AU6 g'1

ABSOLUTE CONTI NU TY ON TRACKS
AND MAPPI NGS OF SOBOLEV SPACES

by
M Marcus and V. J. M zel

Report 71-33

July 1971

Acknowl edgenent s

The research of one of the authors (VJM was partially sup-

ported by the National Science Foundation under Grants GP 24 339
and GP 28 377.

The ot her author (MM w shes to acknow edge the stinul ating
mat hemat i cal at nosphere provided by the Carnegie-Mel|lon University
Mat hemat i cs Departnment during the preparation of this paper.

HUNT LIBRARY
CARNEGIE-MEUGN UNIVERSTY




| Y

ABSOLUTE CONTI NUI TY ON TRACKS AND MAPPI NGS OF SOBOLEV SPACES

by

M Marcus and V. J. Mzell

Abstract

The present paper is concerned with the circunstances under

whi ch a function g(x/;t | Rn provi des, via conposition, a

1
mappi ng bet ween Sobol ev spaces. That Is, we exam ne conditions
whi ch ensure that for every systemof functions u_l,...,u eW_1 (Q
m , g
(where W (Q 1is the class of L functions wth L  sunmable
1, q q q

strong first derivatives on the domain Q c:. R)sthe conposite func-

tion v given by v(x)~=g(x,t,(»%), ... ,u (x)) belongs to W.,H£})>
wth preassigned 1 < P < oo. Qur overall approach in this paper

is patterned after a classical chain rule result of Vallée Poussin
[8,p. 467] for real functions on a real i1nterval.

By introducing a (seemngly new definition for absol ute con-
tinuity of a function g(t]J...,tIQ on the track of an absolutely
conti nuous curve and exploring its properties, we have been able
to attain an exact anal ogue of the above result of Vall ée Poussin

In the case of functions g(t ,...,t ) defined on R . This re-

1 m m

suit Is thereafter utilized in obtaining necessary and sufficient

| oc’
conditions in order that for given functions u,...,u e wilté()
m. 1,
the conposite function v = g(u_l...,u %}belong to WAhfiﬁy . This

|l ast result leads Iin a relatively straightforward manner to con-

lResearch partially supported by the National Science Foundation
under Grants GP 24339 and G°P 28377.




ditions for g to map WI q(ft)m to V\ALFgft). VW also obtain a

different set of conditions on g under which g(t o’t’l" | n)
t akes W2 q(ft) Into V\LI p(ft) via the conposition
v(x) = g(u(x),du(x),...,Su(x)).

On the other hand for functions g\(x.f..,...,t r?w xeO, we have

obtained fully anal ogous results only when the function g satis-

fies a | ocal Lipscwitz condition on fi me

The entire approach relies heavily on a characterization of

t he spaces W1 p(ft) due to Gagliardo [2].




ABSOLUTE CONTI NUI TY ON TRACKS AND NMAPPI NGS OF SOBOLEV SPACES

by
M Marcus and V. J. M zel

| nt r oducti on,

The present paper 1s concerned with the circunstances under

whi ch a function gfx.j,i...,t ) provides, via conposition, a
~ m

mappi ng between Sobol ev spaces. That is, we examne conditions

which ensure that for every systemof functions u.l.,. ... u rr? W:L q(Q) ,
wher e V% (fl) 1s the class of L functions with L summable
- q q

strong first derivatives on the donain <Qc:F§P the conposite func -
tion v given by v(x) = g(x,g_(i()go .. ,U (X)) belongs to V\LI’P(Q ,
with preassigned 1 £p < 00. CQur overalp]approach In this paper
is patterned after a classical chain rule result of Vallée Poussin
[8,p.467] for real functions on a real interval. He showed that
when g and u are both absolutely continuous functions then the
conposite function g u wll be absolutely continuous If and only
if g* (u(x))u'(x) is summable (when the product is properly inter-

preted) , and that then the chain rule

(c) S g(u(x) =g (u(x)u(x)

Is valid al nost everywhere. In this direction Serrin has shown [5]

that for g : R—R locally absolutely continuous and lJeVV!fEFD,
L L LY 1

dJLr+ | OC

one has v(x) = g(u(x)) eWnJ,(rfI) it andonly if g (u(x))Wu(x) el (0



By introducing a (seemngly new definition for absol ute con-
tinuity of a function g(t]j...,tIQ on the track of an absolutely
conti nuous curve and exploring iIts properties, we have been able
to attain an exact anal ogue of the above result of Vallée Poussin

In the case of functions g(t ,....t ) definedon R: 1If g 1Is
m m

absol utely continuous and has a total differential al nost every-

where on the track of the absolutely continuous curve u = (u.r-.., u)’
~ m
then the conposite function v(x) = g(u(x) ... 'u (X)) wll be abso-
. ou.
lutely continuous 1f and only If So{\“ (u) cll\xi | s summabl e (when

|
the products are properly interpreted), and then the chain rule

anal ogous to (c) holds. This result iIs thereafter utilized in
obt al ni ng necessary and sufficient conditions In order that for

gl ven functi ons U, 4---»u r(%Wll.ofi,(Q) t he conposite function
V = g(u.l,...,un} belong to V\Llf.(i(E}) . This last result leads In a

relatively straightforward nanner to conditions for g to nmap
V%E](ElT' to VMbP(CI). W al so obtain a differgnt set of conditions
on g under which g(t 'ot’l'"""t 2] t akes W‘z,(sg-:l) I nto WI,P(Q)
via the conposition v(x) = g(u(x),S.%(x),... ,5ry(x)).

On the other hand for functions g(>5\,t.1,...,t r% xe Q we have
obtalined fully anal ogous results only when the function g satis-

fles a local Lipschitz condition on OX Rni For the conveni ence

of the reader we discuss these "Lipschitz condition" results prior

to the "absolute continuity" results because the analysis Iin the



|atter topic Is much nore delicate. (As Is proved Iin Section 3,
every function on Iﬂn which Is locally Lipschitz Is automatically
absol utely continuous on the tracks of all absolutely continuous
curves.)

The entire approach relies heavily on a characteri zation of
t he spaces VLFDUt) due to Gagliardo [2], while in the study of the
absol ut e cont;nuity results we utilize not only the above nentioned re-
sult of Vallee Poussin, but also Tonelli's results on absolutely contin-
uous curves [4,p.123], Roger's work on tangent cones [3], results
of Banach for real functions on real intervals [4,p.282 and p. 113]
and sone work of Federer [I|,p.211 and p. 245].

The present paper iIs conpletely restricted to situations in
which a chain rule analogous to (¢c) holds Iin £1. In a subsequent
paper we propose to examne conditions under which g(§}tl,...,tn9
provi des a mappi ng bet ween Sobol ev spaces even though a chain rule
IS not available, and In addition to examne continuity properties
of such mappi ngs.

The plan of the paper is as follows. Section 1 is devoted to

background material. Section 2 deals wth functions g(§,ti,...,tn2

which are locally Lipschitz. In Section 3 we introduce the notion

of absolute continuity on a track in Ry and discuss its properties,
and 1n Section 4 we apply these results to deal wth the case of
functions g(ti,...,tm which are absolutely continuous in this new

sense.




81l. Prelimnaries, W adopt the follow ng notation and conventi ons.

The vector space RHI\MII al ways be considered with the Euclidean

norm denoted by | | « £ denotes k-dinensional Lebesgue neasure,

and ‘“1 denote 1-dinensional Hausdorff neasure. Finally, an

Rﬁ{valued function v 1s sald to be absolutely conti nhuous on an

Interval of the real.line provided that the infinite sum
E(x(a;)-!(aw)l can be nmade arbitrarily smal | by naking the total

| engt h Zﬁzi.-qﬂ of the disjoint subintervals | [aT,C;]} sufficient-
ly smal | .

A basic feature in our discussion of mappi ngs fromone Sobol ev
space into another is a characterization of the spaces VY,p I N
terns of absolute continuity, due to Gagliardo [2]. This character-
| zation w || be described below. However we shall first nention
sone necessary classical results on absolute continuity due to
Val | ée Poussin [8,p.467] (see also Serrin and Varberg [6, pp.517-518])

and Tonel 1 [4,p.123].

Lemma JL 1 (Vall ée Poussin) . Let W be an absol utely continuous

real -val ued [respectively, F&-valued] function on an interval |

of the real line. Let N be an El-null set on Rl [ respectively,
an Jiy -null set on R ] and set M= W z‘l\b fl 1. Then w =0
£l-a.e. In M

Pr oof ; |t suffices to treat the case where W IS real -val ued, since

N <R, being !l -null igplies that its progjection on each axis Is



E-null, and W =0+'£;a.e. in M 1 =1,....m inplies w=0

é;l-a. e. In M Therefore we suppose w to be real.

W may assune that N Is a Borel set and hence that M 1is
neasurable. Suppose that the assertion of the lemma is not true.

Let e ={a. aeMand | wv(a) | ;>:}I]J; (n=l,2,...). Then
00

<1€n( Ue ) >0. Hence for sone n, say n = N Ve have

Sil-h(e ) > 0. Denote néL (resp. %) the subsets of e where
0

w>0 (resp. W< 0) . Then at |east one of the two sets

+ - C L

e, + € has positive neasure. W nay assune that £l(e;) > 0.
0 0 0

Hence we have the followng situation: there exists a neas-
urable subset e of M such that O < £,(e) < oo and such that

v.v(a) >a for all aee wlhere a 1Is a fixed positive nunber. W

nmay al so assune that "e 1s conpact and that it Is contained in the

Iinterior of |. Let a €1 - e be apoint on the left of e. Then
o) N\

a
w(a) = | Ww(r)dr + 2c,
a

0
where 2c = V\,(ao).

Let X = Xe be the characteristic function of e and set:

g,(0) =wvi(a)x(a) and <3y(°) =w(a) - g,(9).

Denot e:
a
w (o) = [ g.(dar+c, (i=,2), a€I.
a X
O



Hence, w(a) =w (a +w(a and w,(a) Is a nonotonic non-decreasing
functi on.

