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In Section 3 the ordered absolutes of ordered spaces are

studied, and it is shown that they are the projectives for an

appropriate class of maps in the category of ordered spaces and

order preserving maps.

See Herrlich [H^] for the definitions and properties in

categorical topology *

Incorporated in this paper is most of the theorems from a

paper by V. Fedorchuk. His theorems are identified by his name

in parenthesis following the word "theorem". His proofs have

been modified when I believed it would simplify matters or would

better serve the purposes of this paper.



SECTION 1. The Category Lots.

1.1. Define LOTS to be the category of ordered spaces and

order preserving (continuous) maps. The monomorphi sms are the

one-to-one maps and the isomorphisms are the one-to-one onto maps.

1.2. PROPOSITION. The epimorphisms are the maps with dense

range.

Proof. Since every ordered space is Hausdorff, obviously a

map with dense range is an eipmorphism.

Conversely let f:X-»Y be an epimorphism in LOTS. Suppose

f does not have dense range. Then there exists y ,y € Y such

that (yo,Y1) t 0 and (y^Yj) 0 f (x) = 0. If (YQ9Y1) is

^Y—>E (real line):clopen define gQ:Y—>R, and

go(y) =

0 for y 1 y

1 for y > yc

gx(y) =

for y < y±

for y ̂  y-L

e LOTS and fgQ = but gQ ̂  g

contradiction. If (y ,y ) is not closed,, (y ,y )

pick yr,yfSy such that y! < y" < y»"

a?his is a

^ ̂  • So

since every

ordered space is normal, the proof of TJrysohnTs lemma permits us

to construct h^ : [yf ,y<u ]—^1 = [0,1] and h^ : [ y f , y " ]_^ I such

- 1/2, h^(y'») = 1 = hj_(y"), and

j to hn : Y—>I:
1 1 ^

that h^(y') = 0 =

!,h; e LOTS. Then extend hf to h :Y—>I and
O 1 O O 7



e x i s t s a unique g:D—^C such tha t ILg = gA and II g =

and there e x i s t s a unique f:E—-^C such tha t ILf = f. and

nBf = ffi. If f(eQ) ^ g(do), then >

If f(e ) < g(d ), then b. = TLf(e ) £ ILg(d ) = b In e i the r
O O I J D O O O O

case there is a contradiction. Thus A and B have no product.

1.4. PROPOSITION. Let A and B be non empty ordered

spaces. Then A and B have no co-product in LOTS.

Proof. Choose aeA and beB,, and suppose there is a co-

product C of A and B in LOTS. Let AT be formed by adding

to A the end points if necessary. Form B! similarly. Let

A* + BT be the topological sum of A! and BT with the orders

induced by Af and B1 and such that for all aeAT and beB1

a < b. Define Bf 4- Af similarly. Let i :A —> AT +B1 ,
A l



6

i 2A—»B
!+AT, i :B->Af+Bf, and i :B—>B!+AT be the natural

A2 1 2

embeddings. Let 11 -A—> C and 1LB:B—>C be the co-product maps,

Then there exists unique h:C—*A?+BT and k:C—>B!+Af such that

i (a) > iD (b) and i. (a) < i_ (b) . If 1L. (a) < II-(b), then
A 2 B2

 Al Bl A B

iA (a) = kUA(a) < kliB(b) = iR (b) . If JJA(a) > U B(b), then

i (a) = hllA(a) > hllB(b) = iR (b) . In either case there is a

contradiction. Thus A and B have no co-product.

1.5 1.3 and 1.4 can be easily generalized as follows.

Let {A } ^ be a collection of non empty ordered spaces

subscripted by the set G. Its product exists iff all but one

of the A !s is a one point space. Its co-product exists iff

5 = 1.

Let Y be an ordered space, and let yeY. • Call y a left

limit point if ye (- OD^y), and call y a right limit point if

ye (y,OD) . Then y is called a one (two) sided limit point if y

is either (both) a left or (and) a right limit point. A gap in

Y is a pair [A,B) of non empty clopen subspaces such that

A U B = Y and A < B i.e., for all aeA, beB a < b. If A

has a sup y1 and B has an inf y% {A,B} is called a jump.

This jump can also be denoted by the ordered pair fyT , vtf 3• The



points yT and yff are called jump points. If both y1 and y"

are one sided limit points,, {y!,yfl} is called a two sided jump.

{A,B} is called a cut if A has no sup and B has no inf.

We also refer to the "hole" u between A and B as this cut.

Clearly, generalized ordered spaces need not be orderable.

For example (0,1) U -{2} is not an orderable subspace of R.

Let X be a generalized ordered space. If {A!,BT}X is a pair

of non empty clopen, i.e., open and closed, subspaces of X

with AT < BT and A1 UB1 = X, we also call this a gap. Simi-

larly, we define jumps and cuts as we did in the ordered case.

However, if Af has no sup but B has an inf xf we call

{A1 ,B! }v a left cut, which is also denoted by {^x1}. If Af

has a sup x but B1 has no inf we call [A' , B'} x a right

cut, which is also denoted by [x,-]. Right cuts and let cuts

are called half cuts, as are the "holes" they determine.

1.6 THEOREM. Let e:X-*»Y be an epimorphism in LOTS.

Then e is an extremal epi iff for all yeY\e(x) there exists

a. unique y'ee (X) such that y and y' form a. two sided jump

.in Y. Hence if e is an extremal epi and e(X) is ordered.

then e _is cin onto map.

Proof. Let e:X-39>Y be an extremal epi. If e (X) is ordered,

then define e1 :X-->e (X) such that for all xeX e1 (x) = e(x)
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and i:e(X)>—>Y is the inclusion map. Thus the diagram commutes,

and i is a mono. So i is an iso. Then since e! is onto,

e is onto.

If e(X) is not ordered, let yeY\e (X) . Suppose y is a

two sided limit point of Y. Then Y! = Y\{y} is ordered and

there exist eT :X—>Y* such that for all xeX e(x) = e!(x) ,

and i:Yf—»Y is the inclusion map. Then i is a mono and

ief = e but i is not an iso. Contradiction.

Therefore, since e(X) is dense in Y, y cannot be isolated,

so it is a one sided limit point. Hence there exists a unique yf

such that y and yT form a two sided jump, and we may assume

y < yT..

suppose y!eY\e(X). Then Y1 = Y\(y,y!} is ordered and

as in the argument above, we have ef :X—*Yf, the inclusion

i:Y!—* Y, ie1 = e, and i is a mono but not iso. Contradic-

tion. So yf ee(X) .



Conversely, let e be an epi, m a mono,, and

X

m

f € LOTS such that the diagram commutes.

If e(X) is onto, then m is onto. So m is an iso.

If e(X) is not onto, let yeY\e (X) . Let yT be as in

the hypothesis. We may assume y < yf . Since m is mono and

y!ee(X), there exists a unique z! eZ such that m(2? ) = yf .

Since e(X) is dense in Y, m(Z) is dense in Y. Thus z1

is not a left limit point since m is mono and y1 is not a

left limit point. Moreover, z! ^ o, and so zf has a prede-

cessor z. Necessarily, m(z) = y. So m is onto and, therefore,

an iso. Thus e is an extremal epi.

1.7. EXAMPLE. There exists an extremal epi that is not onto.

Let X = [0,2) + (3,4],Y = [0,1] + [3,4] define e : ^ % Y as follows;

e(x) = x for xe[0,1] U (3,4] and e(x) =1 for ze(l,2).

Then e(X) = [0,1] + (3,4] is an unordered subspace of Y.
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X

1.8 LEMMA. Ijf m:X—^ Y jis a. one- to-one order preserving

function and X and Y are ordered spaces, then m JLS continuous

iff m(X) JL£ ordered.

Proof. Let m be continuous. Suppose m(X) is not ordered.

