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In Section 3 the ordered absol utes of ordered spaces are
studied, and it is shown that they are the projectives for an
appropriate class of maps in the category of ordered spaces and
order preserving maps.

See Herrlich [Hj for the definitions and properties in
cat egori cal topol ogy*

I ncorporated in this paper is nost of the theorens froma
paper by V. Fedorchuk. His theorens are i denti fied by his nane
in parenthesis followng the word "theoremf. H's proofs have
been nodified when | believed it would sinplify matters or woul d

better serve the purposes of this paper




SECTION 1. The Category Lots.

1.1. Define LOTS to be the category of ordered spaces and
order preserving (continuous) maps. The nD.n.anLpJ:u_s.Lm..aLﬂLhﬂ
mmmmﬂ&mﬂmm%mmmmw-

1.2. PROPOSITION. The epinorphisns are the maps with dense

range.

Proof. Since every ordered space is Hausdorff, obviously a

map with dense range is an ei pnorphi sm
Conversely let f:X-»Y be an epinorphismin LOTS. Suppose
f does not have dense range. Then there exists vy, ,y; € Y such

that (Yo, Y1) t O and (y*Y]) Of (x) =0. If (Yev) is

clopen define goY—=R, and g*"Y—E (real Iline):
0 for yly, 0 for y<y.
go(Y) :I ax(y) =
1 for Y > VYq 1 for yny-L

Thus 9,9, © LOTS and fgg = fgl, but go~ 94 a’his is a
contradiction. If (y,yq is not closed,, (yT_'yD AN e SO
pick y', y'sy" e (y_,¥;} such that y' <y" <yy. since every
ordered space is normal, the proof of TJysohn's lemma permits us
to construct h’\_: [y y<]—* = [0,1] and h*: [y',y"]_~1 such
that h*(y") = 0 =hi(y'), hi(y") - /2, h*(y'») =1 =hj_(y"), and

h' h; e LOTS. Then extend h to h :Y—I and hj to h,:Y—=l:
O l O O 7 1 1 — A



exists a unique gD—"C such that ”—Q = ga and IIBg = 9p»

and there exists a unique fE=—"C such that ka = fA and

nef = fri. If f(eQ " g(do), then a_ = T fle)) > Mygl{d ) = a,.

If f(e) < g(d.), then b. . = TLf(e.) £ ILg(d.) = b_. In either
O (6] | J D O O (6] 0]

case there is a contradiction. Thus A and B have no product.

1.4, PROPCSITION. Let A and B be non enpty ordered

spaces. Then A and B have no co-product in LOTS.

Proof. Choose aeA and beB, and suppose there is a co-

product C of A and B in LOTS. Let A" be fornmed by adding
to A the end points if necessary. Form B sinmilarly. Let

A+ + B" be the topological sumof A and B' with the orders

induced by A" and B! and such that for all aeA” and beB!

a<b Define B 4 A simlarly. Let i.:A— A" +B' |
A
|




i L,A—»B'+AT, i_ :B->A"+B', and i_ :B—B'+A" be the natural
A2 By By

enbeddi ngs. Let 113-A—= C and 1llg: B—>C be the co- product maps,

Then there exists unique h: C2A’+B" and k: C—B'+A' such t hat

j_A = hu'A , iB = hj,LB , iA = ku‘A , and iB = kllB . Now
1l 1 2 2
LAz(a) > iBZ(b) and 'i.AI (a) < iB1 (b) . If 1'7& (a) < IIB-(b), t hen
ia (8 = kUs(a) <kliglb)y =g (b) . If JJax(a) > Ug(b), then
2 z
iA (a) =hllaa) >hllgb) =igr (b). Ineither case there is a
1l 1

contradiction. Thus A and B have no co-product.

1.5 1.3 and 1.4 can be easily generalized as follows.

Let {A} ~ be a collection of non enpty ordered spaces

subscripted by the set G Its product exists iff all but one
of the Aa!s is a one poi nt space. Its co-product exists iff
5=1

Let Y be an ordered space, and let yeY. o Call vy alﬁ_t_

limit point if ye(- OD'y), andcall y aright linit point if

ye(y,0D) . Then y is called a_one (tw) sided linit point if y

is either (both) a left or (and) a right limt point. A gap in

Y is apar [A B)Y of non enpty clopen subspaces such that
AUB =Y and A<B i.e., for all aeA, beB a < b. If A
has a supy' and B has an inf y% {A B} - is called a ]unp.

This junp can al so be denoted by the ordered pair fy' . v 3+« The




points y' and y" are called junp points. |If both y' and y"

are one sided linmit points,, {y',y''} is called a two sided junp.

{AB}Y is called a cut if A has no sup and B has no inf.
W also refer to the "hole" u between A and B as this cut.
Clearly, generalized ordered spaces need not be orderable.
For exanple (0,1) U-{2} is not an orderable subspace of R
Let X be a generalized ordered space. If {A',B'}x is a pair
of non enpty <clopen, i.e., open and closed, subspaces of X
with AT < B" and A!' UB' = X, we also call this a gap. Sim-
larly, we define junmps and cuts as we did in the ordered case.
However, if A" has no sup but B has an inf x' we call
{A,B }, aleft cut, which is also denoted by {~x'}. If A

has a sup x but B' has no inf we call [A ,B'},x a right

cut, which is also denoted by [x,-]. R ght cuts and let cuts
are called half cuts, as are the "hol es" they determ ne.

1.6 THEOREM Let e X-*»Y be an epinmorphismin LOTS.

— —

Jhen e (s an extremal epi iff for all yeY\e(x) there exists

a.unigue y'ee(X suchthat y and y' forma_'._ two sided junp

A0 Y. Hence if e is an extremal epi and e(X) is ordered.

then e _is ¢n onto map.

Proof. Let e X39Y be an extremal epi. |If e(X is ordered,

then define e :%-> (X such that for all xeX e!(x) = e(x)




a(X)
~_
e! i
P p v
X .
2>
=]

and i:e(X)>>Y is the inclusion map. Thus the di agram comut es,
and i is a npno. So i is an iso. Then since ¢ i's onto,

e is onto.

If e(X) is not ordered, let yeY\e(X . Suppose y is a
two sided linit point of Y. Then Y = WW{y} is ordered and

there exist e’ :X—Y* such that for all xeX e(x) = e'(x),
and i:Y'—»Y is the inclusion map. Then i is a nono and
ie =e but i is not an iso. Contradiction.

Therefore, since e(X) 1is dense in Y, y cannot be isolated,
so it is a oné sided linit point. Hence there exists a unique V'
such that y and y' forma two sided junp, and we may assume
y < y'.
suppose y'eY\e(X). Then Y' =Y\ (y,y'} is ordered and
as in the argunent above, we have e :X—=*Y', the inclusion

i:Y—=Y jel = e, and i is a nono but not iso. Contradic-
tion. So y' ee(X .




Conversely, let e be an epi, m a nono,, and
yA
/\\]\
e m
X . WY
S
£

f € LOTS such that the di agram conmutes.

If e(X) is onto, then m is onto. So m is an iso.

If e(X) is not onto, let yeVwe(X) . Let y' be as in
the hypothesis. W may assune y <y'. Since m is nono and
y'ee(X), there exists a unique z'eZ such that m(2%) =y'.
Since e(X) is dense in Y, n(Z is dense in Y. Thus z%
is not a left limt point since m is nono and y* is not a
left limt point. Mreover, z' ~ o, and so z' has a prede-
cessor z. Necessarily, mz) =y. So m is onto and, therefore,

an iso. Thus e is an extremal epi.

1.7. EXAMPLE. There exists an extremal epi that is not onto.

Let X = 1[0,2) + (3,4],Y = [0,1 + [3,4 define e:""%Y as follows;:

e(x) =x for xe[0,1] U (3,4 and e(x) =1 for ze(l,?2).

Then e(X) = [0,1] + (3,4] is an unordered subspace of Y.
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X — ? € '
e
Y . o —
1.8 LEMVA

ljf  m XY jis_a. one-_to-one order preserving
function and X and Y are_ ordered spaces.
iff m(X) JLE ordered.

t hen

m JLS continuous

Pr oof . Let

m be conti nuous.

Suppose n( X)
Then there exists yen(X)

i's not ordered.

and a half, say right, cut

m( X) . Sincs(m is one-to-one, there

'

{y,*} in

r—————|

_. _— . e s
Y "‘-—--""—\_/"‘—"--_"\
in Y\ m(X)
exi sts a unique xeX such that nm(x) =y. Since y/m(X) H (y, OD ,
x/ (X, QD) . Thus

X has a successor x'g and m(x') =nmn(mX)n (y* co))
which is inpossible since it has no min. Hence mX) is ordered.

