
ABSOLUTE CONTINUITY ON TRACKS

AND' MAPPINGS OF SOBOLEV SPACES

by

M. Marcus and V. J. Mizel

Report 71-33

July 1971

Acknowledgements

The research of one of the authors (VJM) was partially sup-
ported by the National Science Foundation under Grants GP 24 339
and GP 28 37 7.

The other author (MM) wishes to acknowledge the stimulating
mathematical atmosphere provided by the Carnegie-Mellon University
Mathematics Department during the preparation of this paper.

HUNT LIBRARY
CARNE6IE-MEUGN UNIVERSITY



ABSOLUTE CONTINUITY ON TRACKS AND MAPPINGS OF SOBOLEV SPACES

by

M. Marcus and V. J. Mizel

Abstract

The present paper is concerned with the circumstances under

which a function g(x,t ,...,t ) provides, via composition, a
^ 1 m

mapping between Sobolev spaces. That is, we examine conditions

which ensure that for every system of functions u_,...,u e W _ (Q)
1 m 1, q

(where W, (Q) is the class of L functions with L summable
i,q q q

strong first derivatives on the domain Q, c: R )S the composite func-

tion v given by v(x) = g(x,un(x) , . . . ,u (x) ) belongs to Wn _(£})>

with preassigned 1 <. P < oo. Our overall approach in this paper

is patterned after a classical chain rule result of Vallee Poussin

[8,p. 467] for real functions on a real interval.

By introducing a (seemingly new) definition for absolute con-

tinuity of a function g(t ,...,t ) on the track of an absolutely

continuous curve and exploring its properties, we have been able

to attain an exact analogue of the above result of Vallee Poussin

in the case of functions g(t_,...,t ) defined on R . This re-

1 m m

suit is thereafter utilized in obtaining necessary and sufficient

loc
conditions in order that for given functions u_,...,u e W_ _(Q)

1 m 1,1
loc

the composite function v = g(u_,...,u ) belong to Wn . (Q) . This
1 m 1,1

last result leads in a relatively straightforward manner to con-

Research partially supported by the National Science Foundation
under Grants GP 24339 and GP 28377.



ditions for g to map Wn (ft) to Wn (ft) . We also obtain a
l q 1 P

different set of conditions on g under which g(t .t,,....t )
o 1 n

takes W. (ft) into W_ (ft) via the composition
2,q l p

v(x) = g(u(x),d u(x),...,S u(x)).

On the other hand for functions g(x.t......t ) xeO, we have
^ 1 m

obtained fully analogous results only when the function g satis-

f ies a local Lipschitz condition on fi x R .
* m

The entire approach relies heavily on a characterization of

the spaces W (ft) due to Gagliardo [2].
1
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Introduction,

The present paper is concerned with the circumstances under

which a function gfx.t,,...,t ) provides, via composition, a
~ 1 m

mapping between Sobolev spaces. That is, we examine conditions

which ensure that for every system of functions u......u e W
1 m

where W, (fl) is the class of L functions with L summable
l q q q

strong first derivatives on the domain Q c R 5 the composite func

tion v given by v(x) = g(x,u_ (x) 9 • . . ,u (x) ) belongs to W_ (Q)
1 ~ m ~ l P

with preassigned 1 £ p < 00. Our overall approach in this paper

is patterned after a classical chain rule result of Vallee Poussin

[8,p.467] for real functions on a real interval. He showed that

when g and u are both absolutely continuous functions then the

composite function g u will be absolutely continuous if and only

if g1 (u(x))u!(x) is summable (when the product is properly inter-

preted) , and that then the chain rule

(c) -j- g(u(x)) = g' (u(x))u'(x)
ax

is valid almost everywhere. In this direction Serrin has shown [5]

loc
that for g : R —> R locally absolutely continuous and ueW (H) ,

JL _L -L} 1
"I r\r+ lOC

one has v(x) = g(u(x)) eW, ,(fl) if and only if g' (u(x) ) Vu(x) eL. (0)
~ ~ 1,1 ~ ~ l
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By introducing a (seemingly new) definition for absolute con-

tinuity of a function g(t ,...,t ) on the track of an absolutely

continuous curve and exploring its properties, we have been able

to attain an exact analogue of the above result of Vallee Poussin

in the case of functions g(t ..•..t ) defined on R : if g is
1 m m

absolutely continuous and has a total differential almost every-

where on the track of the absolutely continuous curve u = (u.,•.., u )
~ l m

then the composite function v(x) = g(u_(x) ... u (x)) will be abso-

lutely continuous if and only if S ^ (u) ^— is summable (whenJ ot. ~ dx
l

the products are properly interpreted), and then the chain rule

analogous to (c) holds. This result is thereafter utilized in

obtaining necessary and sufficient conditions in order that for

loc
given functions u, ,...,u e W. ., (Q) the composite function

1 m 1,1
loc

v = g(u. ,...,u ) belong to W_ . (£}) . This last result leads in a
1 m 1 1

relatively straightforward manner to conditions for g to map

W. (£1) to Wn (Cl) . We also obtain a different set of conditions
iq IP

on g under which g(t . t, ...,.t ) takes W^ (£1) into W, (Q)
o 1 n 2q v l P

via the composition v(x) = g(u(x),S.u(x) ,... ,5 u(x)).

On the other hand for functions g(x,t.,...,t ) xe Q, we have
^ 1 m ~

obtained fully analogous results only when the function g satis-

fies a local Lipschitz condition on O x R . For the convenience
m

of the reader we discuss these "Lipschitz condition" results prior

to the "absolute continuity" results because the analysis in the
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latter topic is much more delicate. (As is proved in Section 3,

every function on R which is locally Lipschitz is automatically

absolutely continuous on the tracks of all absolutely continuous

curves.)

