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ABSTRACT
RADI AL AVERAG NG OF DOVAINS, ESTI MATES FOR DI RI CHLET
| NTEGRALS AND APPL| CATI ONS

by
Moshe Mar cus

Let & = {Eh,...,Dn} be a famly of domains in the plane,
containing the origin. W define a radial averaging trans-
formation Rh on S by which we obtain a starlike domain D”.
When & is such that the domains 93""An are obtai ned

froma fixed domain D by rotation or reflexion, ft. becones
i\

a radial symetrization. One of the results we present is an
Inequality relating the confornaf radius of D to the confornal
radii of Da,...,Dn at the origin. This result includes, as
particul ar cases, the radial symetrization results of Szego [11]
(for starlike domains), Marcus [7] (for general domains) and
Aharonov and Kirwan [1]. The inequality for the conformal radi
is obtained via an inequality for conformal capacities, which
seens to be of independent interest.

A nunber of applications in the theory of functions are
di scussed. Here we introduce a definition of a class of functions
{f}, analytic in the unit disk | § < 1, which includes the
Bi eber bach-Ei | enberg functions and sone other classes of functions
considered in the literature. For this class we obtain the
estimate |f' (0) |—< 1 which is sharp.

O her applications concern certain geonetric features of
the domain D_ obtai ned as the inmage of |§8| < 1 by an analytic

function z = ftg)‘
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| nt r oducti on.

Let D be a domain in the conplex plane 2z, containing the
origin. Let o(p denote the ray issuing fromthe origin with
argunent cp. Then, we denote by Rcp;D the neasure of a‘p n D,
this nmeasure being defined on the basis of the logarithmc netric,
ds = |dz|/]z].

Let & = {Dl,...,Dn} be a famly of domains containing the

origin. W define a transformation ft, acting on famlies of
A

o v
A

domains [& , such that ft. : £ —»D, where D is a starlike

domain. D is obtained from & by neans of a weighted geonetric
J

average of the quantities R(<p;D.), (j =1,...,n). The weights

are determined by the set A = {a.}?* This transformation is

called a radial averaging transformation.
A
The transformation ft. is extended in a natural nmanner

a T="

to fanilies of condensers {C.}!?

0 J ote

, such that the originis a

poi nt of potential 1 for each condenser in the famly. W

denote RA({C}) = C-.
Wth this notation we gbtain the follow ng result:

a: Tr C: A
1 (C) SJ._E__IJ (")

where [1(C denoted the capacity of the condenser C

Fromthis inequality we derive an inequality relating the



conformal radius of D (with respect to the origin) to the
conformal radii of DA...,Dn.
In the case that QJ’“"EB are obtained froma fixed
domain D by sinple transformations, such as rotations or
reflexions with respect to a line through the origin, the radial
averagi ng transformation becomes a radial symetrization of D
The symetrization result thus obtained, includes as particular
cases the radial symetrization results of Szego [11l] (for star-
l'i ke domains), Marcus [7] (for general domains) and Aharonov and
Kirwan [ 1] .
A result concerning a process of continuous symetrization,
and a result on a symetrization based on an integral averaging,
are al so obtai ned.
Finally, these results are applied to certain problens in
the theory of functions. Here we introduce a definition of a
class of functions {f}, analytic in the unit disk ||| < 1, which
i ncludes the Bieberbach-Eil enberg functions as well as sone
ot her classes of functions considered in the literature. For
this class we obtain the estimate |f' (0) | < 1,.which is sharp.
O her applications concern certain geonetric features of
the domain D obtained as the image of the unit disk by an
anal ytic function f.
The plan of the paper is as follows:
In Section 1, we discuss a linear averaging transformation
related to R, and obtain certain integral inequalities.
In Section 2 we obtain the basic results concerning capacity

and conformal radius in relation to radial averaging transfor-




mat i ons.
In Section 35 various symetrization results are obtained.
In Section 4 the extension of the Bi eberbach-Eilenberg
class of functions, nentioned above, is discussed.
In Section 5 sone additional applications are considered.
The radial averaging transformation presented in this paper
is based on the logarithmc netric. Simlar transformtions
based on various other netrics are discussed in [2], where these
transformations are considered al so in higher dinmensional spaces.
The aut hor wi shes to thank Professor Nehari for a nunber of

stimul ati ng conversations concerning this paper.




81. Linear Averaging Transfornations.

Let n be a set in the plane (x,y). W denote:
(1.12) Mx,, n) = neas.((x = xgt nfl),
the neasure being Lebesgue neasure.

Definition 1.1. Let f be a function defined in the half strip

M= {(x,y)]|0 <x <1,0<y]e W shall say that feB(M if:
(i) fedM
(ii) 0<f <1 in M
(iii) On any half line {(xqy)|0 <y}, such that 0 < xq< 1,
f obtains every value A in the open interval (0,1), at |east
once, but not nore than a finite nunber of tines.

(iv) lim f(x,y) =1, uniformy with respect to x,
y -*-+00
0 <x < 1

For any real function f defined in M we denote:

na(f) ={(xy) jf(x,y) <A OM
(1.2) Q) ={(xy) [f(xy) <A nM
v a0 = [y o < L0x,y) <MY w-oqn - ().

For feB(M we denote:

| <t(x,Af) =7(x,n, (f)), 0<A<1
(1.3) ) A -
LA(x,051) = 4(x,05(f)).
Definition 1.2. Let 55 ={i~,...,”*} ¢ B(M and let A:{aj}f
n

be a set of positive nunbers such that T. a. = 1. Set:
j=l



(1. 4) I (X, A = _SaL.(x,-K;i. ), (0O<x<10<A<1).

j = ? o

Then for (x,y)eM we define

(0 if O<y<F (x50
(1.5) fr(x,y) = £(3) = JA Qf y=tH(x, A), 0<Ac<1
Ll If C(x, 1) <y.

Note that for every fixed x, 0 <x <_ 1, I*(x,A) is a
strictly nmonotonic increasing function of A (0 <CA +<1).
Hence f* is well-defined in M

We now prove:

Lemma 1.1. Let 3 and A be as in Definition 1.2. Then f*eB(M.
If inaddition f. is Lipshitzin Q . (f.), j =1,...,n (were
arb are fixed nunbers, 0 < a < b < 1)y then * is Li pshitz
in Qa,b(f*).
Proof. It is easily verified that for 7\ > 0 the set %(f")
is open (relative to M and that for 0 <C A < 1 the set
OMf ) is conmpact. This inplies the continuity of f in M
and the fact that f* satisfies condition (iv). It is obvious
that f satisfies also conditions (ii) and (iii). Hence
f*€B(M.

