RADIAL AVERAGING OF DOMAINS, ESTIMATES FOR DIRICHLET INTEGRALS AND APPLICATIONS

by
Moshe Marcus
Research Report 71-36

August, 1971
/nlc
8/10/71

University Libraries

ABSTRACT
RADIAL AVERAGING OF DOMAINS, ESTIMATES FOR DIRICHLET INTEGRALS AND APPLICATIONS
by
Moshe Marcus

Let $\&=\left\{D_{\mathbf{1}}, \ldots, D_{\mathbf{n}}\right\}$ be a family of domains in the plane, containing the origin. We define a radial averaging transformation $R_{\dot{A}}$ on S by which we obtain a starlike domain D^{*}. When \& is such that the domains $D_{\mathbf{1}^{\prime}}, \ldots{ }_{\mathbf{n}}$ are obtained from a fixed domain D by rotation or reflexion, ft. becomes a radial symmetrization. One of the results we present is an inequality relating the conformal radius of D to the conformal radii of $D \boldsymbol{\mu}, \ldots, D n$ at the origin. This result includes, as particular cases, the radial symmetrization results of Szego [11] (for starlike domains), Marcus [7] (for general domains) and Aharonov and Kirwan [1]. The inequality for the conformal radii is obtained via an inequality for conformal capacities, which seems to be of independent interest.

A number of applications in the theory of functions are discussed. Here we introduce a definition of a class of functions $\{f\}$, analytic in the unit disk $|\S|<1$, which includes the Bieberbach-Eilenberg functions and some other classes of functions considered in the literature. For this class we obtain the estimate $\left|\mathrm{f}^{!}(0)\right|-<1$ which is sharp.

Other applications concern certain geometric features of the domain D_{f-} obtained as the image of $|\S|<1$ by an analytic function $z=f(\xi)$.
by
Moshe Marcus

Introduction.
Let D be a domain in the complex plane z, containing the origin. Let ${ }_{\boldsymbol{O}}^{\boldsymbol{\varphi}}$ denote the ray issuing from the origin with argument q. Then, we denote by $R(c p ; D)$ the measure of $a_{\varphi} n D$, this measure being defined on the basis of the logarithmic metric, $d s=|d z| /|z|$.

Let $\&=\left\{D_{1}, \ldots, D_{\mathbf{n}}\right\}$ be a family of domains containing the origin. We define a transformation ft_{A} acting on families of A

A
 domain. D is obtained from \& by means of a weighted geometric J
average of the quantities $R(\langle p ; D),.(j=1, \ldots, n)$. The weights are determined by the set $A=\{a.\} ?^{*}$ This transformation is called a radial averaging transformation.

A
The transformation ft. is extended in a natural manner า $=$ -
to families of condensers $\{C .\}^{1}$?., such that the origin is a point of potential 1 for each condenser in the family. We denote $R_{A}(\{C j\})=C^{*}$.

With this notation we obtain the following result:

$$
I\left(C^{\star}\right) \leq{\underset{j=1}{£}{ }^{a} j^{T}\left({ }^{C} j\right)^{\wedge}, ~}_{\text {^ }}
$$

where $I(C)$ denoted the capacity of the condenser C.
From this inequality we derive an inequality relating the
conformal radius of D^{*} (with respect to the origin) to the conformal radii of $D^{\wedge} \ldots, D_{n}$.

In the case that $D_{\mathbf{i}}, \ldots, D_{\mathbf{n}}$ are obtained from a fixed domain D by simple transformations, such as rotations or reflexions with respect to a line through the origin, the radial averaging transformation becomes a radial symmetrization of D.

The symmetrization result thus obtained, includes as particular cases the radial symmetrization results of Szego [11] (for starlike domains), Marcus [7] (for general domains) and Aharonov and Kirwan [1].

A result concerning a process of continuous symmetrization, and a result on a symmetrization based on an integral averaging, are also obtained.

Finally, these results are applied to certain problems in the theory of functions. Here we introduce a definition of a class of functions \{f\}, analytic in the unit disk \|\| < 1, which includes the Bieberbach-Eilenberg functions as well as some other classes of functions considered in the literature. For this class we obtain the estimate $\left|f^{!}(0)\right| \leq-1$, which is sharp.

Other applications concern certain geometric features of the domain D_{f} obtained as the image of the unit disk by an analytic function f.

The plan of the paper is as follows:
In Section 1, we discuss a linear averaging transformation related to $R_{\mathbf{A}}$ and obtain certain integral inequalities.

In Section 2 we obtain the basic results concerning capacity and conformal radius in relation to radial averaging transfor-
mations.
In Section 3_{5} various symmetrization results are obtained.
In Section 4 the extension of the Bieberbach-Eilenberg class of functions, mentioned above, is discussed.

In Section 5 some additional applications are considered.
The radial averaging transformation presented in this paper is based on the logarithmic metric. Similar transformations based on various other metrics are discussed in [2], where these transformations are considered also in higher dimensional spaces. The author wishes to thank Professor Nehari for a number of stimulating conversations concerning this paper.
§1. Linear Averaging Transformations.

Let n be a set in the plane (x,y). We denote:

$$
\begin{equation*}
\left.M x_{\circ}, n\right)=\text { meas. }\left(\left(x=x_{Q}\right\} n f l\right), \tag{1.1}
\end{equation*}
$$

the measure being Lebesgue measure.

Definition 1.1. Let f be a function defined in the half strip $M=\{(x, y) \mid 0 \leq x \leq 1,0 \leq y\}$ - We shall say that feB (M) if:
(i) $\mathrm{feC}(\mathrm{M})$
(ii) $0 \leq f \leq 1$ in M
(iii) On any half line $\left\{\left(x_{Q}, y\right) \mid 0 \leq y\right\}$, such that $0 \leq x_{Q} \leq 1$, f obtains every value A in the open interval $(0,1)$, at least once, but not more than a finite number of times.
(iv) $\lim f(x, y)=1$, uniformly with respect to x, y -*-+oo
$0 \leq x \leq 1$.

For any real function f defined in M, we denote:

$$
\left\{\begin{align*}
n_{A}(f) & =\{(x, y) j f(x, y)<A\} 0 M \tag{1.2}\\
\Omega_{\lambda}^{\prime}(f) & =\{(x, y) \mid f(x, y) \leq A\} n M \\
\Omega_{\mu, \lambda}(f) & =\{(x, y) \mid \mu<f(x, y)<\lambda\} \cap M_{M}=\Omega_{A}(f)-\Omega_{\mu}^{\prime}(f)
\end{align*}\right.
$$

For $f e B(M)$ we denote:

$$
\left\{\begin{array}{l}
<t(x, A ; f)=\wedge\left(x, n_{A},(f)\right), \quad 0<A \leq 1 \tag{1.3}\\
\ell(x, 0 ; f)=\ell\left(x, \Omega_{O}^{\prime}(f)\right) .
\end{array}\right.
$$

Definition 1.2 Let $55=\left\{\mathbf{i}^{\wedge}, \ldots, \wedge^{\wedge}\right\}_{\mathbf{n}}^{B(M)}$ and let $A=\left\{a_{\mathbf{j}}\right\}_{\mathbf{1}}^{n}$ be a set of positive numbers such that T. $a_{\text {. }}=1$. Set:

$$
\begin{equation*}
I(x, A)=\underset{j=1}{\operatorname{Sax}_{3}} \frac{1}{3}\left(x,-K ; \pm_{3} .\right),(\underline{O}<x \leq 1,0 \leq A \leq 1) . \tag{1.4}
\end{equation*}
$$

Then for $(x, y) e M$ we define

$$
f^{*}(x, y)=f_{A}(3 f)=\left\{\begin{array}{ll}
\text { (0 } & \text { if } 0 \leq y \leq \mathbb{N}^{*}\left(x_{5} O\right) \\
J A & \text { if } y=* *(x, A), \tag{1.5}
\end{array} \quad 0<A<1\right.
$$

Note that for every fixed $x, 0<x^{<}=1, I^{*}(x, A)$ is a strictly monotonic increasing function of $A,\left(0<C _A \leq 1\right)$. Hence f^{*} is well-defined in M.

We now prove:

Lemma 1.1. Let 3 and A be as in Definition 1.2. Then $f * e B(M)$. If in addition f. is Lipshitz in Q. (f.) , j = l,..., n, (where a^b are fixed numbers, $0<a<b<1)$ g then f^{*} is Lipshitz in $\Omega_{a, b}\left(f^{*}\right)$.
Proof. It is easily verified that for $7 \backslash>0$ the set $C I \quad(\ddot{f})$ is open (relative to M) and that for $0<\underline{C} A<1$ the set OM,f) is compact. This implies the continuity of f in M and the fact that f^{\star} satisfies condition (iv). It is obvious that f satisfies also conditions (ii) and (iii). Hence f * $€ \mathrm{~B}(\mathrm{M})$.

We proceed now with the proof of the second assertion of the lemma. To simplify the notation we set $\wedge(x, A ; f .)_{J}^{=} \underset{3}{-£_{2}(x, A)}$. By our assumption, there exists a constant k such that:
where $\mid P-P^{!}$I denotes the distance between the two points.

