) - So
suppose yl, y2€&;y . We nmust show t hat

1 _ 2 L
(Az_y.xzy.y zy) = (Azy .xzy Y z}l,)o To do ;hls we show t hat
for an arbitrary zefl % (xz.y z) = (xz.y z) . But a€tf,

and (3€Z) so (a0)eC and xz€#ag, whi ch contains only constant

functions. Hence xz(ylz) = xz(y 2z) .

() (ayOy) (a3y))/C whether a€ 3y, or aeff, so

A AZ_ . . 8 .
(Ax gy Moy MyoFapy Py ¥y 2y 80y (8y) (aBy)
Now UM and 94,,0 are el ements of Am, SO in
order that D be valid in 1U there nmust be a function h€st(ot)
such that h(qonrr) = m and h(qotq) = n. However, (i(ot))eg
so there is no such function in $ , ¢ Thus D is not valid
i (oi)
in the general nodel to, and so is not a theoremof £ Q

T*he idea behind the followi ng theoremis contained in [9],

but the proof is short, so we give it here.

Theorem 3« Let to = {£ } be a general nodel for £
ac

inwhich &* is finite. Then to is a standard nmodel iff D
is valid into.
Proof: The domai ns &a must, of course, all be finite.

If to is standard one can enunerate the elenents in &

t (oi)
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to see that D is valid into.
Suppose D is valid in to. W show that Aag nmust

contain all functions from $, to & + So let g be any
P a
such function. Let «; = {nu, ... ,17}. By the nethods nen-
p P P
tioned in 81 one sees that there nust be a description operator

N =
ha(oa)K£&a(oa)V such that for each nae&ag ha(oaf([qoaanzl na.

Let cp be an assignnent with val ues on the variabl es

/\(O.a)'/\'___'/\'__"/\-_-'/\anOIIOWS: cPia(Oa):ha(Oa).

W1 1 k Kk 1 1 k Kk

PYB =y . ..ocpMd =MD, q = 9"g* e e 92(A \g =9MB”

Then 9 = Ve[ AXys. i agoa). AVa. [ Xa = w]é Ay, = z]

v##.V[xD:WiSAy :z]k], so g nust be in &g since to is

P p a a ap

a general nodel , O]
Remark, Theorem 3 provides a strong argunent for always

assum ng the Axi omof Descriptions. |If one does this by

i ntroduci ng a description operator 1 Vo) and nodi fies the

definition of general nodel in the natural way by introducing

an appropriate requirenent for Ix 1 , * (thus getting closer

@ t ~ot)
to the definition in [8]), one can again prove that the theorens

are precisely the wifs valid in all general nodels. Thus it

appears that the |anguage QCJ of [2] is nmore natural than £.

85. _The Axiomof Choice

The Axi om of Choice (for individuals) is

(E)

3t (ot) YPot' 2t Pot *t => Por*li(o1) Poy
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Clearly [EZDD is atheoremof Z W use the Fraenkel -
Most owski method to show that its converse is not. Thus E
Is not provable in Z even if D is added to the list of

axi ons.

We first establish the following |emm, which is funda-
mental for applications of the Fraenkel - Mostowski nmethod to Z.
The lemma is true but trivial if &, is finite, since in this
case the conditions on 3 assure that to will be the standard
model over &1' We use 0 to denote the conposition of

functions.

Lemma 4o Let $t be an infinite set of individuals

and P a set of pernmutations a of &1 such that

or Ca = (Axt xt) o Let 3 be a famly of subsets of P such
t hat

(a) for each me & there is a set KE 3 such that am=m

for all o eK, and
(b) for all H Ke3 there is a set Je3 such that Jc. Hfl K

Let the frane to = [&a}a be defined, and each pernmutation a€ P
be extended to a pernutation of $OL (which we may denote by a%
such that a*oo® = (Ax x ) for each a, as follows by induction

& a
on a.

*o = [t,f}? o° = (Axgxg) for all a€P.

G ven &a and &?, and any function h from &b into A

let oh = aa-ohoa"n', and let & o be the set of all functions h
ocp

L)
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from &ﬁ into & - such that there is
a
some Ke 3 such that ah = h for all ae K

Then tn is a general nodel for Z inwhich D is valid.

Proof: For notational convenience, if hef iy we let 17
denote sone K€ 3? such that ah =h for all oeK Cearly
such a set K,n al ways exists. Note that if he &a.g
and xe¢ Sﬁ), t hen (c“Bh)(ch x) = a?Chx).