W shall obtain the required contradiction by show ng that the
range of \Nl(a) over e has positive neasure while the range of
mb(a) over e iIs a null set.

Gven £ >0, let O be an open set and C be a closed set
such that C<=e co <=1 and El(O-C) < £ . The range of wl(a)
over 0 contains the interval (c,c+p) where P = a£1(e) > 0. On
the ot her hand, the neasure of the range of \Nlﬂﬂ over the open
set O0-C 1Is at nost [ g (t)dt and this tends to zero when

J
0-C*
€ > 0. Hence the range of wy(a) over e has positive neasure.

Wth £ and 0 as above, consider now the range of w_(a)
over 0. The neasure of this range I1s at nost equal to

JIg! T e tar,
0

* 0-e

since g_,=0 on e. Again, this integral tends to zero when
£. —£0. Hence the range of w (a) over e iIs.anull set. This
conpl etes the proof of the |emma.

W have as a corollary the first half of the follow ng re-

sult.
Lenma L2 (Vallée Poussin) . Let w and s be absolutely contin-
uous real -valued functions on intervals | and J, respectively.

If s(J) c1 and w‘'s 1s absolutely continuous then



(1.1) ATi" (a) =W (s(a))d(a) £

ia.e. on |,

provided that we interpret the right side as zero whenever $(a)= o,
i rrespective of whether w (s(a)) is defined. Conversely, if w is

absol utely continuous and if with the above convention w (s(a))s$(a)

s sunmable on J, then w'a Is absolutely continuous and (1.1) holds.

Proof: W give here only the proof of the first half. By absolute

continuity w is defined for all points of | wth the exception

of anull set N and S 1s defined for all points of J wth the

exception of a null set N . Now (1.1) is clearly valid for those
a in J- N for which s(a) el - N On the other hand by Lem
m 1.1 s(a) =o0 £l-a.e. on M= s"l(N). Hence to establish (1.1)
It suffices to show that al so —(a) =0 £ -a.e. on M How
WS 1
ever
Ws(M <=w(N),

and the fact that N' = wWN) 1s an £l-null set follows directly
fromthe definition of absolute continuity for W Thus by Lem
m 1.1, wos (0 =0 f-a.e. on (vv’s)-l(l\l!) A'M  which conpl et es
t he proof.

Recal|l that an Rm-val ued function w of bounded variation on

a real I1nterval I IS referred to as a rectifiable curve In Rm

and that any real function s on that interval for which s(a') - s(a)

is the total variation of w. over [a,a ] for all o< o0*, is re-



ferred to as a length function for w  Mreover the range wWl)

a4

called the track of the curve W,

Lemma 1.3 (Tonelli) . If w: I-*R_1s arectifiable curve in

m
and s 1s a length function for w then

L

(1) s 1s absolutely continuous iIf and only If w 1Is

absol utely conti nuous;
(11) whenever E c 1 Is neasurable, then
ﬂlfg(E)) g,il(S(E)):

(1) 8(a) = |[WmMa)l £_1-a.e. on |;

(1v) for each subinterval [al,o?_] of |
s(a) - s(a) > 1+ |wWr)l|dr, with equality if and
2 1" = 5 J ~
1

only if w Is absolutely continuous on [01,an"].

| £j

W omt the proof of this | ema.

Remark: If w 1Is absolutely continuous and if E c 1 1Is an

Zl-null set then by Lemma 1.3(1) s(E) 1s also an £l-null set,

so that W(wWE)) = 0.

W now proceed wth the characterization of WL .

Definition 1.1. Let O Dbe a domain in Rn and u = u(x) be an

£,-nmeasurable function on C. W shall say that u bhelongs to

A(Cl) provided that, for alnost every line r parallel to any co-

ordinate axis X.,

each conpact subinterval of r 0 d.

| = 1ls...,n, u 1Is absolutely continuous on

| S

R
m



If UGAE2 then it Is known that u possesses partial deriv-
ati ves ’57 1=l,...,n, which are defi ned Xn-a.e. In Q and are
1
Zn- nmeasur abl e,

Lemma JL4* Suppose that ue A(Q and M iIs a neasurabl e subset

of Q such that for alnost every Iine r parallel to the coor-

di nate axi s X UMHT) Is a null set. Then 5;_:0 £ﬁa.e. In M
|

Proof: Let r be a line parallel to the xi-axis such that u 1Is

| ocal |y absolutely continuous on r fl Q and u(Mlr) i1s a null set.

<My

Then by Lemma 1.1, ~© =0 a.e. In MHr. Since M iIs neasurable

i
and this result holds for a.e. |line r parallel to the xi-axis | t

on  _ .
bx]__o £ﬁa.e. In M

The characteri zation of W,lP(fZ) s as follows.

foll ows that

Lemma LB (Ggliardo) . Let 1 <*p<oo. A function u defined

on A 1Is1in V\i (Q If and only if there exists a ueA(f2) such
' p

t hat :
() uN=u £n-a.e. in Q
(i) "~ €L (9, (i=1l,...,n);

1

(iii) uelL (.

7

Mor eover u— coincides a.e. in G wth the correspondi ng dis-

tribution derivative d.u, 1 =1,....n.
!

Finally, 1f @Q 1s bounded and has the cone property then con-

dition (ii1) 1s superfluous.
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Renarks JLJ. 1. The result was not stated inthis formin [2],

but 1s an I mMedi ate consequence of Sections 1 and 2 of that paper.

2. It 1s easily seen fromthe above that ueW (ft) 1nplies
|, p’
that every U in Aft) which satisfies (i) also satisfies (ii) and

(I...\

3. As a consequence of this lemma we have ue V\J(OC(_ft)

-

(i.e., ueeV¥P (ft) for every conpact subdomain ft' czft) if and

only if there exists a ue Aft) such that

[**]

(1) u=u £n-a.e. Inft;
(1i') ’\——e el\_p @) , i =1,...,n.

W end the present section by iIntroducing a notion of snall-

ness for sets in |4 whichwll be crucial for l|ater devel oprents.

Definition 1j2. Let S be a subset of IL. Ve shall say that S

has the null intersection property (alternatively, the N properiy]

If S Intersects the track of every absolutely continuous curve In

F& N an Jtl-null set.

The followng result gives a sufficient condition for a set S

to have the NI property.

Lenma JLJS Let S be a set iIn Kk such that for a given ortho-

gonal systemof coordinates t = (I"""tk)’ t he ort hogonal pro-
_1_

jection of S on each of the coordi nate axes has £l-neasure Zer o.

Then S has the null Intersection property.
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Proof: Let C be an absolutely continuous curve given by t = wa)
where wa) = (w(a),...,w (a)) for a 1iIn the conpact real Interval
A 1 K

|. Let S:.L be the projection of S on the t.l—axis; by assunption
S'T(S'l) =0. Let A ’lS.l be a Borel set of zero neasure and set

B. :wf'l(A.). Then B. is a neasurable subset of |. dearly
| v | *

K ‘
SO0Ce WB) where B:lHB.. By ledrama 1.1 w(a) =0 a.e. iIn B,

I =1,...,k, and hence Wa) =0 a.e. Iin B It follows from

Lemma 1.3 that s(a) =0 a.e. in B where s 1s a length func-

tion for w Since s is absolutely continuous we have that

£.(s(B))

as cl al ned.

0 [4,p. 227] and hence by Lemma 1.3 that Jil_(yg(B) ) =0,

Remark: A set S satisfying the hypothesis of Lemma 1.6 is In parq

ticular an £ -null set. However the null iIntersection property can
K

hold even for non-neasurabl e sets.
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82. The Lipschitz Case,

Hereafter we w |l consider nmappings G of the form

(2.1) Gu,3 .. ,Uy (X)) =9g(x, U3 (X),...,ul(X)) xeQ

where g(x,t) Is defined for x 1in the domin Q of Rn and t

P~

In R, and the fuj.} are neasurable functions on Q W shall de-

m
note by S the set of points in Qx R where g does not pos-
g m
sess a total differential. |[|If g 1s continuous then Sg IS a
Borel set 1],p.211). In particular, S 1Is an | -nul | set
([11,p.211) P > .

If g 1s locally Lipsc‘hitz Iin O X F\;n whi | e % may equal all
of Q X I;Qn if g is nmerely absolutely continuous in Tonelli's
sense [ 4, p. 300] .

In the present section we shall explore conditions under which
a locally Lipschitz g corresponds to a G which naps one Sobol ev
space W , (Q 1into another. In Section 4 we reexamne this ques-

bp
tion for functions g which need not be locally Lipschitz.

Lenma ,2"1.  Suppose that g(x,L) s defined for ' xe Q t eI?n and

that the follow ng conditions hold:
(1) g 1s locally Lipschitz on QX Rm;

(11) there exists a null subset N of Q such that the pro-

jectionof S - Nx R on R (to be denoted by S")
J

g m m
has the null intersection property in R .
Then for every u = (Un,---,U“) eA(fI)Hl the function v = Qu) Is

Iin A(Q and the chain rule holds, 1.e.,
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du,
(2.2) L= Mo »» A AfoMuy pAE Bace. in O i = 1,...,n,
1 '| 3=1 &y’ |

where the products on the right side are to be interpreted as zero

whenever their second factor 1S zero, Iirrespective of whether

I

- | s defi ned.
at .
3

Remarks J..JL 1. The chain rule is not valid under significantly

weaker hypot heses on Sg, as Is clear fromthe foll ow ng exanpl e

for n=1. Let g(t ....,t ) =mx(t_,...,t ) and u (x) = ... =
1 m 1 m 1

un#x) =X, Xe (0,1). Then the right side of (2.2) Is nowhere defined

on A = (0,1), while the left side is identically unity.

2. Note that when m=1 and g(x,t) = g(t) , then condition
(1), or even the weaker requirenent that g be locally absolutely
continuous on R3, already inplies condition (ii). This cones
about because in one-dinension the existence of a derivative iIs

equi valent to the existence of a total differential.