Let $a<a^{f}<b^{!}<b$. We shall show that f^{*} satisfies a

 boundary of $n_{a \dot{y_{D}}}\left(f_{j}\right)$. Set $\frac{\sigma_{\mathbf{u}}}{}=\min \left(\sigma_{\dot{\mathbf{x}}}, \ldots, \sigma_{\mathbf{n}}\right)$. (Note that 60>0.)

 centered at $I>_{1}$. If $0<6<6_{Q}$, then (by (1.6)):

$$
\begin{equation*}
\mathbf{f}(\mathbf{P})<\lambda_{I}+\mathbf{k S}, \quad \mathbf{P} € \mathrm{~K}_{6}\left(\mathbf{P}_{1}\right) \quad \mathbf{0} \quad \mathbf{M} \tag{1.7}
\end{equation*}
$$

Hence, if $\mid{ }^{*} 2^{\sim}{ }^{x} i \quad<{ }^{6}<{ }^{6} Q^{\prime}\left(\circ<{ }^{x} 2 \wedge{ }^{1} \wedge\right.$ and $A_{i}+{ }^{66}<{ }^{\wedge} 2-{ }^{1}<$, then

Since this holds for every j, we obtain (under the same assumptions):

$$
\begin{equation*}
* *\left(x_{\mathbf{n}}, A_{n}\right) \wedge \mathcal{l}^{*}\left(x, \wedge, 1+\left[S^{2}-\left(x,-x_{1}\right)^{2}\right]^{1 / 2} .\right. \tag{1-9}
\end{equation*}
$$

From (1.9) it follows that:

$$
\begin{equation*}
\left|f^{*}(P)-f^{*}\left(P^{\prime}\right)\right| \leq k\left|P-P^{\prime}\right|, \quad Y P, P^{\prime} \notin n_{a}, \quad, \quad(f *) . \tag{1.10}
\end{equation*}
$$

Indeed, if this is not true, there exist points $P_{\mathbf{i}}=\left(x_{\mathbf{i}}, Y_{\mathbf{i}}\right)>$. ($\mathrm{i}=1,2$), in $\mathrm{n}_{\mathrm{a}}, \mathrm{b},(\mathrm{f} *)$ such that:

$$
\begin{equation*}
\left|P_{x}-P_{2}\right|=6<\sigma_{Q}, \quad\left|f *\left(P_{1}\right)-f *\left(P_{2}\right)\right|>k 6 . \tag{1.11}
\end{equation*}
$$

Suppose $\mathrm{f}^{*}\left(\mathrm{P}_{1}\right)<\mathrm{f}^{*}\left(\mathrm{P}_{2}\right)$; then $\mathrm{f} *\left(\mathrm{P}_{1}\right)+\mathrm{k} 6<\mathrm{f} *\left(\mathrm{P}_{2}\right)$. Choose A_{1}, A_{2} so that $f^{*}\left(P_{1}\right)<A j, f^{*}\left(P_{2}\right)>A_{2}$ and $A_{1}+k 5<A_{2}$. Then, by the definition of f^{*} we have $y_{ \pm}<\wedge\left(X j^{\wedge \wedge A} \mathbf{I}\right)$ and
$\underline{Y}_{2}>£ *\left(x_{2}, A_{2}\right)$. On the other hand inequality (1.9) holds for

$$
{ }^{\mathrm{y}} 2>{ }^{\mathrm{y}} 1+t^{62}-\left(\mathrm{x}_{i}-\mathrm{x}_{2}\right)^{211 / 2} \quad \mathrm{i}_{-} \mathrm{e}_{\star} \quad \mathrm{I}^{\mathrm{P}} 1^{\prime \prime}{ }^{\mathrm{P}} 2^{\prime}>{ }^{5},
$$

which is a contradiction to (1.11).

Definition 1.3. Let $f e B(M)$ and denote:

$$
\begin{aligned}
\Omega(f) & =\Omega_{1}(f)-\Omega_{\mathbf{O}}^{1}(f)=\left\{\left(x_{5} y\right) \mid 0<f(x, y)<1\right\} P I M ; \\
Y_{A}(f) & =\{(x, y) \mid f(x, y)=A\} 0 M, \quad 0<A<1 .
\end{aligned}
$$

Suppose that $f € C^{1}(Q(f))$. Let $P_{Q}=\left(x_{Q}, Y_{0}\right)$ be an interior point of $C l(f)$ and $f\left(P_{Q}\right)=A_{Q}$. We shall say that P_{Q} is a regular point of f, if $S f / 5 y$ j4 0 at all the points of the set ${ }_{Y_{\mathbf{X}}} P I\left\{x=X_{Q}\right\}$ and if this set is contained in the interior of fi(f). Otherwise we shall say that P_{Q} is a critical point and $A_{\underline{Q}}$ a critical value of f on $x=x_{0}$.

Lemma 1.2. Let $f e B(M) n C^{1}(n(f))$. Suppose that $A_{Q},\left(0<7 l_{\ell}<1\right)$, is not a critical value of f on $x=x_{\boldsymbol{o}}\left(0<x_{Q}<1\right)$. Then $I(x, \sim k ; \pm) e^{\mathbf{l}} \quad$ in a neighborhood of $\left(x_{\underline{Q}}, A\right.$.
Proof. Since feB(M), V_{0} intersects the line $x=x_{n}$ at a finite number of points $\left\{p_{1}, \ldots, p_{\mathbf{k}}.\right\}$. Let $\mathrm{P}_{\mathbf{J}} .=\left(\mathrm{X}_{\mathbf{O}}, \mathrm{y}_{\mathbf{J}}\right)$) and suppose that $Y_{\mathbf{1}}<\underline{Y}_{\underline{2}}<\ldots<\mathrm{Y}_{\mathbf{k}}$. Then the sequence

$$
\left\{\frac{\partial f}{\partial y}\left(P_{j}\right)\right\}_{j=1}^{k}
$$

has alternating signs.
Let $y_{\mathfrak{F}_{j}}=y_{\text {<J }}(x, A)$ be the inverse function (with respect to $y)$ of $A=f(x, y)$, in a neighborhood of $p_{\mathbf{j}}$. Then for $\left(\mathbf{x}_{\mathbf{1}}, \lambda_{\mathbf{1}}\right)$
sufficiently near to $\left(\mathrm{X}_{\mathrm{Q}}, \mathrm{A}_{\mathbf{0}}\right)$, the intersection of $\mathrm{y}^{\wedge}{ }_{\mathbf{l}}$ with
 Hence for (x, A) in some neighborhood of $\left(x_{0}, A_{Q}\right)$ we have:

$$
\text { (1.12) }<t(x, A ; f)=j 3 \underset{j=1}{2}(-1)^{\cdot{ }^{J+i}} y_{3}^{\prime} \cdot(x, A)
$$

 of (x_{n}, A_{0}) the assertion of the lemma is proved.

Note that for (x, A) in a neighborhood of $\left(x_{0}, A_{0}\right)$ we have:
(1.13)

Definition 1.4. We shall say that a function f belongs to $B^{!}(M)$ if $f e B(M)$ and in addition:
(v) $f € C^{1}(\mathrm{n}(\mathrm{f}))$;
(vi) For every $\underline{x}_{\underline{Q}},\left(0<\underline{x}_{\underline{Q}}<1\right)$ and every $a_{5} b(0<a<b<1)$, $\partial \mathbf{f} / \partial \mathbf{y}$ vanishes at most at a finite numbed of points on $\left\{\mathbf{x}=\mathrm{x}_{0}\right) \boldsymbol{n n}_{\mathrm{a}, \mathrm{b}}{ }^{(f)}$.

Applying the transform $£_{\mathrm{A}}$ to functions in $B^{!}(M)$ we obtain the following basic result:
 be a set of positive numbers such that $£ a_{0}=1$. Let $G(t)$ be a function defined for $t{ }^{\wedge} \geq 0$ such that $G(t)$ is non-negative continuous, convex and non-decreasing. If $f^{*}=\underset{\sim}{f A}\left({ }_{\kappa}^{* *}\right) *$ then:

$$
\begin{aligned}
& \text { (1.14) JJ } G\left(\left(1+|v f *|^{2}\right)^{1 / 2}\right) d x d y \leq Z_{Z}^{n} \text { adJ } G\left(\left(1+|v f j|^{2}\right)^{1 / 2}\right) d x d y .
\end{aligned}
$$

Proof. From properties (iv) and (v) of the class $B^{\prime}(M)$ and Lemma 1.1 it follows that $f *$ is Lipshitz in every compact subset of fi(f*). Hence the left side of (1.14) is meaningful.

Let $0<a<b<1$. We shall prove:
(1.15).rr $G\left(\left(1+|7 f *|^{2}\right)^{1 / 2}\right) d x d y<f a \quad . f j^{\Gamma} G\left(\left(1+|? f . .|^{2}\right)^{\mathbf{l} / 2}\right) d x d y$
anD a, is J

The inequality (1.14) follows from (1.15) if we let $a->0$ and $\mathrm{b} \rightarrow 1$.

Given $x_{Q}, 0<x_{Q}<1$, we denote by $\left\{\wedge_{1,},--\backslash_{_{1}}\right\}$ the set of all critical values of the functions $\left.\mathrm{ff}_{\mathrm{i}}\right)^{\wedge}=1$ on the line $x=x^{\wedge}$, such that $a<7,<b_{5}(k=1, \ldots, v-l)$. This set is finite by property (vi) of the class $B^{!}(M)$. We set $A_{Q}=a$ and $7 V_{V}=\mathrm{b}$ and we assume that $A_{\mathrm{O}}<\mathrm{A}_{\mathbf{1}}<\ldots<\wedge_{\mathrm{v}_{-}} \wedge^{\wedge}<\wedge_{\mathrm{V}} \cdot{ }^{\mathrm{B}} \mathrm{Y}$ property (iii) of the class $B(M)$, the set

$$
T^{\wedge}=\left\{\left(x_{0}, Y\right) \mid A_{m}<f j\left(x_{0}, Y\right)<W\right.
$$

consists of a finite number of open intervals. Denote these intervals, ordered by increasing y, by $\left\{\mathcal{I}^{m} \backslash \wedge\right\}^{k} \wedge_{T}^{\prime} \mathbf{j}_{9}(m=0, \ldots, v-1$; $j=1, \ldots, n)$. Each interval $\mathrm{T}^{1}!^{1}$. is free of critical points of f.; in a neighborhood of $T^{T M}$:r the function $A=f .(x, y)$ J $\quad \times 9$ J \quad J $\quad 1$
 in a neighborhood of the interval $I_{m}=\left\{\left(x_{Q}, A\right) \mid A_{m}<A<\right.$
(1.16)

Hence $I^{\pi}(x, A) C^{\perp}$ in a neighborhood of I_{m} and $b I^{\pi} / b I \backslash>0$ there.