Then there exists yem(X) and a half, say right, cut {y,•} in

m(X). Since m is one-to-one, therex

4- I I
in Y\m(X)

exists a unique xeX such that m(x) = y. Since y/m(X) H (y, OD) ,

x/(x, OD) . Thus x has a successor x! 9 and m(x!) = min(m(X)n (ŷ  co ))

which is impossible since it has no min. Hence m(X) is ordered.

Conversely, let m be discontinuous. Then we may assume

there exists xeX such that XG (X, OD) but m(x)/m(x, OD) ) . Since

m is mono and (x, CJD) has
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X

m

in Y\m(X)

no minimum, m( (x, CJD) ) has no minimum. Thus {m(x) , • } is a

right cut in m(X) , and hence m(X) is not ordered.

i.9. THEOREM. Let m:X>~:>Y be a. monomorphism in LOTS.

Then m jys an. extremal mono iff X jus embedded as the largest

ordered subspace of m(X).

Proof. Let m:X»->Y be an extremal mono. Then by the

lemma m(X) is an ordered space. Thus the diagram commutes where

m(X)

i is the inclusion map and for all xeX m(x) = mT (x) . Hence

mT is an epi and, therefore, an iso. So X is embedded in Y.

Now let YT be an ordered space such that m(X) c Y! c m(X).

Then im! = m where mT :X—>Y! is defined such that for all xeX

m(x) = m! (x) , and i:Y!—» Y is the inclusion map. Hence m! is

an epi, so it is an iso. Thus m(X) = Y! . So m(X) is the largest

ordered space in m(X).
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Conversely, let m:X>-^Y be a mono such that m(X) is the

largest ordered subspace of m(X), and let the diagram

X
m!

m(X)

commute where i is the inclusion, imf = m, and e is an epi.

We want to show the existence of hT :Z —>m(X) such that

ih! = h. To do this it is sufficient to show that h is a mono

and h(Z) c m(X) .

However, m(X) ch(Z) = h(e(X)) che(X) = m(X) . Since m

is mono, e is mono. So e(X) is an ordered dense subspace of Z.

Suppose there exists z,z!€Z such that z < zT and h(z) =

h(z!) = y for some yeY. Then since e(X) is an ordered dense

subspace of Z, {z,zT} is a two sided jump of Z in zXefX),

and y is a two sided limit point in m(X)\jn(X). But then

m(X) U {y} is ordered, and m(X) c m(X) U fy} c m(X) . Contradic-

tion. Thus h is a mono.

Then by the lemma h(Z) is ordered. Hence h(Z) = m(X)

since m(X) c h(Z) cm(X). So there exists hf:Z—^m(X) defined

by hT (z) = h(z) for all zeZ, i.e., ih! = h. Thus hT is

one-to-one and onto, i.e., it is an iso. Then mT = h!e since

i is a mono and imT = he = ihre. Moreover, since mT is also

an iso, e is an iso. Thus m is an extremal mono.
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1.10. Denote by G LOTS the category of generalized ordered

spaces and order preserving maps. Then the last two theorems seem

to indicate that both G LOTS and the subcategory in LOTS of

maps with ordered range would lend themselves more naturally to

a categorical treatment than would LOTS.

1.11. EXAMPLE. There is an extremal mono in LOTS with

unordered range. Let X = [0,1) + (4,5] and Y = [0,1] + [2,3) + (4,5]

V
Y

0

Let m:X;»->Y be the inclusion map. Then m(X) is the greatest

ordered subspace of m(X) = [0,1] + (4,5].

SECTION 2. Ordered and Generalized Ordered Extensions.

2-1. Let X,B 8 (GLOTS) LOTS. Then B is an (generalized)

ordered extension of X iff X can be embedded into B by a

map in (GLOTS)LOTS. Let peB\x. Then a neighborhood of p

in X is the intersection of a neighborhood of p in B with X.

B is called an ordered compactification of X if B is a compact

ordered extension of X in which X is dense. Note that no

unordered generalized ordered space is compact. B o G LOTS is

HUNT LIBRARY
ELLSa UNIVERSITY
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a generalized ordered realcompactification of X if B is a

realcompact generalized ordered extension of X in which X

is dense.

The set of all ordered compactifications of an ordered

space X can be partially ordered as follows. Let b..X and

b2X be two ordered compactifications of X. Then b2X ^> ^X

iff there exists a unique f:b2X~>b-X e LOTS such that f is

the identity on X.

Note that X is compact iff it has both end points and

no cuts.

2.2. THEOREM. (Fedorchuk). The partially ordered set of

ordered compactifications of an ordered space X Jjs order

isomorphic to the set of all subsets of the set U jaf all cuts

.of X.

Proof. If U is empty,, i.e. X has no cuts,, there exists

only one ordered compactification of X obtained by adding to X

any end points it doesnTt possess. Assume that U ̂  0, and let

bX be an ordered compactification of X. Choose a nonterminal

point ycbx\x. Then y defines a cut of X by the subsets

X = {xeX | x<y} and X+ = {xeX | x>y}. Thus every nonterminal

point yebX\X defines a cut u of X such that x" =X~J,X
+ = X+ ,

y u' y u '

i.e. u can be considered as containing y. It is easy to see

that for a given cut u of X, there is either one or two points

of bx\x in u. Thus the ordered compactification bX defines
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a division of tt into two disjoint subsets lu (bX) and lu

where U.(bX) consists of those cuts ueU containing i points

of bx\x i = 1,2.

We now set up a correspondence between each ordered compacti-

f ication bX of X and the set lu (bX) c \\, and show the mapping

lu is an order isomorphism between the set of all ordered compac-

tifications of X and the set of all subsets of U, ordered by

inclusion. Since each nonterminal point of the growth of an ordered

compaetif ication lies in a cut of X, we have U2 (b-X) = U2 (k>2X)

implies b..X = b 2
X' i-e- the mapping lu is one-to-one. Let

UT c U. Consider the ordered set B obtained from X as follows:

(1) by the addition3 if necessary, of the end points; (2) by the

addition of one point to each cut ueU\U! ; (3) by the addition of

an ordered pair of points to each cut ueUT . It is easy to see

that B is an ordered compactification of X and that lu (B) = UT .

Thus the mapping lu is onto. We show lu is an order preserving

mapping. Let b-X and b2X be two ordered compactifications of

X, with b2X > i^X, i.e. there exists f :b2X—> b^ G LOTS such

that f is the identity on X. f maps the "cut points" in

b2x\x to the corresponding cut points in b.X\X. Hence

U2 (t>2X) 2 1̂2 (
bnx) • N o w we show lu is order preserving. Let

U2 (fc>2X) 2
 u

2 (
b
1
x) • Then l^X is obtained from b2X by identi-

fying those ordered pairs of cut points of b2x\x which fill the

growth from the set U2(b2X)\u2(b.X). Hence there exists an onto
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map f:b^X —> b^X€ LOTS which is the identification on X^ and

thus b2X ̂ > b-X. Hence the theorem is proved.

2.3 COROLLARY. (Fedorchuk). For every ordered space X

there exists ji greatest ordered compactification (BX. BX is

obtained by the addition of an ordered pair of points to each

cut in X and by the addition, if necessary of the end points.

——— "v
2.4. Let X be an ordered space. Then BX < 2 since

the points in Bx\x are determined by cuts of X which in turn

are determined by pairs of subspaces in X.

2.5. PROPOSITION. The category of compact LOTS i^ an

epireflective subcategory of LOTS.

Proof. Consider the following diagram where m:X—> K e LOTS,,

K compact and i is the inclusion map. Since X is dense in BX,

i is an epi. So

--- * — ^ K

'm

X

if there exists q:BX—>K such that qi = m, then q is unique*

Define q as follows. For xeX let q(x) = m(x) . For points of
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BX\X look at the ordered pair of points x , x formed in the
al a2

cut {A ,B } . This cut induces a cut fm(A
a^

m(Brt^m/x)
 # L e t

q(x ) = s u p _ _ ( m ( A ) ) a n d q ( x ) = i n f ( m ( B ) ) . L e t q ( 0 ) = 0
û  J\ ex ci is. cc
1 2

and q(l) = 1 . It is easy to show q is order preserving and

continuous. Hence the category of compact LOTS is an epireflec-

tive subcategory of LOTS.