Proof; The assertion that ve AlQ 1s a consequence of the fact,

easi|ly established by direct calculation, that a Lipschitz function

of an absol utely conti nuous F%{valued function on an interval Is

Itself absolutely continuous on that Interval.

By el enentary argunents, (2.2&,is valid for g:' at each poi nt
o ou 1 o
X eC such that the derivatives 8;496j =1],...,m exist at X
! .
and the total differential of g exists at (x ,QKX(S).

HUNT  LIBRARY
CARNEGIE-ELLSN  UNIVERSITY
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Now let r Dbe a line parallel to the x,-axis in R such
I N ‘

that wuj3,...,up and hence also v are locally absolutely con-
tinuous on T fl £1, and such that r DN is an <§ -null set. Then
G = W(rnf2) 1s a countable union of tracks of absolutely contin-
uous curves; and hence C fl St is an If.,-nul set. Let

o) 1
M = LL_](CCDS! ) Pl r. . By the precedi ng paragraph the chain rule for

R ) ) _ _
O—;ITO hcﬂd;s<£!i a.e. on r (1 Q- M Moreover ul (M is an £1 nul |

set, ] =1,.,.,m This follows fromthe fact that the projection
of the Ji1 -nul | set % HS on any coordinate axis in Rm S
ou.
- --*l = - ' | =
£_lnull. Hence by Lemma 1.1 Acr)x.l 0 £1a.e. Iin M l,...,m
o . Al oV .
Let x er [1fl be a_point where 8;(— = 0 and osx——EX] sts. Then

[ |
we clalmthat

(2.3) 29,0 u(x°)).

> U ) = Bx.(x
i 1

| ndeed, setting X (>?_, ..,x°.+h,-..,x2)9 we have:

@)
hi U

g(Xn, U(Xn)) = g(xn, u(x )+o(l)h) = g(xn ulx )) + o(1)h,

Ju
where o(l) tends to zero wth h. Here, the fact that ’c‘);(;((yo) =0
1

P~

and that g 1is locally Lipschitz has been used. It now follows that

V(x) - V(X)) g(xu(x)) - g(x ,u(x))

n = = + o(l).

Letting h tend to zero we obtain (2.3). But this shows that the

-a. €.

chain rule for ’Sx_al so holds £ ra.e. 1n M and hence £1

1




15.

on r fl Q Since the assunptions on the line T hold for al nost

every line parallel to the xi-axis and since the choice of | was

arbitrary the proof Is conplete.

Condition (i1) of the above |emma can be weakened In a special

but rather Inportant case. This case Is Introduced next.

Lenma 2.2. Suppose that g(x,t) = g(x,t ,t.,...,t ) satisfies the

foll ow ng conditions:

(i) g is locally Lipschitz in Ox R__.;

(ii') there exists a null subset N of Q such that with

S = Sb - Nx R , and with T the track of any

absol utely continuous curve in Rn+1, the projection

of S nT onthet -axis is £ -null.
ou
Then for a function uoe¥¥fl) which 1Is such that 6;9__coincides

£n-a.e. in d wth a function ILIEEA(O),. I =1,...,n, the function

v:G(uO,u_l,,..,,u% = u) 1sin A£2) and satisfies

-V N n J.. du . .
(2.4) Moz f5 4 23 fA(x, WAL | -a.e.cin Q@ i=1,...,n,
OX . OX ., .___ot. -7 OX. n
1 1 J=0 J 1

where the products on the right side are to be interpreted as zero

wherever their second factor 1s zero, irrespective of whether

R -
0?3 | s defi ned.

Proof; As noted in Lemma 2.1, the fact that veA(£2) follows from

condition (1). Thus we need only prove (2.4).
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W may assune that the set N in (ii') is a Borel null set,

since it Is in any event contained in such a set. Since S IS
9

also a Borel set ([I],p.211) it follows that S' is Borel, and
-1

hence that the set M= uv (S') Hd is a neasurable set.

Let T be any line parallel to the x.-axis of R chosen so
I N

that u and hence also v 1is locally absolutely continuous on

r na Since u(Mr) cu(M nu(rnf2) =s* nu(rnO , it follows

from(ii') that the range of u on MHr is an X -null set.

*axo O 1
u

Hence by Lemma 1.1 ’8&—:0 £-1a.e. in MO T. It follows that

~ U .

X~o |

> =0 £ -a.e. Iin M wth 1 =1,...,n since the choice of I
OX, n

above was arbitrary. Therefore u, n:O £ -a.e. In M 1 =1,...,n

Denote by M that Z -null subset of M where (u,...,u) ~ (0,...,0).
] . 2N n

n

Next let r be any line parallel to the xi-axis chosen so
that the conditions of the precedi ng paragraph are net and, in ad-
dition, so that (NnOM) fl T 1s an £l-null set. Then the absol ute
continuity of u on r P Q inplies that u.J(er) 1S an Xl-null set,
] =1,...,n, since this set differs by at nopst fhe point O from

u

ul((I\LM) AT . Hence by Lemma 1.1 we al so have c)TX—* =0 £
— 'I

-a.e. 1In
1

MHT, j =1,...,n.

Now for the set T D Q- M we again deduce by el enentary argu-

¢y

nents that equation (2.4) for <% hol ds C£T-a. e. . On the other
1
hand, on r n M we find as Iin the previous proof that (2.3) holds
0 ov i
at every point x at which ~— exists and > = (0,...,0).

Xi J
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Hence the chain rule for ’\?):(’— holds £ ;a.e. on T fi Q and there-
1

by £ha. e in Q Since the choice of | was arbitrary this com

pl etes the proof.

Theorem2.1. Let g be as in Lemma 2.1. Suppose that
Ugs o 9\% (O andsetv:G(u.l,...mu):gu. Then v 1Is

in V\)IJO‘; (22 if and only if the functions

~ m -~
- N _ 1 =
(2.5) V. 3 OXi(x,u)y + Jfl rJ- (X, g)S u i=1,...,n,

belong to LIOC(Q) where S. denotes the distribution derivative
and where the products are to be interpreted according to the con-

venti on of Lenmma 2. 1. Mor eover we then have

(2.6) V. |:S'V| <f -a. €. in Q, 1 =1,...,n.

Proof: For each | = 1,...,m |et JJ be a function in A(O which

coincides £ -a.e. In Q wth u\j and Is such that

7

du
<j-— N EN qpe. in Q 1 =1,...,n. Existence of such functions
OX1 1 "J |
is ensured by Lenma 1. 5. Let v=g(x,u), u= (u; ... ,'Jn) . By
Lemma 2.1 Vv is in A(Q and
>
a"" ag[ m N BU. .
a:: = aX (X U) -+ X —g"ti (X,E)a "X' Sn—a_ e i n Q, 1 = ]_’ ces, N,
1 j=1 " g i

wi th the usual convention regarding products. Cbviously V = v

N

£ -a.e. in Q and Y =y £ -a.e, In Q 1 =1,...,n. There-

n FiX | N
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| | oC | oc
fore if v, 6Ly (0) then by Lemma 1.5 veW, |

ot her hand, 1t Is assumed that veV\)_;)(_:(Q) then by Remark 1.1
191

ft) . | f, on the

al.v coincides £ -a.e. in Q wth Qrv_, and si nce 8?/_: \Y;
n OX|' ox.I
£n- a.e. In Q i1t follows that v, e LITOC(O) . This conpletes the

1

ar gunent .

By maki ng use of the techniques of the above theoremit iIs
soneti nes possible to make stronger statenents about the Sobol ev
space to which v belongs. For exanple if a given

u = (u,I . °’Hw) e]@fl_(l&l) | s such that for sone pe (|, 00) ,

@;E—X(,xug) b O?:’U)V, i =1,...,n, and

d : p

o . A 160 . | .
bQ:{Q‘i,U.)U.U,f: A (Q)g J - |j1'-'5m1 I - I ----- n1
étj ~ 1 3 ~

then the methods used above suffice to prove that

ve WS(o) ¢ Wh(a.

VW proceed next to describe a set of circunstances in which
v=Q isin V\LIP(O) for all_ uNeV\Ll’q(Q ™ That is, we give con-
ditions under which the mapping G which corresponds to a function
g satisfying (1), (it) of Lenmma 2.1 is a mapping froma space

|q(f2) I nto WI;P(Q)'

Theorem 2.2. Let fi be a bounded domain iIn Rn sati sfying the

cone property. Suppose that the function g defined on QX Ry

satisfies conditions (i) and (i1) of Lemma 2.1 and, In addition,
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(111) for every (x.t) e QX I?n where the derivative nentioned

bel ow exi st s,

39 Y c _
(2.7) Iaxi (X,Q | _<_ al(X) + bl |£| JL = JLy «ee+,XX
2.8 |a (x,t)| < a_(x) .by] IV'1 i = 1 m
(2.8) Se, (D1 <200 bl = 1. ,

where v 2~>'1 iIs a fixed number,; 3 IS 1IN LD(U) for

LL

some | <p<n; a is in L{O) with = e

2 v-1 n-p
[r=o0 for v=I]; and |[t] = |tll + ... +|trA.
Then
(2.9) G : V\f.qv(Q)m__;Wl,p(Q) with q = Vp.n+(vn_|)p ,
and
(2.10) 1G(u)H < const(I+[|ull” ) Vuew, (@7,
~ ~ s d
Wl,P(«) Wy, ¢ (0)

where the constant depends on Q a, a,, b,, b,
J (‘< JL £*

and g(x,0) =1 (x),

but not on u.

Proof; Since the local Lipschitz property for g 1inplies |ocal

absolute continuity along lines in R we have by (1) and (111),

m
"1 dg
lg(x, 1)-9(x, 09| < IJO atl(x,o,o,..-,O)daL o
(2.11) r'm dg (x g
| P aprtv e mp?d e

< a2(x) | t| +b] t | v

Now by Lemma 2.1 g(*,t) 1s in A£f2 for each t€R . Hence (2.7)

and Lemma 1.5 yield that g(*,t) is in W, (Q . [In particular,

f(x) = 9(x,0) ew, (0.