The entire approach relies heavily on a characterization of

the spaces W (ft) due to Gagliardo [2], while in the study of the
iP

absolute continuity results we utilize not only the above mentioned re-

sult of Vallee Poussin, but also Tonelli!s results on absolutely contin-

uous curves [4,p.123], Roger's work on tangent cones [3], results

of Banach for real functions on real intervals [4,p.282 and p.113]

and some work of Federer [l,p.211 and p.245].

The present paper is completely restricted to situations in

which a chain rule analogous to (c) holds in £1. In a subsequent

paper we propose to examine conditions under which g(x,t ,...,t )

provides a mapping between Sobolev spaces even though a chain rule

is not available, and in addition to examine continuity properties

of such mappings.

The plan of the paper is as follows. Section 1 is devoted to

background material. Section 2 deals with functions g(x,t_,...,t )
~ 1 m

which are locally Lipschitz. In Section 3 we introduce the notion

of absolute continuity on a track in R and discuss its properties,

and in Section 4 we apply these results to deal with the case of

functions g(t ,...,t ) which are absolutely continuous in this new

sense.
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§1. Preliminaries, We adopt the following notation and conventions

The vector space R will always be considered with the Euclideanr m

norm, denoted by | | • £ denotes k-dimensional Lebesgue measure,

and Ji denote 1-dimensional Hausdorff measure. Finally, an

R -valued function v is said to be absolutely continuous on an
m ~

interval of the real.line provided that the infinite sum

t
v(a.)-v(a.) can be made arbitrarily small by making the total

1 l

! t

length 23 a .-a. of the disjoint subintervals [ [a-,Q.]} sufficient-I l l I

ly small.

A basic feature in our discussion of mappings from one Sobolev

space into another is a characterization of the spaces W in

terms of absolute continuity, due to Gagliardo [2]. This character-

ization will be described below. However we shall first mention

some necessary classical results on absolute continuity due to

Vallee Poussin [8,p.467] (see also Serrin and Varberg [6,pp.517-518])

and Tonelli [4,p.123].

Lemma JL._1 (Vallee Poussin) . Let w be an absolutely continuous

real-valued [respectively, R -valued] function on an interval I

of the real line. Let N be an £ -null set on R [respectively,

-1
an Ji -null set on R ] and set M = w (N) fl I. Then w = 0

1 m ~ ~

£ -a.e. in M.

Proof; It suffices to treat the case where w is real-valued, since

being !i -null implies that its projection on each axis ism ^ 1 * JT J
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£ -null, and w. = 0 £-a.e. in M, i = l,...,m, implies w = O
1 ~i 1 ~

-a.e. in M. Therefore we suppose w to be real.

We may assume that N is a Borel set and hence that M is

measurable. Suppose that the assertion of the lemma is not true.

Let e^ = {a : a e M and | w(a) | ;> —} , (n=l,2, . . .) . Then

oo
<£ ( U e ) > 0. Hence for some n, say n = n , we have
in o

-, (e ) > 0. Denote e (resp. e ) the subsets of e where
In n ^ n n

o

w > 0 (resp. w < 0) . Then at least one of the two sets

e , e has positive measure. We may assume that £ (e ) > 0.
o o o

Hence we have the following situation: there exists a meas-

urable subset e of M such that 0 < £,(e) < oo and such that

w(a) > a for all a e e, where a is a fixed positive number. We

may also assume that "e is compact and that it is contained in the

interior of I. Let a € I - e be a point on the left of e. Then
o ^

a
w(a) = w(r)dr + 2c,

a
o

where 2c = w(a ).
o

Let X = X be the characteristic function of e and set
e

= w(a)x(a) and <32(°) = w(a) -

Denote:
a

() + c, (i=l,2), a €
a x

o
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Hence, w(a) = w (a) + w (a) and w (a) is a monotonic non-decreasing

function.

We shall obtain the required contradiction by showing that the

range of w (a) over e has positive measure while the range of

w (a) over e is a null set.

Given £ > 0, let 0 be an open set and C be a closed set

such that C <= e c o <= i and £ (0-C) < £ . The range of w (a)

over 0 contains the interval (c,c+p) where P = a£ (e) > 0. On

the other hand, the measure of the range of w (a) over the open

set 0 - C is at most g (t)dt and this tends to zero when

o-c 1
—» 0. Hence the range of w (a) over e has positive measure.

With and 0 as above, consider now the range of w (a)

over 0. The measure of this range is at most equal to

g 2 ( T )J lg2
(T) 'dT = I 'g2

0 * 0-e

since g = 0 on e. Again, this integral tends to zero when

£. — ^ 0 . Hence the range of w (a) over e is a null set. This

completes the proof of the lemma.

We have as a corollary the first half of the following re-

sult.

Lemma JL.̂2 (Vallee Poussin) . Let w and s be absolutely contin-

uous real-valued functions on intervals I and J, respectively.

If s(J) c i and w^s is absolutely continuous then
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(1.1) ^Ti" (a) = wf (s(a))s(a) £-a.e. on j,

provided that we interpret the right side as zero whenever s(a)= o,

irrespective of whether w! (s(a)) is defined. Conversely, if w is

absolutely continuous and if with the above convention w! (s(a))s(a)

is summable on J, then w*a is absolutely continuous and (1.1) holds

Proof: We give here only the proof of the first half. By absolute

continuity w1 is defined for all points of I with the exception

of a null set N and s is defined for all points of J with the

exception of a null set N! . Now (1.1) is clearly valid for those

a in J - N! for which s(a) e I - N. On the other hand by Lem-

ma 1.1 s(a) = o £ -a.e. on M = s (N). Hence to establish (1.1)

it suffices to show that also —— (a) = 0 £ -a.e. on M. How-
WoS 1

ever

w°s(M) <= w(N) ,

and the fact that N" = w(N) is an £ -null set follows directly

from the definition of absolute continuity for w. Thus by Lem-

' -1
ma 1.1, wo s (OF) = 0 £ -a.e. on (w°s) (Nl!) ^ M, which completes

the proof.