Ve proceed now with the proof of the second assertion of the
lemma. To sinplify the notation we set "(x,Af.) —£.(x,A). By

J 3

our assunption, there exists a constant k such that:

(1.6) [fj(P) - fj(P) I <K|P-P |, VP, P»€n,"n(f;), j =1,...,n

where |P-P | denotes the distance between the two points.




let a<a <b <b W shall showthat f  satisfies a
Li pshitz condition with constant k in Q.,, «(f ).
asD
Let 6.J denot e the di stance between 'I‘I'z.,gw .,(f3.) and the
boundary of na'ylgfj' ) . Set % :rrin(6)z,...,6n). (Not e t hat
60>0.)

W now keep j fixed. Let P; = (x-7y-Jefi .. «(f.) and

X X X a b ]

fXP4 = AL  Denote by Kc(P;) the open disk of radius 6,
centered at I>. If 0 < 6 < 6qg, then (by (1.6)):

(1.7) f(P) < 7 + kS, PEK4(Py) O M.
l‘bnce, i \*2~Xi | <6<6Ql (.2. <X2/\l/\ and Ai +k6</\2_|< R
t hen
" ‘- 1/2
(1.8) X (5 30y 2 X% A 418 - g P12

Since this holds for every j, we obtain (under the sane assunptions):
(1-9) B (Xa A ) MH(xaN )+ [T - (xeexa) PR

From (1.9) it follows that:

(1.10) [f*(P)-f*(P ) | <klP-P |, YP, P' €n,, b’,(f*).

Indeed, if this is not true, there exist points P, = (x.l,y.l)>,

(i =1,2), in na o (f*) such that:
(1.11)  |PxPy| =6 < 6o | f*(P)-f*(Ps) | > k6.

Suppose f*(P)) < f*(Py); then f*(P) + k6 < f*(P;). Choose
A, A, so that f*(P) < Aj, f*(P) > A, and A, + k5 < A
Then, by the definition of f* we have y. < "()Q""Al) and




Yo > £*(X2,A;). On the other hand inequality (1.9) holds for

these values of *T>%,>AT*ng' Hencewe gptajn:
yo sy o+ t62_(xi_x2)2]1/2 i _ex | PL"Po( 5 5
which is a contradiction to (1.11).

Definition 1.3. Let feB(M and denote:

Qef) = G, (1) - Q4(f) = {(xsy) |0 <f(x,y) <1} PP M
Yﬁ(f) = {(x,y) |[f(x,y) =A OM 0 <A< 1.

Suppose that f€CY(Qf)). Let Po= (Xo Yo) be an interior point
of A(f) and f (P9 = Ao, W shall say that Pg is a reqular
point of f, if Sf/5y j4 0 at all the points of the set

Y?'(‘o P {x = x_Q} and if this set is contained in the interior of
fi(f). Gherwise we shall say that Py is a critical point and

A; a critical value of f on x = Xgq

Lemma 1.2. Let feB(M n C'(n(f)). Suppose that Ay (0 < Ng< 1),
is not acritical value of f on x = x

0
I (x, ~k; %) e]C i n a nei ghbor hood of (xQ,Ad .

(0 < xg< 1) . Then

Proof. Since feB(M, y intersects the line x =x, at a
——— f\o ~r
finite nunber of points {p.l, C ,EE.} . Let E_" = (>b,yj) and suppose

that y, < Yo <o < Y Then the sequence

($Ep 15

has alternating signs.
Let vy, = y,J_(x,A) be the inverse function (with respect to
] «

y) of A =1f(x,y), in a neighborhood of Py- Then for {xy,A7)




sufficiently near to (xQ,AO), the intersection of y*» wth
1
the line x = X | consi st precisely of the points {(x,,ly.J(x",A"))} 3::1-

Hence for (x,A) in sone nei ghborhood of (xO,AQ) we have:

K C
(1.12) <t Af) =j3 2 (-1)7y -(x, A
j =l

where )S = si gn(‘i}f(P'.L.)) . Since X (x,A)eC in a nei ghborhood

of (Xp, AO) the assertion of the lemma is proved.

Note that for (x,A) in a neighborhood of (xgq Ao) we have:

3L k R | h A

(1.13)
oA J=2L 34

RS

Definition 1.4. W shall say that a function f belongs to
B'[(M if feB(M and in addition:
(v) f€C(n(f));

(vi) For every Xqg (0 < Xg< 1) and every asb (0 <a<b<l),
df/3y vanishes at nost at a finite nunbed of points on

{x = x5) NNy ,(£).

Applying the transform £.A to functions in B'(M we

obtain the follow ng basic result:

Theorem1.1. Let 3 = {f~. . -f) cB (M and let A={ar. .. ")}
—_— n _
be a set of positive nunbers such that £ a =1 Let (t)

—1 J
be a function defined for t ~> 0 such that GQt) is non-negative

. . »*
conti nuous, convex and non-decreasi ng. If f° = ga(<)* then:

(1.14) 33 q(I+vi* [DYDdxdy < Z ajdd  Q(1+ V] |2)Y?) dxdy.
NPy I nJigJu




Proof. Fromproperties (iv) and (v) of the class B (M and

Lenma 1.1 it follows that f* s Lipshitz in every conpact
subset of fi(f*). Hence the left side of (1.14) is meaningful.

Let 0<a<b«< 1l W shall prove:

(1.15) rr G(I+ 7f*|) Y2 dxdy < £a fj " Q (147 ..|?) /?)axdy.

Ed

a,DpD a, J

The inequality (1.14) follows from (1.15) if we let a->0 and

b—>1.

Gven Xo 0 <Xxg< 1, we denote by {"y,---*\_4} theset
of all critical values of the functions ff;)~., °ntheline
X = x", such that a <A, <bs (k=1,...,v-1). This set is

finite by property (vi) of the class B'(M). W set Ay=a

and 7\\) = b and we assune that Ab<A1 < L. A, M <. By

property (iii) of the class B(M), the set

= {0 YA Tj(%y) < W

consists of a finite nunber of open intervals. Denote these

intervals, ordered by increasing y, by {T A}‘A'Q'ng (m=0,...,v-1;
i =1,...,n). Each interval T' . is free of critical points
of f.; in a neighborhood of T™ _, the function A =f.(X,Y)

J X9 J J 1

has an inverse y = yi' . (xsA). By Lenma 1.2, £ (x,A) S * x,A;]f .;Jn%C.:

m+1 :

i n a nei ghborhood of the interval |I,={ (XA [An< A<
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k(j,m) 441 m
Lj(x’?\) =i iil (_1) Yi,j(x:?\)!
(1.16)
By = oy
, 871: - i =1 roodX
Hence |7 (x,A)eC* in a neighborhood of I ~and bl Tbl\ >0
t here.

