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Abstract

This paper is concerned with functionals which were intro-

duced by Nehari [8,9] and also discussed by Coffman [2,3] in

connection with the study of nonlinear boundary value problems.

Their behavior under the Schwarz syitimetrization [12] is studied,

and an isoperimetric inequality analogous to that of Rayleigh-

Faber-Krahn [12] for the fundamental frequency of a vibrating

membrane is derived.

v This work was supported by NSF Grant GU-2056.
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1. Let 0 be a bounded region in R for which the Green's

function for the Laplace operator exists. We shall write P for

an arbitrary point in R and R for the positive real axis.

Let F(s,P) be a positive function on "R+ y Cl with the following

properties

(A) F(m,x) is continuous on R for almost all xefh

F(s,•) is measurable for all seR .

(B) There exists a positive number £ such that for almost

all Pen and for all s.. < s2

sl* F ( s i ' p ) 1 S 2 * F(s2,P)

We define the function G(t,P) by

t

6(t,P) = f F(s,P)ds,

0

and consider the functional

H(v) = fi(v) - J G(v2,P)dx

n

[dx volume element in Rn, j&(v) = j grad2vdx:, (x
1^ 2, . . . ,xn)

Cartesian coordinates],



within the class T of piecewise continuously differentiable

functions which vanish on the boundary SO . This note will be

concerned with isoperimetric inequalities for the functional

A(Q) = Min H(v)
v

where v ranges over all functions in T satisfying the side

condition

fi(v) = J v
2F(v2,P)dx (1)

0

Following Nehari we call A(Q) the characteristic value,

Nehari [8] proved that for every function veT satisfying (1)

the inequality

H(v) > -^ J v2F(v2,P)dx
0

holds. A(fi) is therefore bounded from below. It was pointed out

in [8] that for every function veT there exists a constant

a ^ 0 such that av satisfies the side condition (1). This is

an immediate consequence of (B) and the fact that lim F(s,P) =0
s - 0

and lim F(s,P) = <x> . Nehari [9] also showed that for fie R!

s ~*OD

there exists a function ueT subject to (1) which minimizes H(v)

This function is a solution of the boundary value problem
2

u" + uF(u ,p) = o in Cl , u = 0 on 3fi. This result has been



generalized by Coffman [2] for the case where 0 c Rn (n !> 2) .

It can be stated as follows:

Let F(s,P) be locally Holder continuous on Rx 0 , and

2
suppose that there are positive constants 0 , c and y < —^

such that F(sJ,P) < cs
v + a for all s€R . [In R there is

no restriction on y] . If we assume further that (A) and (B)

hold, then A(n) exists, and the minimizing function u is of

2 2
class C in Cl9 and solves the Dirichlet problem Au + uF(u ,P) =0

n a2 (1)
in 0, u = 0 on 30 [A = T -—:—9— Laplacian] v . In order to

i=l O x 1 ) '

estimate A(Q) we shall use the following property of H(v).

LEMMA 1: Tf v satisfies (1), then the inequality

H(av) < H(v)

holds for every real number a.

Proof, Since F(s,P) is non-decreasing, G(s,P) is concave

and hence G(soJ,P) - Gfs^P) >_ (sQ - s1) F (s^ P) . Hius, observing

(1) we have

H(av) - H(v) = (a2-l)fi(v) - J {c(a2v2,P)-G(v2,P)} dx
n

< (a2-l)#(v) - J (a2v2-v2)F(v2,P)dx = 0

(1) 2
If fie R , then more general results can be found in [6],[11],



For the following considerations we shall need the Schwarz syinme-

trization [12] . By this synunetrization a somain BeR is trans-

formed into a n-sphere B* with the center at the origin and

the same volume as B. A positive measurable function f on B

with f = 0 on aB is transformed into a function f* on B*

in the following way: Let Bt denote the region Bfc= {PeB;f(P) > t}

f* is the radially symmetrical function with f* > t on B* and

f* = t on 5B* . The next result is based on the inequality of

Rayleigh-Faber-Krahn [12] for vibrating membranes.

THEOREM I : Let F(s,P) = F(s) satisfy (A) and (B) and

be independent of P. Then among all regions fleR*1 with a. given

volume the n-sphere yields the minimal value of A(0).

Proof. Let {u } , be a sequence of functions in T,

subject to the side condition (1)3 and with the property

A(fi) = lim H(u ).
n -»OD

We denote by u * the function obtained from u after the
n n

Schwarz symmetrization. For each u * we determine a number a
n n

such that

V ( anV> = J an2V2 F ( an2V2 ) d x-
0*

P 2 2
It follows from the definition of u * that G(a u ) dx =n J n n

r 2 2 Q

J G(an u n^ )dx. Since the symmetrization diminishes the Dirichlet

n*



integral, we have $Q(a
n
u
n) 2 *n*(

anun*^ t12^ a n d t h u s bY

Lemma 1

A(Q) ^ lim [*) (a u ) - J G(a 2u 2)dx]
n-ao w n n * n nn-ao

lfcn t ^ W * - J G(anun*
2)dx].

