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ABSTRACT

RADIAL AVERAGING OF DOMAINS, ESTIMATES FOR DIRICHLET

INTEGRALS AND APPLICATIONS

by

Moshe Marcus

Let & = {D,,...,D } be a family of domains in the plane,

containing the origin. We define a radial averaging trans-

formation R. on S by which we obtain a starlike domain D .

When & is such that the domains D,,...^ are obtained

from a fixed domain D by rotation or reflexion, ft. becomes
j\

a radial symmetrization. One of the results we present is an

inequality relating the conformal radius of D to the conformal

radii of D, ,...,D at the origin. This result includes, as

particular cases, the radial symmetrization results of Szego [11]

(for starlike domains), Marcus [7] (for general domains) and

Aharonov and Kirwan [1]. The inequality for the conformal radii

is obtained via an inequality for conformal capacities, which

seems to be of independent interest.

A number of applications in the theory of functions are

discussed. Here we introduce a definition of a class of functions

{f}, analytic in the unit disk | §| < 1, which includes the

Bieberbach-Eilenberg functions and some other classes of functions

considered in the literature. For this class we obtain the

estimate |f! (0) | < 1 which is sharp.

Other applications concern certain geometric features of

the domain Df obtai ned as the image of |§ | < 1 by an analytic

function z = f
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INTEGRALS AND APPLICATIONS

by

Moshe Marcus

Introduction.

Let D be a domain in the complex plane z, containing the

origin. Let o denote the ray issuing from the origin with

argument cp. Then, we denote by R(cp;D) the measure of a n D,

this measure being defined on the basis of the logarithmic metric,

ds = |dz

Let & = {D1,...,D } be a family of domains containing the

origin. We define a transformation ftA acting on families of
A

y y

domains [&} , such that ft. : £ —»D , where D is a starlike

domain. D is obtained from & by means of a weighted geometric

average of the quantities R(<p;D.), (j = l,...,n). The weights

are determined by the set A = {a.}?* This transformation is

called a radial averaging transformation.

The transformation ft. is extended in a natural manner

to families of condensers {C.}1?., such that the origin is a
o *J •*•

point of potential 1 for each condenser in the family. We

denote RA({Cj}) = C*.
With this notation we obtain the following result:

I(C*) < £ aj T( Cj)^

where I(C) denoted the capacity of the condenser C.

From this inequality we derive an inequality relating the



conformal radius of D (with respect to the origin) to the

conformal radii of D^...,D .

In the case that D..,...,D are obtained from a fixed

domain D by simple transformations, such as rotations or

reflexions with respect to a line through the origin, the radial

averaging transformation becomes a radial symmetrization of D.

The symmetrization result thus obtained, includes as particular

cases the radial symmetrization results of Szego [11] (for star-

like domains), Marcus [7] (for general domains) and Aharonov and

Kirwan [1].

A result concerning a process of continuous symmetrization,

and a result on a symmetrization based on an integral averaging,

are also obtained.

Finally, these results are applied to certain problems in

the theory of functions. Here we introduce a definition of a

class of functions {f}, analytic in the unit disk ||| < 1, which

includes the Bieberbach-Eilenberg functions as well as some

other classes of functions considered in the literature. For

this class we obtain the estimate |f! (0) | <_ 1, which is sharp.

Other applications concern certain geometric features of

the domain Df obtained as the image of the unit disk by an

analytic function f.

The plan of the paper is as follows:

In Section 1, we discuss a linear averaging transformation

related to R and obtain certain integral inequalities.

In Section 2 we obtain the basic results concerning capacity

and conformal radius in relation to radial averaging transfor-



mations.

In Section 35 various symmetrization results are obtained.

In Section 4 the extension of the Bieberbach-Eilenberg

class of functions, mentioned above, is discussed.

In Section 5 some additional applications are considered.

The radial averaging transformation presented in this paper

is based on the logarithmic metric. Similar transformations

based on various other metrics are discussed in [2], where these

transformations are considered also in higher dimensional spaces

The author wishes to thank Professor Nehari for a number of

stimulating conversations concerning this paper.



§1. Linear Averaging Transformations.

Let n be a set in the plane (x,y). We denote:

(1.1) Mx o,n) = meas.((x = xQ} n fl) ,

the measure being Lebesgue measure.

Definition 1.1. Let f be a function defined in the half strip

M = {(x,y)|0 < x < 1,0 < y]• We shall say that feB(M) if:

(i) feC(M)

(ii) 0 < f < 1 in M

(iii) On any half line {(xQ,y)|0 < y}, such that 0 < xQ < 1,

f obtains every value A in the open interval (0,1), at least

once, but not more than a finite number of times.

(iv) lim f(x,y) = 1, uniformly with respect to x,
y -*-+oo

0 < x < 1.

For any real function f defined in M, we denote:

nA(f) = {(x,y) jf (x,y) < A} 0 M

(1.2) = {(x,y) |f(x,y) < A} n M

V
M = QA ( f )

For feB(M) we denote:

' <t(x,A;f) = ̂ (x,n, (f)), 0 < A < 1
(1.3) ' A

Definition 1.2. Let 55 = {i^,...,^} c B(M) and let A = {a.}n

be a set of positive numbers such that T. a. = 1. Set:
j=l J



(1.4) I (x,A) = S a l(x,-K;± . ) , (O < x < 1,0 < A < 1) .
j=l 3 3

Then for (x,y)eM we define

*( 0 if O < y < I (x5O)

(1.5) f * (x,y) = £ A(3f) = J A i f y = * * ( x , A ) , O < A < 1

1 if C (x,l) < y.

Note that for every fixed x, 0 < x <_ 1, I (x,A) is a

strictly monotonic increasing function of A, (0 <C A •< 1) .

Hence f* is well-defined in M.

We now prove:

Lemma 1.1. Let 3 and A be as in Definition 1.2. Then f*eB(M)

If in addition f . is Lipshitz in Q . (f . ) , j = l,...,n, (where

a^b are fixed numbers, 0 < a < b < 1) 9 then f is Lipshitz

Proof. It is easily verified that for 7\ > 0 the set CL (f^)

is open (relative to M) and that for 0 <C A < 1 the set

OMf ) is compact. This implies the continuity of f in M

and the fact that f* satisfies condition (iv). It is obvious

that f satisfies also conditions (ii) and (iii). Hence

f*€B(M).