Then we may assune

mx)/m(x, QD)) .

Conversely, let m be discontinuous.

there exi sts xeX such that
m

XG(X, QD) but
is nono and

Si nce
(x, AD has
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X x]‘ o e+
m
v N
Y — o - ok

nonmninmm n( (x, AD ) has no mninum Thus {nm(x), <} is a

right cut in mX) , and hence m X) is not ordered.

i.9. THEOREM Let mX>~>Y be a. mononorphismin LOTS.

Then m jys an. extremal mono iff X Jus embedded as the larqgest

or der ed s'ubspace of m(X).

Proof. Let mX»->Y be an extremal nono. Then by the
lemma m(X) is an ordered space. Thus the di agram comutes where
n( X)
m' i
i is the inclusion map and for all xeX m(x) =nl (x) . Hence

m 1s an epi and, therefore, an iso. So X is enbedded in Y.
Now let Y' be an ordered space such that mX) c Y c mX).
Then im = m where ml :X—Y' s defined such that for all xeX
mx) =m(x), and i:Y—»Y is the inclusion map. Hence m is
an epi, s.o it isaniso. Thus mX =Y . So mX is the |argest
ordered space in m X).
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Conversely, let mX>-~Y be a nono such that mX) is the
| argest ordered subspace of m(X), and let the diagram
2 h S Y
\
A
- ~
~
e ~ ht i
~
~
pS\
X S .- > mMX)
m
commute where i is the inclusion, imh =m and e is an epi.

W want to show the existence of h':Z-—s>m(X) such that
ih' =h. Todo this it is sufficient to showthat h is a nono
and h(2) cn(X .

However, mX) ch(Z) = h(e(X)) che(X) =mX) . Since m

Is nmono, e is nmono. So e(X) is an ordered dense subspace of Z.

Suppose there exists z,z'€Z such that z < z' and h(z) =
h(z') =y for some yeY. Then since e(X) is an ordered dense
subspace of Z  {z,z'} is a tw sided junp of Z in zXef X) ,
and y is a tw sided limt point in n‘(__)'(j'\jn(X).' But then

mX) U {y} is ordered, and mX) cmX) Ufy} c¢cmX) . Contradic-

tion. Thus h is a nono.
Then by the lemma h(Z) is ordered. Hence h(2) = mX
si nce r’r(X)_g h(Z) cm(X). So there exists h':zZ—2mX) defined

by h'"(z) =h(z) for all =zez, i.e., ih' =h. Thus h' is
one-to-one and onto, i.e., it is aniso. Then mM = h'e since
i is anmnoand imM =he = ih'e. Mreover, since m is also

an iso, e is an iso. Thus m is an extrenal nono.
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1.10. Denote by G LOTS the category of generalized ordered
spaces and order preserving maps. Then the last two theorens seem
to indicate that both G LOTIS and the subcateg'ory in LOIS of |
maps with ordered range would lend thensel ves nore naturally to

a categorical treatnment than would LOTS.

1.11. EXAWMPLE. There is an extremal nono in LOTS with
unordered range. Let X = [0,1) + (45 and Y = [0,1] +[2,3) + (4,5].

X N
¥ ’ ¢
V J- v v N
Y ———P L~ - .
0 1 2 3 4 5
Let mX»>Y be the inclusion map. Then m(X) is the greatest

ordered subspace of mX) = [0,1] + (4,5].

SECTI ON 2. Orgerec_i and Ceneralized O dered Extensions.

2-1. Let X B 8 (GLOTS) LOTS. Then B is an (generalized)

ordered extension of X iff X can be enbedded into B by a

map in (GQOTS)LOTS. Let peB\x. Then a nei ghborhood of p

in X is the intersection of a neighborhood of p in B wth X

B is called an ordered conpactification of X if B is a conpact

ordered extension of X in which X is dense. Note that no

unordered generalized or der ed space IS conpact. B& GLOTS is

HUNT  LIBRARY
CARMEGIE-WELLS) UNIVERSTY
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a qenefaliied'ordered'reaiconpactification of X if B is a

real conpact generalized ordered extension of X in which X
i s dense.

The set of all ordered conpactifications of an ordered
space X can be partially ordered as follows. Let le and
b,X be two ordered conpactifications of X. Then b,X 2> ~X
iff there exists a dnique f:b2X~>b]X e LOIS such that f is
the identity on X -

Note that X 1is conpact iff it has both end points and

no cuts.

2.2. THEOREM (Fedorchuk). _The partially ordéred sef of

ordered conpactifications of an ordered space X \Hg or der

i somprphic to the set of all subsets of the set U jaf_all cuts

o X

Progof. If U is enpty,, i.e. X has no cuts,, there exists

only one ordered conpactification of X obtained by adding to X
any end points it doesn't possess. Assume that U™ 0, and |et
bX be an ordered conpactification of X  Choose a nonterm na
point ycbx\x. Then y defines a cut of X by the subsets

Xy = {xeX | x<y} and X;:: {xeX | x>y}. Thus every nonterm nal

point yebX\X defines a cut u of X such that x" =X~;, X" = X",
y u.y u

i.e. u can be considered as containing y. It is easy to see

that for a given cut u of X  there is either one or tw points

of bx\x in wu. Thus the ordered conpactification bX defines
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a division of tt into two disjoint subsets Iui(bX) and I_H(bx),
wher e Ui(bX) consists of those cuts wueU containing i points
of bx\x i1 =1,2.

W now set up a correspondence between each ordered conpacti -
fication bX of X and the set qu(bX) c \\, and show the mappi ng
|l£J is an order isonﬁrphi sm between the set of all ordered conpac-
tifications of X and the set of all subsets of U, ordered by
inclusion. Since each nonterm nal point of the growh of an ordered
conpaetification lies in a cut of X  we have UZ(b'.LX) = U (k>X)

i mplies b.l.X = b,* i-e- the mapping |l2I i s one-to-one. Let

U ¢ U Consider the ordered set B obtained from X as follows:
(1) by the additions if necessary, of the end points; (2) by the
addi tion of one point to each cut ueWU ; (3) by the addition of
an ordered pair of points to each cut ueU . It is easy to see
that B is an ordered conpactification of X and that IuéB) =U .
Thus the mappi ng |lé is onto. W show IE is an order preserving
mappi ng. Let le and bz_X be two ordered conpactifications of
X, WwWth byX>irX i.e. there exists f :by,X—=b" GLOTS such
that f is the identity on X f  maps the "cut points" in

b,x\x to the corresponding cut points in b'1X\ X.  Hence

U (t>X 2 1"2(‘1nx) o Nowwe ghow Iu‘;l is order preserving. Let

W (feX 29 (%) « Then 12X is obtained from b,X by identi-
fying those ordered pairs of cut points of by,x\'x which fill the

growth fromthe set Uz(b2X)\u2(b.lX). Hence there exists an onto




map f:b"X—bAXE LOTS which is the identification on X* and

thus boX "> bJ-_X. Hence the theoremis proved.

2.3 COROLLARY. (Fedorchuk). _For _every ordered s'oacve X

there exists ji_gr eat est or der ed cormactif'i cation (BX BX is

obt ai ned liLthe addi tion QLemorderéd pair Qi_pb'i nt 5' to each

cut in X and'b_Lthé addi ti oh, i neces's'ar'y- of the ehd pQi nts.

——— i——

—_ IM
2.4. Let X be an ordered space. Then BX < 2 si nce

the points in Bx\x are determned by cuts of X which in turn
are determned by pairs of subspaces in X

2.5. PROPCSITION. _The category of conpact LOTS

epireflective subcategory of LOTS.

Proof, Consider the follow ng diagramwhere m X— Ke LOS,

K conpact and i is the inclusion map. Since X is dense in BX,

I Is an epi. So

if there exists q:BX—K such that qgqi = m then q is unique*

Define q as follows. For xeX let qg(x) = mx) . For points of
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BX\X look at the ordered pair of points x , X formed in the

ap a2
cut  {Ay, Bylx . This cut induces a cut f™(A~AM(Brtng/ x)* te

q(x u,\i = sup_ﬂgm(A e}() and q(xdz) = infrg(m(BCC)). Let q(0) =0

and q(l) =1. It is easy to show q is order preserving and
conti nuous. Hence the category of conpact LOTS is an epireflec-

tive subcategory of LOTS.

