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Abstr act

This paper is concerned with functionals which were intro-
duced by Nehari [8,9] and al so discussed by Coffman [2,3] in
connection with the study of nonlinear boundary val ue probl ens.
Thei r behavi or under the Schwarz syitinetrization [12] is studied
and an isoperinmetric inequality anal ogous to that of Rayleigh-

Faber-Krahn [12] for the fundanental frequency of a vibrating

menbrane is derived.
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1. Let O be a bounded region in R' for which the Green's
function for the Laplace operator exists. W shall wite P for
an arbitrary point in R' and R+ for the positive real axis.

Let F(s,P) be a positive function on "R,y d wth the follow ng

properties

(A F(M™x) is continuous on _R+ for alnost all xefh
F(s,*) is neasurable for all seﬁ+.

(B) There exists a positive nunber £ such that for al nost

all Pen and for all S. < Sz

S| x FUsjrP) 152+ F(s,,P) -

We define the function Gt,P) by

t
6(t,P) = f F(s, P)ds,
0

and consi der the functional

Hv) =fi(v) - J Qv P)dx
n

[dx volunme element in R, j&V) = | ré]radzvdX;, (xtr2 0.0, x"

Cartesi an coordi nat es], 2




within the class T of piecew se continuously differentiable
functions whi ch vani sh on the boundary SO. This note will be

concerned with isoperinetric inequalities for the functiona

AQ = Mn Hv)
\'

where v ranges over all functions in T satisfying the side

condi tion
i(v) = J viF(v? P)dx (1)
0
Fol |l owi ng Nehari we call A(Q the characteristic val ue,

Nehari [8 proved that for every function veT satisfying (1)

the inequality

HY) > <A 3 vIFR(V2 P)dx
0

holds. Afi) is therefore bounded frombelow It was pointed out

in [8] that for every function veT there exists a constant

a”™ 0 such that av satisfies the side condition (1). This is
an imedi ate consequence of (B) and the fact that |imF(s,P) =0
s-0
and lim F(s,P) = <. Nehari [9] also showed that for fie R
S @

there exists a function ueT subject to (1) which mnimzes H(v).

This function is a solution of the boundary val ue probl em
2
u* + uF(u ,p) = o in d, u=0 on 3fi. This result has been




general i zed by Coffman [2] for the case where 0 c_R' (n!>2) .

It can be stated as foll ows:

Let F(s,P) be locally HFolder continuous on _Bx 0, and
. 2
suppose that there are positive constants 0, c¢ and y <,
such that F(s;,P) < csY + a for all S€R;. [In R there is
no restriction on y]' . If we assune further that (A and (B

hold, then A(n) exists, and the mnimzing function u is of

2 2
class C in dg and solves the Dirichlet problem Au+uF(u ,P) =0
n a.2 _ (1)
in 0,0 u=0 on 30 [A= T -—-—9— Laplacian] . In order to
i=l Ox!)"

estimate A(Q) we shall use the follow ng property of H(v).

LEMVA 1: Tf v satisfies (1), then the inequality

H(av) < H(v)

holds for every real nunber a.

Proof, Since F(s,P) is non-decreasing, 'G(s,P) i S concave

and hence Q(Sq, P) - GFs®P) >_ (so- s1) F(s”P) . Hius, observing
(1) we have

Hav) - Hv) = (&D)fi(v) - J {c(a%% P)-Gv2 P)} d
n

< (a>1)#(v) - J (a?v2-v?) F(v3 P)dx = 0
Q

(1) 2
If fie R, then nore general results can be found in [6],[11],




For the follow ng considerations we shall need the Schwarz_ svinne-
trization [12] . By this synunetrization a somain BeR' is trans-
formed into a n-sphere B* wth the center at the origin and

the sanme volune as B. A positive neasurable function f on B
with f =0 on aB 1is transfornmed into a function f* on B*

in the followng way: Let B; denote the region Bi.={PeB;f(P) >t}.
f* is the radially symetrical function with f* >t on B;: and
f* =t on SB’fc. The next result is based on the inequality of

Rayl ei gh- Faber-Krahn [12] for vibrating nenbranes.

THECREM | @ Let F(s,P) = F(s) satisfy (A and (B -and

be independent of P. Then anong all regions fleR' with a._ given

volune the n-sphere yields the mnimal value of A(O).

Proof. Let {un}:;i be a sequence of functions in T,

subject to the side condition (1); and with the property

Afi) =1imH(u) .

Nn-»ab

We denote by u * the function obtained from u after the
n n
Schwarz synmetrization. For each u * we determ ne a nunber a

N N
such that

V(anv> — J anZVZF(anZVZ)dx_
O*

o . P _
It follows fromthe definition of ug t hat J'G(an%n% dx =
r 2 2 Q

J G(a, up™ )dx. Since the symretrization dimnishes the Dirichlet

n*




integral, we have 3$Q(%,",) 2 *n*(®n‘n*~ t 12n  and thus by

Lemma 1

AQ 7 Hlii%né [ (@ u) - 52 Qa *u ) dx]

> Ifm t A~ Wr - J Qaur?)dx].