To simplify the notation we shall denote:

$$
G\left(\left(1+c r^{2}\right)^{1 / 2}\right)=6(a), \quad(-00<a<\infty) .
$$

Let:

$$
\mathrm{T}^{\mathrm{m}}=\left\{\left(\mathbf{x}_{0^{9}} \mathrm{~V}\right) \mid \ell^{*}\left(\mathrm{x}_{0}, \lambda_{\mathrm{m}}\right)<\mathrm{y}<\ell^{*}\left(\mathrm{x}_{0}, \lambda_{\mathrm{m}+1}\right)\right\}
$$

We claim that:

Note that, since $A=f^{*}(x, y)$ is the inverse of $y=I^{*}(x, \lambda)$, $0<A<1$, we have

$$
\begin{equation*}
\mathrm{J}_{\mathrm{T}} \mathrm{~g}(|7 \mathrm{f} *|) \mathrm{dy}=\mathrm{J}_{\mathrm{m}}^{\lambda_{\mathrm{m}}+1} \mathrm{G}\left(\left(1+\mid 7_{\left.\left.\mathrm{x},\left.\lambda^{\ell^{*}}\right|^{2}\right)^{1 / 2} / \ell_{\lambda}^{*}\right) \ell_{\lambda}^{*} \mathrm{~d} \lambda}\right.\right. \tag{1.18}
\end{equation*}
$$

where $I^{*}=b I^{*} / \wedge A$. Similarly:
(1.19) $\underset{T_{i, j}^{m}}{J} \&(|7 f j|) d y=\int_{\lambda_{m}}^{\lambda_{m+1}} G\left(\left(1+\left|\nabla_{x, \lambda} y_{i, j}^{m}\right|^{2}\right)^{1 / 2} /\left.\right|_{-} ^{\partial^{m}} \quad \frac{\mathrm{~N}}{\mathrm{~m}, j}, \mid \mathrm{d} \lambda\right.$.

Hence in order to prove (1.17) it is sufficient to show that:
(1.20) $\quad G\left(\left(1+\left|\nabla_{\mathbf{x}, \lambda} \ell^{*}\right|^{2}\right)^{1 / 2} / \ell_{\lambda}^{*}\right) e_{\lambda}^{*} \leq$

$$
\leq \sum_{j=1}^{n} a_{j} \sum_{\sum_{i=1}^{k}, m} G\left(\left(1+\left|\nabla_{x, \lambda} y_{i, j}^{m}\right|^{2}\right)^{1 / 2} /\left|\frac{\partial y_{i, j}^{m}}{\partial \lambda}\right|\right)\left|\frac{\partial y_{i, j}^{m}}{\partial \lambda}\right|
$$

Now, by the triangle inequality (for I_{n} norm in $R a$) we have:

Since G is non-decreasing and convex we obtain:

$$
\begin{align*}
G\left(\left(1+\left|V^{*} *\right|^{2}\right)^{1 / 2} A \star\right) & <0\left(\wedge\left(1+\left.1^{\wedge}\right|^{2}\right)^{1 / 2} /{ }^{*} \lambda^{\prime}\right) \tag{1.22}\\
& \leq \frac{1}{i_{\lambda}^{*}} \sum_{1}^{n} \mathbf{a}_{j}^{\ell}{ }_{j}, \lambda^{G\left(\left(1+\left|\nabla \ell_{j}\right|^{2}\right)^{1 / 2} / \ell_{j, \lambda}\right)}
\end{align*}
$$

where $I . \wedge={ }^{\circ} \mathrm{CH} . / 5 \mathrm{~A}$. Here we used the equality $-\mathrm{U}=\mathbf{n}_{\mathrm{n}} \mathrm{Sa}_{\mathbf{j}, \boldsymbol{\lambda}}$. Similarly we have (by (1.16)) :

$$
\begin{align*}
& \left.\left(l_{+} \mid \text {vt }{ }_{\dot{3}} \mid{ }^{2}\right)^{1 / 2} \leq\left(k(j, m)^{2}+\wedge_{\mathbf{i}=\mathbf{1}}^{\mathbf{1}} \wedge_{-(. D}^{D} V_{\mathbf{i}, \mathbf{j}}^{\mathbf{m}}\right)^{2}\right)^{\mathbf{1} / \mathbf{2}} \tag{1.23}\\
& \leq \sum_{i=1}^{k(j, m)}\left(1+\left|\nabla y_{i, j}^{m}\right|^{2,1 / 2}\right.
\end{align*}
$$

and hence:

$$
\begin{align*}
& \leq \frac{1}{l_{j, \lambda}}{\underset{i=1}{ }(j, m)}_{i} G\left(\left(1+\left|\nabla y_{i, j}^{m}\right|^{2}\right)^{1 / 2} /\left|\frac{\partial y_{i, j}^{m}}{\partial \lambda}\right|\right)\left|\frac{\delta y_{i, j}^{m}}{\partial \lambda}\right|, \tag{1.24}
\end{align*}
$$

for $x=x_{0}, A_{m}<A<A_{m+1}$.

Combining (1.22) with (1.24) we get (1.20) and hence (1.17). Finally, summing up (1.17) with respect to m ($m=0, \ldots, v-1$) and then integrating with respect to $\mathrm{x}_{\mathbf{0}}\left(0<\mathrm{x}_{\mathbf{0}}<1\right)$ we get (1.15). This completes the proof of the theorem.

Corollary 1.1. Under the assumptions of the theorem:

Proof. First we observe that the theorem and all the arguments presented above are valid also for sets of functions of the
 Naturally, in this case f will be replaced by af .

Let $G(t)=t^{p},\left(p^{\wedge} 1\right) \cdot$ Then $G(t)$ satisfies all the conditions of the theorem. Applying (1.15), with $G(t)$ as above, to the set of functions $\{0 c f\}$

$$
\begin{aligned}
& \text { (1.26) JJ } \quad\left(1-K x^{2}|7 f *|^{2}\right)^{p / 2} d x d y \leq S_{a j}^{n} J \text { JUt }\left(1-\left.H^{2}\right|^{2} 7 \|\left.^{5}\right|^{22}\right)^{p / 2} d x d y \\
& a, b \\
& \text { au J }
\end{aligned}
$$

Note that the domains of integration are bounded and that $|V f \quad|$ and $\mid 7 f$. \mid are bounded in these domains. Hence, dividing both sides of (1.26) by a^{p} and letting $a \rightarrow 00$ we obtain:
(1.27) ff
\mid ?f* $\left.\right|^{\mathrm{P}} \mathrm{dxdy}<\stackrel{\mathrm{n}}{\mathrm{E}}$ a. ff
$|7 f,|^{\mathrm{P}} \mathrm{dxdy}$.

Letting $a-\wedge 0$ and $b-\wedge 1$ we get (1.25).

Note. The assumption that G is non-negative was made in order that the integrals in (1.14) would be meaningful even if they are
infinite. The inequality (1.15) holds even if $G(0)$ is negative. Indeed, in this case set $G^{f}(t)=G(t)-G(0)$. Then we obtain (1.15) with G replaced by G^{*}. But we observe that:

$$
\operatorname{area}\left(Q_{\mathrm{ab}}\left(\mathrm{f}^{*}\right)\right)=\operatorname{Sa}_{\mathbf{l}}^{\mathrm{n}} . \mathrm{J} \operatorname{area}\left(\mathrm{Q}_{\mathrm{ab}}(\mathrm{f} . .)_{\mathrm{J}}\right) .
$$

Hence the terms with $G(0)$ cancel and we obtain (1.15).
By the same argument, if area $\left(0\left(f, \mathbf{J}^{\prime}\right)\right)$ is finite for $j=1, \ldots, n$, then (1.14) holds even if we remove the assumption that G is non-negative.
§2. Radial Averaging Transformations.
In this section we define radial averaging transformations and examine their effect on capacities of condensers and conformal radii of domains.

Definition 2.1. A condenser C in the plane is a system ($\mathrm{n}, \mathrm{E}_{\mathrm{O}}, \mathrm{E}_{\mathbf{I}}$), where Q is a domain, E_{n} and E_{1} are non-empty disjoint closed sets and $E_{\circ} U E_{\mathbf{\prime}}$ is the complement of Q with respect to the extended plane, (i.e. the complex plane z including the point at 0). If E_{Q} and $E_{1_{1}}$ are connected, Q is called a ring.

In this section we shall assume also that E_{n} is compact
and that $\mathrm{E}_{\boldsymbol{i}}$ contains the point at infinity. The condenser C will also be denoted by ($\mathrm{D}, \mathrm{E}_{\underline{Q}}$) where $\mathrm{D}=\mathrm{fi} \mathrm{U} \mathrm{E}_{\mathrm{O}^{-}}$

Definition 2.2. A real function $f(x, y)$ will be called admissible for the condenser $C=\left(Q, \mathrm{E}_{0}, \mathrm{E}^{-} \mathrm{i}_{\mathrm{i}}\right)$ if:
(i) f is continuous in the extended plane,
(ii) $f \doteq 0$ on E_{Q} and $f \equiv 1$ on E_{1},
(iii) f is Lipshitz on every compact subset of Q.

The conformal capacity of C is defined by:

$$
\begin{equation*}
I(C)=i n f . J J|7 f|^{2} d x d y_{5} \tag{2.1}
\end{equation*}
$$

n
the infinum being taken over all admissible functions.
We shall say that a domain Q has the segment property if, for every boundary point P_{Q} of Q, there exists a segment or an arc of a circle, with one endpoint at $P \mathbf{O}$, contained in the complement of fi. (When P_{Q} is the point at infinity, this means that there is a half line lying outside Q.) If $C=\left(f i, E_{\bullet}, E-\perp\right)$ is a condenser such that fi has this property we shall say that C has the segment property. If C has the segment property, then there exists a unique; admissible function $C O$ which is harmonic in fl. This function will be called the potential furction of C. In this case we have:

$$
\begin{equation*}
\mathrm{I}(\mathrm{C})=\hat{\mathrm{j} j}|\mathrm{vco}|^{2} \mathrm{dxdy} . \tag{2.2}
\end{equation*}
$$

For a proof of these assertions see for instance Hayman [4] (p. 62-7).

Lemma 2.1. Given a condenser $C=\left(n, E_{n}, E_{\mathbf{I}_{\mathbf{1}}}\right)$, there exists a sequence of condensers $\{C.\} ?^{0}, C .=\left(Q ., E_{n} ., E-\right.$. .) such that:
$\begin{array}{ll}3 & 1 \quad J \quad J \quad v, j \quad 1, j\end{array}$
(a) $\left\{Q_{\mathbf{j}}\right\} \frac{\infty}{\mathbf{\infty}}$. is a monotonic increasing sequence of domains possessing the segment property;
(b) Q. is a compact subset of fi and $U Q .=Q$, (j = 1,2,...); 3 T 3
(c) E_{Q} ? contains a neighborhood of E. 7 (j = 1, 2, ...);
(d) $\underset{\mathbf{j} \rightarrow \infty}{\lim } I\left(C_{\text {H }}\right)=I(C)$.