2.6. Consider the set g*_(l)_ of order preserving bounded
maps from an ordered space X to £. W formthe topol ogical
product P» = RO« X! and enbed X into P* by Tikhnov's
met hod: Tor xeX f(x) =y = (ya)ae_‘? where G 1is an indexing
set for O0O*(X), and each Yoo fq(x) for fd€0*(X). P* is a
partially ordered set wwth the followi ng order relation:

— - T R -
y = (ta)c(e(l < (t&)dea =y’ iff t =<t} for each aeG.

2.7. THEOREM (Fedorchuk) . _Let f:X—= PA _be the enbedding

described above. Then cl f(X) considered with the order rela-
p-* |
tion induced by P* X/s isonmorphic to (BX

Proof. Since each faeo*(x), the order induced on X from

P. coincides with the initial order of X i.e. the enbedding
f: X—=f(X) 1is an isonmorphism Cdearly cl X is conpact”™ and

we shall prove that it is an ordered conpactification of X
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We first show that any two points y' and y" in c¢l_ X are
*

comparable in the order relation induced by P,. Let y'ef(X).
If y' = (t&) cannot be compared with y" = (t&), then there

exist subscripts « and «

! " !
1 5 such that ta < ta R ta

S ot
1 1 2 a

2
We choose a neighborhood Vy" of y" consisting of all points

— 3 1 1
y = (ta) for which tO(1 > tal, ta2 < taz. We show that vy"

doesn't intersect X. Since X 1is linearly ordered and y'eX,

we have X < (~o,y'] U [y',m®). Vy" 1is the intersection of
. L = !
the two neighborhoods V,y" and V,y", where V., y' {y (td)]tal>tal}
[} -— — - ! "
and V,y" = {y—(td)lta2<t&2}- Clearly, (-m@,y'] c P,\V,y" and

[y',m) C P*\sz". We have X c (-®,y'] U [y',®) c (P*\vly") U
(P*\sz") = P*\(Vly"LJvzy") = P\Vy". Thus XNVy" = g. But

y"ezclp X. Contradiction. Hence every point y"e:clp X can
* *

be compared with every point y'eX. Now let y',y"ezclp X\X.
*

From what has just been proven X c (-wm,y'] U [y',®), and,
repeating the above argument, we find that y" can be compared

with vy'. Thus clp X is linearly ordered.
*

Now we shall show that the interval topology on clp X
*

coincides with the subspace topology. Since c¢l_ X is compact,
*

it is sufficient to show that the identity map from c¢l_ X with
*
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the subspace topology to cI X wth the interval topology is

P*
continuous. Let yecl X and let VW be an interval neighbor-
P*
hood of 'y, i.e. V. = fyleel_ x|y, <y'<yoL where vy-,"y¢€cl_ X
y p* 3 ‘ S
Let Ik be the a-coordinate projection map. |lhen there exists
subscripts a, and a§ such that |II '£yn) < 11 J_(y) and

n_ (y) <IL (y=). Then W = (y'eel Xl (y<) > I, (y,)} 0

el -

T ! . . .
{y' eel I:}kx|llaz(y ) < ;ré (3’0) } is a neighborhood of y in Clp/\ X

wi th the subspace topol ogy such that V'y c: Vy. Hence the identity

map on cl I:)*X is continuous. As seen above C|P*X i nduces the

original order on X, and, therefore, it is an ordered conpactifi-

cation of X
Now | et iX: X—foX and i*, : X— cl p"X be the enbeddi ng

maps. By Proposition 2.55 there exists a unique (:BX— XGLOTS
such that Qg L. Since |J§< is dense, q 1is dense, and since

BX is conpact, q(BX) 1is closed. Hence q(BX)'=cl X i.e.
P*

g is onto. Mbreover, since jf {AB}.. is acut in X then the
X

o
exi stence of the map f eO* (X whichis O on A and 1 on B
inmplies that q nust be one-to-one. Hence q is an isonorphism

il.e. BX 1is isonmorphic to cl X
Pk
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2. 8. Fedor chuk noted [F_g] that BX has characteristic
properties simlar to those of the Stone-Cech conpactification:

(1) In order for X to be O0*-enmbedded in an ordered
conpactification bX, i.e. every map in 0*(X) "has an extension

to amp in 0*(bX)g it is necessary and sufficient that bX=BX

(2) In order that any two convex nonintersecting closed
subsets in X should have nonintersecting closures in an ordered

conpactification bX it is necessary and sufficient that bx =BX

(3) If A is an ordered subspace of X, then BA = cIﬁXA.

Let S = (Hd)c(eG be a collection of nonenpty subsets of

a topol ogical space X The collection is said to be regular'ly

decreasing if for each H e £ there exists L e S such that
a P

2.9. THEOREM (Fedorchuk). Let xsLoTs. Let aX be

the set of all maximal reqularly decreasing filters, the elements

of which are convex open subsets of X  Then there is a. linear

order on the set aX, _wth respect to which aX JJs _isonorphic

to HX

Ve order the set aX as follows. Let £ 4£" eaX W put

S <£" iff there exists intervals H eT' and HYES" such that
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H <H'. This is a linear order on aX  The rest of the proof

is omtted.

f the ofdered spéée X 'haé

2,10. THEOREM (Fedor chuk).

wei ght Y, then iBX JLS the inverse linit of the directed famly

of the ordered conpactifications of X < weight Y. (The parti al

order and boundary maps for this famly are defined in the second

paragraph of 2.1).

Proof omtted.

In 2.11-2.16 we wll consfder t he useful ness of the operator
6 in showng its role in solving the nmetrizability problem for
conmpact ordered spaces and in determ ning when certain kinds of
ordered spaces are i-sonorphic.

The follow ng exanple gives insight for Theorens 2.10, -2.15
and 2.16 as well as how BX may be visualized for X bLors.

2.11 EXAMPLE. There is an ordered space whose cardinality
and wei ght are Kb but its greatest ordered conpactification

has cardinality and weight ¢ and is not netrizable. Let fc!

be the rationals in the unit interval |. Both the weight and
cardinality of C  equal th BO is constructed from | by
repl acing each irrational point in | Dby an ordered pair of

points. Another way to construct BC is to identify corresponding
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rational points in | x {0,1} (lexicographic product). BS is
conpact and separable but both the cardinality and wei ght of B®Y

equal c. Hence B¢ is not metrizable.

2.12. An ordered space X is said to be mnlmal if it

has no end points and no two sided junps.

2.13. THEOREM (Fedorchuk) . £f X _and Y are ninimsl

ordered spaces, and BX JLS isonmorphic to BY, then X is

i sonorphic to Y.

Pr oof . Let f:BX— BY be an isonorphism Then f naps

end points to end points and two sided junps to two sided junps.
Now BX\x and BY\Y consists of two sided junps with the possible
exception of the two end points. Since X and Y are mninal,
f maps BX\ X onto (Bny. Hence f|Xx is a one-to-one onto map

from X to Y, i.e. an isonmorphism So X is isonorphic to Y.

2.14. EXAMPLES. _Mnimal _ordered _spaces X _and Y may be
honeonprphjc while, BX and BY are not i sonor phi c. For let X

be the discrete space Q* + a) > and let Y be the discrete

0 o . : :
space o’o‘ + 0OJ + (B; + co 3 where \* is the ordinal \ with the

reverse order. Then BX = (to +1) * + (® +1), which has two limit
o] o

points, and BY = (COg+1)* + (a>H) + (cogH) * + (a>H) , which has

four limt points.
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Conversely, mninmal ordered spaces X _and Y uomy not he

homeonor phic, while Bx and BY are honeonorphic. For let X

be the discrete space

oD
nondiscrete space og + SI
n:

oD

D
+ £ %W4og)n, and | et Y be the
n=1

(00gH+ug) g. Then BX =

Og" + |%:|]:' ((?+1) + (C0+|)°g)n)+|. and BY = Y+I|, which can

easily be shown to be homeomorphic.

2.15. THEOCREM (Fedorchuk). _A_conpact ordered space B

is metrizable iff there exists EL_separable_space X with no

two sided junps such that B =fitx and BX\X <C Ky -

Proof. Sufficiency.

Let X be a separable space with no

two sided junmp points such that BXUX <. Ng It is sufficient

to showthat BX is second countable. Let X

a count abl e dense subset of

W renunber the points of

cz)(x"x". D 'CA.