To sinplify the notation we shall denote:
G (I +cr?)¥?y =6(a), (-00 < a < 00) .

Let:

™ = ((xgy) £ (xgh ) < ¥ < 27 (xp 0 0]

W claimthat:

$ " k(j m,
(1.17) JTmﬁ(lﬂ |)dy < Ea. S i g(|7f |)dy, (m=0, ... v-1)-

1,3
Note that, since A:f*(x,y) is the inverse of y=I*(x,?\),
0 < A< 1, we have
A
* - m+1 *12,1/2 ,,%, %

(1.18) 3o T dy =3 G4 T e B2 ) e

,I_- !\m
where 11X =pl*/~A  Sinilarly:

m -N-m

A
m+1 5] AL
(119) 3 & 17 Dy = [ " acasly, i 1521 Fedjan.

i,J m

Hence in order to prove (1.17) it is sufficient to show that:
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(1.20) G((1+]9, 2~ 12yX2 px el ¢

SRR n SOl ) 7D =5

Now, by the triangle inequality (for 1. normin R.) we have:

) n
(1.21) (14 7. ,1*\?)Y2 = ((Sa )2 + |Sa;VI_-12)1/2
X5 A 1*n S INN
< L (iHA222
2> J
S nce G

i S non-decreasi ng and convex we obtain:

(1_22) G((l+|V**|2)1/2A’)\)—<O(J_’\(l+1’\|2)1/2/*?\)

1 L 2,1/2
— La 4. . ,
< x: laJ{,J’?\G((1+[VLJ| AV TENE
A
n
where |. ~ =cH/5A Here we used the equality -U = Sa_xJ. 5"
Simlarly we have (by (1.16)):
(L.23) (vt [ < (kM2 4+ AN AL DY A
3 i=1 1,]
k(j,m)
< B a+lwyt )12
i=1 !J
and hence:
k{(Jj,m)
(1.24) Q1+ *<t, | 2) ¥ A,

At 2,1/2
) <G(+_SL (1+ My J.I YR/ )

o k(j,m) dayM . Byl .
1 ? m 2,1/2 i i
< {'j N iil G((]-"'lvyi,j’ ) /l SN ’) f ~Y) ’:

for X =Xo, An< A< An:1
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Conbining (1.22) with (1. 24) we get (1.20) and hence (1.17).
Finally, summng up (1.17) with respect to m(m=20, ...,v-1)

and then integrating with respect to xO(O < X,< 1) we get

(8
(1.15). This conpletes the proof of the theorem

Corollary 1.1. Under the assunptions of the theorem

(1.25)  ff [vi* | Pdxdy < Ea ff IV | Pdxdy, (l<p<oo).
T " oH-l 3 off N
n(f*) v nly

Proof. First we observe that the theoremand all the argunents
presented above are valid also for sets of functions of the
form[afy, . .. af }, where 0<a is aconstant and [f-, ... f } <z B’ (N .
Naturally, in this case f w Il be replaced by af

Let G(t) =tP, (p”" 1) Then Qt) satisfies all the
conditions of the theorem Applying (1.15), with Qt) as above,

to the set of functions {cch}l), we obt ai n:

. n
(1.26) JJ (1-6¢ | 7E% | )P 2dxdy < Sa JBI (LB AT | P Adxdy .
a,p a,u JI
v
Note that the domains of integration are bounded and that |V |
and |7f:J | are bounded in these domains. Hence, dividing both

sides of (1.26) by aP and letting a-—00 we obtain:
(1.27) ff %% |Pdxdy < Ea ff | 7f , | Pdxdy.
Letting a—20 and b—21 we get (1.25).

Note. The assunption that G is non-negative was made in order

that the integrals in (1.14) would be nmeaningful even if they are
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infinite. The inequality (1.15) holds even if G0) is negative.
Indeed, in this case set G (t) = G(t) - G(0). Then we obtain
(1.15) with G replaced by G . But we observe that:

n

area(Qa’b(f *)) =Sai..Jarea(Qab,(f.. ) .

)
Hence the terms with G 0) cancel and we obtain (1.15).

By the sane argunent, if area (O(fJ.)) is finite for j =1,...,n,
then (1.14) holds even if we renove the assunption that G is

non- negati ve.

82. Radial Averagi ng Transfornations.

In this section we define radial averaging transformtions
and exam ne their effect on capacities of condensers and confornal

radii of domai ns.

Definition 2.1. A condenser C in the plane is a system (n, Eo_, E,l),
where Q is a domain, EJ1 and Ei are non-enpty disjoint closed
sets and EOVU E,l is the conplenent of Q wth respect to the
extended plane, (i.e. the conplex plane 2z including the point
at oo). If Eo and E; are connected, Q is called a ring.

In this section we shall assune al so that Efl I s conpact

and that E—l contains the point at infinity. The condenser C

w |l also be denoted by (D Eg where D =fi U E,-

Definition 2.2. Areal function f(x,y) will be called adnissible

for the condenser C = (QEOE-.l) i f:
(i) f is continuous in the extended pl ane,

(it) f =0 on Eqg and f =1 on E,

HUNT LIBRARY
CARNEGIE-MELLGN  UNIVERSTY
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(iit) f is Lipshitz on every conpact subset of Q

The conformal capacity of C is defined by:

(2.1) 1(Q = inf. JJ|7f | dxdys
n
the infinum being taken over all adm ssible functions.
W shall say that a domain Q has the seghrert proeperty
if, for every boundary point Pg of Q there exists a segnent
or an arc of a circle, with one endpoint at PQ, contained in

the conplenment of fi. (Wen Pg is the point at infinity, this

nmeans that there is a half line lying outside Q) |If C= (fi,k E1)

Is a condenser such that fi has this property we shall say that
C has the segnment property. If C has the segnent property,
then there exists a unique, admssible function GO which is
harmonic in fl. This function will be called the petential-
+uret+on o~ C. In this case we have:

(2.2) I(C) = jj [vcoldxdy.

For a proof of these assertions see for instance Hayman [ 4 ]

(p. 62-7).

Lemma 2.1. Gven a condenser C = (n, E,, E,L), there exists a

sequence of condensers {C.}?°, C = (Q,E, . ,E. .) such that:
oo 31 J J V] 1, j
(a) {(%}1. is a nonotonic increasing sequence of domains

possessi ng the segnment property;

(b)) Q is a conpact subset of fi and UQ =Q (j =1,2,...
3 ™ 3

(c) Eg = contains a neighborhood of E.; (j =1,2,...);

(d) Tim I(C.j) =1(C).