3
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Note that since 1 <p<n we have 1 < g < n. Moreover,

u. er q{Q) | mpl i es by the Sobol ev i nbeddi ng theorem (Sobolev [7],
J ’

N 2]) th _EL* * = - and
Gagliardo [2]) that uj€ q(O), where g n-q

(2.12) [TUH < cg|ujll ;

Lq*(Q) Wl,q(g)

wher e the constant C ., depends on O. (It 1s here that we need

the assunption that Q satisfies the cone property.) EXxpressing

g interms of v and p we obtain: g- = yp-—n-n;. Not e too t hat
_ 1 . . . .
for fnl£L FQ) , f2e Lq(£2) , Holder®s inequality inplies that

||f| fZH <| le Hsz .
4O L0 2 L(Q

Now et ueW, (Q)m and set v = Gu. By the proof of Theor-

em2.1, v coincides £r;a.e. in Q withthe function ve Af2 de-

fined by Vv = Gu, where u'fjeA(fI) coincides * -a.e. in O with

uj5 j =1,...,m Applying (2.7) and (2.8) to (2.5 we have
~ m du
~ " ~ -l ]
H%ﬁ-’{—ll < llay+0, 4] i + I [a2+b2|glv' 15
i j=1 i
(O L, (0) 4Q
<llagi + bl
p(Q) L (O
~ -1 n-p ~~ nD(v-1)p
(2. 13) m >4, v >4,
~ .V n nv
LN P - B A Eral
)= L_(S) L () L x () L ()
r g q q
< const (| + |”g'r|\" rr)l’
W (§2)

l,q
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where the last inequality utilizes (2.12). By Leamma 1.5 we con-
clude that v 1is in V\Alp(lto) .

Next, we observe that by (2.11) and (2.13) we have the es-

ti mat e
1V-FH = |lg(x,0)-g(x,0)|| £ lla Lul+b J,017 ] o
Lp (Q) | Lp (Q) Lp( )
(2.14) <lladi W&+ i
AL~ Ly (O) L ,(6
<rconst(1+]|G]|© .
~W (Q)I.I.l
i >q

Conbining (2.13) and (2.14) we obtain (2.10), which conpletes the
pr oof .
It 1s clear that the above ideas can readily be extended to

situations in which the functions u. belong to distinct Sobol ev

3
spaces W (to), J =1,...,m This wll require that the ofg~,
'1'5--q3 dt_.
J
] =1,...,m possess different rates of growh. However we content

ourselves with giving only Theorem 2.2 here, since in a subsequent
paper we shall treat these matters froma nore general viewpoint,
Including an analysis of the continuity properties of G

Qur next result concerns a theoremon mappings G from

loc loc
Wy, 189 o Wy (9.

Theorem2.3. Let g be as in Lemmma 2.2. Gven u G\N.I_O?(to) set
O

N 5 _*e

u, = S.Iuo, = 1,..., n. Let v = G(uo,uﬁ_ ..... ur} = Gu. Then v s
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in V\)log(ft) if and only if the functions

s ) g .
(2. 15) Vi —é)/xl—(x, u) +Jtc()x,,y) iﬂcl)J +3;€Ir0?3(x,g)aiajuo, i=1,...,n

belong to LIlOC(ft) , Where the products are to be interpreted as zero
wherever the second factor is zero, irrespective of whether the

first factor 1 s defi ned. Mor eover we then have

(2.16) v.i:d.lv £n-a.e. in ft, i =1,...,n
Proof: By Lemma 1.5 there exists for each | = 0,1,...,n a function
U_e Afl) such that y. = £ -a.e. in and such that
"D At su 3 "3 <
3
—bxo£ -a.e. in ft. Mreover we have by Remark 1.1 that

J
o[ Su.
—2 = d .y X -a.e. In ft and T—-—* fldu £ -a.e. 1n ft. Set
0X no N n

v = g(x,w . By Lemma 2.2 and the precedi ng observations, v e Aft)

and, _
ov

(2.17) AT—=v. £ -a.e. Iinft, i1=l,...:,n.
0X | n

|
Now suppose t hat verlq‘f(ft) . Since VvV =y £n-a.e. in ft it

follows by Remark 1.1 that

_ RV ) ‘ _
(2.18) S'IV_OX.I £.na.e. inft, I =1,...,n.

Thus (2.15) and (2.16) followfrom (2.17), (2.18). On the other hand,

gl ven that . eLIOC(ft), I =1,...,n, 1t follows fromLema 1.5 and

I
(2.17) that veW”(_ft) , Wwhich conpletes the argunent.
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Here again it Is possible to prescribe growh conditions on

og Qr .
dX. and “at’ | =1l,...,n, ] =1,...,m so as to ensure that G

i 3
is a mapping froma Sobolev space W, (Q into a Sobolev space

Wy p(Q) . W give aresult of this type bel ow

Theorem 2.4. Let Q be a bounded domain in R satisfying the
cone property. Suppose that the function g defined on 0 X Rn+1
satisfies conditions (i) and (ii') of Lemma 2.2 and, in additi on,

iiil) for ever t t) e R where the derivative nen- -
(111°7) very (X o~) Q X 2y lvativ

t1 oned bel ow exi st s,

(2.19) | lga(x) + bl t \ + gt i=1,...,n,
3 Vo 60,
1
(2.20) !—9—301 <a () +bft] = +c [t
d Y1 %
(2.21) |§tﬂj| <ayj(x) +b)t | T +elt ] Tos=in..,n,
where v, v, Vv, W, co, w >1 are fixed nunbers; a 1S
o 1 o 1* |
InN L (Q) for some 1 < p<n a ail are respect-
P * O
ively in L Q) and L (@ for :( r‘?: and
O 1
, - B ith
1 na~<t "'
y @, +1 Vo +1 COq.l vV +1
max{ 9 .
a= n+cop n+2Vp > n+(co +I)p n+(2v +I)p ' n+w, P n+2vlp]'
and [ t'] = [t ] + ... 4[],

Then

(2.22) G : V\é’q(Q)’—)Wl,p(Q) where q = npa,
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and
(2.23) 1G ()] A const(l+||u H®L Vu eW, (Q),
Wl W (Q) O <Y
;P 2,9
where /1 = rrax(v,vo, V4 £0 68 , cio.} and the constant depends on

Q, a a, a“ b, bo, by, ¢, Co, ¢ and g(x,0 =f(x), but not

on UO.

The proof, which follows fromthe chain rule of Lemma 2.2 by

the sane pattern utilized in proving Theorem 2.2, wl|l be omtted,
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83. Absolute Continuity on ja Track in Rm.

In the next two sections we examne the mapping G for func-
tions g which are not necessarily locally Lipschitz. Mich of our
anal ysi s concerns the case g(x,t) = g(t). The crucial idea occurs
already when n = 1, and involves the use of a chain rule for

-—C-?)—(— G(u) when w : Jl,—»ﬂ?m IS an absolutely continuous curve and ¢

et

s merely "absolutely continuous on the track of u". This latter
notion, which is introduced in the present section, is apparently
new. However its properties are anal ogous to those of the usual
notion of absolute continuity for functions defined on a real 1In-
terval, and it reduces to that notion in the case of a track which
Is areal interval. The earliest prototype of our chain rule iIs
Lenma 1.2, due to Val | ee Poussin for the case n = m= 1.

W restrict attention for the present to dinension n = 1.
Thus we begin by recalling certain notions in the theory of curves

which will be needed bel ow (see also [3], and [I,p.235]).

Definitionj3JL. Let T be a closed subset of R_. Gven a point

m

y€T, aunit vector 8 1Is called a (bilateral) tangent to T dt vy

provi ded that there exi st sequences{yhﬁ, hﬁ;ﬁ In T such that

(3.1) V.Y, yt_qy,

and,

<
"1
<
\
~
:<.
[
<
Z
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The (possibly enpty) set of tangents to T at Yy 1Is denoted by
OT('Y-') [sonmetines, O(y)].

Note that by this definition 9 1iIs iIn OTQQ If and only If
-9 iIsinthis set: -0_(y) = 0_(y) . It can be shown that O_(y)

s a closed set of unit vectors [F, p.233].

Definition 3.2 Let T be a closed subset of R , and let f Dbe
a real-valued function on T. Then f 1Is said to have the
O-derivative Df(9,y) at a point yeT provided that 8eO(y) and

for every pair of sequences {y.}* {y.} satisfying (3.1), (3.2) one

has
(3.3) f(y.) - 1(y) SDf f(ys) - f
[ Y, : 9.vy) . ¥i) () -DF (9,Y) .
: //Efu-l“}d (~ yv) : /&_‘;_‘Zl ~ (2 ’Y’)
It Df(9,y) exists and has the same magnitude for all 9e 0(y):

IDF(9,y)| =D.f(y) >0 Ve O(y),

then the quantity DTf()Q s called the tangential derivative of f
at £.
Note that by (3.3) Df(g,y_) exists If and only if Df(-g,x)

exists, and then Di(-9,y) =-Df(8,y).