X and BX\X = {ylAyZ/\oooSYn>ooo}o
)é UBX\\X = [z"25,...,Zn ...}. Si nce

X has no two sided junp points, it is easy to verify that all
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sets of the type [O07) , (z’\zj), or (zj,,l), where z; <.ZJ,

forma countable base for RX

Necessity. Let B be a netrizable conpact ordered space.
Consi der the ordered space X obtained by deleting all two
sided junps of B. Since B has a countable base, there are
at nost a countabl e ﬁunber of two sided junp points in B
Hence BTX <. }% . W shall show that X .is dense in B. Suppose
it is false. Then there exist a nonenpty open interval C of B
contained in B\X such that C consists of tw sided junps and
hence is perfect and totally disconnected. Thus since B is
conpact netric, C contains the Cantor set whose cardinality

is c. Cont radi cti on.

Now BX = B since &X 1is forned by placing an ordered
pair of points to each cut in X  But these are precisely the
points renmoved from B to form X since X is dense in B
Moreover, the construction of X and its density in B inplies
that X has no two sided junps. Since B is conpact netric,

it has a countable base, and hence X is separable

2.16. THEOREM (Fedorchuk). A conpact ordered space B

is netrizable iff there exists an or der ed space X with a

poi nt countabl e base such that B = RX and BX‘X‘kgjc%.
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Proof. The necessity is obvious,, since we can take X

as B. Nowlet X be an ordered space with point countable
base such that B = BX and BXUX < No. First we show BX
satisfies the first axiomof countability. Suppose this is
false. Then there exists yeBX\X which doesn't have a count-
abl e nei ghborhood base. Hence there is a nonotonic (for exanple,

increasing) net {x |x eX cx <to} <converging to y, where w,
a a A - q

. . a a
is a regular uncountable ordinal” and the set (x |x eX, cceW}
. . a

Is a closed subset of X  Consider the part [x | a<a§) of
this net. Since X has a point countable bases it is first

count abl e. Hence_the net (x{1 a<:a¢} converges to sone point

| . -~ 2
y'eBX\X. Since BX\X <C K, then at nost a countabl e nunber of
. a o+l . . .
intervals [x ,x .. ] contain points of BX\x. Hence there exists

. (8] . a . .
an ordinal a < af such that the interval [x ,y') is contained
0
in X as a closed subset. Now [x& ,y') contains as a closed
0

subspace the nonparaconpact space {xa|a972,a<a%} of order type
o . '

1 Thus X is not paraconpact. Then X doesn't have a point
countable base [F, or B]. Contradiction. Hence BX is first
count abl e.

A. M shchenko [M proved that a conpact Hausdorff space
wi th a point countable base is netrizable. Hence to prove that
BX is nmetrizable it is sufficient to showthat it has a point

countable base. Let C= (v) be a point countable for X whose
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menbers are convex. For each VeC we denote by V' the naxinal
interval of BX such that V fix =V. Then C = {V } remins
poi nt countable at all points of X Now let yeRX\X and (Xp)

be a sequence in X converging to y. Consider the set QY con-

sisting of all intervals v* eC containing y. Each such interva
V' contains sone poiht X . Hence C c EF C . But each C;

n Y n=l *n n
is countable. Therefore, & s also countable, and thus C i's

poi nt coun;ggLe t hroughout all of BX Since BX is first count-
able and RX\X T 72°  then we obtain a poi nt countabl e base for all
of fix by adding to C a countable set consisting of the elenents
of a nei ghborhood base for each point in Bx\x. Hence BX is

metri zabl e.

2.17. For any Hausdorff spaceg sequential conpactness inplies

countabl e conpactness which in turn inplies pseudo-conpactness,

Conversely, for ordered spaces pseudo-conpactness inplies sequen-

tial conpactness. To prove this |last statenent note that if an

ordered space X has a sequence with no convergent subsequence,
then one can find a nonotonic subsequence which is a copy of IN

(by mappi ng the sequence in an order preserving not necessarily
continuous fashion into R). Since X is normal, Tietze's exten-
sion theorem shows that any closed subspace of X is C* enbedded
in X

Recall that u 1is the Hewitt real conpact operator [G J]-
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2.18. THECREM Let X be an ordered space. Ilien £X is

orderable iff X ng s'equ'en't'i ally conpact. 1f X is seduénti al 'Iv

corr'p'a"ct', then j3X = vX = BX

Proof. Assume X 1is not sequentially conpact. Then it is

easy to show there is a nonotone (for exanple,, increasing) sequence
{xn} whi ch does not converge in X Hence this sequence is a
cl osed set isonorphic to the natural nunmbers (S. By Tietze's
extension theorem fx } is GCenbedded in X  Thus, «cl . {x } =
j3([xn}) is isonorphic Qo /BN Hence {xn} does not corﬁ)\_/é:ée inn
its closure and hence not in j3X So j3X is not sequentially
conpact. By 2.17 /3X is not orderable.

Conversely, assune X is sequentially conpact. It is suf-
ficient to showthat X is GCenbedded in BX.  First show that
if A and B are disjoint closed subsets of X then (BX\X)n

cl.J» Pl clL..B =0. So choose peBx\x, and let A and B be

di sjoint closed subsets of X W may assunme that p is a left
limt point of BX. Since X is sequentially conpact no sequence
1 N

in X can converge to p. Suppose pecIuKA H cl aXB' Then there

exi sts an increasing sequence [xn}ari;-] such that )&GA for n odd

and *,~B for n even. Then {xr} converges to Xo< P wher e

Xo€X, since X is sequentially conpact. Since A and B are

closed, xqeAnB. Contradiction. Hence p / °'gy""° BX®* Thus
(BX\X) n ClegxA n Cl gxB = 0.
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Now show for every f'€C('X, ) there exists xpe(-0D,p) c X

such that f|[xp, p) is constant. Since X is sequentially
conmpact and [x,p) is closed in X for every x<p in X o
f([x,p)) is sequentially conpact in ! and hence conpact. So
the nested intersection n f([x,p)) 1is non-enpty. Choose r_

X<p P

1l
inthis intersection. Then f" (rp) is closed in X and p€clgf"
1

For every n& the closed set (xe(®, p) | |[f(X)-r P> -2093.)*

is disjoint from f" l(rp) . Hence by the above paragraph,, this

set has an upper bound x e(-a>,p) . Thus sup x. = X. exi sts
A nefN " P

in X and is less than p. Thus f|[xp,p) = rp.
Thus f extends to fp:X U {p} —=R such that fE(p) :rp'_-

Simlarly,, we can extend f to fp, X U {p"} —R for each

p' €x\x. Let f! be the induced extension of the fPTs.

Qoviously, f' is order preserving. Mreover f' is continuous

since any net in (BX convergi ng to p'asxx is eventually in

' [xpT"pT] A and thus the inmage of the net is evehtually equal to

r,=fT(p*) . . Hence X is GCenbedded in JX and thus

PT
£X = -lX = BX. So ~X is orderable.

2.19. After witing this paper | was told that M Venka}ta-
jaman® M Raj ogopol an® and T. Soundararajan has al so shown in a

paper not yet published that if /3X is orderable,, then X is

1

(rp)’
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countably conpact. However, the first half of the proof above
is nore concise than is their proof.

Let X be a generalized ordered space. In a simlar manner
to 226 we let O0*(X) be all order preserving maps from X to R

0* (X}

and define an enbedding f:X-2P*j, where P*» = K Then

simlar to the proof of Theorem22.7, cl f(X is the greatest
F)_*

ordered conpactification BX in the sense that X 1is 0*-enbedded

in BX. Note that a generalized ordered space is conmpact iff -

It has iits end points and has neither cuts nor half cuts. Hence

a conpact generalized ordered space is ordered. Simlar to the
proof of Theorem 2.2, BX 1is constructed by the addition of an
ordered pair of points to each cut, by the addition of a single
point to each half cut, and by the addition, if necessary, of

the end points. Then simlar to the proof of Proposition 2.5

we have, the category of conpact LOTS is an epireflective

subcategory of GLOTS.