J —» CO




15

This assertion is easily verified by a standard argunent.

W note also that if C= (O"EAEA and C = (0!, E, Ep
are two condensers such that 0 c: @ then 1(C) < I1(C). This
follows i mediately fromDefinition 2.2. W shall refer to this

as the nonotonicity property of the capacity.

Definition 2.3. Let & = {Dy,...,D,) be a famly of open sets

in the conplex plane z, with non-enpty intersection. Suppose
~that the closed disk |z-z,| < p (for sonme positive p) is contained

n
in fl D. Let:
1 J

(2.3) KMcp) ={r|z =z "+rePeD.;)p<r <o00}, (0<=p<2TT) .
Set:

(2.4)  "(«p) :%( : )fA and R (©) =R(<p;Dj.zq) =p exp.L§(¢),
®

(Note that Ra((@ does not depend on p.)

Let A = {aI,...,an} be a set of positive nunbers such that
n
2a. = 1. W define:
1 J
* n ai
(2.5) R(p = Il IF{,(<|o) 7, (O<<p <2
J:
and

(2.6) D* = fta(&2) = {z = zo + re'*|0 <.r < R* () .0 <.<p < 2TT}.

W shall say that ftH Is a radial averaging transformation on 8

with center zs.

It is easy to verify that D is a domain which is starlike

with respect to Z s
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Definition 2.4. Suppose that {Eé}rl1 is a famly of conpact sets

n
Wi th non-enpty intersection and z.eOE.. For each E. we define
uz2» J J

KA<) and ~((p) as before (where p is any positive nunber) .
Then we defi ne:

(2.7) R(p) = R<pE:7) :p-l"IOm pexp. " (),
and '

(2.8) E* = *A({Ej)J;z0) ={z =20+re(P|0 <+ <R (P ,0 <<p < 2ir},

"with Rf(0) as in (2.5).

It is easily verified that E is a connected conpact set,
starlike with respect to Z g (& course, in sone cases, E

may consist only of the point Z/‘_v)

Definition 2.5. Let {C.}» be a famly of condensers, C = (Q,E, ."E

= (D.,E, . ). Suppose that the intersection of the sets E,

(j =1,...,n) is non-enpty and let z be a point of this inter-

(8]
secti on. Let A be as in Definition 2.3 and set:

— n-
* n
Eg = Ry ({Eg j)1520) -
Then we denot e:
(2.10) C = »(iCMzg) = (D, EY).

We denote al so Qf“*" =D - Ef].

-

Y. o

"

Note that if D is not the entire Qelane and B, contains

nore than one point, then the condenser C possesses the

")
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segnent property. In fact, @ ' is aringwhich is starlike with
respect to z,.
The followi ng theorem gives a relation between the capacities

of cJJ.-.Jc, and the capacity of C*.

n

Theorem 2. 1. Let {Cj}j’f be a famly of condensers as in Definition
2.5. Let C = ftA(fJC}J;zo). Then:

* n

(2.11) 1(C) <Eal(C)
i J J

Proof. By Lemma 2.1 and the nonotonicity property of the capacity
it is sufficient to prove the theoremin the case that the con-
denser CJ possesses the segnent property and zO is an interior
point of E~,3 (J =1,...,n). Therefore we restrict our attention
to this case. Wthout |loss of generality we may assune that z0 = 0

and that the disk |z| -<* 1 is contained in each of the sets E, .,
093

Consi der the mapping w=1n z of the domain |z|] > 1 cut
along the positive real axis onto the half‘ strip [w=u+iv]
O<v<2r,0<u}.

J J
Let co be the potential function of C and denote
f;i](u,v) :tcg(e‘”), (j =1,...,n). Then 3f is periodic in v

with period 2w and it is easily verified that f.,lGB!(I\/p wher e
M= { (uv) |0 < v < 2TT,0 < u} . Let f* = £ ({f .}?) in the half
strip M Qoviously f (u,0) = f"(u27r) and we extend f~
periodically in v (with period 2ir) to the half plane u ;> 0.
The extension will also be denoted by f¥
By Lemma 1.1, f (extended as above) is continuous in the

half plane u ”> 0 and is Lipshitz in every conpact subset of
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fi =f (usv) |[O<f*(uv) <1,0<u}. Aso f*eB(M. By Definitions
~ (.*)
1.2 and 2.5, d is the inage of fi¥Y ' by the (multiple val ued)
function w = 1In z.
W denote uT(x,y) =f*(Inz), (z #x +iy) . Because of

the periodicity of f*« the function u> is well defined in

y. 1ff-

|z| ;> 1 V¢ eXtend to "to the entire plane by setting to =0 in

destrikbdd abdve,0 i+ Foldtowso.t haihern Fsoant Aenpsepbt ti ésnoti oh for the

condenser C . HERBE:
KC*) <JJ 170 |“dxdy.

a(*)

By Corollary (1.1), with p =2, and the invariance of the

Dirichlet integral under conformal napping:

3| | Zdxdy < Zaj 33 |wQ | ddxdy.

Q J

Conbi ning these inequalities and taking into account fornula
(2.2) we obtain (2.11) .

Let D be a domain in the plane and ZQGD.- W& denot e
by r(zg; D) the conformal (or inner) radius of D at Z o

If f(?) is an analytic function in the unit disk |g]l < 1,
such that f(0) = Z and if the inmage of this unit disk by

z =1f(% 1is contained in D, then:
(2.12) [T (0) | <r(zqD).

Equal ity holds if and only if z =f{% maps ||| < 1, (1-1)

onto D
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If D is a bounded domai n whi ch possesses the segnent

property, *,eD, and CIE denotes the condenser (D, Kg ), where Ke

is the disk |z-z <£ , then:

o
r(z ;D

(2.13) . T ’ — + 0(1},

wher e 0(1) is a quantity which tends to zero when £ ->0.
If D is any domain in the plane and “Q°°> there exists
. (98] £ .. _
a sequence of subdomai ns (Dn}-l. such that Z,L D,E Dﬁlu_g D, " b

D, i s bounded and has an anal ytic boundary (i.e. its boundary

consists of a finite nunber of disjoint, sinple, closed analytic
00
curves), (n =1,2,...), UD =D and finally lim r(z ~Dy =
. 1" , n~>0
r(zo; D) . ({R }1. wi |l be called an approxi mati ng sequence for

the inner radius of D at z..)

Note that if [B }°° is a nonotonic increasing sequence of
K L 00
subdomains of D such that UB, =D and if z,eB,, then
lim r(zy;B,) =r(z.;D . This is a sinple consequence of the
k-*cb 4 K u

previous result and the nonotonicity property of the confornal
radius (i.e*ifzeeD ¢ D' then r(zqg D) <r(z, DV")).