”~

Lemma 3J., Let T c: TI§ be the track of an absol utely conti nuous

curve V. Then Wl-a.e. In T:
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(i) ®(*% consists of a single pair of opposing unit vectors,;

(ii) yjl(g) is a finite set:

54 111 (W) ~ 9 tey Y
() O(8) ={xu()/, 3 tey (v
N
Proof: By hypothesis v : I --* R, with | a conpact iInterval,

s absolutely continuous. Thus V 1Is defined £,l - a.e. on |.
Let A,* c | be the.null set where Vv 1s not defined and

let A, c. I be the set where v =0. |If s 1s an arc length
function for v then s Is absolutely continuous and

$ = |V | , - a.e on | (Lemma 1.3). Hence both s(A) and
sS(Ay) are t”N-null sets [4, pp. 225, 227]. It follows by

St

Lemma 1.3 that v(A.lUA<§) c: T is an M‘null set, which
inmplies (iii) .
We show next that (iv) holds for all vyeT - v(Ah, UAJ. On

the one hand, for v(t) =]r, the quantity ﬁ(t + h) |
lv(t + h) - y]
has the opposing limts +\7(t/ as h->0+ and h= (O,
v(t) |
so that the right side of (iv) Is a subset of the left. On the
ot her hand, If [0/g} In T 1s such that

Xi ¥ Y5 Iy _X!""Eee(l’)’
i

then there exists a sequence t.el such that y. =v(t.). W
nay sel ect a convergent subsequence {tll} whi ch converges to iIts

limt one sidedly, say tl — tg+. By continuity v(t,) =y

0
and, by the choice of vy, V(t”) £0 exists. W then find

g(to)

9 = limyyl = lim[v(tl) - v(t,) =5
| /IY{L-XI A O/l/IV(t'l)'V(tQ) RIS
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(if t', —>t.~this argunent gives & = -y(t ) .
r 7 o S TY

Finally let B, denote the set of £eT for which the

cardinality of \L~1(") Is infinite. By a result of Federer
[1, p. 245], (see also [4, p. 278]), By 1s an VY-nuII set,

so (I1) 1s proved. Since (iv) ensures that for all £ 1iIn

T = T-*(v(AUA) U B.l) , ©(£) 1s afinite set, w nay apply a
result of Roger [3] to conclude that €O consists of a unique
opposi ng pair of vectors H.l - a.e. on T . This yields (1)

and thus conpl etes the proof.

Corollary .3J. Wth T as above suppose that y = 34* : J'-->Rm
IS an absol utely continuous curve paranetered by its arc length s.
Then (1) and (i1) hold and (iii) and (iv) can be repl aced by

the assertions that W, - a.e. one has

Clv (s)| =1 : sex*_l(x)},
(3. 4%)

@y) =i+x (9 :ser ) =z ).

Proof: dearly A U Az__ c A;, the latter being the subset at
which y  is undefined or else ¥ |4 1. However in the

present situation Lemma 1.3 inplies that A’i cJ Is an £1-
null set and hence v (AOS) 1S an I\/Ll-null subset of T. The

renmai nder of the argunent is as given above.

Lemma 3.2. Let T c R be the track of an absolutely continuous
- m

curve and let f be a real valued function on T having a
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tangential derivative Dyf Hy- a.e. Then Dif 1s an W,-

nmeasur abl e functi on.

Proof: By assunption T 1s the track of an absolutely continuous

curve Vv. Hence T 1is also the track of the Lipschitz curve

y# . J—= R which is obtained from Ny by reparanetrizing by

its arc length [1, b. 110], and LQﬁ(s) | =1 X - a.e. on J
(Lemma 1.3). By Corollary 3.1 there exists a subset T ¢ T
¥*

of full W!-measure such that (3.4) holds, 1.e.

8(y) = +v'(s) : sev Ly = (+ 0y}
and
{ lv*(s) | =1: Seﬁ\_,/*"l")}, VyeT!'.
W proceed to show that the existence of Dif (% for a
point £eT' inplies the existence of 'ﬂgﬁ(XA(s)) for all

sey "™ (y)¢ and in addition inplies that

(3.5) Dif (£) = |iLf(v*(s))|  .GT» O Domain Dif, sey™ *(y).
* -1
Let sew (£) . Then for any sequence h.1—»0,

P Qv*(s+hi))-1(y*(s))

(3. 6)

h,
1
f(vr (s+h) )-f (v* (s)) |v* (sHh)-v" (s) ]
hi h.1 -
the mani pul ation being justified by (3.43). Moreover in order

to conpare with (3.2) we note that
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v (sth.)-v (s) v (sth)-v (s) h

—

-~ ¥ (s)E,
vr(sthy) -v*(s) | " | v*(sthy)-v*(s) |

wmth & =1 for h. >0 and £ = -1 for h. <O Hence the
1 |

expression in (3.6) converges to the |imt

Df(v*(s),y)-1 when h.. > 0,

Of (- (s).,¥) *.(-) when h; < o.

The equality of these expressions i|Inplies existence of

.ggfg‘/ (s)), and inaddition,

(3.7) fi'(£%(s)) =Df(y*(s),£) =Drf (x).

This last equation™which follows fromthe definition of Dsf,
yields (3.5) . , -
To conplete the proof of the lemma it suffices to show

that for every Borel set Bc R,,the set (DF)~YB) nT s

Hy-measurable, i.e. is the union of a Borel set and an H,-

null set. Now by a theoremof Banach [4, p. 113] the function

Igg(f oN\ef )} =h is defined on an £1.-neasurablé subset of J

and 1Is £,l-maasurable there. Moreover, by (3.5)
(D)"Y (B) nT =v*(h~(B)) HDomain(D,f) 0T .

However, 1If M Is any £l.-measurable subset of J then
M=NUM where M is a countable union of conpact sets
and N is an | -null set. Hence y (M) is a Borel set
while v*(N is an JL-null set (by Lemma 1.3). Therefore

v [h~*(B)] is an H -neasurable set and the proof is conplete.
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VW are now able to define the notion of "absolute continuity

on a track” referred to earlier.

Definition .3J3 Let Tc R be the track of an absolutely

continuous curve and let f be a real valued function on T

for which DT_f | s defl ned Wl' a.e. Then f 1s saidto be

pre-absolutely continuous on T provided that for each

L1:32¢t
(3.8) 205202 () | < | Drf(atyy < o,

whenever U 1s a closed connected subset of T contalning

Y1 and 1o The function f 1s said to be absolutely conti nuous

on T 1f Inaddition to the above, Dtii | S V\i-summble.

Remarks 3JL (1) Wen Tc R Is areal interval we show that

the above definition of absolute continuity coincides with the
usual one. On the one hand, one sees from (3.8) that
2’f(yi+i)-f(yi) | can be made arbitrarily small by requiring the

total length Iy .-—y | of the disjoint intervals {0y Yy all

to be sufficiently small. On the other hand, absolute continuity
of a real function f Inplies, since DT_f(y) = l%{-/—(Y)l, t hat
d
f(y2)-f (yq) | = IJ (Gyt)dy |
(Y1:sY5)

df
< Jul"d'g,'ldy <00 .

(2) It vy : I-"R, 1s an absolutely continuous curve and

f TV—'> R. 1s absolutely continuous on T then the conposite

function w=foy 1s continuous. This follows from the
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observation that whenever {l 1,1} s a nested famly of closed
intervals contracting to a point "t,l then {Un = V(| n)}

IS a nested famly of closed connected subsets of T contra-

cting to \r(_,(to_)eTV and hence by (3.8) the real intervals
wW( | n) = f(Un) have Tength approachi ng zero.
VW proceed next to show that wth the above definition
a Lipschitz function on Rm | S necessarily absolutely conti nuous

on the track of every absolutely continuous curve.

Lemma 7373 Let T c R be the track of an absolutely continuous

m |

curve and let f : R ~>R. be a Lipschitz function. Then f'T
| s absolutely continuous on T. Moreover Wl - a.e. DTf'
- |T

coincides wth the directional derivative of f along a tangent

ray In R

f (2:h6)-f (x
(3.9) i m ( ?) ¥

- = DIf(8,y) = + DTf(x), Ee@(x) .
h—> U+

Proof: Let v : | 2R Dbe any absolutely continuous curve whose
track 1s T. As in Lemma 3.2 we utilize the Lipschitz curve

Vool J—*Rm which I's obtained when v Is reparanetrized by iIts

arc length s. It Is to be proved that %f | s defi ned L*il -

a.e. on T and that (3.8) and (3.9) hold.

Consi der the conposite function w=1foyv J~’\R,1.

*
Since f and y are Lipschitz sois w W treat w as a

curve in R;. Nowby Corollary 3.1 there Is a subset T ¢ T
of full W-neasure on which (3.4 ) holds. Mreover since w
| s absolutely continuous, the set A, C j of points where w

Is non-differentiable Is an £,-null set. Therefore v/\""ﬁ(xké?7 c=T

1
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S Vﬂ-null (Lemma 1. 3).
W proceed to show that Dyf exists everywhere on
™ =T - v (A) . dven gxeT", hereafter kept fixed, we may

* _
partition vy ](% Into two subsets

C, = {sex*-l

(y) : V(s) =e}, c_ =[sey*~'(y) : v*(s) = -8,7-

Now since yeT", it follows that the limts below exist for all
sey." "t (y)
f (y*(sth))-1(y*(s))
(3.10) Iim S 2 =
h-* 0+ |v* (s+h)-y*(s) |
| F(y*(s+h))-f(y*(s))
= m A e ——— = L(X (s)),
h-* 0% v (s+h)-v" (s) |
where & =1 or -1 accordingas h—-»0+ or h-20-. Mreover
the limt obtained is the sane for all seC, [respectively, for
all seC_]. This Is a consequence of the relation
. f (v (s+h))-f(y*(s)) | f(v"(s)+hv '(s)+o(h))-f (V. '(s))
i m *”S = |lim =
h->0+  [yf(s+h). (%> | s on ~ |ng (s)+olh) |
4 £(y+he ) -£ (x)
lim SEC+
(3.11) h— 0+ |h |
f(y-h6_)-f(y)
. Z
| |1 m SeC_y

where we have utilized the fact that f 1is Lipschitz. Note

that we nmay al so deduce fromthis relation that in (3.10) the
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limts obtained for points seC_ are equal in magnitude but

opposite Iin sign to the corresponding limts for points seC .

Now let {y.}, Cy) t> sequences in T satisfying (3.1),
(3.2) relative to y, I.e€.

(3.12) Y: > ¥ zi)/ 2 €
" \zt-2l T

—
‘. -—9 9 ~ .
sl 7 \2\-Z X

V¢ nust show that the follow ng quotients

(3. 13) [f(y,) - f(xV , [E(yy) - 2(g) ,
p 'X:]__X»l ,- ,I‘Y-':'L-X'l l

conver%e res;beti;ively to Iifg'I(SEDf%,g, D (Df£-£f£)€) of %ﬁual
magni t ude but opposite sign, which are the sane for a seguences

{y.} and {yl} satisfying (3.12). Consider the quotient in (3.13..).