This assertion is easily verified by a standard argument. We note also that if $C=\left(O^{\wedge} E^{\wedge} E^{\wedge}\right.$ and $C^{1}=\left(O^{1}, E \wedge, E p\right.$ are two condensers such that $0 \mathrm{c}: \mathrm{Q}^{!}$then $\mathrm{I}\left(\mathrm{C}^{!}\right) \leq \mathrm{I}(\mathrm{C})$. This follows immediately from Definition 2.2. We shall refer to this as the monotonicity property of the capacity.

Definition 2.3. Let $\varepsilon=\left\{D_{1}, \ldots, D_{n}\right)$ be a family of open sets in the complex plane z, with nonempty intersection. Suppose that the closed disk $\left|z-z_{0}\right| \leq p$ (for some positive p) is contained in $\underset{1}{f l} \mathrm{D}_{\mathrm{j}} . \quad$ Let:

$$
\begin{equation*}
K^{\wedge}(c p)=\left\{r \mid z=z^{\wedge}+r e^{1(p} e D . j p<r<\infty \circ\right\},(0<\mathrm{p}<2 T T) . \tag{2.3}
\end{equation*}
$$

Set:
(2.4) $\wedge^{\wedge}(\mu \mathrm{p})=\mathrm{J}_{\mathrm{K}(\varphi)} \mathrm{f}^{\wedge}$ and $\operatorname{Rj}\left(\langle 0)=R\left(\left\langle p_{;} D_{j} z_{0}\right)=p^{\exp \cdot \ell_{j}^{p}(\varphi) .}\right.\right.$
(Note that $R \mathbf{j}$ ((p) does not depend on p.)
Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ be a set of positive numbers such that n $\operatorname{2a}_{1} \mathrm{a}_{\mathrm{j}}=1$. We define:

$$
\begin{equation*}
R^{*}(<p)={\underset{j}{n} R_{j}}_{R_{j}}\left(\langle p)^{a_{i}}, \quad(0<-\varphi p<2 T T)\right. \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{D}^{*}=\mathrm{ft}_{\mathrm{A}}\left(\& ; \mathrm{z}_{0}\right)=\left\{\mathrm{z}=\mathrm{z}_{\mathrm{Q}}+\mathrm{re}^{1 \mathrm{c} \dot{p}} \mid \mathrm{O}<\mathrm{r}<\mathrm{R}^{*}(<\mathrm{p}), 0<\leq \mathrm{p}<2 \mathrm{TT}\right\} \tag{2.6}
\end{equation*}
$$

We shall say that $f t_{A}$ is a radial averaging transformation on with center z_{fi}.

It is easy to verify that D is a domain which is starlike with respect to ${ }^{\mathrm{z}} \mathrm{o}$.

Definition 2.4. Suppose that $\left\{\mathrm{E}_{3}\right\}_{1}^{\mathbf{n}} \quad$ is a family of compact sets
 $K^{\star} ?\left(\langle\mathrm{p})\right.$ and $\wedge^{i}(\mathrm{p})$ as before (where p is any positive number). Then we define:

$$
\begin{equation*}
R_{j}(<p)=R\left(\left\langle p_{J}^{E} \cdot ; \zeta_{0}\right)=\lim _{p-\wedge 0}^{=} \operatorname{pexp} . \underset{J}{\wedge}(\varphi),\right. \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
E^{\star}=\star_{A}\left(\{E j) J ; z_{0}\right)=\left\{z=z_{Q}+r e^{i(p} \mid 0<T<\mathbb{R}^{*}(\varphi \mathrm{p}), 0 \ll p<2 i r\right\} \tag{2.8}
\end{equation*}
$$

with $R^{*}(0)$ as in (2.5).
It is easily verified that E is a connected compact set, starlike with respect to ${ }^{\mathbf{z}} \mathbf{0}$. (Of course, in some cases, E may consist only of the point z / v)

Definition 2.5. Let $\{C .\}^{\wedge}$ be a family of condensers, $C .=\left(Q ., E_{n} . \wedge E, \quad\right.$, $)$ $=\left(D ., E_{n}.\right)$. Suppose that the intersection of the sets E_{n}.
(j $=1, \ldots, n$) is non-empty and let ${ }^{z} \mathbf{o}$ be a point of this intersection. Let A be as in Definition 2.3 and set:

$$
\begin{align*}
& D^{*}=R_{A}\left(\left\{D_{j}\right\}_{1}^{n} ; z_{0}\right), \tag{2.9}\\
& E_{O}^{*}=R_{A}\left(\left\{E_{0, j}\right\}_{1}^{n} ; z_{o}\right) .
\end{align*}
$$

Then we denote:
(2.10)

$$
C *=>_{A}\left(i C^{\wedge} 1 ; z_{0}\right)=\left(D *, E_{0}^{*}\right) .
$$

We denote also $Q^{\wedge^{*}}{ }^{*}=D^{*}-E_{\sim}^{*}$.
.x. $3 t$
Note that if D is not the entire $p_{*} l a n e$ and E_{n} contains more than one point, then the condenser C possesses the
segment property. In fact, Q^{v} ' is a ring which is starlike with respect to ${ }^{z}{ }_{0}$.

The following theorem gives a relation between the capacities of CJJ.-.JCn and the capacity of C^{*}.

Theorem 2.1. Let $\left\{C_{\mathbf{j}}\right\}_{\mathbf{i}}$ be a family of condensers as in Definition 2.5. Let $\left.C^{*}=f t_{A}(f C\}. J ; z_{0}\right)$. Then:

$$
\begin{equation*}
I(C)<\underset{i}{\operatorname{Eap}} \cdot \underset{J}{a} \cdot I_{J}^{(C-)} \bullet \tag{2.11}
\end{equation*}
$$

Proof. By Lemma 2.1 and the monotonicity property of the capacity it is sufficient to prove the theorem in the case that the condenser $C J$ possesses the segment property and $z \mathbf{O}$ is an interior point of $E_{o-, ~}, \mathbf{J},(j=l, \ldots, n)$. Therefore we restrict our attention to this case. Without loss of generality we may assume that $\quad \mathbf{0}=0$ and that the disk $|z|{ }^{-<^{\wedge} 1}$ is contained in each of the sets $E_{n} .$, (j = 1, ..., n).

Consider the mapping $w=$ In z of the domain $|z|>1$ cut along the positive real axis onto the half strip $[w=u+i v \mid$ $0<v<2 i r, 0<u\}$.

Let $\begin{gathered}\mathbf{J} .\end{gathered}$ be the potential function of ${ }_{C}^{\mathbf{J}}$. and denote $f_{*}:(u, v)=\operatorname{to}_{\dot{j}}\left(e^{w}\right),(j=1, \ldots, n)$. Then $\frac{f}{3}$. is periodic in v with period $2 w$ and it is easily verified that $f_{\dot{q}} G B$! (M) where $M=\{(u, v) \mid 0 \leq v \leq 2 T T, 0 \leq u\}$. Let $f^{*}=£$. (\{f.\}?) in the half strip M. Obviously $f^{"}(u, 0)=f^{\pi}(u, 27 r)$ and we extend f^{π} periodically in v (with period $2 i r$) to the half plane $u ; \geq 0$. The extension will also be denoted by f^{*}.

By Lemma 1.1, f (extended as above) is continuous in the half plane $u \wedge \geq 0$ and is Lipshitz in every compact subset of
$\left.\mathrm{fi}=\mathrm{f}\left(\mathrm{u}_{5} \mathrm{v}\right) \mid 0<\mathrm{f}^{*}(\mathrm{u}, \mathrm{v})<1,0 \leq \mathrm{u}\right\}$. Also $\mathrm{f}^{*} \mathrm{eB}(\mathrm{M})$. By Definitions (•*)
1.2 and $2.5, C l$ is the image of $f i^{v}$ ' by the (multiple valued) function $w=$ In z.

We denote $u T(x, y)=f^{*}(\ln z),(z * x+i y)$. Because of the periodicity of $f^{\star}{ }_{*}$ the function $u>$ is well defined in $|z|$;> 1. We extend to "to the entire plane by setting to $=0^{\pi}$ in described abdvet, it folatowso.thathetro, fromntadmpsopbitiesnofiof for the condenser C C^{*}. Hence:

$K C *) \leq\left. J J \quad 170 f\right|^{2} d x d y$.

$\Omega^{(*)}$
By Corollary (1.1), with $p=2$, and the invariance of the Dirichlet integral under conformal mapping:

JJ $\quad\left|7 w^{*}\right|^{2} d x d y \leq 2^{n}$ aj JJ $|v o j j|^{2} d x d y$.
Ω j

Combining these inequalities and taking into account formula (2.2) we obtain (2.11).

Let D be a domain in the plane and $\underline{Q}^{2}{ }^{G D}$ - We denote by $r\left(z_{\underline{Q}} ; D\right)$ the conformal (or inner) radius of D at Z_{0}.

If $f(?)$ is an analytic function in the unit disk $|g|<1$, such that $f(0)=Z_{0}$, and if the image of this unit disk by $z=f(\%)$ is contained in D, then:

$$
\begin{equation*}
|f(0)| \leq r\left(z_{Q} ; D\right) . \tag{2.12}
\end{equation*}
$$

Equality holds if and only if $z=f(\%) \operatorname{maps}\|\mid\| 1$, (1-1) onto D.

If D is a bounded domain which possesses the segment property, ${ }^{z}{ }_{\circ} e D$, and $C L$ denotes the condenser $\left(D, K_{\mathcal{E}}\right)$, where $K_{\boldsymbol{\varepsilon}}$ is the disk $\left|z^{-z} \mathbf{o}_{0}\right|<£$, then:
(2.13).
$\overline{\mathrm{I}}$

$$
r\left(z \quad \frac{D)}{}+o(1),\right.
$$

where $0(1)$ is a quantity which tends to zero when $£_{-}->0$.
If D is any domain in the plane and ${ }^{Z} Q^{e D}>$ there exists
 $D_{\mathbf{n}}$ is bounded and has an analytic boundary (i.e. its boundary consists of a finite number of disjoint, simple, closed analytic 00
 $r\left(z_{\hat{u}}-\mathrm{D}\right)$. (\{D $\left.\mathrm{D}_{\mathrm{h}}\right\}^{\circ}$ will be called an approximating sequence for the inner radius of D at $z \ldots$)
 subdomains of D such that $U B,=D$ and if $z_{n} e B_{n}$, then $\lim _{\mathbf{k} \rightarrow * C D} r\left(z_{n_{n}} ; B_{k}\right)=r\left(z_{u} ;\right.$ D $)$. This is a simple consequence of the previous result and the monotonicity property of the conformal radius (i.e*ifzoe' $c D^{\prime \prime}$ then $\left.r\left(z_{Q} ; D^{T}\right) \leq r\left(z_{o} ; D^{T t}\right)\right)$.