For the definition of inner radius and proofs of the above
statenents, see Hayman [ 4] (p. 78-84). Fornula (2.13) is due
to Pol ya-Szego' [ 9].

VW use now Theorem 2.1 and fornmula (2.13) in order to obtain;

Theorem2.2. Let $ = {Dl,...,Dn} be a famly of domains in the
n

pl ane with non-enpty intersection. Let *,eHD. and let
n ° 1 9 n
A= {a_\.]}-;k be a set of positive nunbers such that % a, = L

If DY = fta(£;z0) then:
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(2. 14) nr(z.p) " <r(z.D).
1 u J u
Proof. It is sufficient to prove the theoremin the case where
Dg (j =1,...,n) is a bounded domain with analytic boundary. This

is clear in view of the existence of approximting sequences for

the inner radius of 'D.J at z =1,...,n), as described

o U
above. Therefore, we restrict our attention to this case.

We shall use the follow ng notations:

* * ~

rj N £0>Dj )> (7 _~1 >“.>)*'> r _‘ VD

Gven £>0 let a = £/r”~ and E. J: ar 3 Finally denote

cC - = (D.,Kc ), where K_ denotes the disk lz-z"I < £ .,
«J «J i
and 1(C_, ) =I(j,£). Then by (2.13):
Jsf-j
21T " 1 (1)
(2.15) -=-13J,EH- = Iogle\- +0.(1) =log* + 03 ’

wher e O.J(l) tend to zero as &£ ->0.
Let c; = GMIQ. , }M:i2). Sinee ,'1?1,;5%’ = a =£ we find
that (for sufficiently small £ ): C*a = (D*,K: ). Hence:
(2.16) —22L_- i [_+o1) =108 T=+ . 0(1),
KCs. ) & ar”
where O0(1l) tends to zero when £-->0.
By (2.11), (2.15) and (2.16) we obtain:

n
I(CI) = 1£ < 2TF Saj/(log"+0j(1))

log | - + 0(1) J=t

I

2TT S aj/(log » + 0" (1))

27T (1Qy 1, + 0 (1)),
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where 0' (1) =- max [0.(1) |. Hence:
1<j<n

r* 1
log |- + 0(1) ~ loga + 0 (1)°

Since £=ar we finally obtain:

* *
[ ]
Iogr—>0 r >/;’/.
r

This conpl etes the proof of the theorem

83. Radial Symmetrization and Rel ated Results.

The results that we present in this section are applications
of Theorem 2.2. W begin with a definition of radial symetrization

whi ch extends the definitions introduced in [11]¢ [7 ] and [1].

Definition 3.1. Let D be a domain in the plane and let ?%,°P*

Denot e P(Cp;D,z& as in (2.4). Let A= {a.}™ be a set of

n 1. n
positive nunbers such that £ a. =1, let a = {a.l} . be a set
1 FRAR
of integers different fromzero and let ,Q= {8.}, be a set of
real nunbers. We dehote: b
(3.1) R(<p) = Il Ra<p +fi.)!, (0 <0 < 2TT),
j:| J J
where b. =a./[|a. |, and
(3.2) D* = {z =29 + re'*P|0 <1 < R* () 0 < cp < 2TT} .
The transformation D-~D* wll be called a (generalized)
radi al symmetrization and will be denoted by SAa "j8;zp) .

The following lemma will be needed:
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Lema 3.1. Let D be a domain in the pl ane, such that D con-
tains the origin. Let k be a positive integer. Consider a
k-fold covering of D such that each point zeD, z ~ 0, is
covered by k points V\/ifh argunents 9 + 2, 0 <€ j < k-1,

0 < <p < 2TT. Let I D denote the image of this covering by

w = z¥'%  Then:
(3.3) r(Q, kD) = r(0; D)k,

Proof. Let {Dn} be an approxi mati ng sequence for the conformal

radius of D at O, as described in Section 2. Then

lim r(ODy) =r(G D),
n -4 0o
lim r(QT,Pp) =r(OT,.D).
11— QD

) Co _ H
The second fornula follows fromthe fact that (T, DK}n-BT—_] is a

nonot oni ¢ i ncreasi ng sequence of subdomai ns of TkD such that

0[0)

U Tk D =T, D
n=| " k

Hence it is sufficient to prove the lemma for a domain D

whi ch is bounded and has anal ytic boundary.
Let K¢ be the disk |z| < £ , suppose that K£<z D and
— — — 1/ 1k
denote G, = (D Kg). If CP‘ = (T,DK ),fC\I/(\here £y = £V,
it is easily seen that:

kI(Co) =1(G).
Hence, by formula (2.13) we obtain the required result.

Theorem 3.1. Let D be a domain in the plane and let 2%,°P-

Let D be as in Definition 3.1. Then:
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n
(3. 4) ((zgD) <1 (zg!f)™MP where b =z b_ .
1

Proof. Wthout loss of generality we nmay assune that Zg = 0.

(1N . . {23
Denot e by D.J the domain TIO::»P. | f a.J. < 0, denote by D..I

the domai n obtained from D.‘;L'- by reflexion with respect to the
2 _ a1 :

real axis. If a- >d Il&t Eﬁ =g‘\).- Hadally dengte By

t he domai n obt ai ned ffrom D:f2 by a rotation of angle «—0.

j J
By (3.3) we have:

Vi a. |
(3.5) r(oD) =r(0;D)  °, (jo=1,..., n).

Furthernmore, it is clear fromour construction that:

/10U
(3.6) Rc?;D;0 = R(asp +fi4) 3
Appllyi ng Theorem 2.2 to the set & = {D.}-I,l, with D, as

above, inequality (3.4) follows imediately from (3.5) and (3.6).

Corollary 3.1. Let =z =f(|) be an analytic function in |§ <1
such that f(0) =0. Let D be the image of |5 < 1 by the
mapping z = f(5). Define D* as in (3.2) wth zO:O.

F(§)

Suppose that D is not the entire plane and let z
be an analytic function in \% < 1 which maps this disk (1-1)

onto a domain containing D . Then:
1
(3.7) 11 (0 | < IF (0) ™7,

with b as in (3.4).
Proof. Using (2.12) and the subordination principle, this result

follows imediately from the theorem
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Remark. Theorem 3.1 includes as particular cases the radial

symmetrization results of Szego [n] (for starlike domains,

2TT.
with a_=1/n, «x_ =1, |3 =-2-, j =1,...,n), Mrcus [7]
J J 3
(for general domains with a._ a., j3. as above), and Aharonov
J J J
1
and Kirwan [ | ] (for general domains with a- =+ a. == 1,

J "o «J

jS. arbitrary).

