RADI AL AVERAG NG TRANSFORVATI ONS
W TH VAR QUS METRI CS

Cat heri ne Bandl e and Moshe Marcus

Research Report 71-32

July, 1971

/nlc
717/ 71

University libraries
Carnegie Mdlon University
Pittftbttfg; PA 18U$389Q

HM  LIBRARY
CARNEGIE-MELLON  IMVEIBITY




RADI AL AVERAG NG TRANSFORVATI ONS W TH VARI QUS METRI CS

by
Cat heri ne Bandl e and Mbshe Marcus

| nt r oducti on

In [3] one of the authors introduced the notion of a
radi al averaging transformati on of domains in the plane, which
was based on the netric %&drdg where (r,9) are polar coordinates.
This transformation is useful in obtaining estinmates for con-
formal capacity of condensers and conformal radius of donains.
In this paper we discuss averaging transformations wi th various
nmetrics of the form g(r)drd8 where g(r) is a positive, con-
tinuous function of r for 0O <r <o00. Using these
transformations we are able to obtain estimtes for energy

integrals of the form

Jj | VF| 2g%dxdy
n
wher e q2 =rg(r). These estimates are then used in order to

obtain further estimates for capacities and conformal radius.

In this direction we have as yet only partial results, which
concern the metrics gdrdQ with g=r ,#j9~>-1. But the

nmet hod presented seens to be quite general and we plan to enpl oy
it also wwth other classes of netrics g in order to obtain

further estimates of the type nentioned above.




81. Estimates for Energy Integrals.

Let g(r) be a positive continuous function for 0 <r < 00

and let GQr) be a primtive of g. Let p be a fixed positive

nunber and set:

u=4gr) - 4p) (p <1 < o00)
(1.1) '
vV = e (0 <—e < 217

where (r,9) are the polar coordinates in the (x,y) plane, (which

will be referred to also as the z-plane).
If Q 1is an open set which does not contain the circle

|z] _<p, and if F(x,y) ec,l (0) we obtain by a standard conputation::
(1.2) |grad F|?dxdy = [(|"*)°rg(r) + "~ 7~ |( f)?]dudv.
Hence:

(1.3) J|7F°rg(r)dxdy = J[F; (rg(r))* + F]dudv
n | n

wher e (3 is the image of Q by (1.1). W denote:

(1.4) 9> = rg(r).

Definition 1.1.

Let D be an open set containing |z| < p and

Dp:D- {1z]| <p}. Denote:

(1.5) AN9) = JE g(r)dr, Eo = Dp n {arg z = 6}
e




and:

(1.6) R(6) =G [*(9) + G(p)].

Clearly R(9) does not depend on p. Set:

(1.7) D =(z=re'®: 0<r <RO9 , 0<6 < 2TT}.

The transformation D— D wll be called the radi al concen-

tration with netric g.

Remar k.

| f 'Dp is the inmage of Do by (1.1) and ﬁ; is the inage
of Dt by (1.1), then ¥ is obtained from D. by:
r*

™
AN

H r
(1.8) ife= {(u,v) |O<uc<l(v), 0<vVv <2TT},
wher e
(1_9) A(VITA =linear measur e of (D\ fP {V = v }g

Pefimitiom 1. 2.

Let D be a domain which contains |z[ «< p and does not
contain z =o00. Let F(x“y) be a continuous function in the extended
(x,y) plane such that F =0 outside D and F =1 1in a
conpact subset of D (denoted by E) such that { [z| <p) cE
Suppose that in n=D- E, O<F<1 and that on every ray
through the origin F obtains every value A, (O<A<1), ony

a finite nunber of tines. Let

(1.10) Da(F) = {(xsy) |F(x,y) > A}, (0 <A<1).




Let D be the g-radial concentration of D. and let F
A A
be defined as foll ows:

I 1 in E
(1.11) F = A on the boundary of D;, 0<A<1

l
\ho outside D .

(Here E is defined as in Definition 1 except that in (1.7)

<" <®®=e) Then F will be called the radial concentration

of F wthnetric g.

The following results are proved exactly in the sane way
as in [2]:
(i) D is a starlike domain.
(i) ék is a conpact, connected, starlike set.
(iii) If F is continuous then F is continuous.
(iv) If F is continuous in the extended plane and Lip
in every conpact subset of D - E, then F has the sane properties
With respect to D™ - E’e
Also the followi ng basic result is obtainéd by essentially

the sane nethod as in [2]:
Lenma 1.1.

Let D, ft, F be as in Definition 1.2. Suppose al so that
F(Sd‘(ftL that Fe€ in the extend pl ane, and that on every ray
arg z =6, the set of points in 0 where gg =0 is at nost a

finite set. Finally suppose that:

p(u) = [rg(r)]r=r{ﬁ) IS convex or nonotone.




Then we have:

(1.12) \Il MF* |2gdxdy < jj MF |°g°dxdy
o* n
where Q* =D - E*, fi =D - E.
We now define the radial averaging transformation with
metric g, in the sane way as it was defined in [3] for the

| ogarithm c neasure.

Definition 1.3.