For the definition of inner radius and proofs of the above statements, see Hayman [4] (p. 78-84). Formula (2.13) is due to Polya-Szegö [9].

We use now Theorem 2.1 and formula (2.13) in order to obtain;:

Theorem 2.2. Let $\$=\left\{D_{1}, \ldots, D_{n}\right\}$ be a family of domains in the plane with non-empty intersection. Let ${ }_{n}{ }_{n} e_{i} D_{j}$ and let

If $D^{*}=f t_{A}\left(£ ; z_{0}\right)$ then:

Proof. It is sufficient to prove the theorem in the case where $D_{j} \quad(j=l, \ldots, n)$ is a bounded domain with analytic boundary. This is clear in view of the existence of approximating sequences for the inner radius of $D . j$ at $z \quad 0(j=1, \ldots, n)$, as described above. Therefore, we restrict our attention to this case.

We shall use the following notations:

Given $£>0$ let $a=£ / r^{\sim}$ and $£ \cdot \boldsymbol{J}=$ ar. \mathbf{J}. Finally denote C. $-\quad=(D ., K C)$, where K_{L} denotes the disk $I z-z^{\wedge} I<£$. , «J «J j
and $I\left(C_{j, \varepsilon_{j}}\right)=I(j, £)$. Then by (2.13):
where $0_{j}(1)$ tend to zero as $\varepsilon \rightarrow 0$.
 that (for sufficiently small $£$): $C_{\varepsilon}^{\star}=\left(D^{*}, K_{£}\right)$. Hence:

$$
\begin{equation*}
\left.\frac{-\overline{2} 2 L_{-}}{\left.\mathrm{KC}_{4}^{*} \cdot\right)} \mathrm{i}_{\circ} \mathrm{g}_{\&}\right|_{-+}+2(1)=12 g \underset{\mathrm{ar}}{\mathrm{r}_{-}^{+}} \cdot \mathrm{O}(1), \tag{2.16}
\end{equation*}
$$

where $0(1)$ tends to zero when $£-->0$.
By (2.11), (2.15) and (2.16) we obtain:

$$
\begin{aligned}
I\left(C_{\varepsilon}^{\star}\right) & =\frac{1 £}{\log \mid-+0(1)} \leq 2 T \mathrm{TF} \underset{J^{-1}}{\mathrm{~S}} \mathrm{aj} /\left(\log \wedge+\mathbf{o}_{\mathbf{j}}(1)\right) \\
& \leq 2 \mathrm{TT} \mathrm{Saj} /\left(\log \wedge+0^{\prime}(1)\right) \\
& =27 \mathrm{~T} /\left(\log \frac{1}{\alpha}+0^{\prime}(1)\right),
\end{aligned}
$$

where $0^{!}(1)=-\max \mid 0$.(1) \mid. Hence: $1 \leq j \leq n$

$$
\left.\log \right|^{r^{\star}}-+0(1) \wedge \log { }^{1}+0^{\prime}(1)^{\bullet}
$$

Since $£=a \tilde{r}$ we finally obtain:

$$
\log \underline{\underline{r}}^{*}>0 \quad r^{* *}>\hat{r} .
$$

This completes the proof of the theorem.
§3. Radial Symmetrization and Related Results.
The results that we present in this section are applications of Theorem 2.2. We begin with a definition of radial symmetrization which extends the definitions introduced in [11]g [7] and [1].

Definition 3.1. Let D be a domain in the plane and let ${ }^{z}{ }^{\circ}{ }^{e D \#}$ Denote $R\left(C p ; D ; \mathcal{Z}_{0}\right)$ as in (2.4). Let $A=\{a .\}^{\wedge}$ be a set of $\mathbf{n} 1$.
positive numbers such that $£ a .=1$; let $a=\left\{a_{i}\right\}_{1}$, be a set $1 \mathrm{~J} \quad \mathrm{~J} \mathrm{~J}_{\boldsymbol{1}}^{-1}$ of integers different from zero and let,$Q=\{8$.$\} , be a set of$ real numbers. We denote: b
(3.1) $\quad R^{\star}(<p)=\operatorname{II}_{j=1} R(a .<p+\underset{J}{f} .)^{j}, \quad(0<-\rho<2 T T)$,
where $\mathrm{b}_{\mathrm{f}_{1}}=\mathrm{a} \cdot \downarrow \mid \mathrm{a}=1$, and

$$
\begin{equation*}
\mathrm{D}^{*}=\left\{\mathrm{z}=\mathrm{z}_{\mathrm{Q}}+\mathrm{re}^{1 \dot{\mathrm{c}} \mathrm{p}} \mid 0<\mathrm{r}<\mathrm{R}^{*}(<\mathrm{p}), 0<\underline{\mathrm{cp}}<2 \mathrm{TT}\right\} . \tag{3.2}
\end{equation*}
$$

The transformation $D-^{\wedge} D^{*}$ will be called a (generalized)
radial symmetrization and will be denoted by $S\left(A, a, \overline{" j} \overline{8} ; z_{0}\right)$.
The following lemma will be needed:

Lemma 3.1. Let D be a domain in the plane, such that D contains the origin. Let k be a positive integer. Consider a k-fold covering of D such that each point $z e D, z \times 0$, is covered by k points with arguments $\varphi+2$ TTJ; $0 \lll<k-1$, $0 \leq<p<2 T T$. Let $\frac{T}{\mathbf{K}}, \mathrm{D}$ denote the image of this covering by $\mathrm{w}=\mathrm{z}^{1 / / \mathrm{k}}$. Then:

$$
\begin{equation*}
r\left(O ; T_{k} D\right)=r(O ; D)^{1 / k} \tag{3.3}
\end{equation*}
$$

Proof. Let $\left\{D_{\mathbf{n}}\right\}$ be an approximating sequence for the conformal radius of D at 0 , as described in Section 2 . Then

$$
\begin{aligned}
\lim _{n-\mathcal{N}_{-\infty}} r\left(O ; D_{n}\right) & =r(O ; D), \\
\lim _{n \rightarrow \infty} r(O ; T, D \ldots) & =r(O ; T, D) .
\end{aligned}
$$

The second formula follows from the fact that ($\left.T_{,} D_{\mathbf{K}}\right\}_{\mathbf{n}}^{C o} \mathbf{n}_{-}^{-}{ }_{-}^{\text {] }}$ is a monotonic increasing sequence of subdomains of $T_{\mathbf{k}^{D}}$ such that OO
$\underset{n=1}{U} T_{k}, D_{n}^{D}=T_{k}^{\prime} D$.
Hence it is sufficient to prove the lemma for a domain D which is bounded and has analytic boundary.

Let $K_{£}$ be the disk $|\mathrm{z}|<£$, suppose that $K_{\varepsilon}<z \mathrm{D}$ and
 it is easily seen that:

$$
\operatorname{kl}\left(C_{t}\right)=I\left(C_{\varepsilon}^{k}\right)
$$

Hence, by formula (2.13) we obtain the required result.

Theorem 3.1. Let D be a domain in the plane and let ${ }^{z}{ }_{-}^{e D}{ }_{-}$ Let D^{*} be as in Definition 3.1. Then:

$$
\begin{equation*}
r\left(z_{Q} ; D\right) \leq r\left(z_{Q} ; I f\right)^{1 \mathcal{1}_{\ell} / \mathrm{b}} \text { where } \mathrm{b}=Z_{\mathrm{l}}^{\mathrm{b}} \mathrm{~b}-\cdot \cdot \tag{3.4}
\end{equation*}
$$

Proof. Without loss of generality we may assume that ${ }^{z_{0}}=0$.
 the domain obtained from $D \cdot{ }^{\prime}{ }^{+\prime}$, by reflexion with respect to the
 the domain obtained from $D:_{j}^{(2 ;}$ by a rotation of angle •-0, By (3.3) we have:

$$
r(0 ; D j)=r(0 ; D)^{\text {Via. }}, \quad(j=1, \ldots, n) .
$$

Furthermore, it is clear from our construction that:
1/loU.

$$
\begin{equation*}
R(C ? ; D, ; O)=R(a<p+f i \mathbf{i}) \quad 3 . \tag{3.6}
\end{equation*}
$$

Applying Theorem 2.2 to the set $\&=\{\text { D. }\}^{\mathbf{n}}$, with $D_{\&}$ as above, inequality (3.4) follows immediately from (3.5) and (3.6).

Corollary 3.1. Let $z=f(\mid)$ be an analytic function in $|\S|<1$ such that $f(0)=0$. Let D be the image of $|5|<1$ by the mapping $z=f(5)$. Define D^{*} as in (3.2) with $z_{\mathbf{o}}=0$. Suppose that D is not the entire plane and let $z=\mathbf{F}(\xi)$ be an analytic function in $\backslash \%$ \ 1 which maps this disk (1-1) onto a domain containing D . Then:

$$
\begin{equation*}
|f(0)| \leq\left|F^{\prime}(0)\right|^{1 / b} \tag{3.7}
\end{equation*}
$$

with b as in (3.4).
Proof. Using (2.12) and the subordination principle, this result follows immediately from the theorem.

Remark. Theorem 3.1 includes as particular cases the radial symmetrization results of Szegö [n] (for starlike domains, with $\left.a_{j}=1 / n,<x_{j}=1, \quad \mid 3_{j}=\stackrel{\text { 2TT. }}{-\wedge}-j=1, \ldots, n\right), \operatorname{Marcus}[7]$

 $j S . a r b i t r a r y)$.

The method of the present paper is different from the methods employed in the previous papers, in that the symmetrization results are obtained as a particular case of a more general class of transformations, namely, the radial averaging transformations.

By varying continuously the exponents in the weighted geometric mean (2.5), we can obtain a process of continuous symmetrization with properties similar to those of the continuous symmetrization of Polya-Szegö [9] (p. 200-202). (In [9] the process refers to Steiner symmetrization.) The following theorem provides a result of this type.