The method of the present paper is different from the nethods
enpl oyed in the previous papers, in that the symetrization
results are obtained as a particular case of a nore general
class of transformations, nanely, the radial averaging trans-
formations.

By varying continuously the exponents in the weighted
geonetric nean (2.5), we can obtain a process of continuous
symmetrization with properties simlar to those of the continuous
symmetri zation of Polya-Szego' [ 9] (p. 200-202). (In [9] the
process refers to Steiner symetrization.) The follow ng theorem

provides a result of this type.

Theorem 3. 2. Let D be a domain in the plane and let 2Q®P=

Consi der the transformation S = S(AOE,A;ZO) with a._ =+ 1.

J
Using the notation of Definition 3.1 set:

. Ry(©) = R (0) "R(0) "
| 0,0 =1z -=vzg * meb®0 < r < RYp) 0O <cop<2IM, (O<t< -

(Note that D = SD =D )

Then, for 0 <t. <t <1 we have:
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tz/t~ Ltirt2
(3.9) r(zo;D) <r(zH:;St D) * *r(zo; D) X <r(zg St D) .
2 1
Remark. Suppose that D is bounded and starlike with respect
to zo. Then SD =D as well as §D=D" and R.(<P depends
continuously on t, for 0<t < 1. Hence, in this case the

transformation S, -may be called a continuous synmetrization

connecting D and D .

Proof. By (3.8):
t-/rz i-Vtz

R =R, (D X Roo) X~ (0 <t, <t <)

Hence by Theorem 2. 25 we obtain the second inequality in (3.9).

In particular, for t.l. =t and t, =1 we get:

r(zg D )'r(zp; D™ < r(z);SD).
Finally, by Theorem 3. 1:
r(zqy;D) < r(zg D*) .
Conmbi ning these inequalities we obtain (3.9).

The followi ng theorem supplies a symetrization based on

an integral fornula.

Theorem 3.3. Let A($) be a bounded, nonotonic increasing function
inthe interval [0, 2ir], such that:
' 20
(3.10) J ) =1,
0O

the integral being a Stieltjes integral.
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Let z =1 (5 :a15+a2?2+-.. be an anal ytic function
in the unit disk |gfl <1 and let D be the inmage of this disk

by z =f(8). Denote as usual, R<p) = Rcp;D O and set:

(R = expld In R + <p)oa@)],
(3.11) < _ e .
[D={z=re"0Zr <RM.0<P<am,
the integral being a Lebesgue-Stieltjes integral. Then:
(3.12) lai| < r(0:D) < r(0;D).

Proof. Wthout loss of generality we nmay assunme that f(5) is
analytic in |?] <1 and that f'(5) ~ 0 for |g|

1. In the
general case, the result will follow by approximting the function
f(8) by functions f(p8) with 0 < p < 1.

Under the above nmentioned assunption, Rcp) is a bounded
continuous function of cp (and periodic with period 2ir) .

Hence the integral in (3.11) may be interpreted as a R emann-

Stieltjes integral. Therefore, we have:
— n-1 2-rr-
(3.13) In R(O) = |lim Sy - gn Rep +-31) ,

n->o00 j=0%

uniformy with respect to tp, where y«,=A( —+ (j+1)) - A(— + j) .

jin n n
Let:
n-1
Y= Swr, @ & =Y /Y
W observe that by (3.10) lim Y = 1. Denote:

n-*oo "
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n-1 6 .
R(p) = nR@ +59)) *°
J =0

D = (z = rel|o <r <R (g ,0<_cp<2TT}.
Gven £ >0, for sufficiently large n we have (by (3.13)):
|f’t(<p) - R;1(<p) | <d, O<cp<2TT.
Fromthis and Theorem 3.1 it follows that:
\&\ <r(QD) <r(OD) <r(0,D + Il

wher e £n-’\>0 when n—=2*o0o0 . This conpletes the proof of the

t heor em

Remar k. Considering the special case Al/J) :ilfrty, we observe

that by the geonetric-arithnetic nmean inequality we have:

~ i ?Zi r . 1 27r
(3.14) R = exp[ £z " in R<p)ckp] ~< 2w -[ R cp) dep.
~n o 0.
Let R, be the radius of the disk whose area equals the area

of D. Then by Holder's inequality:

1 PZ7r 1 I,.2Tr 2 1/2
I" | REp)dp < i?[27r J R7ipjdcp]!”r < RO.

By (3.12), |aJ <K Since 'R< Ry this estimate is stronger

than the corresponding estimte obtained by Schwarz synmetrization,

The following result is also a consequence of Theorem 2. 2:
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Theorem 3.4. Let D be a domain in the plane and |et Zo_’\D-
Denot e:
(3. 15) D= [z =zg+ refP|0 <1 < R<p)*,0 < cp < 2TT}
where Rcp) = RCp;D,Za . Then:
(3.16) r(zg;D)" <_r(zo; D*), (O<t <1).

Proof. Let & = {Dl'ADZ} where D-l = D and Ia is the disk

|z-zn] < r(z.;D). Let A = [t,I-t] and D" = R.(«;z.). Note that
R(<pD™ ;zq) = r(zq:D) ™" "Ri<p *,

so that:

*
Dt).

Ty Ly 1-t
r{z ;D ) = r(zO,D) r(zo,

0’

But by (2.14) :

r(zg D) < r{zyD ).

Hence we obtain (3.16).

84. Ai _Extension of the Bieberbach-Eilenberg dass of Functions.

The following notation will be enployed throughout this
section:

The unit disk \% < 15 in the conplex plane £5 will be
denoted by E = E's'

The class of functions f(5), holonorphic in E, such that
f(0) =0 will be denoted by M

If feM the image of E by z =1f(?) wll be denoted by
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Di; furthernore, we set R(<p) = Rcp;D;0 (see 2.4).

A function f(8)eW is a Bieberbach-Eilenberg (or B. E.)

function if it satisfies the follow ng condition:
(4.1) f(5)-f(5) ~ 1, for all 54, 5,€E.

Various classes of functions, defined by conditions anal ogous
to (4.1) have been introduced and studied in the literature. See
for instance Goodman [ 3], Lebedev [6] and Jenkins [5].

The follow ng class of functions was introduced in [5].

Let 8 be a fixed real nunber. Then we say that feK{eL6}

if fe)t and

(4 2) f(51)'_"f(52) 7* ei*> for all hl heE-

A classical result on B.E. functions states that if f(8)

is such a function, then:
(4.3) [f«(0)] < 1,

with equality if and only if f =r)% (fry| =1).