Recall that an R -valued function w of bounded variation on
m ~

a real interval I is referred to as a rectifiable curve in R
m

and that any real function s on that interval for which s(a!) - s(a)

is the total variation of w over [a,a! ] for all o < o* , is re-
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ferred to as a length function for w. Moreover the range w(I) is

called the track of the curve w.

Lemma 1.3 (Tonelli) . If w : I-*R is a rectifiable curve in R
^ m m

and s is a length function for w then

(i) s is absolutely continuous if and only if w is

absolutely continuous;

(ii) whenever E c i is measurable, then

(iii) s(a) = |w(a)| £ -a.e. on I;
~ 1

(iv) for each subinterval [a ,o ] of I

s(a ) - s(a ) > w(r) dr, with equality if and
2 1 J

1

only if w is absolutely continuous on [o ,a ].
-I- £j

We omit the proof of this lemma.

Remark: If w is absolutely continuous and if E c i is an

Z -null set then by Lemma 1.3(i) s(E) is also an £ -null set,

so that W.(w(E)) = 0.

We now proceed with the characterization of W

Definition 1.1. Let Cl be a domain in R and u = u(x) be an
n ^

£ -measurable function on Cl. We shall say that u belongs to

A(Cl) provided that, for almost every line r parallel to any co-

ordinate axis x., i = I5...,n, u is absolutely continuous on

each compact subinterval of r 0 Cl.
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If UG A(£2) then it is known that u possesses partial deriv-

atives ^— . i=l....,n. which are defined X -a.e. in Q and are
ox. n

1

Z -measurable,
n

Lemma JL.4̂ . Suppose that u e A(Q) and M is a measurable subset

of Q such that for almost every line r parallel to the coor-

dinate axis x.. U(MHT) is a null set. Then ^ = 0 £ -a.e. in M
I ox. n

I

Proof: Let r be a line parallel to the x.-axis such that u is

locally absolutely continuous on r fl Q and u(Mflr) is a null set.

<^u
Then by Lemma 1.1, ^ =0 a.e. in M H r. Since M is measurable

and this result holds for a.e. line r parallel to the x.-axis it

follows that -^— =0 £ -a.e. in M.
ox. n

I

The characterization of W., (£2) is as follows.
1 P

Lemma JL.J5 (Gagliardo) . Let 1 <^ p < oo . A function u defined

on Cl is in W (Q) if and only if there exists a ueA(f2) such
1 p

that:

(l) u = u £ -a.e. in Q;
n

(ii) ^ ~ € L (O) ,

(iii) u e L

Moreover T-— coincides a.e. in Ci with the corresponding dis-
l

tribution derivative d.u, i = l.....n.
l '

Finally, if Q, is bounded and has the cone property then con-

dition (iii) is superfluous.
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Remarks JL.JL. 1. The result was not stated in this form in [2],

but is an immediate consequence of Sections 1 and 2 of that paper.

2. It is easily seen from the above that ue W. (ft) implies
l,pv

that every u in A(ft) which satisfies (i) also satisfies (ii) and

(• • • \
in).

loc
3. As a consequence of this lemma we have u e Wn (ft)

(i.e., u e W_ (ftT) for every compact subdomain ft! cz ft) if and
!P

only if there exists a u e A(ft) such that

/**J

(i) u = u £ -a.e. in ft;

Q U IOC , ox . _
e L (ft) , i = l,p^ e L

ox. p
I ^

We end the present section by introducing a notion of small-

ness for sets in IL which will be crucial for later developments.

Definition JL.j?.. Let S be a subset of IL. We shall say that S

has the null intersection property (alternatively, the NI property]

if S intersects the track of every absolutely continuous curve in

R, in an Jt -null set.

The following result gives a sufficient condition for a set S

to have the NI property.

Lemma JL.J5. Let S be a set in K, such that for a given ortho-

gonal system of coordinates t = (t ,...,t ), the orthogonal pro-
1 Kl

jection of S on each of the coordinate axes has £ -measure zero.

Then S has the null intersection property.



11.

Proof: Let C be an absolutely continuous curve given by t = w(a)

where w(a) = (w (a),...,w (a)) for a in the compact real interval
^ 1 K

I. Let S. be the projection of S on the t.-axis; by assumption

n(S.) = 0 . Let A. ^ S. be a Borel set of zero measure and set
1 l 1 1

B. = w. (A.). Then B. is a measurable subset of I. Clearly
l l v l l *

k
S 0 C c: w(B) where B = H B.. By Leirana 1.1 w.(a) =0 a.e. in

i = l,...,k, and hence w(a) =0 a.e. in B. It follows from

Lemma 1.3 that s(a) = 0 a.e. in B, where s is a length func-

tion for w. Since s is absolutely continuous we have that

£.(s(B)) = 0 [4,p. 227] and hence by Lemma 1.3 that Ji (w(B) ) = 0,
1 1 I^J

as claimed.