We proceed now with the proof of the second assertion of the

lemma. To simplify the notation we set ^(x,A;f.) = £.(x,A). By
J 3

our assumption, there exists a constant k such that:

(1.6) |fj(P) - fj(P!) I < k|P-P' |, VP,P»€na^b(fj), j = l,...,n

where |P-P! I denotes the distance between the two points.



Let a < af < b! < b. We shall show that f satisfies a

Lipshitz condition with constant k in Q , T(f ).
a 5 D

Let 6. denote the distance between TT . ,.(f.) and the
J a 9D 3

boundary of n . (f . ) . Set 6 = min(6-,...,6 ). (Note that
a y D j u x n

6 0>0.)

We now keep j fixed. Let P1 = (x-̂ y-Jefi . Kt(f.) and
x x x a ^ D j

f . ( P - ) = A , . Denote by Kc(P,) the open d i s k of r a d i u s 6,

c e n t e r e d at I>1. If 0 < 6 < 6 Q , then (by ( 1 . 6 ) ) :

( 1 . 7 ) f (P) < 7\1 + kS, P€K6(P1) 0 M.

Hence, if \*2~
xi I < 6 < 6 Q ' (° < X2 ^ 1^ a n d Ai + k6 < ^2 - l

then

(1 8) X (x ~h ) ^> X ("X A ) 4- r6 - (x -x )

Since this holds for every j, we obtain (under the same assumptions)

(1-9) **(x ,A ) ^l*(x ^ ) + [S2 - (x.-x ) 2] 1 / 2.

From (1.9) it follows that:

(1.10) |f*(P)-f*(P' ) | < k|P-P' |, YP,P'€na, b,(f*).

Indeed, if this is not true, there exist points P. = (x.,y.)>

(i = 1,2), in na, b,(f*) such that:

(1.11) |PX-P2 | = 6 < 6Q, |f*(P1)-f*(P2) | > k6.

Suppose f*(P1) < f*(P2); then f*(P1) + k6 < f*(P2). Choose

A1,A2 so that f (P1) < Aj, f*(P2) > A2 and A + k5 < A2.

Then, by the definition of f* we have y± < ^(Xj^^A ) and



y2 > £*(x2,A2). On the other hand inequality (1.9) holds for

these values of X T > X
2 > ^ T * ^ 9 '

 H e n c e we obtain:

y2 > yl + t 6 2-( xi- X2 ) 2 ] 1 / 2 i-e* IP1"P2( > 5'

which is a contradiction to (1.11).

Definition 1.3. Let feB(M) and denote:

= {(x5y) |0 < f(x,y) < 1} PI M;

YA(f) = {(x,y) |f(x,y) = A} 0 M, 0 < A < 1.
A

Suppose that f€C1(Q(f)). Let PQ = (xQ,y0) be an interior point

of Cl(f) and f (PQ) = AQ. We shall say that PQ is a regular

point of f, if Sf/5y j4 0 at all the points of the set

Y-x PI {x = xQ} and if this set is contained in the interior of

fi(f). Otherwise we shall say that PQ is a critical point and

AQ a critical value of f on x = x .

Lemma 1.2. Let feB(M) n C1(n(f)). Suppose that AQ, (0 < 7\Q < 1) ,

is not a critical value of f on x = x , (0 < xQ < 1) . Then

l(x,~k;±) eC in a neighborhood of (xQ,A ) .

Proof. Since feB(M), y-v intersects the line x = xn at a
0

finite number of points {p. , . . . ,P.} . Let P. = (x ,y.) and suppose

that y, < y2 <...< y,. Then the sequence

has alternating signs.

Let y. = y.(x,A) be the inverse function (with respect to
*j «J

y) of A = f(x,y), in a neighborhood of p.. Then for
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sufficiently near to (xQ,A ), the intersection of y^ with

the line x = x, consist precisely of the points {(x,,y . (x^,A^))} .

Hence for (x,A) in some neighborhood of (x ,AQ) we have:

k . ,
(1.12) <t(x,A;f) = j3 2 (-l)J+iy (x,A)

j=l 3

where )S = sign(y-(P..)) . Since y.(x,A)eC in a neighborhood

of (xn,A ) the assertion of the lemma is proved.

Note that for (x,A) in a neighborhood of (xQ,A ) we have:

J —-L 3 —

Definition 1.4. We shall say that a function f belongs to

B!(M) if feB(M) and in addition:

(v) f€C1(n(f));

(vi) For every xQ, (0 < xQ < 1) and every a5b (0 < a < b < 1)

vanishes at most at a finite numbed of points on

) n na

Applying the transform £. to functions in B!(M) we

obtain the following basic result:

Theorem 1.1. Let 3 = {f^ . . -,f ) c B! (M) and let A = {a^ . • . ̂
n

be a set of positive numbers such that £ a. = 1. Let G(t)
J=l J

be a function defined for t ^> 0 such that G(t) is non-negative

continuous, convex and non-decreasing. If f = £A(«*)* then:

n
(1.14) JJ G((l+|vf* |2)1/2)dxdy < Z ajJJ G((1+|vfj |2)1/2)dxdy

n /-F* ̂  J = l n /-p N
..



Proof. From properties (iv) and (v) of the class B'(M) and

Lemma 1.1 it follows that f* is Lipshitz in every compact

subset of fi(f*). Hence the left side of (1.14) is meaningful.

Let 0 < a < b < 1. We shall prove:

(1.15) rr G((l+|7f*|2)1/2)dxdy < £a fj G( (1+|?f . |2)

The inequality (1.14) follows from (1.15) if we let a -> 0 and

Given xQ, 0 < xQ < 1, we denote by {^1,---*\_1}
 t h e s e t

of all critical values of the functions ff i)^ = 1
 on t h e l i n e

x = x^, such that a < 7\, < b5 (k = l,...,v-l). This set is

finite by property (vi) of the class B!(M). We set AQ = a

and 7\ = b and we assume that A < A- <...< ^v_^ < ^v •
 By

property (iii) of the class B(M), the set

T^= {(xo,y)|Am< fj(xo,y) < W

consists of a finite number of open intervals. Denote these

intervals, ordered by increasing y, by {T\ ^}^1T 5
 9 (m = 0,...,v-l;

j = l,...,n). Each interval T1!1 . is free of critical points

of f.; in a neighborhood of T™ ., the function A = f (x,y)
J X 9 J J

has an inverse y = y1!1 .(x5A). By Lemma 1.2, £.(x,A) s ^(x,A;f.JeC

in a neighborhood of the interval Im = { (xQ,A) |Am < A <
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(1.16)

™bl. k(j,m) by"
-̂J- = E I—if^ I .