2.6. Consider the set 0*(X) of order preserving bounded

maps from an ordered space X to £. We form the topological

product P^ = R * ' and embed X into P^ by Tikhnov1s

method: for xeX f(x) = y = (y ) G where G is an indexing

set for 0*(X), and each y = f (x) for f €0*(X). P* is a

partially ordered set with the following order relation:

= yT iff t < t\ for each

2.7. THEOREM. (Fedorchuk) . Let f:X—> P.̂. be the embedding

described above. Then cl f(X) considered with the order rela-
p.* :

tion induced by P^ JL̂s isomorphic to (BX.

P̂ . coincides with the initial order of X, i.e. the embedding

f:X—>f(X) is an isomorphism. Clearly cl X is compact^ and

we shall prove that it is an ordered compactification of X.
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We first show that any two points yf and y" in cl X are
P*

comparable in the order relation induced by P^. Let yT€f(X).

If yf = (tT) cannot be compared with y" = (t"), then there

exist subscripts a, and ccn such that t1 < tff , tr > tff .
1 2 Q]L ax a 2 a2

We choose a neighborhood Vy" of y" consisting of all points

y = (t ) for which t > t' t < t' . We show that Vy"

doesn!t intersect X. Since X is linearly ordered and yfeX,

we have X c (-OD , yT ] U [y! , OD ) . Vy" is the intersection of

the two neighborhoods V.,ylf and V9y
fS where V.y11 = {y=(t ) |t >tr }

and V2y
M = (y=(t )|t <tT ). Clearly, (-ao,yf] c p^Xv^11 and

[y^ao) c= P^\v2y
ff. We have X c (-OD ,yT ] U [ySao) c (P^Xv^11) U

(P*\V2y
lf) = P*\(V1y

tl U V2y
ff) = p\Vy". Thus X n Vyff = 0. But

ylf e cl X. Contradiction. Hence every point yff e cl X can

be compared with every point y? ex. Now let y',yM eel X\X.

From what has just been proven X c (-OD ,y* ] U [yT ̂  OD ) 3 and,

repeating the above argument, we find that yff can be compared

with yT . Thus cl X is linearly ordered.
P*

Now we shall show that the interval topology on cl X
P-*

coincides with the subspace topology. Since cl X is compact,
P*

it is sufficient to show that the identity map from cl X with
P*
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the subspace topology to cl X with the interval topology is
P*

continuous. Let y e cl X and let Vy be an interval neighbor-
P*

X.hood of y, i.e. V = fyT eel x|y < y T < y 9 L where y-,^y9€c
y p* J-

 z -1 z p*

Let II be the a-coordinate projection map. Ihen there exists

subscripts an and a9 such that II (yn) < II (y) and

n_ (y) < IL (y~). Then Vy = (y1 eel x|ll (y< ) > II (y,) } 0

{yT eel x|ll (y! ) < TI (y0) } is a neighborhood of y in cl X
P* a2 a2 P^

with the subspace topology such that VTy c: Vy. Hence the identity

map on cl X is continuous. As seen above cl X induces the
P* P*

original order on X, and, therefore, it is an ordered compactifi-

cation of X.

Now let iv:X—>foX and iJ,:X—> cl X be the embeddingX X p^

maps. By Proposition 2.55 there exists a unique q:BX—^ XGLOTS

such that qi..= iL. Since iĴ  is dense, q is dense, and sinceXX X

BX is compact, q(BX) is closed. Hence q(BX)'= cl X, i.e.
P*

q is onto. Moreover, since if {A,B} is a cut in X, then the

x

existence of the map f eO* (X) which is 0 on A and 1 on B

implies that q must be one-to-one. Hence q is an isomorphism,

i.e. BX is isomorphic to cl X.
P*
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2.8. Fedorchuk noted [F2] that BX has characteristic

properties similar to those of the Stone-Cech compactification:

(1) In order for X to be 0*-embedded in an ordered

compactif ication bX, i.e. every map in 0*(X) "has an extension

to a map in 0* (bX) 9 it is necessary and sufficient that bX = BX.

(2) In order that any two convex nonintersecting closed

subsets in X should have nonintersecting closures in an ordered

compactification bX it is necessary and sufficient that bx = BX.

(3) If A is an ordered subspace of X, then BA = cl

Let S = (H ) G be a collection of nonempty subsets of

a topological space X. The collection is said to be regularly

decreasing if for each H e £ there exists L e S such that
a P

2.9. THEOREM. (Fedorchuk). Let X S L O T S . Let aX be

the set of all maximal regularly decreasing filters, the elements

of which are convex open subsets of X. Then there is a. linear

order on the set aX, with respect to which aX JLJS isomorphic

to HX.

We order the set aX as follows. Let £f 9 £
lf e aX. We put

Sf < £" iff there exists intervals H! eT] and HM€S" such that
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Hf < Hf!. This is a linear order on aX. The rest of the proof

is omitted.

2,10. THEOREM. (Fedorchuk). If the ordered space X has

weight Y, then iBX JLS the inverse limit of the directed family

of the ordered compactifications of X <of weight Y. (The partial

order and boundary maps for this family are defined in the second

paragraph of 2.1).

Proof omitted.

In 2.11-2.16 we will consider the usefulness of the operator

6 in showing its role in solving the metrizability problem for

compact ordered spaces and in determining when certain kinds of

ordered spaces are isomorphic.

The following example gives insight for Theorems 2.10, 2.15

and 2.16 as well as how BX may be visualized for X O LOTS.

2.11 EXAMPLE. There is an ordered space whose cardinality

and weight are K but its greatest ordered compactification

has cardinality and weight c and is not metrizable. Let fc1

be the rationals in the unit interval I. Both the weight and

cardinality of C1 equal K , BO is constructed from I by

replacing each irrational point in I by an ordered pair of

points. Another way to construct BC! is to identify corresponding
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rational points in I x {0,1} (lexicographic product). B©1 is

compact and separable but both the cardinality and weight of B©!

equal c. Hence B©1 is not metrizable.

2.12. An ordered space X is said to be minimal if it

has no end points and no two sided jumps.

2.13. THEOREM. (Fedorchuk) . £f X and Y are minimal

ordered spaces, and BX JLS isomorphic to BY, then X is

isomorphic to Y.

Proof. Let f:BX —> BY be an isomorphism. Then f maps

end points to end points and two sided jumps to two sided jumps.

Now BX\x and BY\Y consists of two sided jumps with the possible

exception of the two end points. Since X and Y are minimal,

f maps BX\X onto (BY\Y. Hence f|x is a one-to-one onto map

from X to Y, i.e. an isomorphism. So X is isomorphic to Y.

2.14. EXAMPLES. Minimal ordered spaces X and Y may be

homeomorphic while BX and BY are not isomorphic. For let X

be the discrete space OJ* + a) > and let Y be the discrete
o o

space o^ + OJ + 05* + co 3 where \* is the ordinal \ with the
0 0 0 0

reverse order. Then BX = (to +1) * + (co +1), which has two l imit
o o

points, and BY = (COQ+1)* + (a>o+l) + (coQ+l) * + (a>o+l) , which has

four limit points.
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x

E X ( 0 5 + D * o > + 1 B Y ( 0 5 + D * 0 5 + 1 ( 0 5 + D * O L + 1
- . P. • • « . St —°- • • ^ • - - - • p •• °*P.

Conversely, minimal ordered spaces X and Y may not be

homeomorphic, while Bx and BY are homeomorphic. For let X
OD

be the discrete space OJ* + £ ( w 4 o g ) n ,
 a n d l e t Y be t h e

OD

nondiscrete space og + S (ooo+l+ug) R. Then BX =
n=l

OD

OS* + ( E ( ( o ? + l ) + ( c o + l ) % ) ) + l . a n d BY = Y + l , w h i c h c a n
° n=l ° on

easily be shown to be homeomorphic.