D. J. Lutzer pointed out to me that for a topol ogi cal space X,

/I3X is orderable iff X 1is a sequentially conpact generalized

ordered space. Noting that 2.17 also holds for generalized
ordered spaces, there is a proof of this alnost identical to

that of Theorem 2.18. Simlarly, we also have that Aff X Tis

a sequentially conpact generalized ordered space then /3X=BX= ux.
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Let X be a topological space. A point peX is called
a P—p_gi_r_l_t__ iff every mp frX-~1 is constant in a neighborhood
of p. If X 1is an ordered space then peX is a p-point iff
no nonot one sequence in x\(p) converges to p [GJ, problem5.0].
This characterization can be extended to generalized ordered

spaces- Hence for a t'opol'ggi cal space X  /3X is'orderab'l'e i"ff

X is a 'g'e'ne'ral i zed ordered space and every poi nt of (BAX 'i s a

P-poi nt _of BX

2.20. THEOREM Let X bg. a _generalized ordered space

and let X bg. nonneasurable. _Then uXc B and uX = XUT,

where T = {xeRX\x | for every pair of disjoint closed subspaCes

A, B of X xecl¢ixAncl 4«B).

Proof. Let X and T be as in the hypothesis. To show

uX = XU. T we prove that there is a bijective co'rrespondence
between the real free Z-ultrafilters on X and their imts—
the points of T, and that every f£QX,l) can be continuously
ext ended over X UT. First we show that no real free Z-ultra-
filter on X can converge to a point in (SA(XUl) « Let PpE(BAX.,
W may assune that p is a left [imt point. Suppose there is

a real free Z-ultrafilter AP on X converging to p. First
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suppose that p is not a P-point. Then there exists an in-

Creasi ng sequence [xn}I‘;E_n in X converging to p. Then

pAT since AZnAnZ0  and AXop4] ’\nc’\O_ are disgoint ¢ psed
sets in X both of whose closures in BX contain p. More-
over, AP must contai'n the collection {[xn,p)|ndtsf}. Hence
Ap doesn’t have the countable intersection property and there-
fore, it is hyper-real. Contradiction. Thus if a real free
Z-ultrafilter converges to pefRAx, then p nust be a P-point.
Also all the points of T are P-points. |
Now suppose p is a P-point in BX\(XUT). Since p4T,
there exist nonenpty disjoint closed sets A and B in X
such that pecl.”A 0 CL.-,B. W can construct an increasing
net (x’;|/’\<coo(} in X converging to p, Wwhere u>, is an

initial regular ordinal and for all £ <cg Nt A and
-1

x2£+1 e B. (Note for a limt ordinal A 2A=A) . Since p
is a P-point, to, > a?a e [The renmai nder of this paragraph is
fromthe proof in GH of Theorem 10.3(2)]. Fo} each limt

ordinal "h <a? the limt of the subnet fx. |[E<A is a cut
or left cut UE Then the increasing net {u.‘L_£<o>G} of cuts

and left cuts, obtained as above, "converge" to p. The intervals

* = uer U H ar e H H — N H
Jg (E E,;'rL) cl open and their union J IKg\w&]\';; is a

clopen interval wwth sup p. Hence J e Ap. Consequently if C
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and D are any two conpl enentary subsets of Q]qs t hen

J.=U_J J

= N
C peC gg D ll_;é];] . are clopen and exactly one of them

is in A_. Nowdenote by 5? the set of intervals fJ, }". . ;
P £ "a

every subset of J? is of the form 3L, = (»?*}* r>- Define a
finitely additive two valued neasure m on the famly of all

subsets of 3, by putting n@J?C) =1 iff J,e A_. Since for

C p
. - A °
each £ < W (U, P) eAp, poi nts have zero neasure i.e. Jg 4 s
Moreover m(#) = 1. Since f%< i s nonnmeasurable,, the neasure m

cannot be countably additive. Hence there exists a countable

famly {UC |ndk} of subsets of 5J of measure 1, whose inter-
n
section 3d is of neasure zero. Then Jé A P Therefore

jlcheA Hence {J . fl (j\j &) |ndN} is a countable famly of
P CTh &

zero sets of Ap having enpty intersection. Thus Ap is hyper-
real . Contradiction.

Hence no real free Z-ultrafilter on X converges to any
point in RX\(XUT) . |

Bef ore we show that for each point in T there is a unique
real free Z-ultrafilter converging to it® we show that any nmap
feQX"|R can be continuously extended to XUT. Let p€T. First
we show f is constant on a neighborhood of p in X, and to

do this we first showthat f 1is bounded on a nei ghbor hood of p
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in X If not Z",= (xex| |f(x)] ”~ n+l} and Z~n*: {x€X] |f(x) |£ n}

are closed disjoint subsets in X for each nelN. Since
+ .
PEC]'[BXZI]+1 , each X, = suprx( Z~rl n (-oo,p)) is less than p.
Hence,, since p is a P-point, sup {x ) =x" < p. Then, since
. neNBx N

p is aleft [imt point, (x* , p) 1s a non-enpty nei ghborhood bf
p in X on which f has the value of OD or -CD*» which is
not in R Contradiction. Thus,, f 1is bounded on a nei ghborhood
of p. Nowwe showthat f is constant on a nei ghborhood of = p
in X Since f is bounded on a neighborhood of p, - f([XP))
is compact for xe(x',p). Hence the nested fanmily [f([Xop)) |
xe(x',p)} has a nonenpty intersection. Thus there exists

r G Pl f([x,p)). Moreover,, r e 0 f([x,p)), since
P xe(xT, p) P X6(x', p)

ot herwi se we could construct a map unbounded in a nei ghborhood
of p in X Thus A = f— l(rp) is a nonenpty cl osed subspace
of X and peel_l. A. in addition, for each ne(N Z = (XG(X',P) |

If(x)-rp| _;_>n_1:ZT) is closed in X and disjoi nt from A S0
H — T
p " CI(S\‘AZn' For Zn .enpty defi ne suplff,].xzn = X . Then for each

nel N sup™yZy = Xg < p. Hence, SUpexXn = X_ < p, and (x_,p)
. neN .

I's nonenpty. Thus - f"l((xp3p)) = rp. Therefore, f is constant

on a neighborhood in X of each point of T, and hence f extends

to XUT.
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To finish the proof we show p is the limt in BX of a
unique real free Z-ultrafilter in X Note there is a free
Z-ultrafilter converging to p. By the precedi ng paragraph
p is not the limt of a hyper-real Z-ultrafilter in X
since every map i s bounded in a neighborhood of p [see G J].
Suppose Ap and A; are distinct Z-ultrafilters in X con-
verging to p. Then there exists disjoint zero sets ZeAp,

z A~ and peel _.Z nclyZ'. Contradiction to pcT. There-
fore, each point in T is the Ilimt of a unique Z-ultrafilter
in X in fact, a free real Z-ultrafilter. Hence there is a
one-to-one correspondence between the free real Z-ultrafilters
on X and their Iimts, the points of T. Hence uX = XUT.

2.21. COROLLARY. X be_a. generalized ordered space,

Let e_
of

and let T be the P-points in BX\X. _Then XUT = uX
A

be the set
iff whenever and

B are disjoint closed subspaces of X

TOCIgrxA n ClgxB = 0.

2.22. Recall that a cardinal K 1is reqular iff it is
not the supremumof |less than K cardinals, each less than N
An ordinal is regular if it is a regular cardinal. Let Og be
a regular initial ordinal, whose cardinal is ﬁ,’ where a is

an ordinal nunber. Then a nonotone net (X'g'g<a% inalinearly
' . o

ordered space X is called a Qnet [GH], if for every nonzero
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l[imt ordinal A< t%, the limt in (BX of the segnent tx£}5<?\
is in (BAX In particular every to sequence and every ta -
sequence are Qnets. |If to0l is (non) neasurable {XE} -KAcx

is called a (non) neasurable Qnet. A point in Bx\x is a

Qpoint if it is the" limt of a Qnet in X

Let pE(Bx\\x. Then p Ls a _non Qupoint _iff for every pair

A and B of disjoint closed subspaces of X, p\ cl,AHcl_,B
The proof of Theorem 2.20 shows that if there exists a distinct
pair A and B of disjoint closed subspaces in X such that

peelﬁ"AncIﬁXB, then p is a Qupoint. Conversely, if p is

a

a Qupoint then there is an ordinal to and a Qnet (ng<w
' * o

in X converging to p. Let A = 02£A<tg and B = AZE4] A<t O o
Then <clearly A and B is a pair of distinct disjoint closed
subspaces in X and p€cl A fl cl *B.

G Il man and Henri ksen [GH pp. 359-360] proved that if X
is a linearly ordered space with no neasurabl e ’Q net, then

uX = XUT, where T 1is the set of non Qupoints in Bx\x. Hence

if X is nonmeasurable this statement is Theorem 2. 20.