Theorem 3.2. Let D be a domain in the plane and let ${ }^{2} Q^{G D}$ * Consider the transformation $S=S\left(A, \overrightarrow{O C},{ }^{\wedge} ; Z_{0}\right)$ with $a_{\mathbf{j}}= \pm 1$. Using the notation of Definition 3.1 set:

$$
\begin{align*}
& \mathrm{R}_{\mathrm{t}}^{*}(\varphi)=\mathrm{R}^{*}(\varphi)^{\mathrm{t}} \mathrm{R}(\varphi)^{1-\mathrm{t}} \tag{3.8}
\end{align*}
$$

(Note that $\mathrm{Sj}^{\mathrm{M} D=S D=\mathrm{D} .) ~}$
Then, for $0 \leq t_{ \pm}<t_{2} \leq 1$ we have:

Remark. Suppose that D is bounded and starlike with respect to z_{Q}. Then $S_{Q} D=D$ as well as $S j D=D^{*}$ and $R^{\wedge} .(\langle P)$ depends continuously on t, for $0 \leq t \leq 1$. Hence, in this case the transformation S_{L} may be called a continuous symmetrization connecting D and D.

Proof. By (3.8):

Hence by Theorem 2.25 we obtain the second inequality in (3.9). In particular, for $t_{\ddot{\boldsymbol{i}}}=t$ and $t_{2}=1$ we get:

$$
r\left(z_{Q} ; D^{\prime f}\right)^{t} r\left(z_{()} ; D\right)^{1} n^{t} \leq r\left(z() ; S_{t} D\right) .
$$

Finally, by Theorem 3.1:

$$
\mathbf{r}\left(z_{0} ; D\right) \leq r\left(z_{Q} ; D^{*}\right) .
$$

Combining these inequalities we obtain (3.9).

The following theorem supplies a symmetrization based on an integral formula.

Theorem 3.3. Let $A(\$)$ be a bounded, monotonic increasing function in the interval [0,2ir], such that:
(3.10)

$$
\left.\boldsymbol{J}_{0}^{\mathrm{r} 2 \mathrm{~d}} \mathrm{dA}(!/)\right)=\mathbf{1}
$$

the integral being a Stieltjes integral.

Let $z=f(5)=a_{1} 5+a_{-} ?^{2}+\cdots$ be an analytic function in the unit disk $|g|<1$ and let D be the image of this disk by $z=f(§)$. Denote as usual, $R(\langle p)=R(c p ; D ; O)$ and set:

$$
\begin{align*}
& \underset{r}{\boldsymbol{r}} \underset{\sim}{\sim} \underset{\sim}{\mathrm{R}}(\mathrm{cp})=\exp \left[\mathrm{P}^{\mathbf{P}^{27 r}} \text { In } \mathrm{R}(\mathrm{cp}+\langle |>) \mathrm{dA}(4>)\right] \text {, } \tag{3.11}\\
& {\left[\mathrm{D}=\left\{\mathrm{z}=\mathrm{re}^{1(\mathrm{p}} \mid 0 \overline{\mathrm{r}} \mathrm{r}<\mathrm{R}(\mathrm{cp}), 0<\overline{\mathrm{L}} \mathrm{p}<2 \mathrm{TT}\right\},\right.}
\end{align*}
$$

the integral being a Lebesgue-Stieltjes integral. Then:

$$
\begin{equation*}
\left|\mathrm{a}_{1}\right| \overline{<} \mathrm{r}(0 ; \mathrm{D})<\mathrm{r}(0 ; \mathrm{D}) \tag{3.12}
\end{equation*}
$$

Without loss of generality we may assume that $f(5)$ is analytic in $|?|<1$ and that $f^{T}(5) \wedge 0$ for $|g|=1$. In the general case, the result will follow by approximating the function $f(\S)$ by functions $f(p \S)$ with $0<p<1$.

Under the above mentioned assumption, $R(C p)$ is a bounded continuous function of cp (and periodic with period $2 i r$).

Hence the integral in (3.11) may be interpreted as a RiemannStieltjes integral. Therefore, we have:
uniformly with respect to $t p$, where $y<{ }_{n}=A(-\bullet(j+1))-A\left(-{ }^{\text {L }} \cdot \boldsymbol{j}\right)$. Let:

$$
\begin{aligned}
& \text { n-1 }
\end{aligned}
$$

We observe that by (3.10) $\lim _{n-\star^{*} O O^{n}} Y=1$. Denote:

$$
\begin{aligned}
& D_{\mathbf{n}}^{\star}=\left(z=r e^{1<p} \mid 0<r<R^{\star} \underset{n^{\prime}}{(\varphi p)}, 0<_p<2 T T\right\} .
\end{aligned}
$$

Given $£>0$, for sufficiently large n we have (by (3.13)):

$$
\left|\hat{f}(<p)-R_{\mathbf{n}}^{\star}(<p)\right|<d, \quad 0 \ll c p<2 T T \text {. }
$$

From this and Theorem 3.1 it follows that:

$$
\left|\varepsilon_{1}\right| \leq r(O ; D) \leq r\left(O ; D_{\mathbf{n}}^{*}\right) \leq r(0, \tilde{D})+I_{n>}
$$

where $£_{n}{ }^{-\wedge} 0$ when $n-* o o$. This completes the proof of the theorem.

Remark. Considering the special case $A(I / J)={\underset{J}{J}}_{J_{T}} t y$, we observe that by the geometric-arithmetic mean inequality we have:

$$
\begin{align*}
& \text { ^ Jo 0. } \tag{3.14}
\end{align*}
$$

Let R_{Q}^{-}be the radius of the disk whose area equals the area of D. Then by Holder!s inequality:

By (3.12), $\left|a_{\text {gL }}\right|_{-}<K$. Since $\widetilde{R} \leq R_{Q}$, this estimate is stronger than the corresponding estimate obtained by Schwarz symmetrization, The following result is also a consequence of Theorem 2.2:

Theorem 3.4. Let D be a domain in the plane and let ${ }^{\mathrm{Z}} \mathrm{o}^{\wedge D_{-}}$ Denote:

$$
\begin{equation*}
D^{*} t=\left[z=z_{Q}+r e^{1(p} \mid 0<\underline{r}<R(<p) *, 0<c p<2 T T\right\} \tag{3.15}
\end{equation*}
$$

where $R(c p)=R(c p ; D ; z)$. Then:

$$
\begin{equation*}
r\left(z_{()} ; D\right)^{t}<r\left(z_{0} ; D^{*} t, \quad(0<t<1) .\right. \tag{3.16}
\end{equation*}
$$

Proof. Let $\&=\left\{\mathrm{D}_{-1} \wedge \mathrm{D}_{2}\right\}$ where $\mathrm{D}_{\mathbf{1}}=\mathrm{D}$ and D_{2} is the disk $\left|\mathrm{z}-\mathrm{z}_{\mathrm{n}}\right|<\mathrm{r}\left(\mathrm{z}_{n} ; \mathrm{D}\right)$. Let $\mathrm{A}=[\mathrm{t}, \mathrm{l}-\mathrm{t}]$ and $\mathrm{D}^{\wedge}=\mathrm{R} .\left(\ll \mathrm{z}_{n}\right)$. Note that

$$
\mathrm{R}\left(<\mathrm{p} ; \mathrm{D}^{*} ; \mathrm{z}_{\mathrm{Q}}\right)=\mathrm{r}\left(\mathrm{z}_{\mathrm{Q}} ; \mathrm{D}\right)^{\mathbf{L}^{\mathrm{L}} \mathrm{R}(<\mathrm{p})^{\mathrm{L}}, ~}
$$

so that:

$$
r\left(z_{0} ; D^{*}\right)=r\left(z_{0} ; D\right)^{1-t_{r}}\left(z_{0} ; D_{t}^{*}\right)
$$

But by (2.14) :

$$
r\left(z_{Q} ; D\right) \leq r\left(z_{O} ; D^{*}\right)
$$

Hence we obtain (3.16).
§4. Aji Extension of the Bieberbach-Eilenberg Class of Functions. The following notation will be employed throughout this section:

The unit disk $\mid \% \backslash<1_{5}$ in the complex plane $£_{5}$ will be denoted by $E=E_{\bar{S}}$.

The class of functions $f(5)$, holomorphic in E, such that
$f(0)=0$ will be denoted by M.
If feM, the image of E by $z=f(?)$ will be denoted by
$D_{\underline{f}}$; furthermore, we set $R_{f}(<p)=R\left(c p ; D_{f} ; O\right)$ (see 2.4).

A function $f(\S) e W$ is a Bieberbach-Eilenberg (or B.E.) function if it satisfies the following condition:

$$
\begin{equation*}
\mathrm{f}\left(5_{1}\right)-\mathrm{f}\left(5_{2}\right) \wedge 1, \text { for all } 5_{1}, 5_{2} € \mathrm{E} . \tag{4.1}
\end{equation*}
$$

Various classes of functions, defined by conditions analogous to (4.1) have been introduced and studied in the literature. See for instance Goodman [3], Lebedev [6] and Jenkins [5].

The following class of functions was introduced in [5]. Let 8 be a fixed real number. Then we say that feK\{e $\left.{ }^{i \sigma^{6}}\right\}$ if fert and
(4.2)

$$
f\left(5_{1}\right)^{\text {- }} \mathrm{ff}\left(5_{2}\right) \quad \text { 7* e士*> for al1 } \quad h^{\prime} h^{e E,}
$$

A classical result on B.E. functions states that if $f(\S)$ is such a function, then:

$$
\begin{equation*}
|f \cdot(0)| \leq 1 \tag{4.3}
\end{equation*}
$$

with equality if and only if $f=r$) \% , (fy $\mid=1$).
Jenkins [5] has shown that this result holds also for fek $\{-1\}$ and feKfi\}. Goodman [3] obtained the same result for the classes of functions introduced by him there.

Let f, geW and suppose that:

$$
\text { (4.4) } f\left(6_{1}\right) g\left(5_{2}\right) \wedge 1 . \text { for all } \boldsymbol{5}_{\mathbf{1}}, \boldsymbol{\xi}_{\mathbf{2}} \in \mathbf{E} \text {. }
$$

Then it is known that:

$$
\left|f i(0)-g^{\prime}(0)\right| \leq 1,
$$

and again, the inequality is sharp in the same sense as before. (This result was obtained, in a different form, by Nehari [8].) In order to unify and extend conditions (4.1), (4.2) and (4.4) we introduce:

Definition 4.1. Let P denote the matrix (p, и) ${ }_{1 r-1}$,

$$
j=1, \ldots, n
$$

where p , . are integers and n ;>- 2 .
Let $\odot=\left(9 . ., \ldots, 9^{\mathbf{n}-\mathbf{1}}\right)$ be a vector whose components are real numbers.
(i) Let $\left.\$=\left\{D^{\mathbf{J}}\right\}\right\}$ be a set of domains in the z-plane suç $\& e C^{\mathbf{n}}(P ; 0)$ if the following condition holds:
for all $\left(z_{15} \ldots, z_{n}\right) e D_{1} x . . . x D_{n}-$
If D is a domain containing the origin $\underset{\sim}{a n d}\{D\}$ where $D-\mathbb{+}=. . \quad=D_{n}=D$, we shall say that $D € C(P ;<9)$.
(ii) Let ffj\}Jf $£$ ** We shall say that $\{f \cdot j\} \in C_{n}(P ;\langle \rangle)$, iff $\left\{D_{f}\right\}_{1}^{n} \in \widetilde{C}_{n}(P ; \theta)$.