2.15. THEOREM. (Fedorchuk). A compact ordered space B

is metrizable iff there exists EL separable space X with no

two sided jumps such that B = fitx and BX\X <C K

Proof. Sufficiency. Let X be a separable space with no

two sided jump points such that BX\X <. NQ- It is sufficient

to show that BX is second countable. Let X = ( x ^ x ^ . . .x^, .. .}

a countable dense subset of X and BX\X = {y1^y2^•••sYn> • • • } •

We renumber the points of X U Bx\X = [z^z2,...,zn,...}. Since

X has no two sided jump points, it is easy to verify that all
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sets of the type [ 0 ^ ) , (z^z.), or (z.,,1), where zi < z..,

form a countable base for RX.

Necessity. Let B be a metrizable compact ordered space.

Consider the ordered space X obtained by deleting all two

sided jumps of B. Since B has a countable base, there are

at most a countable number of two sided jump points in B.

Hence B\X <. H . We shall show that X is dense in B. Suppose

it is false. Then there exist a nonempty open interval C of B

contained in B\X such that C consists of two sided jumps and

hence is perfect and totally disconnected. Thus since B is

compact metric, C contains the Cantor set whose cardinality

is c. Contradiction.

Now BX = B since &X is formed by placing an ordered

pair of points to each cut in X. But these are precisely the

points removed from B to form X since X is dense in B.

Moreover, the construction of X and its density in B implies

that X has no two sided jumps. Since B is compact metric,

it has a countable base, and hence X is separable.

2.16. THEOREM. (Fedorchuk). A compact ordered space B

is metrizable iff there exists an ordered space X with a

point countable base such that B = RX and BX\X <C fc< .
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Proof. The necessity is obvious,, since we can take X

as B. Now let X be an ordered space with point countable

base such that B = BX and BX\X < NQ. First we show BX

satisfies the first axiom of countability. Suppose this is

false. Then there exists yeBX\X which doesn1t have a count-

able neighborhood base. Hence there is a monotonic (for example,

increasing) net {x |x eX,cx < to.} converging to y, where w
a a ^ q

is a regular uncountable ordinal^ and the set (x |x eX, cceŴ }

is a closed subset of X. Consider the part [x |a<as) of

this net. Since X has a point countable base5 it is first

countable. Hence the net (x | a < a>i } converges to some point

y!eBX\X. Since BX\X <C K , then at most a countable number of

intervals [x ,x .. ] contain points of BX\x. Hence there exists

an ordinal a < ca, such that the interval [x ,yT ) is contained
o

in X as a closed subset. Now [x ,yT) contains as a closed
o

subspace the nonparacompact space {x |a <,a<a\} of order type

Thus X is not paracompact. Then X doesn1 t have a point1

countable base [F1 or B]. Contradiction. Hence BX is first

countable.

A. Mishchenko [M] proved that a compact Hausdorff space

with a point countable base is metrizable. Hence to prove that

BX is metrizable it is sufficient to show that it has a point

countable base. Let C = (v) be a point countable for X whose
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members are convex. For each VeC we denote by VT the maximal

interval of BX such that V! fix = V. Then CT = {V! } remains

point countable at all points of X. Now let yeRX\X and (xn)

be a sequence in X converging to y. Consider the set C con-

sisting of all intervals v* eC* containing y. Each such interval
CD

V! contains some point x . Hence C c U C . But each C

n Y n=l xn n

is countable. Therefore, C is also countable, and thus CT is

point countable throughout all of BX. Since BX is first count-

able and RX\X < ^ , then we obtain a point countable base for all

of fix by adding to C? a countable set consisting of the elements

of a neighborhood base for each point in Bx\x. Hence BX is

metrizable.

2.17. For any Hausdorff space9 sequential compactness implies

countable compactness which in turn implies pseudo-compactness,

Conversely, for ordered spaces pseudo-compactness implies sequen-

tial compactness. To prove this last statement note that if an

ordered space X has a sequence with no convergent subsequence,,

then one can find a monotonic subsequence which is a copy of IN

(by mapping the sequence in an order preserving not necessarily

continuous fashion into R). Since X is normal, Tietze!s exten-

sion theorem shows that any closed subspace of X is C* embedded

in X.

Recall that u is the Hewitt realcompact operator [G-J]•
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2.18. THEOREM. Let X be an ordered space. TTien £X is

orderable iff X jls sequentially compact. If X is sequentially

compact, then j3X = vX = BX.

Proof. Assume X is not sequentially compact. Then it is

easy to show there is a monotone (for example,, increasing) sequence

{x } which does not converge in X. Hence this sequence is a

closed set isomorphic to the natural numbers (ST. By Tietze1 s

extension theorem, fx } is C-embedded in X. Thus, cl _{x } =
n P-**- n

j3([x }) is isomorphic to /BIN. Hence {x } does not converge in

its closure and hence not in j3X. So j3X is not sequentially

compact. By 2.17 /3X is not orderable.

Conversely, assume X is sequentially compact. It is suf-

ficient to show that X is C-embedded in BX. First show that

if A and B are disjoint closed subsets of X then (BX\X)n

cl J^ PI cl B = 0. So choose peBx\x, and let A and B be

disjoint closed subsets of X. We may assume that p is a left

limit point of BX. Since X is sequentially compact no sequence

in X can converge to p. Suppose pecl^A H cl B. Then there

exists an increasing sequence [x }aD_-] such that x GA for n odd

and x
n^B for n even. Then {x } converges to x < p, where

x eX, since X is sequentially compact. Since A and B are

closed, x QeAnB. Contradiction. Hence p / c l g x
A n clBXB*

(BX\X) n CIBXA n CIRXB = 0.
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Now show for every f€C(X,l) there exists xpe(-OD ,p) c X

such that f|[x ,p) is constant. Since X is sequentially

compact and [x,p) is closed in X for every x < p in X, •

f([x,p)) is sequentially compact in ! and hence compact. So

the nested intersection n f([x,p)) is non-empty. Choose r
x<p P

in this intersection. Then f" (r ) is closed in X and p€clRXf" (r )

For every n&, the closed set (xe (-OD , p) | |f(x)-r | >, -JĴ J- )*

is disjoint from f" (r ) . Hence by the above paragraph,, this

set has an upper bound x e(-a> ,p) . Thus sup x = x exists
n nefN n p

in X and is less than p. Thus f|[x ,p) = r .

Thus f extends to f :X U {p}—>R such that fp(p) =
 r
p-

Similarly,, we can extend f to f , :X U {pT }—>R for each

p! €^x\x. Let f} be the induced extension of the f Ts.

Obviously, f! is order preserving. Moreover ff is continuous

since any net in (BX converging to p! G(SX\X is eventually in

[x T ^ p
T ] ^ and thus the image of the net is eventually equal to

r = fT (p1 ) . . Hence X is C-embedded in J5X and thus

£X = -UX = BX. So ^X is orderable.

2.19. After writing this paper I was told that M. Venkata-

jaman^ M. Rajogopolan^ and T. Soundararajan has also shown in a

paper not yet published that if /3X is orderable,, then X is



29

countably compact. However, the first half of the proof above

is more concise than is their proof.

Let X be a generalized ordered space. In a similar manner

to 2.6 we let 0*(X) be all order preserving maps from X to R

and define an embedding f:X—^P*j, where P^ = K. . Then

similar to the proof of Theorem 2.7, cl f(X) is the greatest
P-*

ordered compactification BX in the sense that X is 0*-embedded

in BX. Note that a generalized ordered space is compact iff

it has its end points and has neither cuts nor half cuts. Hence

a compact generalized ordered space is ordered. Similar to the

proof of Theorem 2.2, BX is constructed by the addition of an

ordered pair of points to each cut, by the addition of a single

point to each half cut, and by the addition, if necessary, of

the end points. Then similar to the proof of Proposition 2.5

we have, the category of compact LOTS is an epireflective

subcategory of GLOTS.