Remark: A set S satisfying the hypothesis of Lemma 1.6 is in parT

ticular an £ -null set. However the null intersection property can
.K.

hold even for non-measurable sets.
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§2. The Lipschitz Case,

Hereafter we will consider mappings G of the form

(2.1) G(u , . . . ,um) (x) = g(x,u (x),...,u (x)) x e Q,

where g(x,t) is defined for x in the domain Q of R and t
~ n ~

in R , and the fu.} are measurable functions on Q. We shall de-
m j

note by S the set of points in Q x R where g does not pos
g m *

sess a total differential. If g is continuous then S is a
g

Borel set ([l],p.211). In particular, S is an i -null set
^ ^ g n+m

if g is locally Lipschitz in Cl x R , while S may equal all

of Q, x R if g is merely absolutely continuous in Tonelli1 s

sense [4,p.300].

In the present section we shall explore conditions under which

a locally Lipschitz g corresponds to a G which maps one Sobolev

space W, (Q) into another. In Section 4 we reexamine this ques-
l p

tion for functions g which need not be locally Lipschitz.

Lemma ,2.̂ 1. Suppose that g(x,t) is defined for ' xe Q, teR and

that the following conditions hold:

(i) g is locally Lipschitz on Q x R ;

(ii) there exists a null subset N of Q such that the pro-

jection of S - N x R on R (to be denoted by ST)
J g m m

has the null intersection property in R .
•^ m

Then for every u = (un,...,u ) eA(fl) the function v = G(u) is

in A(Q) and the chain rule holds, i.e.,
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(2.2) ~- = ^ + » ^ - ( x ^ u ) ^ £ -a.e. in O, i =v ox ox at ~ ox n
= ^ + » ^ ( x ^ u ) ^ £

ox. ox. . . at. ~ ox. n
l I 3 = 1 j l

where the products on the right side are to be interpreted as zero

whenever their second factor is zero, irrespective of whether

is defined.
at.

3

Remarks J..JL. 1. The chain rule is not valid under significantly

weaker hypotheses on S , as is clear from the following example

for n = 1. Let g(t ....,t ) = max(t_,...,t ) and u_(x) = ... =
1 m 1 m 1

u (x) = x, x e (0,1). Then the right side of (2.2) is nowhere defined
m

on Cl = (0,1), while the left side is identically unity.

2. Note that when m = 1 and g(x,t) = g(t) , then condition

(i), or even the weaker requirement that g be locally absolutely

continuous on R , already implies condition (ii). This comes

about because in one-dimension the existence of a derivative is

equivalent to the existence of a total differential.

Proof; The assertion that v e A(Q) is a consequence of the fact,

easily established by direct calculation, that a Lipschitz function

of an absolutely continuous R -valued function on an interval is
m

itself absolutely continuous on that interval.

By elementary arguments, (2.2) is valid for ^ at each pointox-v o x .
OU . 1

x eCl such that the derivatives ^—•% j = l,...,m, exist at x
ox.

l

and the total differential of g exists at (x ,u(x )).

HUNT LIBRARY
CARNEGIE-ELLSN UNIVERSITY
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Now let r be a line parallel to the x.-axis in R such
i n

that u ,...,u and hence also v are locally absolutely con-

tinuous on T fl £1, and such that r D N is an <£ -null set. Then

C = u(rnf2) is a countable union of tracks of absolutely contin-

uous curves, and hence C fl S1 is an If.,-null set. Let
o 1

-1
M = u (C DS! ) PI r. By the preceding paragraph the chain rule for

holds <£ -a.e. on r (1 Q - M. Moreover u. (M) is an £ -null
1 i 1

^ h o l d s <£
ox. 1

I

set, j = l,.,.,m. This follows from the fact that the projection

of the Ji -null set C H ST on any coordinate axis in R is
1 o -v m

ou .
£_-null. Hence by Lemma 1.1 r̂--*- = 0 £ -a.e. in M, j = l,...,m.
1 ox. 1 J

O r^J OV
Let x e r [1 fl be a point where r̂— = o and ^ exists. Then

ox. — ox.
l l

we claim that

(2.3) _ . (x
1 1

Indeed, setting x, = (x_,...,x.+h,•..,x )9 we haveh i ' I n

g(xh,u(xh)) = g(xh,u(x )+o(l)h) = g(xh,u(x ))

where o(l) tends to zero with h. Here, the fact that ^—(x ) = 0
ox. ~

(x
.
1

and that g is locally Lipschitz has been used. It now follows that

v(x ) - v(x ) g(x ,u(x )) - g(x ,u(x
n n

Letting h tend to zero we obtain (2.3). But this shows that the

chain rule for ^ also holds £ -a.e. in M, and hence £ -a.e.
ox. 1 1
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on r fl Q. Since the assumptions on the line T hold for almost

every line parallel to the x.-axis and since the choice of i was

arbitrary the proof is complete.

Condition (ii) of the above lemma can be weakened in a special

but rather important case. This case is introduced next.

Lemma 2.2. Suppose that g(x,t) = g(x,t ,t ,...,t ) satisfies

following conditions:

(i) g is locally Lipschitz in Ox R ;

the

(ii!) there exists a null subset N of Q such that with

S] = S - N x R n and with T the track of any
g n+1

absolutely continuous curve in R , the projection

of S! n T on the t -axis is £ -null.
ou

Then for a function u eA(fl) which is such that -^ coincides
o ox.

£ -a.e. in Cl with a function u. e A(0) . i = l,....n. the function
n I

v = G(u ,u_,,..,u ) = G(u) is in A(£2) and satisfies
o 1 n ~

-v N n j. du .
(2.4) ^^ = f3- + 23 f^-(x,u)^—L I -a.e. in

ox ox ot. - ox. n
O J 1

where the products on the right side are to be interpreted as zero

wherever their second factor is zero, irrespective of whether

is defined.^7
ot.