Let X be a generalized ordered space. Denote by 0(X)
all order preserving maps from X to E If Y is a genera-

|ized ordered space containing X, then X is said to be O-

embedded in Y if every map in O0(X) can be extended to a map
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in 0(Y). Let us call vX the greatest generalized ordered real-

compact extension of X in the sense that vX is the greatest

subspace of BX in which X Jjs O0-embedded. Then clearly,

vX = X U T, where T _is the set of all P-points_in ftx\x.

if X is nonmeasurable, _then uX cvXc_(BX £ JJQ addi-

Hence,

tion, the last condition in Corollary 2.21 holds, _then uX = vX

Now let aX be the-famly of maximal filters, described in
Theorem 2.9, on the generalized ordered space X Call a maxi mal
filter in aX real iff it has the countable intersection prop-

erty. Then there is a._one-to-one correspondence between the real

maximal filters in aX and their |im¢t points, the points of VvX

Moreover, simlar to Theorem 2.9, there is an order on this sub-
famly of aX for which it is isomorphic to vX Now | et
JP = %) Then as in 2.6 and Theorem 2.7 we. can find an

enbedding f:X—P such that cl I;()() Is isonmorphic to vX

We call a generalized ordered space ordered real conpact

iff X =vX

2.23 PROPCSI TION. The cateqory of ordered real conpact

GLOTS is an epireflective subcategory of GLOTS.

Proof. Consider the diagram where i,xr iy and i, are

BX™~ .

S
.T .
IvX \-\'q

X
A \.I'h ~
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inclusion maps, f:X_"YeGLOTS,” and Y is ordered and real-
conpact. Then by 2.19 there exists a unique q:8X— BY such

t hat = iyf. We shall show there exists h:vX—£Y such

A ox'x Y

t hat hi'X: f. It is sufficient to show that q_ivx maps onto Y.

Suppose this is false. Then there exists xevX and y£(BAY such
that qi y(x) =y. W nmay assune that x is a left sided limt
point of vX. Then there exists an increasing chain net {Xa)

in X converging to x, and gqgi -(fx }) is an increasing chain
VX X
net in Y converging to y. Since y 1is not a P-point in (BY,

we can choose an increasing cofinal subsequence gqi ({x }) con-
VX. o4

verging to y. Hence fx is an increasing sequence in X

cxi}ielN

conve'rgi ng to x. But this is inpossible since x is a P-point

of vX. Hence gqgi ., ™ps onto Y. So we can define h:vX-2-Y

VA

such that for all xevX, h(x) =gqgi (x) . Hence hi_ =1, and
VA X

since iy, is an epi, h is unique, and we are .done.

2.24. EXAMPLES. There exists a. topologicallv real conpact

ordered space X such that BX\X contai ns'jg P-go'i'n't of (BXAX
Consi der the space wui of all ordinals less than the first
uncountable ordinal. For each limt ordinal a < &, replace a

by to:) . Call this space (f\. This is the required space since
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of Rui isin Ka \ug e«
N L L
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is discrete and the greatest element 1

Hence,, since d@g = KL is a nonmeasur abl e

cardi nal , uxX = X Therefore, 1N uX

If there exists a neaSurabIe'cardinals thehnfhere exi sts

an _ordered space X such that uX s _not an or der ed_ext ensi on

of X Let 0" be the space of all ordinals less than the first

nmeasurabl e ordinal. For each limt ordinal a < ce repl ace a

by a% . Call this space. a%lo- Then q% is discrete of cardi-

nality Km’ the first neasurable cardinal. The greatest point

1 of Bgp is in AN APA aa ferany sybset A ¢ X whenever

K=K, then 1 e cl /A

m (0p¢
in o" converging to

where f is 0 on the

} Then there is a free real Z-ultrafilter

1 in ~- However, the map feQ ocl} ,

points of <B from cB and f is 1

ot herwi se, has no extension to d't U {1}. Hence 1~ uX and uX

is not an ordered extension of X

2.24. Note that although an extension Y of an ordered

space X may not be an ordered extension, Y may still be

orderable. A new ordering may make Y ordered whil e inducing

an unordered generalized order on X For exanple let X= (0,1)+(2, 3]

and Y= [0,1] + (2,3].
the new ordering Y 1is

(2,3] +(0,1) .

Reorder Y as (2,3] 4- [0,1]. Then wth

ordered and X is the unordered subspace
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SECTI ON 3.  Proj ectives.

3.1. Let C be a category and let P be a class of nor-

phisms in C.  An object P of C is called p-projective iff

for each norphism f:P—-2Y and for each P-norphism g: X—Y

there exists a morphism h: P—2X such that the diagram

P
h ~ f
rd
Fd
l.{ A
X Y Y
g
commutes. A norphism f is called P-essential (P*) iff feP

and fgeP inplies geP for each norphism geC f:P-~X 1is

called a P-protective cover of X iff P is P-projective

and f€P*.
Note that P* is closed under conpositions. Since the
essential norphisns and projective covers generated by P and
its closure under conpositions are identical, it is convenient
to choose P to be closed under conposition.
It will be shown in this section that in LOTS if P 1is
the class of closed onto maps P* is the class of irreducible
maps. Also we shall show that for every Xe LOTS there exists
a unique P-projective cover |IL: <kX-2X, but that no class inter-.

X
secting the conplenent of P has this property.
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3. 2. PROPCSI Tl ON. Let X ahd Y be ordered spaces,_ and

let f:X-2Y 'g_>g_g_g onto order preserving function. Ihen f l_g

continuous iff f~l(y) jjs closed for éver'v yeY.

Proof. Necessity is obvious. Now assune f'l(y) i's closed

for every yeY. It is sufficient to show that f~l((-OD,yJ)

and f".~([y,ao0)) are closed for each yeY. Let YeY. Now
f*i((-00,yo]) = f"%(-D,y9d) U f"*(yo), whichis arayin X
fromthe nonenpty cl osed convex set f~ 1(y3 to -QD. Hence

f"l((-CD‘yo]) is closed. Smlarly,, f~ J([y t)CD)) is closed.

3.3. PROPOCSITION. Let f:X-~Y be an onto nap in LOTS.

1f f *(y) Jjs conpact for every yeY* then f Jsja closed nap.

Proof. W prove the contrapositive. Assume f is not a
closed map. Then there exists A closed ¢ X such that f(A is
not closed. Hence there exists yeY such that _yef(A')\f(A). W

may assune that y is aright limt point of f(A), 1i.e.
-1
f

yeCyrOD) fIf(A). Hence/ (y?ao0) has no inf, and, therefore,

n 1 n l

f"7(y) has no sup. Thus f" 7 (y) 1is not conpact.

3.4. For topological spaces X and Y recall that a map

f: XY is irreducible iff f is onto and for all proper closed
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subspaces A in X f(A) Y. An ordered space Y 1is called

an ord'ere“d' a"bsol ute iff whenever f:X—Y 1is irreducible in

LOTS, then f is an isonorphism

3.5. PROPOSITION. Let f:X—>Y be an onto map in LOTS,

Then f is irreducible _iff for all yeYy (1) f"¥y)_<2 and

Proof. Let (1) and (2 hold. Suppose there exists a

proper closed subspace A in X such that f(A =Y. Then there
exists XeEX\A and x'eh such that f" }(x) = {x, x"}, whichis
a two sided junp in X  Then there exists Xy < X such that

(xon] is a neighborhood of x <contained in the open set X\A.

Necessarily, (m] "> N . Hence, since (1) holds, there exists

yeY such that f'~ 1(y) a (xo, x]. This is a contradiction since

(xo,x] c XXX, but f(A =Y. Therefore, f is irredu_ci bl e.
Conversely, let f be irreducible. Su[opoée there exists

y€Y such that f" I(y) > 2. Then there exists a proper open
1

subinterval Ac f" “(y). Hence XA is closed and f(X\A =Y.

Contradiction. So (1) holds.

Now | et f‘l(y) = 2 for sone y€Y. Then there exists x, x'eX

such that f""¥y) = {x,x'}. Cbviously {x,x"} is a junp. Suppose
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it is not a two sided junp. Then one of the points, say X,
is isolated. So X\{x} 1is closed, and f (X\{x}) =Y. Contra-

diction. Therefore,, (2) also holds.

3.6. Note that jLf f:X—Y jis irreducible in LOTS, t hen

for yeY whenever f" I(y) =2, Yy 1s a tw sided linit poi nt .

Vhenever f"l(y) = 1, _both y and f"'l(y) are either isol ated

points, left limt points, right limt poihts_, or two sided linit

Qoi'nts in Y and X respe'ctively. Note al so that Propositions

3.3 and 3.5 inmply f is a closed map.