This inequality together with the mninmum property of A(ft*) proves
that Aft) ~ A(ft*).

REMARKS.

(1) The same arguments show that A(ft) is dimnished by
the Steiner symmetrization [12].

(2) Suppose that ft is a sphere and that the mnimzing
function u of the variational problemexists. Then u is

N
radially symmetric and non-increasing in r [r2:£ x')z].

1=f
Fromthis fact it is not difficult to obtain an upper bound for
the maxi mal value of the function u which sol Ves the Dirichlet
problem Au + uF(u) =0 inft = [x; |x] < Rs u=0 on 50,
and yields the mnimmof H(v). As an exanple we consider the
case value F(s) = s™ and ft = { (x,y) ; x2+y2<_g 1}. u can then

be witten as

u(x) =~ JJ In]z-z' |u®™(z')dA,
n




[z =x+iy, z'=x"+iy", dA; =dx'dy']

z
Since max u(z) = u(0), and since u is decreasing,, we have
zeQ
1
u(o) 2 4%

(3) Some growth conditions on F(s) are necessary in order

2
to obtain a mnimzing function of class C (Q. |Indeed, consider
the functional
A0) = Mn max («(av) - AT J(ocv) 2™2dx}, (3)
v=0 on SO a h

2
and suppose that the mnimzing function u is of class C (Q .

It is 2herefore a solution of the correspondi ng Eul er equation

Au +u™ =0 in Q wu=0 on an. If u(r) is the solution
for n = [x; |x| £1}, then t""™u(-|]) is the solution for
t he sphere n.t = {x; |X] : t). An easy conputation yields
- ERi2y '
AQ) =t 7 A ) (4)

where n is the dinmension of the space. Since A(n.t) is a

monot oni'c functional of t, we nust have m<§—§-:g—-. Thi s

condi tion was obtai ned by Pohozaev [11] in a different way. |If

we conmpute the value for a, then (3) becones




ni

-
A(Q) = Min B[R — o,
J' 2m+2
V=0 on an v odXx
0
W now consider the case n =3, m> 2. |If we take
cosfAr in fo,z
V =
o} in [, 1]

k > 1, then v is admssible for the variational characteri-
zation (5 of A(ft._,) . The conputation shows that the right
side of "(5 tends to zero if k_—>0D. Hence A(fti_) = 0,
and by the sane argunent and the nonotonicity of Aft) we can
prove that Aft) =0 for an arbitrary domain ft. |If n =3

and m= 2, there exists a constant 3 > 0 such that
Aft) =1/3 for all ft.

Because of an inequality by Ladyzhenskaja [5]

(8(v)}® 248 J vldxtdx2dx®
ft

it follows that Aft) >0 for all ft. If we can show that 3

is the same for all circles,, then the assertion will be proved.

(5)

Let tA <Mt2, and u (r) be a sequence of radially symetri cal

L=
functions subject to (1) such that

A(ft, ) = lim Hu)
2 n- 00 n




1

-— t

The functions v =t 2 u r_ wth t :-trz— are adm ssible
n to o 1

n (0]

for the variational characterization of A(n, ). Hence

AQ, )< limHwv) = A0 ).
i V - @ n Zy
n

On the other hand we have from the nonot onicity

MO ) < AQ )

2. Let fie R2, and consider functions F(s,P) of the form

F(s,P) = p(P)Fqs) + a(P)

where p(P) and cx(P ®‘e positive on 0 and Fo(s) satisfies
(A and (B of Section 1. |If the |east eigenval ue of the
menbrane problem Au + Agu = 0 in n, u=0 on 3Q exceeds 1,
then it is possible to find for each function weF a constant a
such that (1) holds for v =aw [2,3,8,9]. Under all these
assunptions Afi) exists. If F(s,P) is locally Hol der con-

ti nuous on ﬁ+x0, then there is a mnimzing function u which

sol ves the boundary val ue problem AU + u(p(P)Fo(uz(P)) +a(P)) =0

in Q, u=0 on SO [2] . It may be observed that A > 1 i's
al so necessary for the existence of the function u. Indeed, since
u does not change si gn(l), it can be interpreted as the first

(1)This follows inmmediately fromthe m ninmum property of A(Q
and froma sinple reflection argunent.




~eigenf unction of the problem h/ + /infPv = 0 in Q v =0
on BO, where n(P) = p(P)Fo(U*(P)) +.(p). We have m(P)>,(P),

and by the nonotonicity of the eigenvalues 1 = ji-, < ",

We shall use the follow ng notations:

M, (B = H pdxdy, M(B) = \\ crdxdy
B B

where B c fi is an arbitrary domain, and x, y are the Cartesian

I 5%

coordinates. Let r = Vx +); y and K be an arbitrary real

nunber, then we define

([ 4

if K>0
|RK[ (1 +717?)?
g(r) =<2 v '"" K< 0
- (L_ )
1 if K=0
\
and Mg(B) = JJ g dxdy. Let Fo(s) be fixed, and consider

k B k
A(0) = A(O, e,p) as a function of 0, <? and p. O; denot es
the circle with the property

19,9 = | 0 axay.
n*

n
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and O’;) Is defined in an anal ogous way. The next result is a
generalization of Theorem1 of Section 1. It is related to
sone extensions of the Raylei gh-Faber-Krahn inequality for
i nhonogeneous nmenbranes [1, 10].