Proof; As noted in Lemma 2.1, the fact that veA(£2) follows from

condition (i). Thus we need only prove (2.4).
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We may assume that the set N in (ii1 ) is a Borel null set,

since it is in any event contained in such a set. Since S is
g

also a Borel set ([l],p.211) it follows that S1 is Borel, and

hence that the set M = u (ST ) H Cl is a measurable set.

Let T be any line parallel to the x.-axis of R chosen so
J i n

that u and hence also v is locally absolutely continuous on

r n a. Since u(Mnr) c u(M) n u(rnf2) = s1 n u(rnO) , it follows

from (ii! ) that the range of u on M H r is an X -null set.
*v O 1
du

Hence by Lemma 1.1 ^r— =0 £ -a.e. in M 0 T. It follows that
ox. 1

^ l

=0 £ -a.e. in M, with i = l,...,n since the choice of i
ox. n

I
above was arbitrary. Therefore u. =0 £ -a.e. in M, i = l,...,n.

i n

Denote by M! that Z -null subset of M where (un,...,u ) ^ (0....,0)
j. n 2.̂  n

Next let r be any line parallel to the x.-axis chosen so

that the conditions of the preceding paragraph are met and, in ad-

dition, so that (NLJM! ) fl T is an £ -null set. Then the absolute

continuity of u on r Pi Q, implies that u.(Mnr) is an X -null set,

j = l,...,n, since this set differs by at most the point 0 from

u .((NUM1 ) PIT) . Hence by Lemma 1.1 we also have T—*• = 0 £ -a.e. in
1 ox. 1

I
M H T, j = 1,...,n.

Now for the set T D Q - M we again deduce by elementary argu-

c^v
ments that equation (2.4) for >;— holds c£n-a.e. . On the other

ox. 1
I

hand, on r n M we find as in the previous proof that (2.3) holds

O O V ^
at every point x at which ^— exists and >r— = (0,...,0).

Xi Xj
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Hence the chain rule for ^r— holds £ -a.e. on T fi O, and there-
ox. 1

1

by £ -a.e. in Q. Since the choice of i was arbitrary this com-

pletes the proof.

Theorem 2.1. Let g be as in Lemma 2.1. Suppose that

loc
u. , . . . , u e Wn . (O) and set v = G(u. , . . . ,u ) = Gu. Then v is
1 m 1,1 1 m ~

loc
in W (£2) if and only if the functions

l j x

(2.5) v = ^-(x,u) + £ rJ-(x,u)S u,,
l ox ~ . o t i i

loc
belong to L (Q) , where S. denotes the distribution derivative

and where the products are to be interpreted according to the con-

vention of Lemma 2.1. Moreover we then have

(2.6) v. = S.v <£ -a.e. in Q,, i = l....,n.
I I n

Proof: For each j = 1,...,m let u. be a function in A(O) which

coincides £ -a.e. in Q with u. and is such that
n J

j- _ ^ u^ £^_a#e- in Q, i = l,...,n. Existence of such functions
O X . 1 """ *"*

1

is ensured by Lemma 1. 5. Let v = g(x,u) , u = (u1 , . . . ,u ) . By

Lemma 2.1 v is in A(Q) and
/>-/

a-e- i n

with the usual convention regarding products. Obviously v = v

-a.e. in Q and ^r =v. £ -a.e, in Q, i = l,...,n. There-
n ax. i n

I



18.

loc loc
fore if v. 6 Ln (0) then by Lemma 1.5 v e W (ft) . If, on the1 1,1

loc
other hand, it is assumed that v e W (Q) then by Remark 1.1

1 9 1

v .. ov
.v coincides £ -a.e. in Q with ^r , and since ^r = v.
l n ox. ox. l

l l
loc

£ -a.e. in Q, it follows that v. e Ln (0) . This completes the
n I 1

argument.

By making use of the techniques of the above theorem it is

sometimes possible to make stronger statements about the Sobolev

space to which v belongs. For example if a given

u = (u, , . . • ,u ) e W_ _ (Cl) is such that for some pe (l,oo) ,
~ 1 m 11

, x loc/rv . .
(x,u) G L (U) , i = l,... ,n, and

~ p
V(x,u) G L
dx. ~ p

l

_ 9 _ / . . ,.\ ^ u £ L ^ W ^ ( Q ) 9 j = i j , . . . 5 m , i = l , . . . , n ,
J ±̂

t h e n t h e methods u s e d above s u f f i c e t o p r o v e t h a t

v e W^°C(n) c W ^
l v 1,1

We proceed next to describe a set of circumstances in which

v = Gu is in W_ (0) for all u e W_ (O) . That is, we give con
l P l q

ditions under which the mapping G which corresponds to a function

g satisfying (i), (ii) of Lemma 2.1 is a mapping from a space

W. (f2)m into Wn (Q).
iq lP

Theorem 2.2. Let fi be a bounded domain in R satisfying the
n

cone property. Suppose that the function g defined on Q x R

satisfies conditions (i) and (ii) of Lemma 2.1 and, in addition,
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(iii) for every (x.t) e Q x R where the derivative mentioned
~ m

below exists,

( 2 . 7 ) (x,t) b l £
V

JL —— JL y « • • , XX

( 2 . 8 ) + b 2 | t/»%>
v-1

j = 1 , . . . ,m

Then

(2.9)

and

where v ^> ' 1 is a f i xed number; a is in L (U) fo r

some l < p < n ; a is in L ( O ) w i t h r = " ••

[r=oo for v = l ] ; and + . • . + t
m

G : W. (Q)
l q v

m with q = Vp n

n+(v-l)p

(2.10) l lG(u)H const(l+||u
V

(«) W, _ (0 )
m

where the constant depends on Q, a , a , b , b and g(x,0) = f (x)
J_ <(-< JL £*

but not on u.