3.7. THEOREM (Fedorchuk). _Let X be an ordered space.

T'hen' thére exists |l,:<xX—=Xe LOTS such that AX is an ordered
absol ute and L jls _irreducible. _1f f:X—=Y jjs i rreducible

l_ﬁ LOTS, then there exists an isonorphism h: OX— 6tf .of ordered

absol utes such that flL = ILh.

Proof. Let X* be the set of all two sided |inmit poi nts
of X  Consider the ordered space c¢"X obtained by replacing

each poi nt X"X"__ by an ordered pair of points {x bx.i, whi ch
is clearly a two sided junp in ciX Define 1L.:AX—=X as follows,

1 () =x for X€X\ Xy and "«(Xo) = ML (x;) = x for =XeX,.
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Clearly II( is order preserving and onto. So by Proposition 3.2,

Ik is continuous, and so by Proposition 3.5, Il is irreducible.

Now let g:Z—2aX irreducible in LOIS. Since <X has no
two sided limt points, then by 3.6, g mnust be one-to-one.
Then since g 1is ont o, it is an isonmorphism Hence aX is an
ordered absol ute.

The rest of the proof will be given in 3.17.

3. 8. Let f:X-2Y be a non-closed map in LOTS. Then there
is a clopen ray R in X wth no initial point whose image in

f(X) is aray whose initial point is in cl Y(f(R))\f(R).

3.9. W now begin to show that the projectives are the

ordefed absolutes for the class P defined bel ow.

LEMVA.  Tn LOTS let P be the closed onto maps. Then

the P essential norphisms (P*) are the irreducible nmaps.

Proof. First note that P is closed under conposition.

Let f:Y-2Z be irreducible in LOTS, g:X—»YelLOIS, and
fgeP. Then by 3.6, f is closed, and hence fGP. W nust
show geP. First suppose g 1is not onto. Then there exists

yeng(Xx).
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T o
yo I
4: y A
o
5 .
Since f is irreducible and fg is onto, fhlf(y) is atw
sided junp consisting of y and sone vy'eY, and hence f(y) is
a two sided limt point. W nmay assume that y < y'. Now

g"'((-0D,y]) =g" ((-<y)) is clopen, and fgg' *((-a0,y)) =

(-ao,f(y)). However,, f(y)€(-a, T (y))\(-a>, f(y)), whichinplies

fg is not closed. Contradiction. Hence g 1is onto.

Now suppose g 1is not closed. Then there exists a ray,,
say (-QDb,U), where u is a cut, and there exists yeY such
that yeg( (-®@,u )\g( (-D,u)) . Then since y is a left linit
point and f isirreducible, f(y)efg((-@,u))\fg((-@,U)).

Thus since (-ob,U) is closed, fg is not closed. Contradic-

tion. Hence g is closed. So geP, and hence feP*.

Conversely, let f:Y—ZeP not be irreducible. Then there
is a proper closed subspace B in Y such that f(B) =2Z W
will find an ordered space B' 3 B such that B' is also a
proper subset of Y. If B is ordered let B =B If B is

not ordered, then there exists a half cut, say a left cut {C D}B.
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Let b =mnD Since B is closed, C has no sup in Y.
Hence C = {yeY|y<c for some ceC} and D = X\C deternine

a cut

Y- ) j.---__l.).._
in Y\B

u in Y. So u<b and (GD) > "o in Y. Hence there exists
v,y ,y"'e"NB such that u<y<y"<y'<b. Let B = (-@,y] U[y!, OD) .
Then since y"eB', B' is a. proper closed ordered subspace of Y
containing B. Hence f(B) = Z

Now let i:B'—>B be the inclusion map. Thus fieP, since

B! is closed. However, i is not onto. So iA~”* 2a<3 hence

f 4p

3.10. THECREM Let X 8 LOTS. Then Ils aX—-2x 1S a

P-proi ective cover, where the P-norphisns are the closed onto

nmaps.

Si nce IIX is irreducible, then by Lenma 3.9, IIX-€P*. So
we need o'nly show that {XX is P-projective. So let f: aX->YeLOTS,
and let g:Z—YeP
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Then we nust find h: <\ X-~ZeLOTS which nekes the diagram comute..

Caim If xexX _is _a_left (right) _linmt _point _such that

mn (max)f"]f(x) = X. then mn (nax) g"lf(x) exists and is a

left (right) Ilimt point. Let x be a left limt point in AX

such that mn £~ 1f(x') = X. Then

a ] X . -
gl: l, E\x\
Z e ) T

f(x)€(Ca, T(x))\(-0D, f(x)). Thus f(x) is a left limt point.

Suppose g'lf(x) has no minimum  Then since g 1is con-

tinuous, , g~1f(x) has no inf in Z  Hence (-a ,q—lf(x)) =
{cez | c<z for all zeg~]1C (xX) } has no sup, and it is non enpty
since g is onto. In addition, since g is ont 0,

f(x)€g(-ab, g"*f (x))\g(-GD g"*f(x)),

i.e. g is not closed. Contradiction. Hence ¢" lf(x) has a mn.,

Moreover, since f(x) is a left linmt point and g is onto,
then mn g'lf(x) is aleft limt point. Use the dual argunent

if x is aright limt point. Hence the claimis proved.
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Now we begin to construct h: <xX~—=*Z.  Deconpose X into

the collection (f~'(y) |yef (cxX{ }. For yef(aX) such that

!

f**(y) > 2, there is a gap 4, in f"l(y), which is either

a cut or a junp since <xX has no two sided [imt points. Let

~ = nl * = 1
uY { x€f (y)|x<uy}, and | et uy { xef (y)|x>uy}. Now f or

each gef(<xX), et z; = inf g~1(y) if it exists, and |et

z "l(

= sup g~1(y) if it exists. Choose a point Z e y) . Define

.|..
Y
h: OX— Z as follows. For yef(*X) and f""%y) > 2 then

(1) If both sup and inf g~1(y) exists, then for all

xeu'}'{ h( x) :z§s for all xcu® h(x) = z".

(2) 1f inf of g~Y(y) exists but sup doesn't exist,

then for all xef~Yy) h(x) = 23, .

(3) If sup of g~%(y) exists but inf doesn't exist,

then for all x€f"*(y) h(x) = z!.
(4 If neither sup nor inf of g~ 1(
“all x€f"Yy) h(x) =z

y) exists, then for

v

For yef(o& and f~~(y) = 1, there exists a unique xG&X such
that f(x) =vy. Then
(1) If x is a left sided limt point, then by the claim
2 i - = 7~
1Tr exists So  h(x) zy



48

"(2) If x dis aright sided limt point, then by the claim

zy exists. So h(x) =z

(3) If x is isolated, h(x) = Zy
This definition is conplete and the function is well defined

since AX has no two sided [imt points.

Clearly h is order preserving and gh = f. To prove h
I's continuous it is sufficient to show that whenever a monotone
say increasing, chain net {xa) in <xX converges to XxcoX,
t hen h({xa}) converges to h(x). If x is not a left limt
point, then {xa} eventually is equal to x, and hence h({xu}),
is eventually equal to h(x). If x 1is a left limt point and

mn f"l(y) = X, Wwhere y =f(x), then by the claim Z5 exi sts,

is aleft limt point, and h(x) =z~ Clearly f({x_}) 1is an
y ' 0

ingreasing chain net converging to y. Thus since g 1is onto,
g~ f((xa}) is an increasing chain net of convex sets converging
to z¥ , fnd hence h((xd}) conver ges LQT=;y =h(x). If

XA mn i~ (y), where vy :+f(x), then " (y) > 2, and XGU¥

or ﬁGLV. So if xeuf(u¥ ), then {x%} is eventually in

U™ (U ). Hence h({x }) is eventually equal to h(x) . Dually,

we can show that if fx“} Is a decreasing chain net converging

to Xe<XX, then h({xq}) converges to h(x) . Hence, h is
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continuous,, and h:<xX—»ZeLOTS. Therefore <xX is P-projective,

and IIX.' fcX—=X 1is a P-projective cover.

3.11. PROPCSITION. Let Tix t\X>XeLOTS _and let P Qe a

cl ass of rrbrphi snms for which n: XxF>X JLS a. P- Droie'ct'ive co'ver'.

2\"

1f f:Y-2XeP, then f is a closed onto nmap.