D. J. Lutzer pointed out to me that for a topological space X,

/3X is orderable iff X is a sequentially compact generalized

ordered space. Noting that 2.17 also holds for generalized

ordered spaces, there is a proof of this almost identical to

that of Theorem 2.18. Similarly, we also have that ̂ Lff X is

a sequentially compact generalized ordered space then /3X = BX = ux.
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Let X be a topological space. A point peX is called

a P-point iff every map f rX-^ 1 is constant in a neighborhood

of p. If X is an ordered space then peX is a p-point iff

no monotone sequence in x\(p) converges to p [G-J, problem 5.0]

This characterization can be extended to generalized ordered

spaces- Hence for a topological space X, /3X is orderable iff

X is a generalized ordered space and every point of (BX\X is a

P-point of BX.

2.20. THEOREM. Let X bg. a. generalized ordered space

and let X bg. nonmeasurable. Then uX c <BX̂  and uX = X U T,,

where T = {xeRX\x | for every pair of disjoint closed subspaces

A,B of X xeclfiXAnclgxB).

Proof. Let X and T be as in the hypothesis. To show

uX = XU.T we prove that there is a bijective correspondence

between the real free Z-ultrafilters on X and their limits—

the points of T, and that every f£C(X,,l) can be continuously

extended over X UT. First we show that no real free Z-ultra-

filter on X can converge to a point in (SX\(XUT) • Let p£(BX\x.

We may assume that p is a left limit point. Suppose there is

a real free Z-ultrafilter A on X converging to p. First
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suppose that p is not a P-point. Then there exists an in-

creasing sequence [x }°D_n in X converging to p. Then

p ^ T since ^2n^n=0 a n d ^X2n+l^n^0 a r e d i s J o i n t closed

sets in X both of whose closures in BX contain p. More-

over, A must contain the collection {[x ,p)|ndtsf}. Hence

A doesn1t have the countable intersection property and there-

fore, it is hyper-real. Contradiction. Thus if a real free

Z-ultrafilter converges to pefRX\x, then p must be a P-point.

Also all the points of T are P-points.

Now suppose p is a P-point in BX\(XUT). Since p4 T,

there exist nonempty disjoint closed sets A and B in X

such that pecl.^A 0 C1.-.B. We can construct an increasing

net (x^|/^<co } in X converging to p, where u> is an

initial regular ordinal and for all £ < co ^2t
 e A a n d

e B. (Note for a limit ordinal A, 2A = A) . Since p

is a P-point, to > a? • [The remainder of this paragraph is

from the proof in G-H of Theorem 10.3(2)]. For each limit

ordinal "h < a? the limit of the subnet fx. |£ < A} is a cut

or left cut u . Then the increasing net {u. | £ < o> } of cuts

and left cuts, obtained as above, "converge" to p. The intervals

J* = (u£'u£..i) a r e clopen and their union J = IK^ J\. is a

clopen interval with sup p. Hence J e A . Consequently if C
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and D are any two complementary subsets of OJ s then

J = U J 9 J = IL nJ^ are clopen and exactly one of them

is in A . Now denote by 5? the set of intervals fJ,.}^ ;
P € *<cca

every subset of J? is of the form 3L = (»?*}* r>- Define a

finitely additive two valued measure m on the family of all

subsets of 3, by putting m(J? ) = 1 iff J e A . Since for

each £ < w (u.,p)eA , points have zero measure i.e. J> 4 A •
ex ^ p s P

Moreover m(#) = 1. Since fc< is nonmeasurable,, the measure m

cannot be countably additive. Hence there exists a countable

family {U |ndK} of subsets of 5J of measure 1, whose inter-
n

section 3 t is of measure zero. Then J T ^A . Therefore

j|j TeA . Hence {J fl (j\j f ) |ndN} is a countable family of
c p c n c

zero sets of A having empty intersection. Thus A is hyper-

real. Contradiction.

Hence no real free Z-ultrafilter on X converges to any

point in RX\(XUT) .

Before we show that for each point in T there is a unique

real free Z-ultrafilter converging to it^ we show that any map

feC(X^]R) can be continuously extended to XUT. Let p€T. First

we show f is constant on a neighborhood of p in X̂ , and to

do this we first show that f is bounded on a neighborhood of p
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in X. If not Z^+1= (xex| |f (x)| ^ n+1} and Z~ *= {x€X| |f(x) |£ n}

are closed disjoint subsets in X for each ne IN . Since

each xn = supRX(Z~ n (-oo,p)) is less than p.

Hence,, since p is a P-point, sup {x ) = xf < p. Then, since
B X n

p is a left limit point, (x* , p) is a non-empty neighborhood of

p in X on which f has the value of OD or -CD^ which is

not in R. Contradiction. Thus,, f is bounded on a neighborhood

of p. Now we show that f is constant on a neighborhood of p

in X. Since f is bounded on a neighborhood of p, f([Xrp))

is compact for xe(xT,p). Hence the nested family [f([x9p))

xe(xf,p)} has a nonempty intersection. Thus there exists

r G PI f([x,p)). Moreover,, r e 0 f([x,p)), since
p xe(xT,p) p X6(x!,p)

otherwise we could construct a map unbounded in a neighborhood

of p in X. Thus A = f~~ (r ) is a nonempty closed subspace

of X and peel .A. in addition, for each ne(N, Z = (XG(X T,P) |

f(x)-r | ;> ~7T) is closed in X and disjoint from A. So

p ^ clo Z . For Z empty define sup Z = xT . Then for each
Ô A. n n inX n

•neIN sup^xZn = XR < p. Hence, supBXxn = x < p, and (x ,p)

is nonempty. Thus f" ((x 3p)) = r . Therefore, f is constant

on a neighborhood in X of each point of T, and hence f extends

to XUT.
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To finish the proof we show p is the limit in BX of a

unique real free Z-ultrafilter in X. Note there is a free

Z-ultrafilter converging to p. By the preceding paragraph

p is not the limit of a hyper-real Z-ultrafilter in X,

since every map is bounded in a neighborhood of p [see G-J].

Suppose A and A1 are distinct Z-ultrafilters in X con-

verging to p. Then there exists disjoint zero sets ZeA ,

Z'GA* and peel Z n clovZ
T . Contradiction to pcT. There-

fore, each point in T is the limit of a unique Z-ultrafilter

in X, in fact, a free real Z-ultrafilter. Hence there is a

one-to-one correspondence between the free real Z-ultrafilters

on X and their limits, the points of T. Hence uX = XUT.

2.21. COROLLARY. Let X be a. generalized ordered space,

and let T be the set of P-points in BX\X. Then X U T = uX

iff whenever A and B are disjoint closed subspaces of X,

TOCI R X A n CIE XB = 0.

2.22. Recall that a cardinal K is regular iff it is

not the supremum of less than K cardinals, each less than N.

An ordinal is regular if it is a regular cardinal. Let CO be

a regular initial ordinal, whose cardinal is K , where a is

an ordinal number. Then a monotone net (x.}. . % in a linearly

ordered space X is called a Q-net [G-H], if for every nonzero
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limit ordinal A < to , the limit in (BX of the segment tx£

is in (BX\X. In particular every to- sequence and every tog -

sequence are Q-nets. If to is (non) measurable {x } .^

is called a (non) measurable Q-net. A point in Bx\x is a

Q-point if it is the" limit of a Q-net in X.

Let p£(Bx\x. Then p i_s a_ non Q-point iff for every pair

A and B of disjoint closed subspaces of X, p \ cloVA H cl B.

The proof of Theorem 2.20 shows that if there exists a distinct

pair A and B of disjoint closed subspaces in X such that

peel ^A ncl B, then p is a Q-point. Conversely, if p is

a Q-point then there is an ordinal to and a Q-net (xj
a *

in X converging to p. Let A = O2£^<t0
 a n d B = ^2£+l^<t0

Then clearly A and B is a pair of distinct disjoint closed

subspaces in X and p€clRXA fl cl^B.