Proof; Since the local Lipschitz property for g implies local

absolute continuity along lines in R , we have by (i) and (iii),

g(x,t)-g(x,0)
J

(x,o,0,..•,0)da + ...
o 1

t
(2.11) at" (x'V m-1

,a) da
o m

+b |t
V

Now by Lemma 2.1 g(*,t) is in A(£2) for each t € R . Hence (2.7)

and Lemma 1.5 yield that g(*,t) is in W (Q) . In particular,

f(x) = g(x,0)
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Note that since 1 < p < n we have 1 < q < n. Moreover

u. eW {Q) implies by the Sobolev imbedding theorem (Sobolev [7],

*Gagliardo [2]) that u. € L *(0), where q* = , and

(2.12) IIUjH c J|u

where the constant c depends on 0. (It is here that we need

the assumption that Q satisfies the cone property.) Expressing

_•*in terms of v and p we obtain: q = yp n
n-p

Note too that

for f n£L (Q) , f- e L (£2) , Holder
1 s inequality implies that

1 r 2 q

flf2
L (Q)
P

< II
L (0) L (Q)

m
Now let u e Wn (Q) and set v = Gu. By the proof of Theor-

em 2.1, v coincides £ -a.e. in Q. with the function v e A(f2) de9 n

fined by v = Gu, where u. eA(fl) coincides * -a.e. in Cl with

u.5 j = l,...,m. Applying (2.7) and (2.8) to (2.5) we have

v

L (O)
P

u
V

ii
L (0)

m
[ao+b2 2

u

L (Q)
P

(2.13)

1

m
S

+ b u
V

L (O)

q

u

v-1 n-p
v n

q

n+( v-l)p
nv

q

const(l+||u"
m
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where the l a s t i n e q u a l i t y u t i l i z e s ( 2 . 1 2 ) . By Lemma 1.5 we con-

clude that v is in Wn (to) .
1 P

Next, we observe that by (2.11) and (2.13) we have the es-

timate

v-fH = ||g(x,u)-g(x,O)|| £ ||a I u| +b I u1 V

L (Q) L (Q) " " L

(2.14)
^ L (ft) ~ L (0)r q

<^ const(l+||u|| m) .
~ W

i>q

Combining (2.13) and (2.14) we obtain (2.10), which completes the

proof.

It is clear that the above ideas can readily be extended to

situations in which the functions u. belong to distinct Sobolev
3

spaces W. (to), j = l,...,m. This will require that the T ~ ,
-1-5 q . dt.

3 J

j = l,...,m, possess different rates of growth. However we content

ourselves with giving only Theorem 2.2 here, since in a subsequent

paper we shall treat these matters from a more general viewpoint,

including an analysis of the continuity properties of G.

Our next result concerns a theorem on mappings G from

to

loc
Theorem 2.3. Let g be as in Lemma 2.2. Given u GW (to) set

O ^ 5 -*•

V
I Iu

u. = S . u , i = l , . . . , n . L e t v = G(u , u n , . . . , u ) = Gu. Then v is
I I o o 1 n ~
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loc
in W (ft) if and only if the functions

1 , 1

(2. 15) v. = v3— (x,u) + T~(x,u) d .u + £ r7~
l ox. ~ dt ^ l o . ,ot.

l o 3=1 3

loc
belong to L (ft) , where the products are to be interpreted as zero

wherever the second factor is zero, irrespective of whether the

first factor is defined. Moreover we then have

(2.16) v. = d.v £ -a.e. in ft, i = l,...,n.
i I n

Proof: By Lemma 1.5 there exists for each j = 0,1,...,n a function

u. e A(fl) such that u . = u . £ -a.e. in Q and such that
D 3 3 n

u = _— £ -a.e. in ft. Moreover we have by Remark 1.1 that
j ox n

j
du Su.

= d .u X -a.e. in ft and T—•*- = d.d.u £ -a.e. in ft. Set
ox. n o n ox. 1 n o n

3 m

v = g(x,u) . By Lemma 2.2 and the preceding observations, v e A(ft)

and,

(2.17) ^r— = v. £ -a.e. in ft, i=l,...,n.
ox. I n

I

Now suppose that v e Wn ^ (ft) . Since v = v £ -a.e. in ft it
•^ 1,1 n

follows by Remark 1.1 that

<~/
(2.18) S.v = ^ £ -a.e. in ft, l = l,...,n.

I ox. n
I

Thus (2.15) and (2.16) follow from (2.17), (2.18). On the other hand,

loc
given that v. e L. (ft) , i = l,...,n, it follows from Lemma 1.5 and

loc
(2.17) that veW (ft) , which completes the argument.

l J
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Here again it is possible to prescribe growth conditions on

— ^ , i = l,...,n, j = l,...,m, so as to ensure that Gand ^
x. at.

i 3

is a mapping from a Sobolev space W (Q) into a Sobolev space

(Q) . We give a result of this type below.

Theorem 2.4. Let Q be a bounded domain in R satisfying the

cone property. Suppose that the function g defined on 0 x R
n+1

satisfies conditions (i) and (ii!) of Lemma 2.2 and, in addition,

(iii1) for every (x,t ,t!) e Q x R n where the derivative men-
o ~ n+1

tioned below exists,

(2.19)
v

a ( x ) + b t + c t! , i = l , . . . , n ,
CO

(2.20) St

v 60.

a (x) + b t + c
o

(2 .21) St.