A

Since {y.jeT there exists a sequence {s.}eJ such that y. =v (s.)°
To show convergence of this quotient it suffices to show that
one obtains one and the sane limt for all subsequences {£i}

whi ch correspond to one-sidedly convergent subseguences of

{s b« Let S\ > s+ and s'l'(—-:y s"o- be two such one-sidedly

convergent subsequences. Then by (3.12,) and (3.4)
v (sy) =X (sp) =z and

) V(Si)-V¥(sy X (s)-x (sp) Iy (s))-y (sy) |
v (S(’)) = |im = = s” = |im o = . S-"l_s’
j o I)Uf(s:")—-y_, (sy) | j o
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}{,* (Si':)_x* (s4) | v (si‘{)-v* (sg) v' (si‘()—v* (sg) |

= lim m " = |Im =
Sk™> 0

1

V¥ (SE)-\* (SE) | kO

=- g
~Y

so that S'.GC, , s'eC . Consequently (3.11) inplies existence

of these [imts wth

(g -f () - f(y+he )-f(y)
| 1 m = |im hy ,
PR AN
Ty )T () | f(y-he )-£(y)
lim = lim -
Y1 o AO-

Here the right sides are clearly equal and independent of the

particul ar subsequences {st}, fs!} chosen, so that convergence
J K

of the quotient in (3.13-%) has been proved. Moreover, the sane
argument shows that the quotient in (3.13g) converges to a limt
of equal magnitude but opposite sign. It now follows by
Definition 3.2 that Dif{% exists and that |

£(yth8)-£(y)

Drf () =] lim ,
iz =, h l

which yields (3.9).
It remains to prove absolute continuity. By Lemma 1.3 one

has for any nmeasurable subset E c: |g

HW(E)) < &(p(E)),

where p is an arc length function for w.  Now consider the

cl osed subset yv*"'l(U) c J]. By a theoremof Banach [4, p. 282]
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o*_
there exists a neasurable subset E c v ](l» such that

f(E) = U and Vv* 1Is injective on E Thus the set

WE) =wy ™(V) =f(U <R,

IS a connected set containing the nunbers f(yrb), f(yz). Since

on Rr JII-measure.coi ncides wth £1-measure we have

[£(yp)-1(xy) | < B (£(Y) = ¥y (W(E)).

Ch the other hand since by Lemma 1.3 p 1s absolutely continuous

on J, it follows from[4, p. 227] that

L@ <] ps)ds.

Conbi ning these 1 nequalities, we obtain

£ (y,)-2(yl) | £]

P(s)Bbs=d Ju(s) |ds,

E

* _
the last equation followng by Lemma 1.3. Now for sey 1('I'")

~

It follows from (3.9) that

W(s) | = [S=£(v*(s)) | = Drf(y" (9))-

Thus we may wite

(3. 14) )t | D+f(\" (s))ds
EOX’*"]—(TM)

+ J W (s) |ds,
E!

where E =E- En v:»"]](T"). Mbreover, since VA(E) =V (E)-T"

IS W-null 1t 1s not difficult to show using the Lipschitz
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property of f and the definition of A1s4nﬁsure that the set

WE) =f(¥ (E))

S IE-nuII. It then follows by Lemma 1.1 that the second
Iintegral in (3.14) Is zero.

Finally, using the fact that Dﬂ: S V%-nEasurabIe (Lenmma
3.2) and that |v*(s)] =1 on EH y>*~1(T!) , we may enpl oy a
result of Federer [1, p. 245] towite the first integral in

(3.14) as follows:

J

where the factor 1 in the second integral Is a consequence of

-1 DTf(xf(s))ds = J N DTf(X)-ldﬂlx = JUDTf(x)dﬂlz,

ENy  ~(T") v’ (E)NT"

our choice of E  This conpletes the proof.

Qur next result yields sone of the conclusions of Lemma 3.3

for functions wiwth the null iIntersection property.

Lenrma 3.4. Let Tc Rh] be the track of an absol utely continuous

curve and let f I%{J%F% be such that SP has the null
| ntersection property. Then f \ has an Vg-nEasurabIe t angenti al
derivative defined W, - a.e., and except on an W-null set,

D1f | o coincides wwth the directional derivative of f along a

t angent ray:

. f(y+h®)-f(y) _
(3. 15) Di(e,yJ = hI_|_*mO+ = = 7f(jr)..6, 8c@(y).

Proof: As noted before there exists a Lipschitz curve
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Xﬁ ; J—iRn1 whose track is T and which is paranetrized by

arc length. By Corollary 1.1 there exists a subset T c: T

of full W_-neasure such that (3.4) is valid for all JgeT .

V& proceed to show that E&f(“) exists and satisfies (3.15) for
every yeT = T-Sp. Let {y.), {y[} be sequences Iin T
satisfying (3.12) relative to jr. W claimthat the follow ng

guotients

f(zi)—f(¥L/7;'_zl, £(yi)-£(y) lx‘-xl’
i i

converge respectively tolimts D (9 ,jr), Df(-9_,£) of equal
magni t ude and opposite sign, which are the same for all sequences

{y.}* {y'.) satisfying (3.12). In fact, since )UE% we have

il

f(y.)-1 vt Y- i~
(Xl) (y) (x) (Z,]_ X»)+O( le Xl) —> Of (X).e

= D(e,, y)
¥y P < d

£(y)-£(y)  VE(y) - (gy-y)+ollyi-y 1)
AR A 2i-x !

A 7f(y)-(-e) sof (-9,,y) -

X

Thus Dif (£) exists and (3.15) holds. Measurability of Dpf
T

follows by Lenma 3. 2.

It can be seen fromthe above proof that we actually have:

Corollary 3.2. Let T be as above and let f : R_—R; Te a

function such that S O T 1S hl-neasurable. Then f T has

a tangential derivative JH_- a.e. on T~S, and except for an

J&-null set Dyf col ncli des wherever 1t exists wth the
I

.
tangential derivative of f along a tangent ray Iin the sense

of (3.15) .
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Cnhe of the Inportant properties of an absolutely continuous
function f on a real |1nterval | 1s that 1t carries null sets

Into null sets:

Aci, &(A =0=» A(ffA)) =0.

This property of real valued functions f was iIntroduced by
Lusin, who called it the (N condition [4, p. 224] . W end this
section wth a proof that a function f which is absolutely
continuous In our sense on a track T, satisfies the exact

anal ogue of the (N condition.

TheoremJ3JL Let T be the track of an absolutely conti nuous

curve and let f T->R be a function which is absolutely

continuous on T. Then f satisfies the follow ng condition:

(Nr) Bcr, W(B) =0-" 1,1 (B) =0.

Remark. It should be noted that the (N condition does not

characterize absolutely continuous functions on real intervals,

and thus the (Np) condition does not characterize absolutely

conti nuous functions on T.

Proof: As noted earlier there exists a Lipschitz curve

v : J—=R whose track is T and which is paranetrized by
arc length. If Bc T 1is If-null then by Lemma 1.1
v =0 £. - a.e. on A=y _L(B). Since lwwl =1 £..-a.e.

It follows that A cJ 1s an “;-null set. Gven £ >0

| et fj&'%xp Cl J be a countable collection of disjoint closed

Intervals covering A such that AAiiJn) <£> + Then
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*

8 = {BI1 =V (Jn)}IIZI Is a cover of Bs which consists of closed

connected subsets of T\ W observe next that C = SiFn = B

can be deconposed as a union C = U C.1 of disjoint go_nnect ed

sets C.1 whi ch are "connected chailns" in the follow ng sense:

each C. 1 s the union of countably many sets {B":l'.; /o\r.&”.._eB

such thalt for all k ~> 1, lfJB’il.'\ c: C Is connaected as wel |

as closed. W describe the O(L:;m(-)lrle‘,tructi on of G. . Set B"_(l): B. .
1

| f Bn Pl El =0 for all n> 1, then G = Bi"l\"'. Otherwise

let ko > 1 be the smallest index such that B H Bj(jl) N Q,

2
and set B~ =B, . If BMM* UBMA is disjoint fromthe
2 Ko 1 (1)2 1)
other sets in B then C = B’ U%g_ . O herw se |et
K,/ lor ko, be the smallest i1ndex such that B, meet s
3

Bl(l) U B£1)5 and set 83 (1) =kB#

) 3
we either termnate after finitely many steps or obtain a sequence

Proceeding Iin this manner

[Bé‘l\' }a213 . In either case the union Gr of the resulting set
{B'lt} s a "connected chain", which is disjoint fromall elenents
ao
of B,,. =B- [B“) . If C = UB we are finished.
(z; a %Z. 1 1 1 "

O herwi se we may construct in the same manner as above a connected

chain C, fromthe elenments of B,,, beginning with the B €B,
2 C2) n o (2)

of lowest index. Cbviously B wll be exhausted after at nost

countably many steps. Thus

(0]0) O

C%Z I%BB.

i=1 Nn=|

We now utilize the absolute continuity of f to show that
for any connected chain C.l, the length of the iInterval f(CQc: Ry

sati sfies
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i
(3.16) £1(£(C)) < Dyt (y)ddyy.

c
I

This follows fromthe fact that whenever vy-,,y€C then by the

"connected chain" property there exists a finite index k such

t hat
S A L
Y1°%2¢ YA =V x>
a=|

and thus since U.i 1S both closed and connected we have

k'

-t <] VWIAE T V.
| 5k |

To conplete the proof observe that by Lemma 1.3
*
Hy (v (J,)) < £,(3).

Hence, denoting by J\) an interval J_ for which w (J) =

N
B:(j.i), we have

00 00 )
"6 < a=| a=l - .

Thus by (3.16) the total length of the famly of intervals {f(G)}

sati sfies
L &.(£f(C.)) £ T a-(J(i)) < & £40d,) < €.
il X | a | o cC N
Since
00
f(B) ¢ f(C) = U f(C.),
i=1 |

It follows that f (B) Is covered by famlies of intervals of

arbitrarily small total length. This conpletes the proof.
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84, The Chain Rule for Tracks: Applications.