Gillman and Henriksen [G-H, pp. 359-360] proved that if X

is a linearly ordered space with no measurable Q-net, then

uX = X UT, where T is the set of non Q-points in Bx\x. Hence

if X is nonmeasurable this statement is Theorem 2.20.

Let X be a generalized ordered space. Denote by 0(X)

all order preserving maps from X to E. If Y is a genera-

lized ordered space containing X, then X is said to be 0-

embedded in Y if every map in 0(X) can be extended to a map
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in 0 ( Y ) . Let us call vX the greatest generalized ordered real-

compact extension of X in the sense that vX is the greatest

subspace of BX in which X Jjs 0-embedded. Then clearly,

vX = X U T, where T is the set of all P-points in ftx\x.

Hence, if X is nonmeasurable, then uX c vX c (BX. !£, JJQ. addi-

tion, the last condition in Corollary 2.21 holds, then uX = vX.

Now let aX be the family of maximal filters, described in

Theorem 2.9, on the generalized ordered space X. Call a maximal

filter in aX real iff it has the countable intersection prop-

erty. Then there is a. one- to-one correspondence between the real

maximal filters in aX and their limit points, the points of vX.

Moreover, similar to Theorem 2.9, there is an order on this sub-

family of aX for which it is isomorphic to vX. Now let

JP = R * . Then as in 2.6 and Theorem 2.7 we. can find an

embedding f:X—>P such that cl f (X) is isomorphic to vX.

We call a generalized ordered space ordered realcompact

iff X = vX.

2.23 PROPOSITION. The category of ordered realcompact

G LOTS is an epireflective subcategory of G LOTS.

l
vX i q

A \lh

i,,
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inclusion maps, f:X ^YeGLOTS, and Y is ordered and real-

compact. Then by 2.19 there exists a unique q:8X—> BY such

that qi i = iyf. We shall show there exists h:vX—£ Y such

that hi = f. It is sufficient to show that qi v X maps onto Y.

Suppose this is false. Then there exists xevX and y£(BY\Y such

that qi v(x) = y. We may assume that x is a left sided limit

point of vX. Then there exists an increasing chain net {x )

in X converging to x, and qi (fx }) is an increasing chain
VX CX

net in Y converging to y. Since y is not a P-point in (BY,

we can choose an increasing cofinal subsequence qi v({x }) con-
VX. OL •

verging to y. Hence fx }. is an increasing sequence in X

converging to x. But this is impossible since x is a P-point

of vX. Hence qi maps onto Y. So we can define h:vX—^-Y
VA

such that for all xevX, h(x) = qi v(x) . Hence hi__ = f, and
VA X

since iv is an epi, h is unique, and we are .done.

2.24. EXAMPLES. There exists a. topoloqicallv realcompact

ordered space X such that BX\X contains ja P-point of (BX\X.

Consider the space ui of all ordinals less than the first

uncountable ordinal. For each limit ordinal a < 60-. replace a

by to* . Call this space (A. This is the required space since



38

one can easily show (A is discrete and the greatest element 1

of Rui is in KJoi \u£ • Hence,, since ocL = K, is a nonmeasurable

cardinal, uX = X. Therefore, 1^ uX.

If there exists a measurable cardinal5 then there exists

an ordered space X such that uX is not an ordered extension

of X. Let 0^ be the space of all ordinals less than the first

measurable ordinal. For each limit ordinal a < cc replace a

by co* . Call this space co! • Then co! is discrete of cardi-

nality K , the first measurable cardinal. The greatest point

1 of BccL is in ^^iA 6^ an<^ f° r a nY subset A c X whenever

K = K , then 1 e clovA. Then there is a free real Z-ultrafilter
m o*x

in o^ converging to 1 in ^^- However, the map feO(ocL) ,

where f is 0 on the points of <d from co and f is 1

otherwise, has no extension to oiL U {1}. Hence 1^ uX, and uX

is not an ordered extension of X.

2.24. Note that although an extension Y of an ordered

space X may not be an ordered extension, Y may still be

orderable. A new ordering may make Y ordered while inducing

an unordered generalized order on X. For example let X= (0,1)+(2,3]

and Y= [0,1] + (2,3]. Reorder Y as (2,3] 4- [0,1]. Then with

the new ordering Y is ordered and X is the unordered subspace

(2,3] + (0,1) .
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SECTION 3. Projectives.

3.1. Let C be a category and let P be a class of mor-

phisms in C. An object P of C is called p-projective iff

for each morphism f:P —^ Y and for each P-morphism g:X—>Y

there exists a morphism h:P—^X such that the diagram

X

commutes. A morphism f is called P-essential (P*) iff feP

and fgeP implies geP for each morphism geC f:P-^X is

called a P-protective cover of X iff P is P-projective

and f€P*.

Note that P* is closed under compositions. Since the

essential morphisms and projective covers generated by P and

its closure under compositions are identical, it is convenient

to choose P to be closed under composition.

It will be shown in this section that in LOTS if P is

the class of closed onto maps P* is the class of irreducible

maps. Also we shall show that for every Xe LOTS there exists

a unique P-projective cover IL,: <kX—^X, but that no class inter-

secting the complement of P has this property.
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3.2. PROPOSITION. Let X and Y be ordered spaces, and

let f :X—^Y t>e an onto order preserving function. Then f is

continuous iff f~ (y) jjs closed for every yeY.

Proof. Necessity is obvious. Now assume f (y) is closed

for every yeY. It is sufficient to show that f~ ((-OD,yJ)

and f". ([y,ao)) are closed for each yeY. Let YQeY. Now

f"1((-oo ,yo]) = f"
1((-OD ,yQ)) U f"

1(yo), which is a ray in X

from the nonempty closed convex set f~ (y ) to -QD . Hence

f" ((-OD^y ]) is closed. Similarly,, f~ ([y , C D ) ) is closed.

3.3. PROPOSITION. Let f :X-^ Y be an onto map in LOTS.

If f (y) J_js compact for every yeY^ then f JLŝ  ja closed map.

Proof. We prove the contrapositive. Assume f is not a

closed map. Then there exists A closed c X such that f(A) is

not closed. Hence there exists yeY such that yef(A)\f(A). We

may assume that y is a right limit point of f(A), i.e.

yeCy^OD) flf(A). Hence/ f (y^ao) has no inf, and, therefore,

f" (y) has no sup. Thus f" (y) is not compact.

3.4. For topological spaces X and Y recall that a map

f:X—^Y is irreducible iff f is onto and for all proper closed
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subspaces A in X, f(A) ^ Y. An ordered space Y is called

an ordered absolute iff whenever f:X—>Y is irreducible in

LOTS, then f is an isomorphism.

3.5. PROPOSITION. Let f:X—> Y be an onto map in LOTS,

Then f is irreducible iff for all yeY (1) f"1(y) <2 and

(2) JJ? f x(y) = 2, then f" (y) JLs a, two sided jump ĵ n X.

Proof. Let (1) and (2) hold. Suppose there exists a

proper closed subspace A in X such that f(A) = Y. Then there

exists X€X\A and xTeh such that f" f(x) = {x, x f}, which is

a two sided jump in X. Then there exists x < x such that

(x jX] is a neighborhood of x contained in the open set

Necessarily, (x ,x] ^> N . Hence, since (1) holds, there exists

yeY such that f"~ (y) a (x ,x]. This is a contradiction since

(x ,x] c XXÂ , but f (A) = Y. Therefore, f is irreducible.

Conversely, let f be irreducible. Suppose there exists

y€Y such that f" (y) > 2. Then there exists a proper open

subinterval A c f" (y). Hence X\A is closed and f(X\A) = Y.

Contradiction. So (1) holds.

Now let f (y) = 2 for some y€Y. Then there exists x, xTeX

such that f""1(y) = {x,xf}. Obviously {x,xT} is a jump. Suppose
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it is not a two sided jump. Then one of the points, say x,

is isolated. So X\{x} is closed, and f (X\{x}) = Y. Contra-

diction. Therefore,, (2) also holds.