V

bJt t!
9 3 "~ J-^ • • •

where v, v , v_, w, co , w > 1 are fixed numbers; a is
o 1 o 1 *̂

in L (Q) for some 1 < p < n; a and an are respect-
p * o 1

npcx
ively in L (Q) and L (Q) for r = . f r2 r v rn o (n-p) a-1

O 1 \ XT'
npa .

r = —c—-_ w l t h
1 na~l

a = max{

and t '

CO v CO + 1
o

v +1
o co 1 + l

n+cop ' n+2Vp > n+(co +1) p ' n+(2v +1) p '

Then

+ . . . 4- tn

and

' n+2v p

( 2 . 2 2 ) G : Wo (Q)
2 , q

(Q) where q = npa,
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and

(2 .23) ||G(u)|| ^ cons t ( l+ | | u H**"1"-1- Vu e Wo _(Q) ,

where /i = max(v,v , v co, 60 , co.} and the constant depends on
o 1 o 1 -̂

a, aQ, â ,̂ b, b Q, bx, c, C Q, C and g(x,O) = f (x) , but not

on u .o

The proof, which follows from the chain rule of Lemma 2.2 by

the same pattern utilized in proving Theorem 2.2, will be omitted
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§3. Absolute Continuity on ja Track in R .

In the next two sections we examine the mapping G for func-

tions g which are not necessarily locally Lipschitz. Much of our

analysis concerns the case g(x,t) = g(t). The crucial idea occurs

already when n = 1, and involves the use of a chain rule for

G(u) when u : J-r»R is an absolutely continuous curve and g
~ ' m

G(u) when u : Jr»R
dx ~ ~ ' m

is merely "absolutely continuous on the track of u". This latter

notion, which is introduced in the present section, is apparently

new. However its properties are analogous to those of the usual

notion of absolute continuity for functions defined on a real in-

terval, and it reduces to that notion in the case of a track which

is a real interval. The earliest prototype of our chain rule is

Lemma 1.2, due to Vallee Poussin for the case n = m = 1.

We restrict attention for the present to dimension n = 1.

Thus we begin by recalling certain notions in the theory of curves

which will be needed below (see also [3], and [l,p.235]).

Definition j3.JL. Let T be a closed subset of R . Given a point

y € T, a unit vector 8 is called a (bilateral) tangent to T a/t y

provided that there exist sequences {y.}, {y*. } in T such that

(3.1)

and,

r^± / ^ a , ~ r^> 1 / ' > — V7
y,-y ~ / y,-y
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The (possibly empty) set of tangents to T at y is denoted by

0 (y) [sometimes, 0(y)].
T

Note that by this definition 9 is in 0 (y) if and only if

-9 is in this set: -0 (y) = 0 (y) . It can be shown that 0 (y)

is a closed set of unit vectors [F,p.233].

Definition 3.2. Let T be a closed subset of R , and let f be

a real-valued function on T. Then f is said to have the

9-derivative Df(9,y) at a point y e T provided that 8eO(y) and

for every pair of sequences {y.}* {y.} satisfying (3.1), (3.2) one

has

(3.3) f(y.) - f(y) f(y ) - f(y)->Df(9,y), -Df(9,y)

If Df(9,y) exists and has the same magnitude for all 9e 0(y):

Df(9,y)| = D_f(y)

then the quantity D f(y) is called the tangential derivative of f

at £.

Note that by (3.3) Df(9,y) exists if and only if Df(-9,y)

exists, and then Df(-9,y) = -Df(8,y).

Lemma _3.J;., Let T c: R be the track of an absolutely continuous

curve v. Then W -a.e. in T:
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(3.4)

(i) (•%) consists of a single pair of opposing unit vectors;

-1
(ii) v (£) is a finite set;

111) (v(t) ^ O; tev

(iv) 0(£) = { + v(t)/
(t)

Proof: By hypothesis v : I - -* R , with I a compact interval,

is absolutely continuous. Thus v is defined £, - a.e. on I.

Let A, c I be the null set where v is not defined and

let Ao c: i be the set where v = 0. If s is an arc length

function for v then s is absolutely continuous and

s = v - a.e• on I (Lemma 1.3). Hence both s(A,) and

s(A2) are t^-null sets [4, pp. 225, 227]. It follows by

Lemma 1.3 that v(A.. U A«) c: T is an M^null set, which

implies (iii) .

We show next that (iv) holds for all yeT - v(An U A J . On

the one hand, for v(t) = jr, the quantity +

v(t

has the opposing limits + v(t) as h -> 0+ and h
v(t)

0-,

so that the right side of (iv) is a subset of the left. On the

other hand, if [%.} in T is such that

then there exists a sequence t.el such that y. = v(t.). We

may select a convergent subsequence {tl} which converges to its

limit one sidedly, say tl By continuity v(to) =

and , by the choice of y, v(t^) £ 0 exists. We then find

9 = lim yyl
v(t!)-v(tQ)
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= -v(to)(if t!. —> t ~ this argument gives
v(t^)

Finally let B, denote the set of £eT for which the

cardinality of v~ (̂ ) is infinite. By a result of Federer

[1, p. 245], (see also [4, p. 278]), B1 is an W -null set,

so (ii) is proved. Since (iv) ensures that for all £ in

T = T-^(v(A1UA2) U B-.) , ©(£) is a finite set, we may apply a

result of Roger [3] to conclude that ©(jO consists of a unique

opposing pair of vectors H.. - a.e. on T . This yields (i)

and thus completes the proof.

