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by

Catherine Bandle and Moshe Marcus

Introduction

In [3] one of the authors introduced the notion of a

radial averaging transformation of domains in the plane, which

was based on the metric — drd9 where (r,9) are polar coordinates

This transformation is useful in obtaining estimates for con-

formal capacity of condensers and conformal radius of domains.

In this paper we discuss averaging transformations with various

metrics of the form g(r)drd8 where g(r) is a positive, con-

tinuous function of r for 0 < r < oo . Using these

transformations we are able to obtain estimates for energy

integrals of the form

Jj |VF|2q2dxdy
n

2
where q = rg(r). These estimates are then used in order to

obtain further estimates for capacities and conformal radius.

In this direction we have as yet only partial results, which

concern the metrics gdrdQ with g = r , j9 ̂ > -1. But the

method presented seems to be quite general and we plan to employ

it also with other classes of metrics g in order to obtain

further estimates of the type mentioned above.



§1. Estimates for Energy Integrals.

Let g(r) be a positive continuous function for 0 < r < oo

and let G(r) be a primitive of g. Let p be a fixed positive

number and set:

u = G(r) - G(p) (p < r < oo)
(1.1)

v = e (o < e < 2TT)

where (r,9) are the polar coordinates in the (x,y) plane, (which

will be referred to also as the z-plane).

If Q is an open set which does not contain the circle

|z| < p, and if F(x,y)eC (0) we obtain by a standard computation:

(1.2) |grad F|2dxdy = [(|^)2rg(r) + ^ ^ | f 2

Hence:

(1.3) JJ|7F|2rg(r)dxdy = JJ [F2 (rg(r) )2 + F2]dudv
n n

where Q is the image of Q by (1.1). We denote:

(1.4) q2 = rg(r).

Definition 1.1.

Let D be an open set containing |z| < p and

D = D - { |z | < p}. Denote:

(1.5) ^(9) = J g(r)dr, EQ = D n {arg z = 6}
Ee



and:

(1.6) R(6) = G~1[^(9) + G(p)].

Clearly R(9) does not depend on p. Set:

(1.7) D* = (z = re l 6 : 0 < r < R(9) , 0 < 6 < 2TT} .

The transformation D —> D will be called the radial concen-

tration with metric g.

Remark.

If D is the image of D by (1.1) and D is the image

of D* by (1.1), then D* is obtained from D by:
H r* r^

(1.8) if = {(u,v) |0 < u < l(v), 0 < v < 2TT},

where

(1.9) ^(vn^ = l i n e a r m e a s u r e of (D^ fl {v = v }).

Definition 1.2.

Let D be a domain which contains |z [ «< p and does not

contain z = oo . Let F(x^y) be a continuous function in the extended

(x,y) plane such that F = 0 outside D and F = 1 in a

compact subset of D (denoted by E) such that { |z | < p) c E.

Suppose that in n = D - E ? O < F < 1 and that on every ray

through the origin F obtains every value A, (0 < A < 1), only

a finite number of times. Let

(1.10) DA(F) = {(x5y) |F(x,y) > A}, (0 < A < 1) .



Let D. be the g-radial concentration of D. and let F
A A

be defined as follows:

in E

(1.11) F* = 1 A on the boundary of D* 0 < A < 1

outside D .

.̂
(Here E is defined as in Definition 1 except that in (1.7)

0 < r < R(8)•) Then F will be called the radial concentration

of F, with metric g.

The following results are proved exactly in the same way

as in [2]:

(i) D is a starlike domain.
*

(ii) E is a compact, connected, starlike set.

(iii) If F is continuous then F is continuous.

(iv) If F is continuous in the extended plane and Lip

in every compact subset of D - E, then F has the same properties

with respect to D - E •

Also the following basic result is obtained by essentially

the same method as in [2]:

Lemma 1.1.

Let D, ft, F be as in Definition 1.2. Suppose also that

FGC (ft), that FeC in the extend plane, and that on every ray

arg z = 6, the set of points in 0 where v^ = 0 is at most a

finite set. Finally suppose that:

p(u) = [rg(r)] __ . is convex or monotone.



Then we have:

(1.12) \l |VF* |2q2dxdy < jj |VF |2q2dxdy

0* n

where Q* = D - E*, fi = D - E.

We now define the radial averaging transformation with

metric g, in the same way as it was defined in [3] for the

logarithmic measure.

Definition 1.3.

Let {D-,...,D } = & be a family of open sets in the complex

plane z, each containing the disk |z | <_ P. Let A = {a.}-j=i
n J J

where a. > 0 and 2 a. = 1. Let £.(8) be defined as in
J j = 1 J 3

Definitionl.lfor D.. Then set:

(1.13) *(9) = 2 a I (6),
-i_i J J

(1.14) R(6) =

and finally define D as in (1.7). We shall denote:

D = R A(^) a n d t h e transformation S —* D will be called a

radial averaging transformation with metric g.