W use Theorem 1l to verify that to is a general nodel.

oa —
(a) If x,ve sa and aeKX then (cr .q_oaax)y =

= a°(,goaa x.ay) = Do x(ay), which is t iff ay = x = ax

iff x =y, so CM**:doaa X)y = (q, Xy forall y€8,

so a(gq XxX)=9gq xs. Thus (q x)e&k , and Joga 2

. . oaa oa” ,
least maps & intofi_ . Also, for any aePs (aq ) Xy =
oC

a _ . :
(aO .q%a_—a?@()%y = %g(aax)(aay), which is t iff

ax = ay iff X =1y, sO aoyy -~ Yoga and q e& .

(o )¥-1 O.a
(b) For any x e& and aeK._ a(Xy*x ) = (Aypax ) = (Ay x ),
a x Pa pa pa

a
SO (?\yBxa)eﬂa .

(c) Forany aeP, a(AX Ay, X ) = (AX a. Aysax ) =

= (Ax_ A = (A faa\ &3 AX A f)a&
—(xa yﬁoaxa)—(xa p}/oaL'SO_(Xa %Qxaeaﬁa.

Bef ore checking (d)-(f) we observe that if

X€& yefi and ze*

aBy- Y€ lpy

¥ then a® (ax) (az),(ay) .az =
= a% (0"xz) .aﬁ.yz = a%.a’.xz,yz = xz.yz.

(d) Suppose XE€ &G'Qy and' ye &,,py. Let J be a nenber of &
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such that J c K n Ky. For any aeJ, ax = x and ay =y
SO a(Az’.’xz.yz) = a( Az .y(ax)z.(ay) z) = (Az .yaa. (ax) (az) . (ay) .az)

= (Azy.xz.yz) , Which nmust therefore be in #ajf'

(e) If xe&agy and ae K, then cx(Ayg,yAzy.xz.yz) =

o-(?\yﬁy Az_y.(ax)z.yz) = (AygyiaAzy. (ax) zo (ay) 2) =
= (Aygy Az,y .a% (ax) (az) .(ay) .az) = Y&y Az,.xz.yz), which

must therefore be in &cr.'y’fi..% .

(f) For any ae Ps a(AxO(riyAygyAz XZ.yz) =

Y
= (Axa,\r AyPI’ ,\VO,\* (ax) (az) ,(ay) _az) = (Axapy AY py AZY‘X Zz.¥YZ),

whi ch nust therefore be in &%(ffy)y(-Fty)™

Thus to is a general nodel for E£.
We next verify that D is valid in to. Let ne &;y.

We shall construct a description operator h nmapping &os

to & as follows. For each unit set (¢ X , we |et
t ~oll i~
h(q X)) =x. If ge& is not a unit set, let hg = n.
olrt\ X X ox
Now we verify that hefl , . Let ae K . For each unit
-* x (01) n
set dott v Moty \} = (CTag X = 0ptj (XA

so (ah)(qotixt) = a(h.a.qeoiir X = ordi.gn.crx” =

= ax = x- = h(q x). If g IS not a unit set,
X X ot1 ot ot
t hen ag o (i.e. Yox © cr') is not either;z so

(ah)ga = a(h.agd®) = an = n =hgg * Thus ah = h, and hefi

It is now easy to see that D is valid in to .

Theorem 4. [D 3 g is not a theoremof E£.

* .0

{101

}
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Proof: Let 9 be an infinite index set and for all | e 9

let \x? and x;? be di stinct individuals, so chosen that

m Amt and nl fi n® if j /0. Let A ={m|j €9 U{n°|]j €2}
Let P be the set of all mappings a from $z to JD‘ such that
for all | €09, 0xx? = xc? and on?-- v’) or anf = 3 and an® = nt.
Thus for each aeP we have o0*o = (A" x.l). Let 3 be the famly
of all subsets K of P such that there is a finite subset | of
9 such that K= {aep| for all | €j, ovx/?l = TO'3 and ané = n""3}.
It is easily checked that 3« satisfies the conditions of Lemma 4,

so let to be the general nodel constructed as in Lemma 4.

W nmust see that E is false in to. Suppose it were true.

Then there would be a choice function he & ,  such that
i (oi)
for every non-enpty set g€ A,, hg is in q, i.e., g(hg) =t.

For each j€9% '®® 92 = (A .x =nl or x =nA), i.e.,
gl = {m',n-%. It is easy to see that ag* = g° for all a€P
so each g]'ei)m. Now for any Ke 3 there is sone | €9

which is not in the finite subset of 9 which deternines K,
and hence sone ae K such that am?. = n’\' and an-g = m"l.
Then (ah) gd = a(h.agD.) = cr(hg% / hgb, so ah ™ h. Thus

there can be no choice function h€ &, L+, so E is false
i (ot)
into.

Thus [Dz>E is not valid in the general nodel to

and so is not a theoremof £ in
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