This inequality together with the minimum property of A (ft*) proves

that A(ft) ^ A(ft*).

REMARKS.

(1) The same arguments show that A (ft) is diminished by

the Steiner symmetrization [12].

(2) Suppose that ft is a sphere and that the minimizing

function u of the variational problem exists. Then u is

2 n i 2radially symmetric and non-increasing in r [r = £ (x ) ].

From this fact it is not difficult to obtain an upper bound for

the maximal value of the function u which solves the Dirichlet

problem Au + uF(u ) = 0 in ft = [x; |x | <^ R} s u = 0 on 50,

and yields the minimum of H(v). As an example we consider the

case value F(s) = sm and ft = { (x,y) ; x +y <C 1}. u can then

be written as

u(x) = ^ JJ In | z-z' |u2m+1(z')dAz, (2)
n



[z = x + iy, z! = xT + iyT , dA f =dx
Tdyf]

z

Since max u(z) = u(0), and since u is decreasing,, we have
zeQ

u(0) 2 4

(3) Some growth conditions on F(s) are necessary in order

2
to obtain a minimizing function of class C (Q). Indeed, consider

the functional

A(0) = Min max («(av) - ~T J(ocv) 2 m + 2dx}, (3)
v=0 on SO a *

2

and suppose that the minimizing function u is of class C (Q) .

It is therefore a solution of the corresponding Euler equation

Au +u m+ =0 in Q, u = 0 on an. If u(r) is the solution

for ni = [x; |x| £ 1}, then t" 1'm u(-|) is the solution for

the sphere n. = {x; |x| <, t). An easy computation yields

A(Qt) = t "l A(nj_) (4)

where n is the dimension of the space. Since A(n.) is a

2monotonic functional of t, we must have m <C _2 . This

condition was obtained by Pohozaev [11] in a different way. If

we compute the value for a, then (3) becomes



7

1
i ni,m+l -,
— I • (5)

v=o on an v dx
0

We now consider the case n = 3, m > 2. If we take

cos f^ r in

in [i , 1]

k > 1, then v is admissible for the variational characteri-

zation (5) of A (ft.,) . The computation shows that the right

side of "(5) tends to zero if k > OD . Hence A(ft_) = 0,

and by the same argument and the monotonicity of A(ft) we can

prove that A(ft) = 0 for an arbitrary domain ft. If n = 3

and m = 2, there exists a constant 3 > 0 such that

A(ft) = /3 for all ft.

Because of an inequality by Ladyzhenskaja [5]

}3 2 48 J v6dx1

ft

dx2dx3

it follows that A(ft) > 0 for all ft. If we can show that 3

is the same for all circles,, then the assertion will be proved.

Let t̂. <^ t2 , and u (r) be a sequence of radially symmetrical

functions subject to (1) such that

A (ft. ) = lim H(u )
Z2 n-oo n



The functions v = t_
n o

8

with t = -r— are admissible
o t1

for the variational characterization of A(n ). Hence
1

A(Q;, ) < lim H(v ) = A(0. ) .
tl v - OD n Z2

n

On the other hand we have from the monotonicity

A(Q.

2. Let fie R , and consider functions F(s,P) of the form

F(s,P) = p(P)FQ(s) + a(P)

where p(P) and cx(P) a^e positive on 0 and F (s) satisfies

(A) and (B) of Section 1. If the least eigenvalue of the

membrane problem Au + Agu = 0 in n, u = 0 on 3Q exceeds 1,

then it is possible to find for each function weF a constant a

such that (1) holds for v = aw [2,3,8,9]. Under all these

assumptions A(fi) exists. If F(s,P) is locally Holder con-

tinuous on R x 0, then there is a minimizing function u which

2
solves the boundary value problem AU + u(p(P)F (u (P)) + a(P)) = 0

in Q , u = 0 on SO [2] . It may be observed that A, > 1 is

also necessary for the existence of the function u. Indeed, since

u does not change sign , it can be interpreted as the first

This follows immediately from the minimum property of A(Q)
and from a simple reflection argument.



9

eigenf unction of the problem h/ + /im(P)v = 0 in Q, v = 0

on BO, where m(P) = p(P)FQ(U
2(P)) + c ( p ) . We have m(P)> a(P),

and by the monotonicity of the eigenvalues 1 = ji-, < ^^.