Jenkins [5] has shown that this result holds also for
fekK{-1} and feKfi}. Goodman [3] obtained the sane result for
the classes of functions introduced by himthere.

Let f,geW and suppose that:

(4.4) f(61)g(52) ~ 1. for all §y,8,¢E.

Then it is known that:

(4.5) Ifi (0) -g° (0) | =<1,
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and again, the inequality is sharp in the sane sense as before.
(This result was obtained, in a different form by Nehari [8].)
In order to unify and extend conditions (4.1), (4.2) and (4.4)

we i ntroduce:

Definition 4.1. Let P denote the matrix (p,. ) i:_: y
K,J K—L, »¢¢, n—X

j=l,...,n

where p, . are integers and n ;> 2.

Let ©= (9.%,..., 1) be a vector whose conponents are
real nunbers.

(i) Let $ = {B}% be a set of domains in the z-plane
such that each D' contains the origin. W shall say that

&C"(P;0) if the follow ng condition holds:

-i9, n p, . _ -3 .
(4. 6) e 11 z¥7?>0 (k=1,...,n1) ">z ...,z | "1,
H’ in
for all (zis5...,25)eDy x. . .X Dy

If D is a domain containing the origin and {DJ}?e6® P; ©),

where Dt = ... =D, =D we shall say that DEC(P; <9).
(ii) Let ffj}J £ ** W shall say that {f .:}j€Cn(P;<g>), iff

[ij}‘{e?:‘ntp; 6).

If fe» and (f .J}A€Q(P; 0), where f.,=... =fg=1f, we
shall say that feC(P; O).

Remark. W observe that C((l,1);0) is the class of B.E. functions
while C((I,-1);6) :K{e'-g}. Al so %(151);0) Is the class of
pairs satisfying (4.4).

Denot e by Plj the determ nant of the matrix obtained from

P by deleting the j-th colum. Let P, = (-1)j+1P5.
4J
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Wth this notati on we have:

Theorem4.1. Let P and O be as in Definition 4.1 and suppose

that P Lji 0, (j =1,..., n). If 8 = CD,...,D}eGC(P;©
t hen: ’
(4.7) ~ nmr(ap) < 1.
1 :
Equality holds if D_=E, (j =1,...,n) where E is the disk
i z z

I*1 <.

In particular, if feC(P; G then:
(4.8) ' (0)| <1,

and equality holds for f =tfz, (U] =1) .
Proof. W prove the first assertion of the theorem The second

one follows imediately fromthe first assertion*

Consi der the system of equati ons:

[ 1 ":\ [® \\
(4.9) Pl = !. -
\*<F)n/ Vgn']./
It (zye, ..., zn)eD; x...x D, and if (4.9) is satisfied by
<pn, L. L, <P,, where Ji p. is one of the values of arg Zj (we set
_ —_ N
<E1-J‘0 when zj_.—O), then, by (4.6), \z,...),(%ll 1.

The general solution of (4.9) is given by

(4.10) (p? =Yj(¢p) = Pyo + Py,
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wher e {$:]}’.i is a particular solution of (4.9). (W may choose

LR =0: then i,ll),_,....,*r!A_Jr, wi || be uniquely determ ned since
P 770.).
n ~
Choose p, O<p<1 suchthat |z| < p is contained in
n
n D and denote D. _ = [z|zeD., |[z| >p). Let" m~ be the inmage
nj 3*P 3 3i P )
of D. by the (multiply valued) function w=1n2z, (w=u+.ivV)
39P
Denot e:
Li(¥) ={(u) |uepy 3,
(4.11) N
L~ (v) ={(u,v) |ueD. ,jhu> 0) .
J 39P
Let I.(v), I*(v). £%(v) denote the linear neasures of L._(v),
J J J 3

L2(v) and L's(v) respectively.

For given <p, let v._=y . (cp . By (4.6), if the interval

J 3
a. <u<bhb  is contained in Lt(v.), (j =1I1,...,n-1), then the
J Jn_l n'l J J
interval - £—ib .J< uc<- £ia does not intersect L gv ?] ) Hence:
£ L

- + . _
tatvy) +47(vy) < inpl, (3 =1,...,0-1).

Simlarly, we have:
(4.12) ARAKA TANAEA A IR > (k=L el e eBsRAD)
Summ ng up (4.12) over j (with k fixed) we get:
n .
T i) Ty Yergh) & T ke (ks )
J#k

and now summ ng up over k we obtain;

n
(4.13) St.v.) <£nlln p]|.
k=l K K
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It follows from (4.13) that:

n
(4.14) jLn:1F25<|D-J) = 1,
with cp‘.J as in (4.10) and 0 <_cp <_2TT.

Now, as in the proof of Theorem 3.1, we construct a donain

fﬁ (j =1,...,n such that:
. Vi Pj
[ RepDi0 = RiPgp +ih) 7,
(4 19) | ~ 1/|P.|
t rfgD) =r(0;D) 7, (g =r..., n .

n
Let a. = |P.|/Y where =Zlp.|]. Then, b 4.15
3 IJI y {pi y ( )
* n a x
(4.16) R (0) =n Rco b ;0 "’
1 J

n

/v
n R(P.¢tp +in)] 'T <~1, = O <~p <=2TT.
mJ J
Applying Theorem2.2 to the set fi = fo?f,lmnth R (?fi) as

above, and.using (4.15) we obtain (4.7).

=

Remark. Suppose that, in Definition 4.1, condition (4.6) is
repl aced by:

mEeK M Pk t - t
(4.6)" e X %;EK'J >0, (k=1,...,n1) =r[z", « ..

wher e t.j (j =1,...,n),

If inequality (4.7) is replaced by

are fixed positive nunbers.

n t .
(4.7)" nr(0;D) ® < 1,

BN
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then Theorem 4.1 is valid also in this case.

The proof, except for mnor nmodifications, is the sane as

before. Instead of (4.14) we have in this case:
n t.
(4.14)" n R <p.) ’ <L,
. o J J

wth <p, as in (4.10) and 0 <cp < 2ir.

85. Further Applications.

In this section we consider the follow ng problem Let

fg;pl., : ..Amqo} be a set of m distinct nunbers in the interval

[0,2TT) . Denote by 0 the ray with argunent <p, issuing from
the origin. Let feit and let D be defined as in the previous

section. Then, the problemis to obtain sharp |ower bounds for

n

the neasure of the intersection of U a with Df
i ¥

Results of this type (which will be referred to as "covering
t heorens”) were obtained in [11], [7] and [1], by neans of radial
symetrization. W state below a rather general covering theorem

whi ch, as we shall show, inplies the results nentioned above.