. dA i = 1 dX

Hence I (x,A)eC in a neighborhood of I and bl /bl\ > 0

there.

To simplify the notation we shall denote:

G((l + cr2)1/2) = 6(a), (-00 < a < oo) .

Let:

O9' m

We claim that:

(1.17)
ns, (j,) p

7f |)dy < E a. S g(|7f |)dy, (m = 0, . . . ,v-l)

Note that, since A = f (x,y) is the inverse of y = I

0 < A < 1, we have

m+1
(1.18) J g(|7f*|)dy = J G((l+|7

'
m

where l^ = bl /^A. Similarly

(1.19) J &( |7fj |)dy =

m -N m

m

Hence in order to prove (1.17) it is sufficient to show that:
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(1.20)

Now, by the triangle inequality (for I norm in R ) we have:

(1.21) (1+|7 ,l*\2)1/2 = ((Sa )2 + |Sa VI
X 5 A 1 * ^ "|JJ

< L (i+i^ | ) .
2̂  j J

Since G is non-decreasing and convex we obtain:

(1.22) G((1+|V**|2)1/2A*) < 0 ( ^ ( 1 + 1 ^ | 2 ) 1 / 2 / * *

where I. ^ = cH./5A. Here we used the equality -U = Sa X

Similarly we have (by (1.16)):

2 + ^ ^ ' ^ ( D V '2(1.23) (l+|v.t | 2 ) 1 / 2 < (k(j,m)
3

and hence:

(1.24) G((l+|*<t, | 2) X /"A, .) < G( S (1+l^y"1

m -s m

for x = x0, Am < A < A m + 1 .



12

Combining (1.22) with (1.24) we get (1.20) and hence (1.17).

Finally, summing up (1.17) with respect to m (m = 0, ...,v-l)

and then integrating with respect to x (0 < x < 1) we get

(1.15). This completes the proof of the theorem.

Corollary 1.1. Under the assumptions of the theorem:

(1.25) ff |vf* | P d x d y < E a ff |Vf . | P d x d y , ( l < p < o o )
J * "" H-l J O f f \ J """

n(f*) J"1 n ( V
Proof. First we observe that the theorem and all the arguments

presented above are valid also for sets of functions of the

form [af 1, . . . ,af } , where 0 < a is a constant and [f-,...,f } <z B? (M) .

Naturally, in this case f will be replaced by af .

Let G(t) = tp, (p ̂  1)• Then G(t) satisfies all the

conditions of the theorem. Applying (1.15), with G(t) as above,

to the set of functions {ccf .}?, we obtain:

JJ 2 |7f |2)p/2dxdy(1.26) JJ (1-KX2 |7f* |2)p/2dxdy < S aj JJ (1-HX2 |7fj |2)

y

Note that the domains of integration are bounded and that |Vf |

and |7f. | are bounded in these domains. Hence, dividing both

sides of (1.26) by ap and letting a —>oo we obtain:

(1.27) ff |?f* |Pdxdy < E a ff |7f,|Pdxdy.

Letting a—^0 and b—^1 we get (1.25).

Note. The assumption that G is non-negative was made in order

that the integrals in (1.14) would be meaningful even if they are
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infinite. The inequality (1.15) holds even if G(0) is negative.

Indeed, in this case set Gf (t) = G(t) - G(0). Then we obtain

(1.15) with G replaced by G* . But we observe that:

* n

area(Qa b(f )) = Sa.. area(Qa b(f..)) .

Hence the terms with G(0) cancel and we obtain (1.15).

By the same argument, if area (0(f .)) is finite for j = l,...,n

then (1.14) holds even if we remove the assumption that G is

non-negative.

§2. Radial Averaging Transformations.

In this section we define radial averaging transformations

and examine their effect on capacities of condensers and conformal

radii of domains.

Definition 2.1. A condenser C in the plane is a system (n,Eo,E,),

where Q is a domain, En and E1 are non-empty disjoint closed

sets and Eo U E, is the complement of Q with respect to the

extended plane, (i.e. the complex plane z including the point

at oo). If EQ and E1 are connected, Q is called a ring.

In this section we shall assume also that En is compact

and that E-. contains the point at infinity. The condenser C

will also be denoted by (D,EQ) where D = fi U Eo-

Definition 2.2. A real function f(x,y) will be called admissible

for the condenser C = (Q,EO,E-.) if:

(i) f is continuous in the extended plane

(ii) f = 0 on E Q and f = 1 on E

HUNT LIBRARY
CARNEGIE-MELLGN UNIVERSITY



14

(iii) f is Lipshitz on every compact subset of Q.

The conformal capacity of C is defined by:

(2.1) I(C) = inf. JJ|7f |2dxdy5
n

the infinum being taken over all admissible functions.

We shall say that a domain Q has the segment property

if, for every boundary point PQ of Q, there exists a segment

or an arc of a circle, with one endpoint at P , contained in

the complement of fi. (When PQ is the point at infinity, this

means that there is a half line lying outside Q.) If C = (fi,Eo,E-.)

is a condenser such that fi has this property we shall say that

C has the segment property. If C has the segment property,

then there exists a unique, admissible function CO which is

harmonic in fl. This function will be called the potential

function of C. In this case we have:

(2.2) I(C) = jj |vco|2dxdy.

For a proof of these assertions see for instance Hayman [ 4 ]

(p. 62-7).

Lemma 2.1. Given a condenser C = (n,En,E,), there exists a

sequence of condensers {C.}?0, C. = (Q.,En . ,E-. .) such that:
3 1 J J V, j 1, j

(a) {Q.}-. is a monotonic increasing sequence of domains

possessing the segment property;
— n

(b) Q. is a compact subset of fi and UQ. = Q, (j = 1,2,...);
3 T 3

(c) EQ . contains a neighborhood of E., (j = 1,2,...);

(d) lim I(CH) = I(C).
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This assertion is easily verified by a standard argument.

We note also that if C = (O^E^E^ and C1 = (01 ,E^,Ep

are two condensers such that 0 c: Q! then I(C!) < I(C). This

follows immediately from Definition 2.2. We shall refer to this

as the monotonicity property of the capacity.