If $f_{€}$ » and ($\left.f j_{j}\right\}^{\wedge} € C_{n}(P ; 0)$, where $f_{ \pm}=\cdots=f_{R}=f$, we shall say that feC(P;O).

Remark. We observe that $C((1, l) ; 0)$ is the class of B.E. functions while $C((1,-1) ; 6)=K\left\{e^{i 9}\right\}$. Also $C_{29}\left(\left(1_{5} 1\right) ; O\right)$ is the class of pairs satisfying (4.4).

Denote by $P^{1} \mathbf{j}$ the determinant of the matrix obtained from P by deleting the $j-$ th column. Let $P_{\dot{\sim}, ~}=(-1)^{j+1} \mathbf{p}_{j}^{\prime}$.

With this notation we have:

Theorem 4.1. Let P and 0 be as in Definition 4.1 and suppose that $P \underset{J}{j i} 0,(j=1, \ldots, n)$ If $\left.\theta=C D_{1}, \ldots, D_{n}\right\} \tilde{e}^{\sim} C_{n}(P ;$ © $)$ then:

$$
\begin{equation*}
{ }_{\mathrm{n}}^{\mathrm{n} r}\left(0 ; \mathrm{D}_{\mathrm{j}}\right) \leq \mathbf{1} . \tag{4.7}
\end{equation*}
$$

Equality holds if $D_{2}=E,(j=l, \ldots, n)$ where E is the disk

$$
\text { j } \quad \mathbf{z}
$$

z
$1 * 1<i$.
In particular, if feC (P;G) then:

$$
\begin{equation*}
\left|\mathbf{f}^{\prime}(0)\right| \leq 1 \tag{4.8}
\end{equation*}
$$

and equality holds for $\mathrm{f}=t \mathrm{fz}$, (|TJ | = 1) .
Proof. We prove the first assertion of the theorem. The second one follows immediately from the first assertion*

Consider the system of equations:

$$
P \cdot\left(\begin{array}{l}
\varphi_{1} \tag{4.9}\\
\cdot \\
\cdot \\
\iota_{\mathrm{n}}
\end{array}\right)=\left(\begin{array}{l}
\theta_{1} \\
\cdot \\
\cdot \\
\mathrm{~V}^{9} \mathrm{n}-1
\end{array}\right)
$$

If $\left(z_{1 \perp}, \ldots, z_{n}\right) e D_{1} x \ldots x D_{n}$ and if (4.9) is satisfied by $<p^{\wedge}, \ldots,<P_{n}$, where $J^{i p}$. is one of the values of arg z_{j}. (we set

The general solution of (4.9) is given by

$$
\begin{equation*}
\left(p^{\mathbf{J}}={ }_{\mathrm{Y}} \mathbf{j}^{(\boldsymbol{\varphi})}=\mathbf{P}_{\mathbf{j}} \varphi+\psi_{\mathbf{J}}\right. \tag{4.10}
\end{equation*}
$$

where $\left\{{ }_{j}{ }_{j}\right\}$? is a particular solution of (4.9). (We may choose
 P 7.0.).
n ~
Choose $p, 0<p<1$, such that $|z| r p$ is contained in n n D. and denote $D .-=\left[z|z e D .,|z|>p)\right.$. Let $^{-{ }^{-}}{ }^{-}$be the image ${ }^{1}{ }^{1}$ of D. by the (multiply valued) function $w=\operatorname{In} z$, (w $=u+i v$) $39 P$ Denote:

$$
\begin{align*}
& L_{-} j(v)=\left\{(u, v) \mid u \in D_{j}^{1}, \rho^{\}},\right. \tag{4.11}
\end{align*}
$$

Let l.(v), l*.(v) : £"..(v) denote the linear measures of L..(v), J J J 3 L ((v) and $\mathrm{L}!(\mathrm{v})$ respectively.

For given $\left\langle p\right.$, let $v_{\underset{J}{-}}=y_{j}^{-(q)}$. By (4.6), if the interval

$$
i_{n}^{-}\left(v_{n}\right)+\ell^{+}\left(v_{j}\right) \leq|\ln \rho|, \quad(j=1, \ldots, n-1) .
$$

Similarly, we have:

Summing up (4.12) over j (with k fixed) we get:

$$
\begin{aligned}
& j \neq k
\end{aligned}
$$

and now summing up over k we obtain;

$$
\mathrm{S}_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{t}_{\mathrm{K}}\left(\mathrm{v}_{\mathrm{k}}^{-}\right) \leq \mathrm{n}|\ln \mathrm{p}| .
$$

It follows from (4.13) that:

$$
{\left.\underset{i=1}{n} R \cdot j^{n}<p_{j}\right) \leq 1, ~}_{1}
$$

Now, as in the proof of Theorem 3.1, we construct a domain $\tilde{D}_{\boldsymbol{j}} \quad(j=l, \ldots, n)$ such that:

$$
\begin{aligned}
& \text { ViP.j }
\end{aligned}
$$

Let $a_{j}=\left|P_{j}\right| / Y$ where $y=\left.\underset{Z}{n}\right|_{1} ^{n} \cdot \mid$. Then, by (4.15):

$$
\begin{align*}
& R \stackrel{*}{(0)}=n_{1}^{n} R\left(C O ; D_{j} ; 0\right)^{a} \tag{4.16}
\end{align*}
$$

 above, and using (4.15) we obtain (4.7).

Remark. Suppose that, in Definition 4.1, condition (4.6) is replaced by:

where $t . j^{\prime}(j=1, \ldots, n)$, are fixed positive numbers.
If inequality (4.7) is replaced by

$$
\begin{array}{ll}
\mathrm{n} & \mathrm{r}\left(0 ; \mathrm{D}_{2}\right)^{\mathrm{t}} 3^{\cdot} \leq 1, \tag{4.7}
\end{array}
$$

then Theorem 4.1 is valid also in this case.
The proof, except for minor modifications, is the same as before. Instead of (4.14) we have in this case:
$(4.14)^{\prime}$
$n_{n}^{n} R_{\dot{j}}\left(<p_{j}^{j}\right)^{t} \leq 1$,
with $<p$: as in (4.10) and $0<_p$ _ 2ir.

§5. Further Applications.

In this section we consider the following problem. Let
 [0,2TT) . Denote by the ray with argument $<p$, issuing from the origin. Let feit and let D_{f} be defined as in the previous section. Then, the problem is to obtain sharp lower bounds for the measure of the intersection of $\begin{array}{llll}n & \\ U_{i} & a^{\prime} \\ i & { }_{j}\end{array} \quad$ with $\quad \begin{aligned} & \text { D-. }\end{aligned}$

Results of this type (which will be referred to as "covering theorems") were obtained in [11], [7] and [1], by means of radial symmetrization. We state below a rather general covering theorem which, as we shall show, implies the results mentioned above.

The following notation will be convenient for the statement of our result. Let $0<M<o o$ and consider the disk $|z|<M$ iq $^{j}, K<\bar{C} r \overline{<C} M, \quad(j=1, \ldots$ cut along the segments (or rays) $z=r e \quad, K<\bar{C} r \overline{<C} M, \quad(j=1, \ldots$ We denote this domain by $D_{M} \wedge\left(\left(p_{\mu}, \ldots, C p \ldots\right)\right.$. Let $1 \leq M$ and let K be so chosen, that the conformal radius of this domain, with respect to the origin will be equal to 1 . We denote this value
 with K as above by ${ }^{D}{ }_{M}\left(\wedge_{15} \bullet \bullet><P_{m}\right)$ •

$$
\text { If } \quad \mathbf{c p}=Y \cdot(\langle p)=\mathbf{c p}+27 \mathrm{rj} / \mathrm{m}(\mathbf{j}=l, \ldots, m), \text { we denote: }
$$

 the equation:

$$
1=K \cdot 4^{1 / m} /\left(1+K^{m} / M^{m}\right)^{2 / m},
$$

(see [7], p. 624). Hence we have:

$$
\begin{equation*}
\underset{\substack{\mathrm{M} \mid m \\ \mathrm{~K}_{111}}}{ }=\mathrm{M}\left[\left(2 \mathrm{M}^{\mathrm{m}}-1\right)-2 \mathrm{f}_{\mathrm{M}}^{\mathrm{m}}\left(\mathrm{M}^{\mathrm{m}}-1\right)\right]^{1 / \mathrm{m}}, \quad(\mathrm{M} \wedge 1) . \tag{5.1}
\end{equation*}
$$

In particular, $K_{-(, \ldots}^{\wedge}=(1 / 4)^{1 / m}$.

$$
\text { If } \quad \mathbf{c p j}=Y \mathbf{j}(\mathbf{c p}), 1 \leq \mathbf{j} \leq m, \text { and } \varphi_{f}=Y j(-<p), m+1 \leq j \leq 2 m
$$

 rays. In this case we identify $\mathrm{Kj}_{\mathrm{M}, \mathrm{m}}^{\mathrm{m}}\left(\langle\mathrm{p})\right.$ with $\mathrm{K}_{\mathrm{M}}, \mathbf{m}$ With this notation we have:

Theorem 5.1. Let $f(5)=a a_{n} ?^{+a} \hat{o}_{\substack{ }}{ }^{2}+\cdots$ be analytic in the disk $|\S|<1$ and let D_{f} be defined as before. Let $R^{*}(q D)$ be defined as in (3.1), with $R(<p)=R\left(c o ; D_{f} ; 0\right)$. Suppose that:

$$
\begin{equation*}
R^{\star}(<p)<\underline{M}, \quad(0<c p<2 T T), \tag{5.2}
\end{equation*}
$$

for a fixed M, $0<M<\infty$. Suppose also that, for a given set of distinct rays with arguments $\left\{<\mathrm{p}_{\mathbf{1}}, \ldots,<\mathrm{p}_{\mathrm{m}}\right\}$, there exists a number Q such that

$$
\begin{equation*}
R^{\star}(<p j)=Q, \quad\left(1 \leq J^{*} \leq m\right) . \tag{5.3}
\end{equation*}
$$