Definition 1.4.

Let & and A be as above. Suppose that D. does not
J

contain z = oo. Let E. be a compact subset of D. containing
J J

{ |z | < p) . Let 3 = {Fj,...^ } be a set of functions such that

each F. has the properties described in Definition 1.2 with



respect to D. and E.. We define D.(F.) as in (1.10) and

D* = ft (D. (F.. ) , . . . ,D. (F ) ) . Finally we define F* as in
A g , J\ A X An

(1.11). The transformation 3'—>F* will be called a radial

averaging transformation on J? with metric g. We shall denote

The analogous properties to (i)-(iv) for the radial averaging

transformation are verified exactly as in [3]. Also the following

result is proved essentially in the same way as the parallel result

in [3].

Theorem 1.1.

Let $, 55 be as in Definition 1.4. Suppose also that each

F. has the properties described in Lemma l.iwith respect to D.,
J J

E.. Finally suppose that p(u) (defined as in Lemma 1.1) is

convex. Then we have:

(1.15) U I?F* |2q2dxdy < 2 a JJ |7F | q2dxdy

n Q.

3

w h e r e 0* = D* - E * , Ci = D - E , D* = » ( « ) , E* = ft (E , ...,E )
J J J &5A & 9A X IX

We note that Lemma 1.1 is contained in Theorem 1.1, for the

particular case n = 1. We remark also that one can obtain a

more general inequality in Theorem 1.1, of the type discussed

in Section 1 of [3].

The integrals in (1.15) may be interpreted as certain

energy integrals. Hence Theorem 1.1 may be used in order to

evaluate energy integrals of this type.

Finally, we remark that for g(r) = — (i.e. the logarithmic

metric) the results obtained here coincide with the results of



[3]. In this case the integrals in (1.15) may be interpreted

as (conformal) capacities of condensers in the plane.

§2. Estimates for Conformal Capacity.

In this section we describe a method by which the result

of Theorem 1.1. with various metrics g, may be used in order

to derive inequalities for capacities of condensers.

Let D be a domain which does not contain z = oo, and E

a compact subset of D which contains the disk |z | <£ p. We

denote as usual 0 = D - E. Let 05 be a function which is con-

tinuous in the extended plane such that UteC (&) , CO = 0 outside

D and to = 1 in E. We assume that the boundary of 0 is

sufficiently smooth so that Green!s theorem may be used. We

shall denote by C the "inner boundary" of Q i.e. Q n E.

Let h be defined, in 0, by h = to/q, where q is a

positive function of r (0 < r < oo ) such that qeC (O,oo). Then

the following formula is easily established:

(2.1) Jj |7co|2dxdy = Jj |7h|2q2dxdy - JjVqAqdxdy - £ |- |^ds .
n n Q

We now restrict our attention to the case where E = { |z | <C p}

in which case C is the circly |z | = p. We also assume that CO

is harmonic in Q and that q(r) is analytic for 0 < r < oo .

Let us apply the transformation of radial concentration
2

with metric g, where q = rg(r), to D and h. We denote the

•#• •#-

resulting domain and function by D , h respectively and we

set n = D - E. (In this case E = E.) It is easily verified

that
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(2.2) jjh2 Sill dxdy = jj h*
2 Sill dxdy.

n n*

Now suppose that q is chosen in such a manner that:

2
f (i) qAq = cg(r)/r where q = rg(r) and c is a

| constant;

(2.3)^ (ii) q is positive, non-decreasing.

j (iii) p(u) = t(l2(r)]r=r(u) is c o n v e x (wherej
L r(u) = G"1[u + G(p)], see (1.1)).

Since CO is harmonic in fl we have 0 < CO < 1 in Q and

since q is non-decreasing 0 < h < —rry in 0 with h = , *

on C and h = 0 on the boundary of D. Furthermore since h

is an analytic function of r on the intersection of any ray

z = 9 with fi, it is clear that h satisfies all the assumptions

of Lemma 1.1 (if 0 has a smooth boundary). Hence we obtain:

(2.4) ^ |Vh* |2q2dxdy < JJ |̂ h |2q2 dxdy .

n*

B y ( 2 . 1 ) , ( 2 . 2 ) , ( 2 . 3 ) , ( 2 . 4 ) w e g e t :

(2.5) [[|Va>|2dxdy > [ f Ivh* |2q2dxdy - fj h*2qAqdxdy - £ ^ -£ ds

B u t , a g a i n b y ( 2 . 1 ) , t h e r i g h t - h a n d s i d e o f ( 2 . 5 ) i s e q u a l t o :

j J |Vuf* |2 dxdy

fi*

where CO = h q; note that cc = 1 on C and CO = 0 on the



boundary of D . Also, since h is Lip in every compact

subset of Q , so is CO . Hence 60 is an admissible function

for the variational definition of the capacity of the condenser

fi* ; if 0JT is harmonic in fi* and C0T = 1 on C and U)! = 0

on the boundary of D , then:

(2.6) 1(0*) = JJ |7o)< |2dxdy < JJ |Vaf* |2dxdy,

o* n*

y y

where I(fi ) is the capacity of Q . (As a reference for the

facts quoted here see for instance Hayman [1]). From (2.5) and

(2.6) we finally obtain:

(2.7) I(fi*) <

where I(^) is the capacity of fl.