The following notation will be convenient for the statenent
of our result. Let 0 < M<ZT oo and consider the disk |[z] < M
i _ ,m) .
cut along the segments (or rays) z =re , K<Cr <CM (j=1,...
We denote this domain by Dy *(py,...,Cp-). Let 1 <M and let K
1V1, xv JL 11

be so chosen, that the conformal radius of this domain, wth
respect to the origin will be equal to 1. W denote this value

of K by ffj(<A5 e« 97%) 92" denote the domain Du<Pige o o *P ) |

with K as above by Py(Aise s s ><P) o
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If cp =Y.« =cp + 27rj/m ( = I..m), we denote:
Kvign = k(e o - .- § ) The value of K, =~ can be computed from

the equation:
1 = k-4l 4 B2/,

(see [7], p. 624). Hence we have:

(5.1) K m = M@M™ - 1) - 2 f,"(M™ - 1)]5'™, (M A 1.

IVl m 111
In particular, K~ , = (1/4)*™,

It o =YY@, 1<j=mand q =Y(<p, m+1s<]j<2m,

we denote: K~ ((p) = Kfcpy, . . ., <P, ¢ Notethatif <p = vj (0)
or cp:Y:] (tr/m the set {<pl, ... ,%pz} contains only mdistinct
rays. In this case we identify Iﬁ"ﬂ H{<p) with Ky o

1 L

Wth this notati on we have:

2
Theorem 5. 1. Let f(5) :af‘_?+ao£ +eee pe analytic in the
disk |8 < 1 and let D be defined as before. Let R*(cp)
be defined as in (3.1), wth R<p = R(co;l:_)f;O). Suppose that:

(5.2) R(p) <M (O<cp<2TT),
for a fixed M O< M<_oo0. Suppose also that, for a given set
of distinct rays with argunents {<pl ..... <pm}, there exists a

nunber Q such that

(5.3) R(<pi) =Q (1 <J<m .

. n
Set M = M|a1|b, where b = E b. (see (3.1)). Then:
1

(5.4) Kb CCP| Ao AP -a|I|bAQ.
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If b =1, equality holds for every function f which maps

the disk |gl <1, (1-1) onto the domain |&, |Dv (Cp1, . . . ,<p).
L M X m

1f al = 1, equality holds for every function f which

maps the disk |§ < 1, (1-1) onto the domain Du(pp- - . ,9").

Proof. Let D¢ be defined by (3.2). Then by Theorem 3. 1;
la; | <r(OD) <r(0;D*)*".

By our assunptions D ¢ Dy{<p-, , .. . ,0 ) . Hence:
M~ X m
la,1° < (oD, (o o))
1Y = M, QY1 %m’

Let M =M ]a;|® and Q =Q/|a;.|P Then:

1 i r(O;DM, ,Q' (‘pls ren stpm)) .

Hence we obtain (5.4). The assertions regarding equality are
obvi ous.
It is clear fromthe proof that, in (5.4), |a,l| could be

replaced by r(O; D), with M = Mr(O; D)°.

Remark. Let:

*

(5.5) R{® =n Rcp), (0<<p< 2T

wth <p:J = yj (9 = Then, for every domain D, we have:

RM<P1) = oo 0 =Rnflop (0 <{p < 2TT) -

Let:

(5-6) RA(<P) = [RL(0) Be(-0) 112,



37

Then, for' every domain D

R (Y (@) == RV, (0)) = Ry (Y (-0)) =...= Ry (v, (-0)).
Corollary 5.1. Let f(8§ =5+ a2?2+. .. be an analytic function

in 11| < 1. Suppose that:
(5.7) R*(ﬁp) <M (O< <p < 2rr) ,

for a fixed M M<; oo. (dearly this can hold only if 1 _< M)
Then:

(5.8) I ym < _R(cp) , (0<cp<27r).

If instead of (5.7) we have:

(5.7)" Ro B <M (0 <<p<a2ir),

t hen:

(5.8)! Kfﬂ’m(@) < Rrﬁ-((O)/\ (0 < ¢ < 21) .

Proof. In view of the previous remark this is an immedi ate

consequence of the theorem

Corollary 5.2. Let f(8) = a™ + a,? 2+. . . be a B.E function.
Denote: ™ =1/]ay. Then:

(5. 9) v K1 @ ARp(ePr (0 < <p < 2TT) |

In particul ar:

(5.10) FELT S m ™ omin. (RE(0), R 7r/m)) -
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Proof. By (4.14) we have R<p) -R-cp) <1, (0<cp<2ir). Hence:

(5.11) Re (9 <1, (O<cp< 2T .

Applying the theoremw th R?cp) = Rma’i (cp we obtain (5.9).
Inequality (5.10) is a particular case of (5.9), since

Rm”(cp) = Rm(cp) for =0 and @ =ir/m

2
Corollary 5.3. Let f:al§+a_?§ + ...GK{-1}. Denote
fi :1/|a1|. Then:

5+
(5.12) rapr K oma Ropd (P) (O< <p < 2TT) .

Proof. By (4.14) , R(cp+I1T) -Rcp) <1, (O<<p<2fr). Hence:

*
Ramd (P A X (O< <P < 2TT).

Applying the theoremwi th R*(cp) = Rz*ng<p) we obtain (5.12).

Remark. In all thecorollaries above we have b = 1. Hence the
case of equality in the various estimates is clear fromthe
statement of the theorem

| nequal ity (5.8) was obtained in [11], under t he assunption
that f is starlike and M=o00, and in [ 7] for the general
case.

If we assune that f is a sinple function, then, for m= 23
and M=o00, it is known that an inequality stronger than (5.8)
is valid. |In fact, in this case, (5.8 holds if R<p) is
replaced by the length of the segment fromthe origin to the
nearest boundary point of D;, along the ray Cr o
For m= 2, this result is classical; for m=3 it was
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obt ai ned by Reich and Shiffer [10].

I nequal ity (5.10) of Corollary 5.2 was obtained in [ 1].

It should be noted that R<p) <_ rreas.fa‘pfl Dr} and, in fact,
equality holds if and only if a‘p HD is a segnent (or ray)
m nus a set of l|inear neasure zero, (see [ 7], p. 625). Hence,

by the arithmetic-geonetric mean inequality we have:

n n
[ n RQ)]Y" <+ 2 neas.fa, 0 D}
j= Y %o %
with equality if and only if R(H) =..= Rcp,) and each set
atp_fl D (] =1, . . ,N) is a segnent (or ray) mnus a null set.
'j‘_
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