Set $M^{T}=M /\left|a_{i}\right|^{\text {b }}$, where $b=\underset{1}{E} b_{j}$ (see (3.1)). Then:

$$
\begin{equation*}
{ }^{\mathrm{K}} \mathrm{M}_{>}\left(\left.{ }^{\left(\mathrm{p}_{1} \wedge \wedge^{\wedge}\left(\mathrm{p}_{\mathrm{m}}\right)\right.} \mathrm{l}^{\mathrm{a}} 1\right|^{\mathrm{b}} \wedge^{\mathrm{e}},\right. \tag{5.4}
\end{equation*}
$$

If $b=1$, equality holds for every function f which maps the disk $|g|<1,(1-1)$ onto the domain $|a-,| D_{\text {MI }}\left(c p_{1}, \ldots,<p\right)$.工 $\boldsymbol{M} \boldsymbol{L} \quad \mathbf{m}$
If a .! $=1$, equality holds for every function f which
 Proof. Let D^{*} be defined by (3.2). Then by Theorem 3.1;

$$
\left|\mathbf{a}_{]}\right| \leq r\left(0 ; D_{f}\right) \leq r\left(O ; D^{*}\right)^{1 / b} .
$$

$$
\left|a_{1}\right|^{b} \leq r\left(O ; D_{M, Q}\left(\varphi_{1}, \ldots, \varphi_{m}\right)\right)
$$

Let $M^{1}=M /\left|a_{1}\right|^{b}$ and $Q^{1}=Q /\left|a_{1 L}\right|^{b}$. Then:

$$
1 \leq \mathrm{r}\left(0 ; \mathrm{D}_{\mathrm{M}^{\prime}, Q^{\prime}}\left(\varphi_{1}, \ldots, \varphi_{\mathrm{m}}\right)\right)
$$

Hence we obtain (5.4). The assertions regarding equality are obvious.

It is clear from the proof that, in (5.4), $\left|a_{\boldsymbol{\prime}_{\perp}}\right|$ could be replaced by $r\left(O ; D_{f}\right)$, with $M^{!}=M / r\left(O ; D_{f}\right)^{b}$.

Remark. Let:
with $\left\langle p_{\mathcal{J}}=y_{\dot{\mathcal{J}}}(\varsigma)\right.$ - Then, for every domain D, we have:

$$
{ }_{R_{m}^{*}}^{*}\left(<p_{I}\right)=\bullet \cdot{ }^{R_{m}^{*}}\left(\left(p_{m}\right) \quad, \quad(0<-(p<2 T T) \cdot\right.
$$

Let:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{m}}^{* *}(<\mathrm{p})=\left[\mathrm{R}_{\mathrm{m}}^{*}(\varphi) \cdot \mathrm{R}_{\mathrm{m}}^{*}(-\varphi)\right]^{1 / 2} \tag{5-6}
\end{equation*}
$$

Then, for every domain D:

$$
R_{m}^{* * *}\left(\gamma_{1}(\varphi)\right)=\ldots=R_{m}^{* *}\left(\gamma_{m}(\varphi)\right)=R_{m}^{* *}\left(\gamma_{1}(-\varphi)\right)=\ldots=R_{m}^{* *}\left(\gamma_{m}(-\varphi)\right) .
$$

Corollary 5.1. Let $\mathrm{f}(\S)=5+\mathrm{a}_{2} ?^{\boldsymbol{2}}+\ldots$ be an analytic function in 11 | 1 . Suppose that:

$$
R^{\star}(<\mathrm{m})<\underline{M}, \quad(0<\leq p<2 r r)
$$

for a fixed $M, M \leq \underset{i}{i}$ oo. (Clearly this can hold only if $1 \quad$ M.) Then:

$$
\begin{equation*}
\text { i } Y_{m}<R^{\wedge}(c p), \quad(0 \leq c p<27 r) . \tag{5.8}
\end{equation*}
$$

If instead of (5.7) we have:
$(5.7)^{\prime}$

$$
R_{m}^{* *}(\mathrm{p})<\ldots, \quad(0<\leq p<2 i r)
$$

then:

$$
(5.8)^{\prime} \quad \mathrm{K}_{\mathrm{M}, \mathrm{~m}}^{1}(\varphi) \leq{ }_{\mathrm{m}}^{\mathrm{R}}((0) \wedge \quad(0 \leq \varphi<2 \pi)
$$

Proof. In view of the previous remark this is an immediate consequence of the theorem.

Corollary 5.2. Let $f(\S)=a^{\wedge}+a_{2} ?^{2}+$. . be a B.E. function. Denote: $\wedge=1 /\left|a_{1}\right|$. Then:

$$
\begin{equation*}
{ }^{\mathrm{a}} \mathrm{l}^{\prime} '^{k_{j}}!i, \mathrm{~m}^{((0)} \wedge_{\mathrm{R}}^{R_{m}(\mathrm{cp})}, \quad(0 \ll p<2 T T) . \tag{5.9}
\end{equation*}
$$

In particular:

$$
\begin{equation*}
f^{a} 11^{\prime}{ }_{M, m} \wedge \min .\left(R_{M}^{*}(0), R_{m}^{*}(7 r / m)\right) \tag{5.10}
\end{equation*}
$$

Proof. By (4.14) we have $R(<\mathrm{p})-\mathrm{R}(-\mathrm{cp})<_1$, $(0<\ldots p<2 i r)$. Hence:

$$
\begin{equation*}
R_{m} \underset{(\varphi p)}{\frac{\mathrm{y} . \mathrm{y}}{2}}<1, \quad(0<c p<2 T T) . \tag{5.11}
\end{equation*}
$$

Applying the theorem with $R^{*}(\mathrm{CP})=\mathrm{R}_{\mathrm{m}}{ }^{*}$ (CP) we obtain (5.9). Inequality (5.10) is a particular case of (5.9), since
$R_{\mathbf{m}}{ }^{\prime \prime}(c p)=R_{\mathbf{m}}(c p)$ for $\varphi=0$ and $\varphi=i r / m$.
Corollary 5.3. Let $\mathrm{f}=\mathrm{a}_{\mathbf{1}} \mathrm{s}+\mathrm{a}_{2} \S^{2}+\ldots \mathrm{GK}\{-1\}$. Denote $f i=1 /\left|a_{\mathbf{1}}\right| . \quad$ Then:

$$
\begin{equation*}
'^{a} 1^{\prime} '^{k} \wedge, 2 m \wedge^{R} 2 m^{*}(p), \quad(0 \ll p<2 T T) . \tag{5.12}
\end{equation*}
$$

Proof. By (4.14), $R(c p+I T)-R(c p) \leq 1, \quad(0 \leq<p<27 r)$. Hence:

$$
{ }_{2}^{*}{ }_{2}^{*}\left((p) \wedge x_{1} \quad(0<\leq p<2 T T) .\right.
$$

Applying the theorem with $R^{*}(\mathrm{q})=\mathrm{R}_{2}^{*}{ }_{\mathbf{m}}^{(\mathrm{L})}$) we obtain (5.12).

Remark. In all the corollaries above we have $b=1$. Hence the case of equality in the various estimates is clear from the statement of the theorem.

Inequality (5.8) was obtained in [11], under the assumption that f is starlike and $\mathrm{M}=00$, and in [7] for the general case.

If we assume that f is a simple function, then, for $m=2,3$ and $M=00$, it is known that an inequality stronger than (5.8) is valid. In fact, in this case, (5.8) holds if $R(<p)$ is replaced by the length of the segment from the origin to the nearest boundary point of D_{f}, along the ray Cr_{φ}.

For $m=2$, this result is classical; for $m=3$ it was
obtained by Reich and Shiffer [10].
Inequality (5.10) of Corollary 5.2 was obtained in [1].

It should be noted that $R(<p)<$ meas.fa $\left.\varphi{ }_{\varphi} f D_{f}\right\}$ and, in fact, equality holds if and only if $a_{\varphi} H D_{\underline{f}}$ is a segment (or ray) minus a set of linear measure zero, (see [7], p. 625). Hence, by the arithmetic-geometric mean inequality we have:
with equality if and only if $R\left((P j)=\ldots=R\left(C p_{n}\right)\right.$ and each set $a_{\boldsymbol{\varphi}_{\dot{j}}} f l \mathrm{D}_{\mathrm{f}}(\mathrm{j}=1, \ldots, \mathrm{n})$ is a segment (or ray) minus a null set.

REFERENCES

[1] Aharonov, D. and W. E. Kirwan, ${ }^{M A}$ method of symmetrization and applications", Univ. of Maryland, TR 70-179, (to appear in Trans. AMS).
[2] Bandle, C. and M. Marcus, ${ }^{\text {tf }}$ Radial averaging transformations with various metrics", (to be published; a preliminary version appeared as: TR 71-32, Carnegie-Mellon University).
[3] Goodman, A. W., "Almost bounded functions", Trans. AMS ^18(1955), 82-97.
[4] Hayman, W. K., Multivalent Functions, Cambridge University Press, 1958:
[5] Jenkins, J. A., "On Bieberbach-Eilenberg Functions III", Trans. AMS 119(1965), 195-215.
[6] Lebedev, N. A., "Applications of the area principle in problems for non-overlapping domains", Trudy Math. Inst. Steklov 60(1961), 211-231.
[7] Marcus, M., "Transformations of domains in the plane and applications in the theory of functions", Pacific J. Math. 14 (1964), 613-626.
[8] Nehari, Z., "Some inequalities in the theory of functions", Trans. AMS 7jL(1953), 256-286.
[9] Polya, G- and G. Szego, Isoperimetric Inequalities in Mathematical Physics, Princeton University Ptess, 1951.
[10] Reich, E. and M. Schiffer, "Estimates for the transfinite diameter of a continuum", Math. Zeitschr. 8j^(1964), 91-106.
[11] Szego, G., "On a certain kind of symmetrization and its applications", Ann. Mat. Pura Appl. 40(1955), 113-119.

DEPARTMENT OF MATHEMATICS
CARNEGIE-MELLON UNIVERSITY
PITTSBURGH, PENNSYLVANIA 15213 U.S.A.