Definition 2.3. Let & = {D1,...,Dn) be a family of open sets

in the complex plane z, with non-empty intersection. Suppose

that the closed disk |z-zo | < p (for some positive p) is contained
n

in fl D.. Let:
1 J

(2.3) K̂ (cp) = {r |z = z + re1(peD.,p < r < oo} , (0 < <p < 2TT) .

Set:

(2.4) ^(«p) =J f^ and Rj (<o) =R(<p;Dj;z0) = p

(Note that R • ((p) does not depend on p.)

Let A = {a..,...,a } be a set of positive numbers such that
n
2a. = 1. We define:
1 J

* n ai
(2.5) R (<p) = II R (<p) J, (O < <p < 2TT)

j=l J
and

( 2 . 6 ) D* = ftA(&;z0) = {z = zQ + r e l c p | O < r < R* (<p) ,0 < <p < 2TT}

We shall say that ft. is a radial averaging transformation on

with center zfi.

It is easy to verify that D is a domain which is starlike

with respect to z .
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Definition 2.4. Suppose that {E.}1 is a family of compact sets
3 n

with non-empty intersection and z eO E.. For each E. we define
u 2̂  J J

K*?(<p) and ^((p) as before (where p is any positive number) .

Then we define:

(2.7) R.(<p) = R(<p;E.;z ) = lim p ^
J J p -^0 J

and

(2.8) E* = *A({Ej)J;z0) = {z = zQ + re
i(p|0 < r < R* (<p) ,0 < <p < 2ir},

with R* (0) as in (2.5).

It is easily verified that E is a connected compact set,

starlike with respect to z . (Of course, in some cases, E

may consist only of the point z/v)

Definition 2.5. Let {C.}^ be a family of condensers, C. = (Q.,En .^E, .)

= (D.,En . ) . Suppose that the intersection of the sets En .

(j = l,...,n) is non-empty and let z be a point of this inter-

section. Let A be as in Definition 2.3 and set:

(2.9)

Then we denote:

(2.10) C* = »A(iC^l;z0) = (D*,E*).

We denote also Q^ ' = D - E n.

y >/

Note that if D is not the entire plane and En contains

more than one point, then the condenser C possesses the
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segment property. In fact, Qv ' is a ring which is star like with

respect to z .

The following theorem gives a relation between the capacities

of CJJ.-.JC and the capacity of C .

Theorem 2.1. Let {C.}? be a family of condensers as in Definition

2.5. Let C* = ftA(fC.}J;z0). Then:

* n

(2.11) I(C ) < Ea.I(C-) •
i J J

Proof. By Lemma 2.1 and the monotonicity property of the capacity

it is sufficient to prove the theorem in the case that the con-

denser C. possesses the segment property and z is an interior

point of Eo ., (j = l,...,n). Therefore we restrict our attention

to this case. Without loss of generality we may assume that z = 0

and that the disk |z | <^ 1 is contained in each of the sets En .,
O 9 3

(j = 1,...,n).

Consider the mapping w = In z of the domain |z| > 1 cut

along the positive real axis onto the half strip [w = u + iv |

0 < v < 2ir,0 < u} .

Let co. be the potential function of C. and denote
f-:(u,v) = to. (ew), (j = l,...,n). Then f. is periodic in v
*J 3 3

with period 2w and it is easily verified that f.GB!(M) where

halfM = { (u,v) |0 < v < 2TT,0 < u} . Let f* = £. ({f .}?) in the

strip M. Obviously f (u,0) = f (u,27r) and we extend f

periodically in v (with period 2ir) to the half plane u ;> 0.

The extension will also be denoted by f .

By Lemma 1.1, f (extended as above) is continuous in the

half plane u ^> 0 and is Lipshitz in every compact subset of
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fi = f (u5v) |0 < f* (u,v) < 1,0 < u} . Also f eB(M) . By Definitions

~ (•*)

1.2 and 2.5, Cl is the image of fiv ' by the (multiple valued)

function w = In z.

We denote uT(x,y) = f*(ln z), (z = x + iy) . Because of

the periodicity of f*, the function u> is well defined in
y. Iff-

|z | ;> 1. We extend to "to the entire plane by setting to = 0 in

jz I < 1 and to = 1 at oo. Then, from the properties of fdescribed above, it follows that to is an admissible function for the

Hence:

KC*) < JJ 17of |2dxdy.

y

condenser C . Hence:

By Corollary (1.1), with p = 2, and the invariance of the

Dirichlet integral under conformal mapping:

JJ |7w* |2dxdy < 2 aj JJ |vcOj |2dxdy.

Combining these inequalities and taking into account formula

(2.2) we obtain (2.11) .

Let D be a domain in the plane and Z Q G D - W e denote

by r(zQ;D) the conformal (or inner) radius of D at z .

If f(?) is an analytic function in the unit disk |g| < 1,

such that f(0) = z , and if the image of this unit disk by

z = f(%) is contained in D, then:

(2.12) |f (0) | < r(zQ;D).

Equality holds if and only if z = f{%) maps ||| < 1, (1-1)

onto D.
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If D is a bounded domain which possesses the segment

property, z oeD, and CL denotes the condenser (D,K£ ), where

is the disk |z-z | < £ , then:

r(z ;D)

where 0(1) is a quantity which tends to zero when £_ -> 0.

If D is any domain in the plane and ZQeD> there exists

a sequence of subdomains (D }-. such that z
n
£D E D ji 9 D ^ D,

D is bounded and has an analytic boundary (i.e. its boundary

consists of a finite number of disjoint, simple, closed analytic
00

curves), (n = 1,2,...), U D = D and finally lim r(z ;D ) =
1 n n ~->oo u

r(z -D). ({D }?° will be called an approximating sequence for
u n 1 —

the inner radius of D at z .)

Note that if [B, }-. is a monotonic increasing sequence of
K L 00

subdomains of D such that U B, = D and if zneBn , then

lim r(zn;B,) = r(z ;D) . This is a simple consequence of the
k-*CD u K u

previous result and the monotonicity property of the conformal

radius (i.e*ifzoeD
! c D" then r(zQ;D

T) < r(zo;D
Tt)).

For the definition of inner radius and proofs of the above

statements, see Hayman [4] (p. 78-84). Formula (2.13) is due

to Polya-Szego [ 9 ].

We use now Theorem 2.1 and formula (2.13) in order to obtain;

Theorem 2.2. Let $ = {D1,...,D } be a family of domains in the
n

plane with non-empty intersection. Let z
neH D. and let

n ° 1 J n
A = {a..}-, be a set of positive numbers such that S a. = 1.