W begin this section by giving our version in F% of Lem
ma 1.2, the chain rule obtained by Vall ée Poussin for m= 1. The
anal ogues of the direct and converse portions of Lemma 1.2 are

stated separately.

Theorem4.1. Let x': I-*ﬁ& be an. absol utely continuous curve and

let g : R—=* R, be such that S has the null intersection prop-
m 1 g - JT
erty. If the followng conditions hold
(*) Vg(v)-v is £, -summable on | (with the product inter-

preted as zero wherever Vv = 0),

(acl) g|TV | S pre-absol utely conti nuous on TQ?
t hen g|TV {; actual |y absol utely continuous on T! . In addition
w = gov_ f; absolutely continuous on |, and the chain rule holds, 1.
(4.1) W = Vg(!)'f, £ -a.e. on |,

j..

wth the above interpretation for the product termwhen v = 0.

Remarks .4JL 1. The function g 1iIs assuned to be defined on all

of I%n nerely for convenience. Wat iIs actually needed for the

proof of (4.1) Is that g|T be extendable to a function possessing

Y
a total differenti al Ji1 -a. e’ on TV and satisfying (*) .
2. It follows fromthe null iIntersection property that D.g

T

exl sts Nh-a.e. and 1s J&-neasurable on 'R/ (Lemma 3.4). Moreover

s




43,
It wll be seen fromthe proof that even w t hout (acl), condi tion

(*) inplies that Dg is H-sumable on T .

et

Proof;, Along wth v we again examne the Lipschitz curve

~ ~

v J-»Rm which I1s obtained from v by reparanetrizing by its
arclength s. W proceed to show that the functions g"v and
g<>* are absolutely continuous on their respective intervals. QG-

= = = = V¥
ven al__<a_z€l set s, s(a_}, S., s(a_2 and Y v(ia ) v~(s£,

Yo :VLao) :V:(SJ. Then (ac ) gives,
£ £ 1

19(y,)-9(Y1)| 1 [Dypg(y)dW. (y) 1 [D_g(y)N(v, [0. ,a-]y)dI(.y =
u u

(4.2)
= fD_g(y)N(v*, [S|,52]:;£)d311}5:
u

where U = \~/( [al:,az_]) =V ([)s(,. ,sz]), and N(!, [al,_,az],y) [respec-
tively, Nv*, [s ,s.],y) ] denotes the cardinality of 'K/l (y) PI ]0O,Q]

[ respectively, of V~*—ﬂ'y)~ fl [s.l,%]:. The itl-maasurability of both
functions N follows by results of Federer [I|,p:177], while the
equality of the last two integrals can be seen as follows. The
sets \.{_]KY) n [o.,0,] and y*'l(yr)suo [s-,s,] have precisely the
sane cardinality unl ess Y. IS such that for sone a < a" e,
x(a‘) :Mv(a") =y and s(a') = s(a"). Since the nonotone function
S Is then constant on [a ,a" ] It follows that ye V(A) where

A={a : s5(a =0} c: 1. However by absolute continuity of s,

s(A) 1Is an £l-null set [4,p. 227]. Therefore by Lenmma 1.3 Vv(A) 1Is
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an Hl—null _‘set, so the integrands in the last two integrals of (4.2)
are equal Ull a. e.
Now by Lemma 3.1, Corollary 1.1 and (3.15) there is a subset

Scu of full Jil-rTeasure such that

D_g(y) = |va(y).v(cr)/[¥(a)|]

1

| Vg(y) - v* (s) | WES, acv i(y), sEV(y).

By use of this relation and a result of Federer [I|,p.245] we deduce

from (4.2) the rel ations

laCyi-a(yn) | < Pvayn -9/1911-Nv, [a, al.y)doy = [ 4/ Va(v(a))+(a) | da

U 4y

(4. 3)
r X% S .
lg(y,) -9y )| < Jivaly) -y I-N(y_,*,[sl,szl,y_)dﬁly:lr ZIVg(X*(S))°X*(S)|dS.

u ®1

(Note that the values of the integrand over the Jiy -null set U- S

. : . -1
are irrelevant since by Lemma 1.1 v =0 £gjya.e. on v (U5 and

a4 s ~

v¥ = 0 £,-a.e. on yv* (US).) By appeal to (*) we see that the

(g

right side of (4.31) and hence, by equality of the left hand inte-

grals above (see(4.2)), also the right side of (4.3, 1is finite. In

ot her words, we have

0]
[9(v(0j)-g(v(0)) | < | *Ivg(va)) +¥(a) | da<co,
a
1

g(v*(5.))-g(v*(s)) | < | 4lva(v*(s) ) -V(s)| ds < oo.

1
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These relations yield the absolute continuity of gev and giv”

L

by direct calculation.

Now since the functions gcVv, s and w= giv = (gov')os are
all absolutely continuous on their respective intervals it follows

by Lemma 1.2 that

4.4 W= —icv"-s‘ £ -a.e. on |,
(4.4) Jgcv) ;

wth the convention that the right side Is zero wherever s = 0.

Moreover for a full subset T lc: T we have

(4.5) dg(y) exists,;v(a)/lv(a)| v* (s(a)), s(a)|lv(a)] _ VyeT?” CAZIAX)"

Hence by Lemma 3.4,

*
Y
u g

V) vl = \Vg(v) v, for v=v*(s) =vyeT..

< S
s (9ev) s = Dy(

}
~~

On the other hand on A:v_l(T-T), the functions v and s = I\ZI

1 rsJd

r- 1
are zero £;-a.e. by Lemma 1.1. Mreover by Theorem 3.1
WA) = g(T-T,)

IS an £l-nuII set, so that, again by Lemma 1.1, w=0 £l-a.e. on A.

Toget her these facts yield (4.1).

Theorem 4. 2

Llet v : I-»R_ and g : R—>Iﬁq be as in Theorem 4. 1.
~ m m

Suppose Iin addition that the follow ng conditions hold,

(acl) qT is absol utely continuous on T,
V —~

(acz) w= g*V 1Is absolutely continuous on |I.
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Then the chain rule (4.1) holds, 1.e.

W= \Vg(v) -V, £l-a.e. on |

(wth the sane interpretation for the product as before) , and hence

(*) is valid.

"1

Pr oof : Let us 1 ntroduce v* J->Rm as before and let T,,c: T

again be a subset of full W;-neasure such that (4.5) 1s valid.

Since T - Tl | S V\i-null we deduce as before that

V=0 WwW=0 £ -ae on A:\[l(

1 T- T'l) .

Moreover for all oel - A= v'l(T.f we have, using (4.5)

wW(a+h)-w(a) g(v(a+th) )-g(v(a) ) vg(v(a))e (v(a+h)-v(a) ) +o(|v(a+h)-v(a)|)

gt —

h h h

|v(a+h)-v(a) |
h

= vg(V(@)) * (V(9+o(1)) +o(1) -

- Vg(v(a)) - V(o).

Toget her these results yield (4.1) and thereby (*), since absolute
continuity of w inplies £l-surmability of W

W now w sh to enploy Theorens 4.1 and 4.2 in obtalning general -
| zed versions of the results obtained in section 2 for l|ocally Lip-
schitz functions. It will be necessary to introduce the follow ng

definition.




Definition 4.1. Let Q be a donmain in Rn and let u = (ul.,....,unz
be In A ™ suppose that . R—=* 1S a real -val ued function
(Q Ipp g mRIn

on Rm' W shall say that g is locally u-absolutely continuous

provided that g 1s Borel neasurable and, for alnost all lines r
parallel to any one of the axes in R, g 1Is absolutely continuous

on every track of the form T = u(l) where the interval
u, | ~

| cr fl Q 1s conpact.

If u = (u.l.,...,ur% where the u, are £n-rreasurable functi ons
on O which are equal a.e. to functions u eAQ , i =1,...,m
then g 1Is said to be local |y u-absolutely continuous provided
that it is locally u-absolutely continuous, where u = (UI,...,JW)].

Qur next result i1s an anal ogue of Theorem 2. 1.

Theorem4.3. Let Q be a domain in R and let u= (u_,i. . ’ur%’
n
wher e u,-,...,u€W,IO,C(CI). Supposethat g : R-*R 1Is Iocally
1 m 11 m |
u-absol utely continuous and Sg has the null i1ntersection property.

. | oc . .
Set V:G(u.l...,ur)n:GlL. Then v 1s in Wl;l(Q) If and only if

t he functions

m

d
(4.6) V., = E —g—(u)a.u. i=1,...,n,
I 3= atj. ~ 1 7

belong to Llio‘iCI) , Where c:IL denotes a distribution derivative and

where the products in (4.6) are to be interpreted as zero wherever

their second factor Is zero. Mor eover we then have

(4.7) V. =d. vV £ -a.e. In £ 1=l,...,n.
v |

i n
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Renmark; |t will be seen fromthe proof that the " if" portion also
foll ows under the assunption that g 1s only "u-pre-absolutely

conti nuous"g where the definition of this concept iIs obvious.

Pr oof ; By Lemma 1.5, for each J, =1,.... m u coi nci des £,-a. e.

= 'D
. : : ~ loc
in d with a function u. JeA(CI) fl 'I (Q such that
d[j" . .
e —B1u] £n-a.e. in Q 1 =1,...,n.
1 .
Since the function V = G(Gd_l"...J?U"g = QI coincides with v £n-a.e.
_ _ | oc _ _ A | oC
in Q, wewll have veW, {Q If andonly if vGW.(O) .
} 191
Suppose first that (4.6) holds. Then also the functions
m N\
~ ~N\
(4. 8) Vo, = E f @); i=1,...,n,
are in t,llOC(C) . Nowlet r be aline parallel to the x.l-axis such
that (1) u_l, Co. rl#] are locally absolutely continuous on r P Q,
(2) g 1Is absolutely continuous on every track TJ I for conpact
intervals | cr fl fl, and (3) V.l s locally summable on r fl fl.