Let {Dl,...,Dn} =& be a famly of open sets in the conpl ex
pl ane z, each containing the disk |z| < P. Let A= {a.}-?zi
n JJ o+
wher e a.J >0 and 2 a.J = 1. Let £3(8) be defined as in
i=1
Definitionl.|for D.J. Then set:
n
(1.13) *(9) = 2 al .[(6),
il J
(1.14) R(6) =6 ' [L(8) + c(p],

and finally define D as in (1.7). W shall ‘denote:

D = Ry A(") and the transformation S—=D will be called a

radi al averaging transformation with netric g.

Definition 1.4.

Let & and A be as above. Suppose that D_ does not

J
contain z = oo. Let E- be a conpact subset of D- containing
J J
- . n
{lz| <p). Let 3 ={Fj,..."} be aset of functions such that

J
each F. has the properties described in Definition 1.2 with




respect to D_ and E.. W define D.(F.) as in (1.10) and

D =ft (D(.),...,D(F)). Finally we define F* as in
A g,J\ A X An

(1.11). The transformation 3'—F* w Il be called a radial

ayera%i ng tgransforrration on J? W{th metric g. W shall denote
= gl
The anal ogous properties to (i)-(iv) for the radial averaging

transformation are verified exactly as in [3]. Also the follow ng

result is proved essentially in the same way as the parallel result
in[3].
Theorem 1. 1.

Let $, 55 be as in Definition 1.4. Suppose al so that each

F.J has the properties described in Lemmal.iwith respect to [?]

E-. Finally suppose that p(u) (defined as in Lemma 1.1) is

convex. Then we have:
(1.15)  YI%P |%%dxdy < 2 a J3|7F | *odxdy
n Q

3

K] = K] o A - A T

where 0% =D - E*, Ci =D - E, D =» ( «), E* =ft (E,...,E)

J J J &5* &o9r X

VW note that Lenmma 1.1 is contained in Theorem 1.1, for the
particular case n = 1. W renmark also that one can obtain a
nore general inequality in Theorem 1.1, of the type discussed
in Section 1 of [3].

The integrals in (1.15) nmay be interpreted as certain
energy integrals. Hence Theorem 1.1 nmay be used in order to
eval uate energy integrals of this type. 1
Ir

Finally, we remark that for g(r) = (i.e. the logarithmc

metric) the results obtained here coincide with the results of



[3]. In this case the integrals in (1.15) nmay be interpreted

as (conformal) capacities of condensers in the plane.

8§2. Esti mates for Confornml Capacity.

In this section we describe a nmethod by which the result

of Theorem 1.1. with various nmetrics g, may be used in order
to derive inequalities for capacities of condensers.

| Let D be a domain which does not contain z = oo, and E
a conmpact subset of D which contains the disk |z| <Ep. W
denote as usual O =D- E. Let 05 be a function which is con-
tinuous in the extended plane such that UWeC a&), CO= 0 outside
D and to= 1 in E W assune that the boundary of 0 is
sufficiently smooth so that Green's theoremmay be used. W
shall denote by C the "inner boundary" of Q i.e. ?3” E

Let h be defined, in 0O, by h =tog where q is a
positive function of r (0 <r < o00) such that quz(Czoo). Then

the followng formula is easily established:

(2.1) Jj [7cofdxdy = Jj [7hPqPdxdy - JVgAqdxdy - £ |2 |nds .
n n Q

W now restrict our attention to the case where E ={ |z | <C p}
in which case C is thecircly |z|] =p. W also assune that QO
is harnmonic in Q and that q(r) is analytic for 0 <r < o00.

Let us apply the transformation of radial concentration
wth netric g, where q2 =rg(r), to D and h. W denote the
resulting domain and function by D, h respectively and we
set n =D - E (In this case E' = E) It is easily verified

t hat



(2: 2) fJ h2 Slrll dxdy=jjh*2 Sill,dxdy-
n n*

Now suppose that q 1is chosen in such a manner that:

f (i) 9gAg = cg(r)/r where q2 =rg(r) and c is a
H const ant;

(2.3)’;‘ (it) g 1is positive, non-decreasing.
| (i) p(w = t4A)]rar( eonvex (where
Lr(u =GYu + @p)], see (1.1)).

Since QO is harnonic in fl we have 0 < < 1 in Q and

. . ] . . : _ 1
since g is non-decreasing O<h<T1F\b{ in O with h _Lq(p)

on C and h =0 on the boundary of D. Furthernore since h

is an analytic function of r on the intersection of any ray

z =9 wthfi, it is clear that h satisfies all the assunptions
of Lemma 1.1 (if O has a snooth boundary). Hence we obtain:
(2.4) A Vhr | 2g2dxdy < JJ |~h | 2g2dxdy .

nt 5

By (2.1), (2.2), (2.3), (2.4) we get:

(2.5) [[IVa>[Pdxdy > [f.Ivh* [*)g?dxdy - fj h*>gAqdxdy - .£ ~'-£ ds.