J -*- 1 ^
If D* = ftA(£;z0) then:
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(2.14) n r(z D ) J < r(z D ).
1 u J u

Proof. It is sufficient to prove the theorem in the case where

D. (j = l,...,n) is a bounded domain with analytic boundary. This

is clear in view of the existence of approximating sequences for

the inner radius of D. at z , (j = l,...,n), as described

above. Therefore, we restrict our attention to this case.

We shall use the following notations:

* * ~ n ai
r j ~ r z o > D j > J ~ > • • • > * > r - r V D ' r - 1

 r j

Given £> 0 let a = £/r and £. = ar . . Finally denote

C. - = (D.,Kc ), where KL denotes the disk Iz-z^ I < £ .,
«J «J j

and I(C. ) =I(j,£). Then by (2.13):

2TT
 ri 1

(2.15) -=-?-.——r- = log -^- + 0.(1) = log - + 0

where 0.(1) tend to zero as
J n a.

Let c; = GMfC^ ,. }V;z^). Since n £ , J = ar = £ we find
n a.

({C - c }-T;zn). Since n £.J =

that (for sufficiently small £ ): C* = (D*,K£ ). Hence:

(2.16) —22L_ = iOg |_ + Q ( 1 ) = l Q g r_ +
KC4.)

 & ar

where 0(1) tends to zero when £-->0.

By (2.11), (2.15) and (2.16) we obtain:

I(C*) = 1£ < 2TF S aj/(log ^

log |- + 0(1) J=1

< 2TT S aj/(log ̂  + 0' (1))

= 27T/(lOg 1 + 0' (1)),
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where 0! (1) = - max |0.(l) |. Hence:

r* 1
log |- + 0(1) ^ log ~ + 0'(1)

Since £ = ar we finally obtain:

r •* /̂
log — > 0 r > r.

r

This completes the proof of the theorem.

§3. Radial Symme tr izat ion and Related Results.

The results that we present in this section are applications

of Theorem 2.2. We begin with a definition of radial symmetrization

which extends the definitions introduced in [11] 9 [7 ] and [1 ].

Definition 3.1. Let D be a domain in the plane and let z
o
e D #

Denote R(cp;D;z ) as in (2.4). Let A = {a.}^ be a set of

n 1. n
positive numbers such that £ a. = 1; let a = {a.}, be a set

1 J J •*•

of integers different from zero and let ,Q = {8.}, be a set of

real numbers. We denote:
(3.1) R*(<p) = II R(a.<p + fi.) j, (0 < 0 < 2TT),

j=l J J

where b . = a ./ |a . |, and

( 3 . 2 ) D* = {z = zQ + r e l c p | 0 < r < R* (<p) ,0 < cp < 2TT} .

The transformation D -^D* will be called a (generalized)

radial symmetrization and will be denoted by S(A,a,"j8;z0) .

The following lemma will be needed:
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Lemma 3.1. Let D be a domain in the plane, such that D con-

tains the origin. Let k be a positive integer. Consider a

k-fold covering of D such that each point zeD, z ^ 0, is

covered by k points with arguments <p + 2TTJ , 0 <C j _< k-1,

0 < <p < 2TT. Let T,D denote the image of this covering by

w = z1//k. Then:

(3.3) r(O;TkD) = r(O;D)
1 / k.

Proof. Let {D } be an approximating sequence for the conformal

radius of D at 0, as described in Section 2. Then

lim r(O;Dn) = r(O;D),
n —̂ -oo

lim r(O;T,D ) = r(O;T,D).

The second formula follows from the fact that (T, D }C°__-] is a

monotonic increasing sequence of subdomains of T,D such that
oo
U T, D = T, D.
n=l k n k

Hence it is sufficient to prove the lemma for a domain D

which is bounded and has analytic boundary.

Let K£ be the disk |z | < £ , suppose that K <z D and

denote C,. = (D,KC ). If Ck = (T,D,K ), where £, = £ 1//k,L t t K fck k

it is easily seen that:

kl(Ct ) = I(C
k).

Hence, by formula (2.13) we obtain the required result.

Theorem 3.1. Let D be a domain in the plane and let z
o
e D-

Let D* be as in Definition 3.1. Then:
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1/b n

(3.4) r(zQ;D) < r (zQ;lf)
1/h, where b = Z b _. .

Proof. Without loss of generality we may assume that z = 0.

Denote by D: ' the domain Ti »D. If a. < 0, denote by D: '
J I oc - f j j

the domain obtained from D. ' by reflexion with respect to the

real axis. If a. > 0 let D: ' = D^ . Finally denote by D. > 0 let D: = D^ . Finally denote by D.

ed fr

By (3.3) we have:

the domain obtained from D: ' by a rotation of angle •—0.
j J

Via. |
(3.5) r(O;Dj) = r(0;D) J , (j = l,...,n).

Furthermore, it is clear from our construction that:

1/loU
(3.6) R(c?;D,;O) = R(a <p + fi ) 3 .

Applying Theorem 2.2 to the set & = {D.}-., with D. as

above, inequality (3.4) follows immediately from (3.5) and (3.6).

Corollary 3.1. Let z = f(|) be an analytic function in |§| < 1

such that f(0) = 0. Let D be the image of |5| < 1 by the

mapping z = f(5). Define D* as in (3.2) with z = 0.

Suppose that D is not the entire plane and let z =

be an analytic function in \%\ < 1 which maps this disk (1-1)

onto a domain containing D . Then:

(3.7) |f (0) | < |F' (0)

with b as in (3.4).

Proof. Using (2.12) and the subordination principle, this result

follows immediately from the theorem.
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Remark. Theorem 3.1 includes as particular cases the radial

symmetrization results of Szego [n] (for starlike domains,
2TT.

with a. = 1/n, <x. = 1, |3. = —^-, j = l,...,n), Marcus [7]

(for general domains with a ., a ., j3 . as above), and Aharonov
J J J

and Kirwan [ l ] (for general domains with a. = —•, a. = ± 1,
j '•^ «J

jS . arbitrary) .

The method of the present paper is different from the methods

employed in the previous papers, in that the symmetrization

results are obtained as a particular case of a more general

class of transformations, namely, the radial averaging trans-

formations .

By varying continuously the exponents in the weighted

geometric mean (2.5), we can obtain a process of continuous

symmetrization with properties similar to those of the continuous

symmetrization of Polya-Szego [ 9 ] (p. 200-202). (In [9 ] the

process refers to Steiner symmetrization.) The following theorem

provides a result of this type.