To sum up this result we state:

Lemma 2.1.

Let D be a domain which does not contain z = oo and

contains the disk |z | <; p. Let 0 = D - ( |z | <C p} . Let q be

a positive analytic function of r for 0 < r < GD 9 satisfying

(2.3). Let D denote the domain obtained by radial concentration

with metric g from the domain D. We assume that D is not

the entire plane (x,y) . Then:

(2.8) I(Q*) < i(Cl)

where 0 = D - { |z < p}.
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Remark.

In the previous discussion we assumed that the boundary of

D is smooth; but the result of Lemma 2.1 is obtained for general

domains D by the standard method of approximating a given

domain, by a sequence of domains with smooth boundary.

Using a result of Polya-Szego [4] on the connection between

capacity and conformal radius, the following result is obtained

as an immediate consequence of Lemma 2.1:

Lemma 2.2.

Let D be a domain containing the origin and let D be

the domain obtained from D by radial concentration with metric

g. Suppose that g is analytic for 0 < r < oo and satisfies

(2.3). Denote by r (resp. r ) the conformal radius of D

(resp. D ) at the origin. (We assume that D is not the entire

plane.) Then:

(2.3) r o * V

By the same arguments used in the proof of Lemma 2.15 one

obtains the following result (based on Theorem 1.1):

Theorem 2.1.

Let & = {D,,,..,D } be a family of domains each of which

does not contain z = oo and contains the disk |z [ <C p. Let q

be a positive analytic function of r for 0 < r < oo 9 satisfying

(2.3). Let D = ft A(^) anc* suppose that D is not the entire
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plane. Denote: fi . = D. - { |z | < p}, Q* = D* - { |z | < p}
J J

Then:

* m

(2.10) I(Q ) < S a 1(0 ).

As a consequence of Theorem 2.1 we obtain, by using the

result of Polya-Szego [4] mentioned above:

Theorem 2.2.

Let & = {D,,...,D } be a family of domains containing the

origin and let D = ft A($) where g(r) is positive and analytic

for 0 < r < oo and satisfies (2.3). Denote by r . (resp.
V 9 J

r ) the conformal radius of D. (resp. D ) at the origin. (We

assume that D is not the entire plane.) Then:

n ai *

(2.11) n r O j ^ V
i =1 ' **

The family of functions q (or g) which satisfy (2.3) is

easily established. If c is any positive constant the general

solution of (2.3) (i) is given by the linear combinations of

fc - fc
q = r and q = r . If c = 0 the general solution is

given by the linear combinations of q = 1 and q = In r. If

c < 0 the general solution is given by the linear combinations

of q = sin( V-c In r) and q = cos( sf^c In r). Hence the

functions:

f q = ra, a ̂  o
(2.12) i

( g = r p L, j3 = 2a ^ 0
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Q

satisfy (2.3). (In this case, for j8 > 0, p(u) = j3u + op,

which is certainly convex; and for /3 = 0, p(u) = 1. Also,

condition (2.3) (ii) is satisfied.)

Examining Theorem 2.2 we observe that for g as in (2.12),

this result is not more general than the corresponding result

for the logarithmic measure (g = — ) . Indeed, by the arithmetic-

geometric mean inequality, it is clear that R .(&) 3 ft A ( & )
B 1

where g = r , j3 > -1, and g = —. This shows that in fact,
""*" \j r

Theorem 2.1 (and also Theorem 2.2), follow immediately from the

corresponding theorems with logarithmic measure.

Furthermore, it can be shown that Theorem 2.2 cannot possibly

hold for every metric g =r~n, n = 1,2,... Assuming that this

is true, it is not difficult to derive a contradiction.

On the other hand, an examination of the proof of Lemma 2.1

shows that the condition (2.3) is too restrictive for our arguments.

The condition (2.3) (i) guarantees that the integral

r r 2
jjh q/xqdxdy

n

is preserved under our transformation. But actually we only

need that the integral does not decrease under this transformation.

This might allow us to use some metrics, other than those dis-

cussed above.

Furthermore, although, for a given metric g, (2.11) might

not hold for every family of domains &, it might hold for certain

types of domains. Indeed, for a given family of domains, (2.3)

may be replaced by a much weaker condition.

These observations, which we intend to investigate further,
seem to us to justify the presentation of the method described above.

HUNT UBRART
CARNEBIE-KELLQN UNIVERSITY
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