It follows by Theorem 4.1 that Vv is locall y absol utely conti nuous

on r D Q and that

§“ V.. ed—ll_]loc ((Tﬁ\@) E’l‘ a.e. on r.

Since alnost all lines r parallel to the x.l-axis sati sfy con--
ditions (1), (2), and (3), it follows fromthis that veA(fl) and

that RY_ e Lnloc(Q , i =1L.....n. This shows by Lemma 1.5 that
OX 4
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Ver 1.(f?) for each bounded subdomain CH c¢ Q which satisfies the

cone condition, and hence that v eW!LOl(iQ) .

Conversely, suppose that v 1Is In Wlloj(__:(Q. It follows that
V' is in Wllc,f(Q and hence coi nci des £n-a.e. on C with a function

v.#€W||.OIEQ) Pl. Afi) . Let r be aline parallel to the x.l-axis satis--

fying conditions (1). and (2) above as well as: (3') v* is locally
absol utely continuous on r P £1, and (4T)~v coincides wth v*

Z,-a.e. on r DQ It follows by the continuity of v on r 0 Q

(Remark 3.1,) that actually v 1s itself l|ocally absolutely con-

tinuous on T fl 0. Since alnost all lines T parallel to the
x,-axis satisfy conditions (1), (2), (3%, (4) (i=l,...,n) it fol-
| ows t hat \(/)-G/A(Q) P W-I-I’O-;:(Q . Moreover, by Theorem4.2 we have
R:: v. £ -a.e. on r fl fl, for all such T. Conclusions (4.6) and

oxI | 1

(4.7) now follow fromLemma 1.5 and the rel ations:

.\N
5, v=T__f£ -a*e* In VM v. =v. £-a.e. 1In u.
| x.I N | | N

In order to give anal ogues of Theorens 2.2 and 2.3 we first in-

troduce the followng definition and prove an iInportant |ema.

Definition 4.2. A function g : R-*R iIs said to be fully absolutely

m e

continuous provided that it 1s Borel neasurable and is absolutely con-

tinuous on T for every T which is the track of an absolutely con-

tinuous curve. The class of all such g 1Is denoted by 3.
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Remark; By Lemma 3.3 the class & includes all locally Lipschitz
functions on Rm. It would be very interesting to have a good

characteri zation of .

Lemma 4. 1. Let g | Rﬁﬁ R-. be a Borel function. Then for any

S

1
] = 1,....m the domai n of i?F- s ¢ Borel set and ot 1S a
J 3

Borel function.

Proof: For | fixed let e. Dbe the unit vector Iin the direction

L

of the tj-axis. Since g 1s Borel neasurable, the function on

t i _
Rmx RI X R”l (F:EH“:F%L -{0o}) defined by

g(t+he_J-g(t)

= ] -
Q(E’h)"z) h ’{/

s Borel measurable. Consequently for any L > 0 the follow ng

subset of lele,: X R, 1s a Borel set

& = ((t,h,8) : |Q(t,h, )| < & ).

It follows that for each pair of integers 1,k )> 0, the set

J

Ci k= {(Ey’t) : IQ(Eah:'{’)l 5\1 \/net_/\] J

11 11
is a Borel set in R x Ry, where [-I* ;] = [TTY] - f°% « In fact
1
C..=R XR - TTR x[-F-FIx(R -E.))

1, X
i

where TT Is the canonical projection of Rmx. Rr', X R, onto R xnl$

1|
However the set
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00 00
G= n U C , < R g R:l
1=1 KA |
s the graph of the rel ation Q"—, whi ch conpl etes the argunent.

° -k

Theorem4.4. Let Q be a bounded domain iIn Rn possessi ng the cone

property. Let g be a function on Rm sati sfying the hypot heses

of Theorem 4.3 and denote h.J = "~,—C~ , ] =1,...,n. Then each h.J

J
IS necessarily Borel neasurable and defi ned £n- a.e. GQGven p.

1~ P <L"™ suppose that for some q, p < < n, the functions hj
determ ne, via conposition, nappings which satisfy:

_ gp_

h. =L . (O™>1 (fl i =1,....n, wWith g* = ~- ! :
q*( )" —=L_(fl) J n, w q g D

J

Then g vyields, via conposition, a mapping which satisfies

m
g : Wl,q(Q) > Wl,p(Q).
Moreover, wth v = g(u_i...,u&1 one has, for u.= (u. ,1...,u )meIW, q(fl) ,
m 5. |
— N\ I —_

D

the products being interpreted as zero wherever the second factor iIs
Zer o.

Remark; The hypot heses of the theoremas regards the h.,. 1 <2 | <£ n,

J
are net, inparticular, iIf the hj satisfy growh conditions of the

type in (2.8). However the theoremis not limted to such cases.

S nce h.3 s defined at all points of R - S, the Borel neas-
m 9

urability of the functions h.J ensures that they are defined £n- a. e.

Thereafter the proof utilizes Gagliardo's characterization (and Theor -

em4.3) in alnost exactly the sanme way as was done in Theorem 2. 2.
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Theorem4.5. Let Q be adomainin R. Gven u €V\’}2?]§£2)' de-
n 0 ,

note u. :S.Iuog I =1,...,n, and set u = (uo,unl...,ul)]. Sup-

I

pose that g : R_,.,-* R Is locally u-absolutely continuous and that

for T the track of any absolutely continuous curve Iin R t he

n+l

projection of S PI T onthet -axis iIs £-nu|| Set

g 0]
= Qug,u”..jU) = Q. Then v is in V\'io‘i(g if and only if

t he functions

R A .
(4.9 v, = Ofg@)dﬂ.uum +%§1 i’fj(—u,)d.ldluo i=1,...,n,

belong to L OC(£2) o9 Where the products are to be interpreted as zero

wherever thelr second factor 1s zero. Mor eover we then have

(4. 10) Vo = S'|V £ -a. e. in Q 1 =1,...,n
Proof; By Lemma 1.5 there exists for each J =0,l,...,n a function
. eAfl))such that u. = u. £ -a.e. in Q and such that @ = AP
D 3 3 n A o9
* -a.e. in Q Mreover we have hy Remark 1.1 that ~r% =S.u
n 3 dX,J ] o

u.

£ -a.e. In 0 and “r—2 = S d.u & -a.e. I1n 0. Set v= Q.
n OX. | 0 n

Mmoo - . ’A*y oc .
Cearly v coincides wth v £ -a.e. In Q so that V\} | f

n 1,1
and only If ve O(l:(Q).

Suppose first that (4.9) holds. Then also the functions

N Su n. v, _ allj_
g S f-6
| | =

bel ong to h_'lo%O) . Set M= Ili_l(Sg) . Nowlet T be a line parall el
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to the x.-axis such that

(1) ﬁo, ...,ﬁn are locally absolutely continuous on T fl fi,
(2) g 1s absolutely continuous on every track Tz . for
conpact intervals | ¢ T fl fl. Since
uMiT c O(M 07U(rnfl) C:Sy n u(TiIfl) , it follows that tShe range of
| u
DO on Mnr 1Is an. £1-null set. Hence By Lemma 1.1 ax@ =0
39 2
£ -a.e. on MfIl T. It follows that T =0 £ -a.e. Iin M wth
1 ox.I n
I = |,...,n since the choice of | above was arbitrary. Thus
U.In:O £ -a.e. in M i =1,...,n. Let M ¢ M be the £ -null
~ Y A
setwhere(u_,l...,u% (O,...,i)ﬁ).
We proceed to show that ’(‘)—X—}‘ =0 £ -a. €. in M For this |et

'i
r be a line parallel to the x.l-axis which 1n addition to (1) and (2)

above satisfies (3) M 0r is an £l-null set, and (4) V.l s locally
summebl e on T. Then u(Whr) cu(ll\'/i(lT) U{(0,...,0) }. Hence by the

| ocal absolute continuity of u on r Pi fl and the fact that M Pl r

~7

ot

s a null set we conclude (Lemm 1.3) that umIT) Is JL,-null. Hence

r>-f 1

Lemma 1.1 inplies that

(4.11) i—;—ilzo £-a. €. in MPl ro j =0,1,...,n.
as.
Fromthis 1t follows that (’)\X—-”‘\zo £r-]a.e. in M with i1,) =1,...,n,
|
since the conditions (1), (2), (3), (4) hold for alnmost all r ©paral-
lel to the x*-axis, and the choice of | was arbitrary. [In addition
we point out that S meets each of the tracks T~, . for | a com

pact subinterval of & fI fl, in a set which is actuéz'l’lly Wl-null, not
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nerely one whose projection on the to-axis S £l-null. This fol -

lows from (4.14) and Lemma 1.3, since § = |ul =0 £ -a.e. in

rsu 1

T(1Minplies that s(rOM is an £l-null set [4,p.227]. There-

fore we may conclude by Theorem4.1 (and Renark 4.1.1), that v
s locally absolutely continuous on r fl fl and X_ coincides with

St .

Vl £,-a.e. on T nfl, whenever r 1Is an interval satisfying (1),

(2), (3), (4). Since these conditions hold for alnost all |ines
and the choice of | was arbitrary, we deduce by Lemma 1. 5 that
~ loc
ve A() N Wl,l(m .
Conversely, if v is in WP°S#) then ¥ is in WPSf) and
JL, JL JL, JL
O

coi nci des al nost everywhere wwth a function v éVA(fI) fl WI1n 1) .

Oh alnost all lines r parallel to any axis the absolute continuity

'

of g on TX,I ensures continuity of v, as in the proof of Theor-

em 4. 3. Hence v coincides wth v* on T fl fl for al nost all

. . s Nee
lines T, and it follows that veA(fl) n V\/-1 i(fl) . W can then show
as above that every SgO Ta I S !il-null for al most all choices
~

of T, and hence we obtain (4.12), (4.13) by use of Theorem/4. 2.
This conpl etes the proof.
Cearly one could now give a direct anal ogue of Theorem 2.4 as

well. W omt the obvious formulation and proof.
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