Theorem 3.2. Let D be a domain in the plane and let Z Q G D *

Consider the transformation S = S(A,oc,^;z ) with a. = + 1.

Using the notation of Definition 3.1 set:

(3.8)
g n = f7 - w J. T*d1(PD = [z = zQ + r e l c p |0 < r < Rt (p) ,0 < cp < 2TT} , (0 < t < 1)

• *

(Note t h a t S-ĵ D = SD = D .)

Then, for 0 < t± < t2 < 1 we have:
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t /t 1-ti/t2
(3.9) r(zo;D) < r(Z();St D)

 x zr(z0;D)
 x < r(zQ;St D) .

Remark. Suppose that D is bounded and starlike with respect

to zQ. Then SQD = D as well as SjD = D* and R̂ .(<P) depends

continuously on t, for 0 < t < 1. Hence, in this case the

transformation S, may be called a continuous symmetrization

connecting D and D .

Proof. By (3.8):

t /t i-vt2
Rt (cp) = Rt (<P)

 X R(co) X ^, (0 < tx < t2 < 1) .

Hence by Theorem 2.25 we obtain the second inequality in (3.9).

In particular, for t.. = t and t2 = 1 we get:

r(zQ;D'
f)tr(z();D)

1"t < r(Z();StD).

Finally, by Theorem 3.1:

r(zQ;D*).

Combining these inequalities we obtain (3.9).

The following theorem supplies a symmetrization based on

an integral formula.

Theorem 3.3. Let A($) be a bounded, monotonic increasing function

in the interval [0,2ir] , such that:

r2ir
(3.10) J dA(!/)) = 1,

the integral being a Stieltjes integral.
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2Let z = f (5) = a1 5 + a2? +• . . be an analytic function

in the unit disk |g| < 1 and let D be the image of this disk

by z = f(§). Denote as usual, R(<p) = R(cp;D;O) and set:

r P 2 7 r

( R(cp) = exp[J In R(cp + <|>)dA(4>)],
(3.11) < °

[ D = {z = re 1 ( p |0 < r < R(cp) ,0 < <p < 2TT} ,

the i n t eg ra l being a Lebesgue-St ie l t jes i n t e g r a l . Then:

(3.12) | a 1 | < r(0;D) < r (0 ;D) .

Proof. Without loss of generality we may assume that f(5) is

analytic in |?| < 1 and that fT(5) ^ 0 for |g| = 1. In the

general case, the result will follow by approximating the function

f(§) by functions f(p§) with 0 < p < 1.

Under the above mentioned assumption, R(cp) is a bounded

continuous function of cp (and periodic with period 2ir) .

Hence the integral in (3.11) may be interpreted as a Riemann-

Stieltjes integral. Therefore, we have:

n - 1 2-rr-
(3.13) In R(0) = lim S y In R(cp + -Jl) ,

n ->oo j=0 3'

uniformly with respect to tp, where y« n = A ( — • (j+1)) - A(— L • j)
j j n n n

Let:

n-1
Y = S v • and 6 . = Y•S v • and 6 . Y• /Y •
n j=0 J' n J' n J' n n

We observe that by (3.10) lim Y = 1. Denote:
n -*oo n
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n-1 6 .
R*(<p) = n R(«? + -p) ) J'
n j=o

D* = (z = re1<p |o < r < R* (<p) ,0 < cp < 2TT} .

Given £ > 0, for sufficiently large n we have (by (3.13)):

|ft(<p) - R*(<p) | < d , O < cp < 2TT.

From this and Theorem 3.1 it follows that:

\&1\ < r(O;D) < r(O;D*) < r(0,D) + I n>

where £ -̂ > 0 when n—*oo . This completes the proof of the
n

theorem.

Remark. Considering the special case A(I/J) = j- ty, we observe

that by the geometric-arithmetic mean inequality we have:

i ?2ir 1 r27r

(3.14) R = exp[£z In R(<p)ckp] < ^r R(cp)dcp.

^ Jo 0

Let RQ be the radius of the disk whose area equals the area

of D. Then by Holder!s inequality:

1 P27r 1 r2Tr 2 1/2
|" I R(<p)dcp < i - [27r J R^ipjdcp] 1 ^ < R .

By (3.12), |a]L| < K. Since R < RQ, this estimate is stronger

than the corresponding estimate obtained by Schwarz symmetrization,

The following result is also a consequence of Theorem 2.2:
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Theorem 3.4. Let D be a domain in the plane and let Z
O^

D-

Denote:

(3.15) D* = [z = zQ + re
1(p|0 < r < R(<p)*,0 < cp < 2TT} ,

where R(cp) = R(cp;D;z ) . Then:

(3.16) r(z();D)
t < r(zo;D*), (O < t < 1) .

P r o o f . Le t & = {D-.^D2} where D-. = D and D is t h e d i s k

| z - z n | < r ( z ; D ) . Le t A = [ t , l - t ] and D^ = R . ( « ; z ) . Note t h a t

R(<p;D ;z Q ) = r ( z Q ; D ) " R(<p) ,

s o t h a t :

But by (2 .14) :

r(zQ;D)

Hence we obtain (3.16).

§4. Aji Extension of the Bieberbach-Eilenberg Class of Functions

The following notation will be employed throughout this

section:

The unit disk \%\ < 15 in the complex plane £5 will be

denoted by E = E-.

The class of functions f(5), holomorphic in E, such that

f(0) =0 will be denoted by M.

If feM, the image of E by z = f(?) will be denoted by
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Df; furthermore, we set Rf(<p) = R(cp;Df;O) (see 2.4).

A function f(§)eW is a Bieberbach-Eilenberg (or B.E.)

function if it satisfies the following condition:

(4.1) f(51)-f(52) ^ 1, for all 51,52€E.

Various classes of functions, defined by conditions analogous

to (4.1) have been introduced and studied in the literature. See

for instance Goodman [3], Lebedev [6] and Jenkins [5].

The following class of functions was introduced in [5].

i 6
Let 8 be a fixed real number. Then we say that feK{e }

if feJt and

(4.2) f(51)'"f(52) 7* e±*> for a11 h'heE'

A classical result on B.E. functions states that if f(§)

is such a function, then:

(4.3) |f•(0)| < 1,

with equality if and only if f = r)%, ( fry | = 1) .

Jenkins [5] has shown that this result holds also for

feK{-l} and feKfi}. Goodman [3] obtained the same result for

the classes of functions introduced by him there.