We shall use the following notations:

M (B) = H pdxdy, Ma(B) = \\ crdxdy

B B

where B c fi is an arbitrary domain, and x, y are the Cartesian

V rm2 2*x + y y and K be an arbitrary real

number, then we define

r 2 ) 2
if K > 0

gv(r) = < Y~? if K < 0
- r

if K = 0

and M (B) = JJ g dxdy. Let F (s) be fixed, and consider
k B k

A(0) = A(0, e,p) as a function of 0, <? and p. 0* denotes

the circle with the property

II 9k
 dxdy = II o

n* n
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and 0* is defined in an analogous way. The next result is a

generalization of Theorem 1 of Section 1. It is related to

some extensions of the Rayleigh-Faber-Krahn inequality for

inhomogeneous membranes [1,10].

In order to simplify the proof we shall assume that there
2

exists a function ueC belonging to I and subject to (1)

which yields the minimum of H(v). Otherwise we have to con-

sider a minimizing sequence as we did in the proof of Theorem

THEOREM I I . Suppose that Q jus simply connected, A. > 1

and that there exists a^ number K such that the following in-

equalities hold in Q:

- A l n p / 2 p ^ K , - A l n a / 2 c r l K , 4TT - KMp > 0, and 47r-KMa>0.

(a) If Ci* c n* 3 and if the f i r s t eigenvalue of the problem
p _ c

Au + jug. u = 0 jLn 0* , u ^ O o n £ 0 * , e x c e e d s 1,, t h e n we

h a v e , f o r f i x e d F ( s ) ,

M
A(fi,<y,p) 2 *(&*, g k ,

[M = Mn(Q) , M =
p p o

(b) If Cl* c Cl* , and if the first eigenvalue of the problem
M ~ ~ a ~ P

A u + u ^ g , u = 0 in Q* , u = 0 on 90* , exceeds 1, then
n M K p p

P
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Proof of Part (a); If f is an arbitrary positive function,

let B|f, denote the circle with center at the origin and the

property that

Jj f dxdy = JJ gk dxdy.
B(f)

Let n(t) = {PGO; U(P) > t) , and let u* be the radially

symmetrical function on ^(f\ such that u|f\ >. t i-n

M
and U7f^ = t on ^^|f\ (t) • We shall write c = T~- , p = c p

and h(P) = max [uĵ  (P) , u^ v (P) } • Since jx, > 1 there exists

a number a such that

&n, (ah) = f| a2h2{F (a2h2)c"1g, + g. } dxdy.
(a) o*

The proof is based on the following lemma [1].

LEMMA 2. Let v be em arbitrary positive function in 0

which vanishes on the boundary an. Let G(t) JDe the domain

[PGQ; V(P) ^> t}. ĵ f _a positive function f satisfies in Q

the inequalities -A In f/2f ̂  K and 4TT - K J J f dxdy > 0,

n

then for every (t..,t9) (tn <^ t9)

JJ grad2 v dxdy 2 Jj grad2v|f)dxdy (6)

G(t1)\G(t2)
 G|f) (tl)^Gtf) ( t2 }
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Because of the assumptions regarding a, it follows therefore

that

jl grad2u dxdy > JJ grad2u* ^ dxdy (7)
n(tl)\fi(t2)

for all t < t2

—— —- TC

Because of c ̂ > 1^ we have -A In p/2p <^ 77 <. K. Since

4TT - K JJ p dxdy = 4ir - K M )> 0, we can apply Lemma 2 to

n
u*_ , and we obtain

jj grad2u dxdy > Jj grad2u*_ dxdy (8)

Q(t.)\n(t9)
 (p)

1 2 (p) " (P)

From (7) and (8) we conclude that

JBQ(CCU) 2 » Q * (a^) (10)
(ff)

The following relations are immediate consequences of the defini-

tion of u* and u*, ,
(7) (cr)

a2u2 °2»*i
JJ { J F

o
( s ) d s} P d x d^ = JJ { J F

o
( s ) d s}

no n* . o
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and

a 2u 2
g dxdy = H a2ulg) 5k dxdy. (12)

(er)

From (11) and (12) and the monotonicity of FQ(s) we have

2^2
a h

0

and by (10) and the same arguments as in the proof of Theorem 1.

M
, gk, jf- gk) .

part (b) can be proved in a similar way.

EXAMPLE. Consider functions er and p such that Ap <1 0,

M 2

^ < °^ ^ 2 1 a n d M < ^ Jo [Jo = 2,4048, . . . first zero
P

of the Bessel function of order zero] . It is easy to verify that

-A In p/2p <£ 0 and -A In a/2cr < 0. We have therefore K = 0

and g, = 1. From the inequality of Nehari for inhomogeneous

. 2
irj

membranes [10] it follows that A ^> ° >^ 1, and from the
a

. 2
irj

Rayleigh-Faber-Krahn inequality JU-J >. M° >^ 1. Hence, Theorem 2

c
yields

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY

i
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M
A(n,a,p) C)

where
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