-
0 o o

But, again by (2.1), the right-hand side of (2.5) is equal to:
jJ MU P dxdy
fix

where CO = h q; note that «cc =1 on C and CO =0 on the




boundary of D . Also, since h is Lip in every conpact

subset of Q, sois OGO . Hence 60 is an adm ssible function
for the variational definition of the capacity of the condenser
fi*: if Q@ is harmonic in fi* and @ =1 on C and U' =0

on the boundary of D, then:

(2.6)  1(0%) =JJ|70< | %dxdy < JJ|Vaf* | 2dxdy,

o* n*
where I(fi ) is the capacity of Q. (As a reference for the
facts quoted here see for instance Hayman [1]). From (2.5) and

(2.6) we finally obtain
(2.7) I(fi*) < 1(Q0),

where [(”) is the capacity of fl.

To sumup this result we state:
Lenma 2. 1.

Let D be a donain which does not contain z = oo and
contains the disk |z| < p. Let 0=D- (|z| <Cp}. Let q be

a positive analytic function of r for 0 <r < @GDg satisfying

(2.3). Let D denote the dommin obtained by radial concentration

with metric g fromthe domain D. W assune that D is not
the entire plane (x,y) . Then:
(2.8) 1(Q) < i(d)

*

where 0°=D"- {|z] < p}.
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Remark.

In the previous discussion we assumed that the boundary of
D is smooth; but the result of Lemma 2.1 is obtained for general
domains D by the standard method of approximating a given
domain, by a sequence of domains with smooth boundary.

Using a result of Polya-Szego [4] on the connection between
capacity and conformal radius, the following result is obtained

as an immediate consequence of Lemma 2.1:

Lemma 2.2.

Let D be a domain containing the origin and let D* be
the domain obtained from D by radial concentration with metric
g. Suppose that g 1is analytic for O < r < oo and satisfies
(2.3). Denote by ro (resp. rZ) the conformal radius of D

*
(resp. D ) at the origin. (We assume that D* is not the entire

plane.) Then:

*
(2.3) ry g_ro.

By the same arguments used in the proof of Lemma 2.1, one

obtains the following result (based on Theorem 1.1):
Theorem 2.1.

Let ® = {D,,...,D_} be a family of domains each of which
1 n
does not contain =z = oo and contains the disk [z]| < p. Let q

be a positive analytic function of r for O < r < oo, satisfying

*
(2.3). Let D = Rg A(Q) and suppose that D is not the entire

2
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plane. Denote: fi . =D. - {|z]| <p}, @ =D - {|z| <p}.
J J
Then:
(2. 10) Q) < S a 10.).
J=1 -

As a consequence of Theorem 2.1 we obtain, by using the

result of Polya-Szego [4] mentioned above:

Theorem 2. 2.

Let & = {Di,...,Dn} be a famly of domains containing the
origin and let D = ft Ao($) where g(r) is positive and analytic
for 0 <r <o00 and satisfies (2.3). Denote by r . . (resp.

Vo J
ro) the conformal radius of DY (resp. D) at the origin. (Ve
assume that D is not the entire plane.) Then:
N *
(2.11) u"r O] "V
| =1"**

The famly of functions q (or g) which satisfy (2.3) is

easi |y establi shed. If ¢ 1is any positive constant the genera
solution of (2.3) (i) is given by the linear conbinations of

fC - fc
q=r and q =r : If ¢ =0 the general solution is
given by the linear conbinations of q =1 and q =1Inr. |If

c <0 the general solution is given by the |inear conbinations
of q=sin( V-c Inr) and g = cos( sf~C Inr). Hence the
functions:

(2.12) ifq:r’ aro

I
-
q
‘l_
w
I
N
©
>
o

(9
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Q
satisfy (2.3). (In this case, for j8 >0, p(u) = ju + oP,
which is certainly convex; and for /3 =0, p(u) =1. Also,

condition (2.3) (ii) is satisfied.)

Exam ni ng Theorem 2.2 we observe that for g as in (2.12),
this result is not nore general thf\n the correspondi ng result
for the logarithmc neasure (g@=— . Indeed, by the arithmetic-

geonetric mean inequality, it is clear that R . (& 3 ft_A&(%)
_.B . _1 . .
where g =r" j3.> -1, and \@% == This shows that in fact,

-

Theorem 2.1 (and al so Theorem2.2), follow imediately fromthe
correspondi ng theorens with logarithmc neasure.

Furthernore, it can be shown that Theorem 2.2 cannot possibly
hold for every netric g =r~", n=1,2,... Assuning that this
Is true, it is not difficult to derive a contradiction. |

On the other hand, an exam nation of the proof of Lema 2.1
shows that the condition (2.3) is too restrictive for our argunents.
The condition (2.3) (i) guarantees that the integral

rr2

jj h g/ xqdxdy

N
is preserved under our transformation. But actually we only
need that the integral does not decrease under this transfornation.
This mght allow us to use sone netrics, other than those dis-
cussed above.

Furt hernore, although, for a given netric g, (2.11) m ght

not hold for every famly of domains & it mght hold for certain
types of domains. |Indeed, for a given famly of domains, (2.3)
may be replaced by a nuch weaker condition.

These observations, which we intend to investigate further,
seemto us to justify the presentation of the nethod described above.
HNT  UBRART
... CARNEBIE-KELLON  UNIVERSTY
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