In order to sinplify the proof we shall assune that there
exi sts a function ueC2 belonging to | and subject to (1)
whi ch yields the mnimumof H(v). Qherw se we have to con-

sider a mnimzing sequence as we did in the proof of Theorem 1.

THEOREM 1. Suppose that Q jus simply connected, A1 > 1

and that there exists & number K _such _that the following ig—

equalities hold in Q:

-Alnp/2pM"K, -Alna/2crlK, 4T - KM, > 0, axd 47r-KM>0.

@ If G cn* 3 _and_if the first eigenvalue of the problem

Au + jug,u =0 jlo 05 , Uu” O o~ £0% , excseds 1, -heh we

have, for fixed F- (s),

<

i * * —Q
A(fi.<y.p) 2 *(&% O, M =R

M =My(Q., M = MU(Q)].
P P o

(b) If Cla* c|§:|* , _and if the first _eigenval ue of the problem
M~ ~— &~
Au+u g, u=0 in @, u=0 an 90*, exceeds 1, 4then
" M K M P p
MO, e,0) B oA (OX, “ﬁi Ier Fp) -
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Proof of Part (a); If f is an arbitrary positive function,

| et B|f,) denote the circle with center at the origin and the
property that

I f dxdy = 33 gy dxdy.

? (1)
Let n(t) = {PGO; U(.P)_>t) , and let l(l’é) be the radially

symmetrical function on "(f_\f such that Y| f\_}>._ t i-" G*Ef) (t)
and Y7~ =t on AM[f\ (t) + Ve shall wite ¢ = T, p=cp
»_-r = p
and h(P) =nmax [y” (P, u*v (P} Since _j)J(_, > 1 there exists
(o) '

a nunmber a such that

&,. (ah) = f|r a’h?{F (a*h®»c"'g, + g. } dxdy.
(a) o*

The proof is based on the following lemma [1].

LEMVA 2. Let v be emarbitrary positive function in O

whi ch vani shes on the boundary an. Let @t) JZe the donmain

[ PGQ; V(P)_">1t}. jM _apositive function f _satisfies in Q

pn
the inequalities -Aln f/2f K and 4TT - KJJ f dxdy > 0O,
n

then for every (t.., ty) (th <N to)

33 grad® v dxdy 2 3" gr ad2v| 1 dxdy
Gt)\G(ty) qf) tagf) 2}

(6)




12

Because of the assunptions regarding a, it follows therefore
t hat

il grad®u dxdy > AN grad’u*, * dxdy (7)
n(y)\VEi(ty) %, (tl)\mfc) (ty)

for all tlgtz

— — C
Because of ¢ *» 1* we have -Aln p/2p <* 77 « K Since

ATT - K:]B'"p dxdy = 4ir - KM >0, we can apply Lenma 2 to

u*_ , and we obtain
(p)
e ) ".r )
I grad<u dxdy > Jj grad-u* _  dxdy (8)
Qt.)\n(te) 0*_(£,)-0%_(t,) (p)
ol (M " (P

From (7) and (8 we conclude that

@Y 25Q (@) (10)

The following relations are inmediate consequences of the defini-

(@)

tion of u* and u*

0 2»* :

a’y’ ]
\]r;]o{ ] FO(S)dS} PdXd/\ : JJ{ \](LFO(S)dS} o Tg, axdy a1

n* . 0
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and

[[ a%u?, dxdy = H 1 g 5, dxdy. (12)
() |

From (11) and (12) and the monotonicity of Fg(s) we have

' 2n2
‘” G(azuz)dxdy < Hl |: {c_ 1ajh Fods} + azhz} gy dxdy,
0 0% 0

(e)

and by (10) and the sane argunents as in the proof of Theorem 1.

M
A(Q,U:D) 2 AI(QTG‘)’ gk’ Jf- gk) :
)

part (b) can be proved in a simlar way.

EXAMPLE. Consi der functions er and p such that Ap <1 0,

M 2
Agen oAbt M e A g [J, = 2,4048, . . . first zero
P
of the Bessel function of order zero] . It is easy to verify that

-Aln p/2p <E 0 and -Aln a2r < 0. W have therefore K=20
and 9y = 1. Fromthe inequality of Nehari for inhonogeneous
.2

i
menbranes [10] it follows that Al~> W > 1, and fromthe
a
.2
i
Rayl ei gh- Faber - Krahn inequality Jl >. M >A 1. Hence, Theorem?2
C

yi el ds

HUNT  LIBRARY
CARNEGIE-MELLON  UNIVERSITY




where

M
A(nap) > M%), 1, F*)

%y = {(x,y)eRz; x2+y2 < \’—ﬂ? } .

14
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