3.6. Note that jLf f :X—>Y is irreducible in LOTS, then

for yeY whenever f" (y) = 2 , y is a two sided limit point.

Whenever f" (y) = 1, both y and f" (y) are either isolated

points, left limit points, right limit points, or two sided limit

points in Y and X respectively. Note also that Propositions

3.3 and 3.5 imply f is a closed map.

3.7. THEOREM. (Fedorchuk). Let X be an ordered space.

Then there exists IIv:<xX—>X e LOTS such that <\X is an ordered

absolute and IL. jls irreducible. If f:X—>Y jjs irreducible

in LOTS, then there exists an isomorphism h:OX—> 6tf .of ordered

absolutes such that flL. = ILrh.

Proof. Let X^ be the set of all two sided limit points

of X. Consider the ordered space ĉ X obtained by replacing

each point X^X^ by an ordered pair of points {x ,x.}, which

is clearly a two sided jump in ciX. Define IL.:AX—>X as follows,

II (x) = x for X€X\Xa and n
x(xo) =
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Clearly IT is order preserving and onto. So by Proposition 3.2,

II is continuous, and so by Proposition 3.5, IL̂  is irreducible.

Now let g:Z—^aX irreducible in LOTS. Since <XX has no

two sided limit points, then by 3.6, g must be one-to-one.

Then since g is onto, it is an isomorphism. Hence aX is an

ordered absolute.

The rest of the proof will be given in 3.17.

3.8. Let f:X—^Y be a non-closed map in LOTS. Then there

is a clopen ray R in X with no initial point whose image in

f(X) is a ray whose initial point is in cl (f(R))\f(R).

3.9. We now begin to show that the projectives are the

ordered absolutes for the class P defined below.

LEMMA. Tn LOTS let P be the closed onto maps. Then

the P essential morphisms (P*) are the irreducible maps.

Proof. First note that P is closed under composition.

Let f:Y—^Z be irreducible in LOTS, g:X—»Ye LOTS , and

fgeP. Then by 3.6, f is closed, and hence f GP . We must

show geP. First suppose g is not onto. Then there exists

yeY\g(X) .
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Since f is irreducible and fg is onto, f f(y) is a two

sided jump consisting of y and some y!eY, and hence f(y) is

a two sided limit point. We may assume that y < y!. Now

g"1((-OD,y]) = g" ((-<x>,y)) is clopen, and fgg" ((-ao,y)) =

(-ao,f(y)). However,, f (y) € (-ao , f (y) ) \(-a> , f (y)) , which implies

fg is not closed. Contradiction. Hence g is onto.

Now suppose g is not closed. Then there exists a ray,,

say (-QD,U), where u is a cut, and there exists yeY such

that yeg( (-QD ,uj ) \g( (-OD ,u)) . Then since y is a left limit

point and f is irreducible, f (y) efg ( (-OD , u) ) \fg ( (-OD ,U) ) .

Thus since (-OD,U) is closed, fg is not closed. Contradic-

tion. Hence g is closed. So geP, and hence feP*.

Conversely, let f:Y—> ZeP not be irreducible. Then there

is a proper closed subspace B in Y such that f(B) = Z. We

will find an ordered space BT 3 B such that BT is also a

proper subset of Y. If B is ordered let Bf = B. If B is

not ordered, then there exists a half cut, say a left cut {C,D}
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Let b = min D. Since B is closed, C has no sup in Y.

Hence C! = {yeY|y<c for some ceC} and Df = X\C! determine

a cut

u

u in Y. So u < b, and (u,b) ;> ^ in Y. Hence there exists

y,y! ,yfteY\B such that u<y<y"<y'<b. Let B! = (-GD ,y] U [y1 , OD ) .

Then since y"eB!, Bf is a proper closed ordered subspace of Y

containing B. Hence f(B!) = Z.

Now let i:B!—->B be the inclusion map. Thus fieP, since

B1 is closed. However, i is not onto. So i^^* an<3 hence

f 4 P*.

3.10. THEOREM. Let X 8 LOTS. Then IL̂ s aX—^ x is a

P-proiective cover, where the P-morphisms are the closed onto

maps.

Since IL. is irreducible, then by Lemma 3.9, IL-€P*. So

we need only show that {XX is P-projective. So let f:

and let g:Z—>YeP

h,'

>Y
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Then we must find h: <\X-^ZeLOTS which makes the diagram commute.

Claim: If xe<xX _is _a left (right) limit point such that

min (max)f f(x) = x. then min (max) g" f(x) exists and is a

left (right) limit point. Let x be a left limit point in A X

such that min £~ f(x) = x. Then

ax - x

Y
r

f (x) € (-ao , f (x) ) \(-OD , f (x)) . Thus f(x) is a left limit point.

Suppose g f(x) has no minimum. Then since g is con-

tinuous,, g~ f(x) has no inf in Z. Hence (-ao ,q f(x)) =

{ceZ | c<z for all zeg~ f (x) } has no sup, and it is non empty

since g is onto. In addition, since g is onto,

f(x)€g(-aD,g^1f(x))\g(-GD,g"1f(x)),

i.e. g is not closed. Contradiction. Hence g" f(x) has a min.

Moreover, since f(x) is a left limit point and g is onto,

then min g f(x) is a left limit point. Use the dual argument

if x is a right limit point. Hence the claim is proved.
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Now we begin to construct h: <xX~—*Z. Decompose X into

the collection (f~ 1 (y) |yef (cxX) }. For yef(aX) such that

f" (y) >_ 2 , there is a gap u in f" (y) , which is either

a cut or a jump since <xX has no two sided limit points. Let

u~ = {x€f"1(y) |x< u }, and let u* = {xef~ (y)|x>u }. Now for

each gef(<xX), let z" = inf g~ (y) if it exists, and let

z = sup g~ (y) if it exists. Choose a point z eg (y) . Define

h:OX—> Z as follows. For yef(*X) and f""1(y) > 2 then

(1) If both sup and inf g~ (y) exists, then for all

xeu" h(x) = z~ s for all xcu^ h (x) = z^ .

(2) If inf of g~ (y) exists but sup doesn1 t exist,

then for all xef~ (y) h (x) = z~ .

(3) If sup of g~ (y) exists but inf doesn! t exist,

then for all x€f"1(y) h(x) = z+ .

(4) If neither sup nor inf of g~ (y) exists, then for

all x€f"1(y) h(x) = z .

For ye£(o&) and f~ (y) = 1, there exists a unique X G & X such

that f(x) = y. Then

(1) If x is a left sided limit point, then by the claim

?T exists- So h(x) = z~
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(2) If x is a right sided limit point, then by the claim

z exists. So h(x) = z .

(3) If x is isolated, h(x) = z .

This definition is complete and the function is well defined

since AX has no two sided limit points.

Clearly h is order preserving and gh = f. To prove h

is continuous it is sufficient to show that whenever a monotone,

say increasing, chain net {x ) in <xX converges to xcoX,

then h({x }) converges to h(x). If x is not a left limit

point, then {x } eventually is equal to x, and hence h({x })

is eventually equal to h(x). If x is a left limit point and

min f" (y) = x, where y = f(x), then by the claim z~ exists,

is a left limit point, and h(x) = z~. Clearly f({x }) is an
y o»

increasing chain net converging to y. Thus since g is onto,

g~ f((x }) is an increasing chain net of convex sets converging

to z~ , and hence h((x }) converges to z" = h(x). If

x ^ min f~ (y) , where y = f (x) , then f"" (y) ^> 2, and X G U ~

or X G U . So if xeu~(u ), then {x } is eventually in

u"" (u ). Hence h({x }) is eventually equal to h (x) . Dually,

we can show that if fx } is a decreasing chain net converging

to X€<XX, then h({x }) converges to h (x) . Hence, h is
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continuous,, and h:<xX—»ZeLOTS. Therefore <x X is P-projective,

and IL.:fcX—>X is a P-projective cover.