Let f,geW and suppose that:

(4.4) f(61)g(52) ^ 1. for all

Then it is known that:

(4.5) |fi (0) -g' (0) | < 1,
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and again, the inequality is sharp in the same sense as before.

(This result was obtained, in a different form, by Nehari [8].)

In order to unify and extend conditions (4.1), (4.2) and (4.4)

we introduce:

Definition 4.1. Let P denote the matrix (p, H ) l r _ 1 „ -,
K , J K — JL , • • • , n— X

j=l,...,n

where p, . are integers and n ;> 2 .

Let © = (9..,..., 9 ) be a vector whose components are

real numbers.

(i) Let $ = {D.}? be a set of domains in the z-plane

such that each D. contains the origin. We shall say that

&eC (P;0) if the following condition holds:

-i9, n p, .
(4.6) e K II z K'J > 0, (k = l,...,n-l) ̂ > |z ...,z I ^ 1,

HJ in

for all (z15...,zn)eD1 x . . .x Dn-

If D is a domain containing the origin and {D.}?e6 (P;©),

where D-. = . . . = Dn = D, we shall say that D€C(P;<9).
(ii) Let ffj}J £ **• We shall say that {f .} j€Cn(P; <g>) , iff

If f€» and (f .}^€Cn(P; 0 ) , where f ± = . . . = fR = f, we

shall say that feC(P;O).

Remark. We observe that C((l,l);0) is the class of B.E. functions

Z2while C((l,-1);6) = K{el9}. Also C9((151);O) is the class of

pairs satisfying (4.4).

Denote by P1. the determinant of the matrix obtained from

P by deleting the j-th column. Let P. = (-1
J
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With this notation we have:

Theorem 4.1. Let P and 0 be as in Definition 4.1 and suppose

= CD1,...,Dn}eCn(P;©)that P ji 0, (j = l,...,n). If
J

then:

(4.7)
n
nr(O;D.)

J

Equality holds if D. = E , (j = l,...,n) where E is the disk

j z z

1*1 < i.
In particular, if feC(P;G) then:

(4.8) (0)| < 1,

and equality holds for f = tfz, ( |TJ | = 1) .

Proof. We prove the first assertion of the theorem. The second

one follows immediately from the first assertion*

Consider the system of equations:

(4.9)

\<Pn / V9n-1 /

If (z]L,...,zn)eD1 x...x Dn and if (4.9) is satisfied by

<p^, . . . ,<Pn, where ip. is one of the values of arg z. (we set

<p. = 0 when z = 0 ) , then, by (4.6), \z , . . . ,z 1 ^ 1 .
*J j xn

The general solution of (4.9) is given by

(4.10) (p. = Y
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where {$.}? is a particular solution of (4.9). (We may choose
J 1

ib = 0 : then il), ,...,*!) , will be uniquely determined sincexn i 'T n-±

P 7̂  0. ) .
n ~

Choose p, 0 < p < 1, such that |z | < p is contained in
n
n D. and denote D. _ = [z|zeD., |z | > p) . Let m be the image
nj 3 *P 3 3 i P
of D. by the (multiply valued) function w = In z, (w = u + iv)

3 9 P
Denote:

L_j(v) = { (u,v)

(4.11)

L . (v) = {(u,v) |ueDT. ,jhu > 0) .
J 3 9 P

Let l.(v), l*(v). £"(v) denote the linear measures of L. (v),
J J J 3

L^(v) and L'(v) respectively.

For given <p, let v. = y . (cp) . By (4.6), if the interval
J 3

a. < u < b. is contained in Lt(v.), (j = l,...,n-l), then the
J Jn-1 n-1 J J

interval - £ b . < u < - £ a . does not intersect L (v ) . Hence:
-i J i J n n

Similarly, we have:

(4.12) ^k^k^ + ̂ ^^v*^ ^ Iln p\> (k=l, . . . ,n; j=l, ,

Summing up (4.12) over j (with k fixed) we get:

# - / v 1 V 9 + / x x H I / i n
^ i (vi^) + — T ^ - ( v - ) < | l n P\9 ( k = l >k k n - l J = 1 3 j -

and now summing up over k we obtain;

n
(4.13) S t (v ) < n|ln p|.

k=l K k
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It follows from (4.13) that:

(4.14) n R.(<p.) < 1,
1=1

with cp. as in (4.10) and 0 < cp < 2TT.

Now, as in the proof of Theorem 3.1, we construct a domain

D. (j = l,...,n) such that:

ViPj
R(cp;D.;O) = R.(P.cp + i/).) J ,

( 4' 1 5 ) | 1/|P.|
t rfOjDj) = r(0;Dj)

 J , (j = l,...,n).

n
Let a. = |P.|/Y where y = Z|p.|. Then, by (4.15):

J J 1 ^

* n a *
(4.16) R (0) = n R(co;D. ;0) J

1

n l/v
= [n R,(P.(p + î ,)] /T < 1, O < (p < 2TT.

"1 J J J

Applying Theorem 2.2 to the set fi = fD.}?, with R (tfi) as

above, and using (4.15) we obtain (4.7).

Remark. Suppose that, in Definition 4.1, condition (4.6) is

replaced by:

"i6k n pk i t t
(4.6)' e K n Z j

K' J > 0, (k = 1,.. .,n-l) =^ [z^, • ..,zn I ^ 1,

where t., (j = l,...,n), are fixed positive numbers.

If inequality (4.7) is replaced by

n t .
(4.7)' n r(0;D.) 3 < 1,
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then Theorem 4.1 is valid also in this case.

The proof, except for minor modifications, is the same as

before. Instead of (4.14) we have in this case:

n t
(4.14)' n R (<p.) J < 1,

•̂  J J

with <p. as in (4.10) and 0 < cp < 2ir.

§5. Further Applications.

In this section we consider the following problem. Let

fcp, , . . . ,cp } be a set of m distinct numbers in the interval
^1' '^m

[0,2TT) . Denote by cr the ray with argument <p, issuing from

the origin. Let feit and let Df be defined as in the previous

section. Then, the problem is to obtain sharp lower bounds for
n

the measure of the intersection of U a with D-.
i *j f

Results of this type (which will be referred to as "covering

theorems") were obtained in [11], [7] and [1], by means of radial

symmetrization. We state below a rather general covering theorem

which, as we shall show, implies the results mentioned above.