Proof. Consider the diagrambel ow. Let T;L" aX—X be a

h - N
// X
/I .
Yk ;Z
£

P-projective cover,, and let f:X—>YGP. Then there exists
hftX—=Y such that fh = Tk. Then since Illx is onto® f must
be onto.

Now suppose f is not closed. Then there exists a ray,

say ¢ (u,aD,, where u is acut in Y and there exists a point

xeX suchthat f((-0Dju)) = (-, X) and xe (-M*X) \(-QP"*X) .

b4
-0D y O
)
X
v W ]/
X Fi Ar' v
f | \
Y 3 \
o~ FAS .!\7 v M
ho |
aX
b4
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Since f nust be onto,, f"l(x) is nonenpty and inf f'l(x) = u.
Si nce IV”I(X)_f 2, inf fd'(x) =% exists, and it is a left
l[imt point (since x is such a point). However, M*;) >u

and h((-OD,xo)).g (-0D,U), which inplies h is not continuous.
Contradiction. Hence' f nust be closed, and the Proposition is

proved.

3.12. Fromnow on let P bf the closed onto meps in LOTS.

W will now |look at connectivity properties of ordered abso-

| ut es.

An ordered space X is called _ordered extrenely discqnnected

if for any open interval Vc X V is open. Quiously,, if X
is extremely disconnected, then X 1is ordered extrenely discon-

nect ed.

3.13. EXAMPLE. There is_an _ordered space X which is

ordered extrenely disconnected but not extrenely, di sconnected.

Let X = c%,+1. Then clearly the closure of any open interva
in X is open. However V = {2n|n€0)0) is an open set, but V

is not open in X

3.14. THEOREM (Fedorchuk). _Let X be an ordered space

Then the follomﬂng are equival ent:
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(1 X A1S pBn_ordered absol ute.

(2) X has no two sided limt points.

(3) X Jj3 order extremely di sconnected.

Proof. First we show that not (3) inplies not (2) inplies

not (1). So assume X is not order extremely disconnect ed.
Then there ‘exists an open interval V¢ X and xcX such that
x e VO (&F@). Hence x is a two sided limt point. By
splitting x in tw,, we obtain a nonisonmorphic irreducible

map onto X. Thus X is not an ordered absol ute.

Now we show that not (1) inplies not (2) inplies not (3).
So assume X is not an ordered absolute. Then since ax s
obtained by splitting the two sided limt points in X, then
there exists a two sided limt point xeX. Hence (x"ao0) 1is

anopeninterval i n X, but (X*CD) I s not open. Therefore,

X 1s not ordered extremely disconnected.

3.15. The next two propositions give equival ences for
P-projectives and P-projective covers, nmost of which are true
in any category. Wth slight alteration these propositions
were stated for another topological category with perfect onto

~maps as_P-nmorphisns by H. Herrlich [H; Theorem 4. 3] .
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PROPOSTION. Lef X 8 LOTS Then the following are
equivalent: _ o
(1) X jLs p-projective.

(2) Any P-morphism f:Y—=X | gretraction'

(3) For all feP* f:Y—>X, f is an i somorphism i.e.

X jggﬂ ordered absol ute.

(4 X s ordered extremely disconnected.

Proof. For all categories (1) is equivalent to (2) which

in turn implies (3). By Theorem3.14,, (3) is equivalent to
(4, and by Theorens 3.7 and 3.10,,, (3) inplies (1).

3.16. PROPOSI TION. Let f:P—» XeP. Then the fal I'dvvi ng ér e

equi val ent ;

(1) f:P—=X is_a. P-projective cover.

(2) f€P* and for all g such that fgeP, g 18 an

i somorphi sm

(3) P JLS P-prdtective,__and_if g"heP _such_that gh = f

and the domain of g jls. P-projective, then h-jjs joi isonorphism

(3%) P is P-projective and if. g*he LOTS suc'h thét

gh = fo h JLS onto, _and _the domain of g 1is P-projective, then

h is_al _dsomorphism

Proof. In every category (1), (2), and (3) are equivalent.
Obviously (3*) inmplies (3). To finish the proof we show (1)
inmplies (3*). So let f:P— X be a P-projective cover,, h:P-Y



53

an onto map, Y P-projective, g:Y—= X, and gh =f. Since f
is irreducible, it is at nbst a two-to-one map, so h is at nost
a two-to-one map. Now it is sufficient to showthat h is a
one-to-one map. Suppose this is false. Then there exists

p, p'€P such that f(p) = gh(p) = gh(p") = f(p). Hence p and
pb forma two sided‘jurrp, and since g is at npbst a two-to-one
map, h(p) is atw sided [imt point. But this is inmpossible

since P is an ordered absolute. Thus (1) inplies (3*).

3.17. Note that in Proposition 3.16 that (3*) inplies
that geP. Also Lenma 3.9 and Proposition 3.15 inply the |ast
part of Theorem 3.7. For let f:X-2 YeP*. Since nyeP* ¢ P and

aX is P-projective, there exists

aX
”’,
R B
h ~ 4
i X
-
L N
QY- >Y
h: AX—=*T such that [l h = fll__ . Thus h is in P*, since P*

Y X

I's closed under conposition. Then it is easy to show heP*.
(In fact in any category if gk"P* and g€P*> then k€P*) . Then

since <XY is an ordered absolute and h is irreducible, h is
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an isonorphism Hence the last part of Theorem 3.7 is proved.
Note that the proof above shows that any f:X—=YeP can
be lifted to f': OX—= «xY.

Al so note that .for eac-h' X S LAS,, t he P-prot ectiv'e' cdver

HX:<XX—>X JLS _uni gue_up_g__q i somor phi sm s nce in_any cateqory the

projective covers are uni que.

3.18. In the last part of this section we |ook at nore
properties of ordered absolutes. |In particular we |ook at the
i nportance of mnimal ordered spaces and the functor (B in rela-

tion to ordered absol utes.

THEOREM (Fedorchuk) . _TLet X be an ordered absol ute and

bx an. ordered conpactification of X Tlien bx i” an. ordered

absolute iff bx =ftx.

Proof. Necessity. Let bx be an ordered absolute. dearly

the canonical map f:(BX—=bX is irreducible. So f is an iso,
‘and hence (BX = bX

Sufficiency. Let bX = (BX Since X is an ordered absol ute,
it has no two sided limt points. Since (BX is constructed by the
addition of an ordered pair of points to each cut of X  (BX has

no two sided limt points either. Hence (BX is an ordered absol ute.,
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3.19. COROLLARY. (Fedorchuk). xBX = BAX.

Proof. By Theorem 3. 16 BxX is an order absolute. Now

there exists a unique q:B&X—2 BX such that qi&X = ’\XHX.

BaX — 9 - - >BX
‘ A
Lax l DX
| |
oK ..>X
nX-

To prove the Corollary it is sufficient to show qcP*. Since
BaX 1S conpact, gq is closed. Thus since q(BxX 2 X as a
subspace of BX, then BX 2 g(fefc) = q(Box) 2% ='B¢ S ¢
is onto. Since <xX is dense in S&X, qi V.( AX) =X is a
subspace of BX, and qi X is at nost a two-to-one map, then
no point of BGX\AX maps to a point of X in BX i.e.,
g(Be\X<*X) = BX\X. Hence if A is closed in B&X and q(A) =BX
then AZDX So BAX =>A 5>_X = BaX. Hence q@geP.”. Since

P-projective covers are unique BAX = <BX

3.20. B.V.S. Thomas (T) has fornmed categorical proofs
of the last two theorenms using definitions that | do not wish

to consider in this paper.
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3.21. THEOREM (Fedorchuk). _Tg X _and Y are ordered

i ni mal spac'els and <xX jj'§' 'is-om')rnhic._t_g &Y, then X is

i sonor phi ¢ to Y.

Proof. Let h:aX—= <X be an isonorphism W wll show

that f = nyhlcl Is an isomorphismfrom X to Y. First we

'~l

show that f 1is single valued. Let XGX. If H(x) = 1,

then FFX) =1. If 112%(x) =2, then I"Y(x) is a two sided

junp in aX. Hence hlllil(x) is atw sided jump in <\Y. linen

i f IIYh Jj'gl (xX) consists of two points, it is a tw sided junp

in Y, which is inpossible, since Y is mniml. Hence f(x) = 1,
and so f is single valued. Ina simlar manner it is proved

that f~1 is si ngle valued, i.e., f is one-to-one, by using
the fact that h"* is an i sonorphism  Since W* h, 2d ]1’_\:1
are onto, then f 1is onto. Hence f is an isonorphism and X

is isonorphic to Y.
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