3.11. PROPOSITION. Let TIX: t\X-> X e LOTS and let P be a

class of morphisms for which nv:OsX—T> X JLS a. P-projective cover.
_ _ _ _ _ _ _ _ • ' " " " 2 \ ' "

If f:Y—^XeP, then f is a closed onto map.

Proof. Consider the diagram below. Let TL.:aX—>X be a

n.
X

P-projective cover,, and le t f:X—>YGP. Then there exists

h:ftX—>Y such that fh = TI . Then since IIX is onto^ f must

be onto.

Now suppose f is not closed. Then there exists a ray,

say • (u,aD),, where u is a cut in Y and there exists a point

xeX such that f((-0D,u)) = (-QD,X) and xe (-OD ̂ X) \(-QD ̂ X) .

ax

X

-0D
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Since f must be onto,, f" (x) is nonempty and inf f (x) = u.

Since II"" (x) < 2, inf f" (x) = x exists, and it is a left

limit point (since x is such a point). However, M x
o ) >u

and h((-0D,x )) c (-OD,U), which implies h is not continuous.

Contradiction. Hence' f must be closed, and the Proposition is

proved.

3.12. From now on let P b£ the closed onto maps in LOTS.

We will now look at connectivity properties of ordered abso-

lutes.

An ordered space X is called ordered extremely disconnected

if for any open interval V c X, V is open. Obviously,, if X

is extremely disconnected, then X is ordered extremely discon-

nected.

3.13. EXAMPLE. There is an ordered space X which is

ordered extremely disconnected but not extremely, disconnected.

Let X = co +1. Then clearly the closure of any open interval

in X is open. However V = {2n|n€0) ) is an open set, but V

is not open in X.

3.14. THEOREM. (Fedorchuk). Let X be an ordered space.

Then the following are equivalent:
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(1) X JLS j3Ln ordered absolute .

(2) X has no two sided limit points.

(3) X Jj3 order extremely disconnected.

Proof. First we show that not (3) implies not (2) implies

not (1). So assume X is not order extremely disconnected.

Then there exists an open interval V c X and xcX such that

x e V 0 (X\V). Hence x is a two sided limit point. By

splitting x in two,, we obtain a nonisomorphic irreducible

map onto X. Thus X is not an ordered absolute.

Now we show that not (1) implies not (2) implies not (3) .

So assume X is not an ordered absolute. Then since ax is

obtained by splitting the two sided limit points in X,, then

there exists a two sided limit point xeX. Hence (x^ao) is

an open interval in X, but (X^CD) is not open. Therefore,

X is not ordered extremely disconnected.

3.15. The next two propositions give equivalences for

P-projectives and P-projective covers, most of which are true

in any category. With slight alteration these propositions

were stated for another topological category with perfect onto

maps as P-morphisms by H. Herrlich [H-* Theorem 4.3].
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PROPOSITION. Let X 8 LOTS. Then the following are

equivalent:

(1) X jLs p-projective.

(2) Any P-morphism f:Y—>X is a retraction

(3) For all feP* f:Y—>X, f is an isomorphism, i.e.

X jLs an ordered absolute.

(4) X _is ordered extremely disconnected.

Proof. For all categories (1) is equivalent to (2) which

in turn implies (3). By Theorem 3.14,, (3) is equivalent to

(4) , and by Theorems 3.7 and 3.10,, (3) implies (1).

3.16. PROPOSITION. Let f:P—» XeP. Then the following are

equivalent;

(1) f:P—>X is a. P-projective cover.

(2) f€P* and for all g such that fgeP, g i§. an

i somorph i sm.

(3) P JLS. P-protective, and if g^heP such that gh = f

and the domain of g jLs P-projective, then h jjs joi isomorphism

(3*) P is P-projective and if g^h e LOTS such that

gh = f9 h JLS onto, and the domain of g is P-projective, then

h is ail isomorphism.

Proof. In every category (1), (2), and (3) are equivalent.

Obviously (3*) implies (3). To finish the proof we show (1)

implies (3*). So let f :P—> X be a P-projective cover,, h:P—^Y
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an onto map, Y P-projective, g:Y—> X, and gh - f. Since f

is irreducible, it is at most a two-to-one map, so h is at most

a two-to-one map. Now it is sufficient to show that h is a

one-to-one map. Suppose this is false. Then there exists

p,pT€P such that f(p) = gh(p) = gh(pT) = f(p). Hence p and

p! form a two sided jump, and since g is at most a two-to-one

map, h(p) is a two sided limit point. But this is impossible

since P is an ordered absolute. Thus (1) implies (3*).

3.17. Note that in Proposition 3.16 that (3*) implies

that geP. Also Lemma 3.9 and Proposition 3.15 imply the last

part of Theorem 3.7. For let f:X—^ YeP*. Since ny eP* c P and

is P-projective, there exists

X

O.Y

h:AX—>*T such that II h = fll . Thus h is in P*, since P*
Y X

is closed under composition. Then it is easy to show heP*.

(In fact in any category if gk^P* and g€P*> then k€P*) . Then

since <XY is an ordered absolute and h is irreducible, h is
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an isomorphism. Hence the last part of Theorem 3.7 is proved.

Note that the proof above shows that any f:X—>YeP can

be lifted to f! : OX—> <xY.

Also note that .for each X S LOTS,, the P-protective cover

H :<XX—>X JLS unique up to isomorphism, since in any category the

projective covers are unique.

3.18. In the last part of this section we look at more

properties of ordered absolutes. In particular we look at the

importance of minimal ordered spaces and the functor (B in rela-

tion to ordered absolutes.

THEOREM. (Fedorchuk) . T.et X be an ordered absolute and

bx an. ordered compact if ication of X. TTien bx i^ an. ordered

absolute iff bx = ftx.

Proof. Necessity. Let bx be an ordered absolute. Clearly

the canonical map f:(BX—>bX is irreducible. So f is an iso,

and hence (BX = bX.

Sufficiency. Let bX = (BX. Since X is an ordered absolute,

it has no two sided limit points. Since (BX is constructed by the

addition of an ordered pair of points to each cut of X, (BX has

no two sided limit points either. Hence (BX is an ordered absolute.
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3 . 1 9 . COROLLARY. ( F e d o r c h u k ) . <xBX = BAX.

Proof. By Theorem 3.16 B<xX is an order absolute. Now

there exists a unique q:B&X—^ BX such that qi x = ^

q - - ->BX

OX ... > X
nx

To prove the Corollary it is sufficient to show qcP*. Since

is compact, q is closed. Thus since q(B<xX) 2 X as a

subspace of BX, then BX 2 q(fefcX) = q(BoX) 2 x = lBX- So

is onto. Since <xX is dense in S&X, qi V ( A X ) = X is a

subspace of BX, and qi is at most a two-to-one map, then

no point of BGJX\AX maps to a point of X in BX, i.e.,

q(Be\X\<*X) = BX\X. Hence if A is closed in B<*X and q(A) = BX,

then A ZD X. So B«\X => A => X = BaX. Hence qeP.̂ . Since

P-projective covers are unique BAX = <XBX.

3.20. B.V.S. Thomas (T) has formed categorical proofs

of the last two theorems using definitions that I do not wish

to consider in this paper.
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3.21. THEOREM. (Fedorchuk). Tg X and Y are ordered

minimal spaces and <xX jjs isomorphic to &.Y, then X is

isomorphic to Y.

Proof. Let h:aX—> <XY be an isomorphism. We will show

that f = n hlC is an isomorphism from X to Y. First we

show that f is single valued. Let XGX. If Hx (x) = 1,

"then Ffx) = 1 . If II"1 (x) = 2, then II" (x) is a two sided

jump in aX. Hence h III. (x) is a two sided jump in <\Y. linen

if II h 11" (x) consists of two points, it is a two sided jump

in Y, which is impossible, since Y is minimal. Hence f (x)

and so f is single valued. In a similar manner it is proved

that f is single valued, i.e., f is one-to-one, by using

the fact that h" is an isomorphism. Since Uy* h, a^d 11̂

are onto, then f is onto. Hence f is an isomorphism, and X

is isomorphic to Y.
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