The following notation will be convenient for the statement

of our result. Let 0 < M < oo and consider the disk |z| < M
icp

cut along the segments (or rays) z = re , K <C r <C M, (j= l,...
We denote this domain by DM ^((p,,...,cp ). Let 1 < M and let K

1V1, xv JL III

be so chosen, that the conformal radius of this domain, with

respect to the origin will be equal to 1. We denote this value

of K by Kjj(<Pi5 • • • 9^) 9 a n d we denote the domain DM K(<Pi 9 • • • *<P )

with K as above by D
M ( ^ 1 5 • • • ><Pm) •
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If cp. = Y • (<p) = cp + 27rj/m (j = l,...,m), we denote :

the e q u a t i o n :

K™ = Kw(<p, , . . . .<p ). The va lue of K,, can be computed fromM5m M l m M,m

(see [7], p. 624). Hence we have:

( 5 . 1 ) KM m = M[(2Mm - 1) - 2 fM
m(Mm - l ) ] 1 / m , (M ^ 1)

I V l m 1 1 1

In p a r t i c u l a r , K^ m = ( l / 4 ) 1 / m .

I f cpj = Y j (cp) , 1 < j < m, and cp_. = Yj (-<p) , m + 1 < j < 2m,

we denote: K^ m((p) = KM(cpx, . . . ,<P2m) •
 N o t e t h a t if <P = Yj (0)

or cp = Y • (tr/m) the set {<p- , . . • ,cp2 } contains only m distinct

rays. In this case we identify Kj" m(<p) with KM .

With this notation we have:

2
Theorem 5.1. Let f(5) = a^? + ao^ +••• be analytic in the

disk |§| < 1 and let Df be defined as before. Let R (cp)

be defined as in (3.1), with R(<p) = R(co;Df;0). Suppose that:

(5.2) R*(<p) < M, (O < cp < 2TT) ,

for a fixed M, O < M <_ oo . Suppose also that, for a given set

of distinct rays with arguments {<p,,...,<p }, there exists a

number Q such that

(5.3) R*(<pj) = Q, (1 < J < m) .

, n
Set MT = M/|a |D, where b = E b. (see (3.1)). Then:

1 1 J

(5.4) KM»((pl^-^(pm) ' al| b ^ Q'
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If b = 1, equality holds for every function f which maps

the disk |g| < 1, (1-1) onto the domain |a-, |DMI (cp1, . . . ,<p ).
_L M JL m

If a.. = 1, equality holds for every function f which

maps the disk |§| < 1, (1-1) onto the domain DM(pp . - . ,<p ).

Proof. Let D* be defined by (3.2). Then by Theorem 3.1;

]_| < r(O;Df) < r(O;D*)
1/b.

By our assumptions D c DM n(<p-, , . . . ,co ) . Hence:
jvi ̂  x m

Let M1 =M/|a 1|
b and Q1 =Q/|a]L|

b. Then:

Hence we obtain (5.4). The assertions regarding equality are

obvious.

It is clear from the proof that, in (5.4), |a, | could

replaced by r(O;Df), with M! = M/r(O;Df)
b.

be

Remark. Le t:

* m

(5.5) R (cp) = n R(cp.), (0 < <p < 2TT)

with <p. = y • (<p) • Then, for every domain D, we have:
J J

Rm(<pl) = • • • = Rm((pm) ' (0 < (p < 2TT)

Let:

(5-6) R**(<p) =
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Then, for every domain D:

•¥--¥-

o
Corollary 5.1. Let f(§) = 5 + a2? + . .. be an analytic function

in 11 | < 1. Suppose that:

(5.7) R*(<p) < M, (O < <p < 2rr) ,

for a fixed M, M <; oo . (Clearly this can hold only if 1 _< M.)

Then:

(5.8) i y m < R̂ (cp) , (0<cp<27r).

If instead of (5.7) we have:

(5.7)' Rm ((p) < M, (0 < <p < 2ir) ,

then:

< R m
 ((0)^ (0 <

Proof. In view of the previous remark this is an immediate

consequence of the theorem.

2
Corollary 5.2. Let f(§) = a^ + a2? +. . . be a B.E. function

Denote: ^ = l/|a1|. Then:

(5.9) 'al''Kj!i,m((0) ^ Rm (cp)' (0 < <p < 2TT) .

In particular:

(5.10) f all' K
M, m ^ min.(R*(0),R*(7r/m))



38

Proof. By (4.14) we have R(<p) -R(-cp) < 1, (0 < cp < 2ir) . Hence:

y y

(5.11) Rm (<p) < 1, (O < cp < 2TT) .

Applying the theorem with R (cp) = Rm* (cp) we obtain (5.9).

Inequality (5.10) is a particular case of (5.9), since

R (cp) = R (cp) for <p = O and cp = ir/m.

2
Corollary 5.3. Let f = a..§ + a2 § + ...GK{-1}. Denote

fi = 1/ |a | . Then:

(5.12) 'al''K^,2m ̂  R2m((p)' (O < <p < 2TT) .

Proof. By (4.14) , R(cp + IT) -R(cp) < 1, (O < <p < 27r) . Hence:

R2m((p) ^ X' (O < <P < 2TT).

Applying the theorem with R (cp) = R2 (<p) we obtain (5.12).

Remark. In all the corollaries above we have b = 1. Hence the

case of equality in the various estimates is clear from the

statement of the theorem.

Inequality (5.8) was obtained in [11], under the assumption

that f is starlike and M = oo , and in [ 7 ] for the general

case.

If we assume that f is a simple function, then, for m = 2,3

and M = oo , it is known that an inequality stronger than (5.8)

is valid. In fact, in this case, (5.8) holds if R(<p) is

replaced by the length of the segment from the origin to the

nearest boundary point of Df, along the ray cr .

For m = 2, this result is classical; for m = 3 it was
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obtained by Reich and Shiffer [10].

Inequality (5.10) of Corollary 5.2 was obtained in [ 1 ].

It should be noted that R(<p) <. meas.fa fl Df} and, in fact,

equality holds if and only if a H Df is a segment (or ray)

minus a set of linear measure zero, (see [ 7 ] , p. 625). Hence,

by the arithmetic-geometric mean inequality we have:

[ n R(o.)]1/n < ± 2 meas.fa 0 Df}
j=l J j=l \3

with equality if and only if R((Pj) =...= R(cpn) and each set

a fl Df (j = 1, . . . ,n) is a segment (or ray) minus a null set.
j
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