Corollary .3.JL. With T as above suppose that v = v

is an absolutely continuous curve parametered by its arc length s

Then (i) and (ii) hold and (iii) and (iv) can be replaced by

the assertions that W, - a.e. one has

C |v (s)
(3.4*)

®(y) = i+ x (s)

Proof: Clearly A1 U A2 c A 3 , the latter being the subset at
"X" "Mr

which v is undefined or else v 4 1. However in the

present situation Lemma 1.3 implies that A^ c J is an

null set and hence v (Ao) is an M -null subset of T. The
~ 5 1

remainder of the argument is as given above.

Lemma 3.2. Let T c R be the track of an absolutely continuous
— — m

curve and let f be a real valued function on T having a
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tangential derivative DTf H - a.e. Then DTf is an W_

measurable function.

Proof: By assumption T is the track of an absolutely continuous

curve v. Hence T is also the track of the Lipschitz curve

v : J —> R which is obtained from v by reparametrizing by

its arc length [1, p. 110], and |v (s) | = 1 X - a.e. on J

(Lemma 1.3). By Corollary 3.1 there exists a subset T! c T

of full W -measure such that (3.4) holds, i.e.

.+ v (s) : s

and

{ |v*(s) | = 1 : sev*" 1^)},

We proceed to show that the existence of DTf(%) for a

point £eT! implies the existence of •j~f(v^(s)) for all

sev "" (y) 9 and in addition implies that

(3.5) DTf(£) = |iLf(v*(s))| ZGT» 0 Domain DTf,

* -1
Let sev (£) . Then for any sequence h. —-»-0,

f (v*(s+hi))-f(v*(s))
(3.6) h.

f (v* (s+h.) )-f (v* (s) ) |v* (s+hjL)-v^
f (s)

h. h.

the manipulation being justified by (3.42). Moreover in order

to compare with (3.2) we note that
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"¥: ")t "Mr "¥r

v (s+h.)-v (s) v (s+h.)-v (s) h.

v*(s+h±)-v*(s) I
 hi |v*(s+h±)-v*(s) I

with & = 1 for h. > 0 and £ = -1 for h. < O. Hence the
1 l

expression in (3.6) converges to the limit

Df(v*(s),y)-1 when h. > 0,

Df (-v* (s) .v) • (-1) when

The equality of these expressions implies existence of

-rrf(v (s)), and in addition,

(3.7) fif(£*(s)) =Df(y*(s),£) = ± D T f ( X ) .

This last equation^which follows from the definition of DTf,

yields (3.5) .

To complete the proof of the lemma it suffices to show

that for every Borel set B c R the set (DTf)~ (B) n T
! is

(f o v ) = h is defined on an £..-measurable subset of J

-measurable, i.e. is the union of a Borel set and an

null set. Now by a theorem of Banach [4, p. 113] the function

d
ds

and is £,-measurable there. Moreover, by (3.5)

(Drrf)"
1(B) n T' = v*(h~1(B)) H Domain(Drpf) 0 T' .

However, if M is any £..-measurable subset of J then

M = N U M1 where M! is a countable union of compact sets

and N is an I -null set. Hence y (M!) is a Borel set

while v (N) is an JL-null set (by Lemma 1.3). Therefore

v [h~ (B)] is an H -measurable set and the proof is complete
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We are now able to define the notion of "absolute continuity

on a track" referred to earlier.

Definition .3.J3. Let T c R be the track of an absolutely

continuous curve and let f be a real valued function on T

for which DTf is defined W - a.e. Then f is said to be

pre-absolutely continuous on T provided that for each

(3.8)

whenever U is a closed connected subset of T containing

and The function f is said to be absolutely continuous

on T if in addition to the above, D^f is W -summable.T

Remarks _3.JL. (1) When T c R is a real interval we show that

the above definition of absolute continuity coincides with the

usual one. On the one hand, one sees from (3.8) that

f(y. -)-f(y.) | can be made arbitrarily small by requiring the

of the disjoint intervals {[y.,y-+1]}total length y. -.—-y.

to be sufficiently small. On the other hand, absolute continuity

of a real function f implies, since DTf(y) = df
dy (Y) , that

f(y2)-f dy
)dy

u
df
dy

dy < oo .

(2)

f : T

If v : I-^R is an absolutely continuous curve andm

R1 is absolutely continuous on T , then the composite
v

function w = f o v is continuous. This follows from the
r+J
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observation that whenever {I } is a nested family of closed

intervals contracting to a point "tn
€l then {U = v(I )}

is a nested family of closed connected subsets of T contra-

cting to v(to)eT and hence by (3.8) the real intervals

w(l ) = f(U ) have length approaching zero.

We proceed next to show that with the above definition

a Lipschitz function on R is necessarily absolutely continuous

on the track of every absolutely continuous curve.

Lemma ̂ 3.̂ 3. Let T c R be the track of an absolutely continuous

curve and let f : R ~> R-. be a Lipschitz function. Then f
m l ^

is absolutely continuous on T. Moreover W, - a.e. DTf

coincides with the directional derivative of f along a tangent

ray in R :

f(Z+h6)-f(X)
(3.9) lim r-

h—»~" h

Proof: Let v : I —^ R be any absolutely continuous curve whose

track is T. As in Lemma 3.2 we utilize the Lipschitz curve

v : J—*R which is obtained when v is reparametrized by its
~ m ~

T
arc length s. It is to be proved that DTf is defined

a.e. on T and that (3.8) and (3.9) hold.

Consider the composite function w = f o v : J~^R, .
^ 1

*
Since f and v are Lipschitz so is w. We treat w as a

curve in R,. Now by Corollary 3.1 there is a subset TT c T

of full W1-measure on which (3.4 ) holds. Moreover since w

is absolutely continuous, the set A. c j of points where w

is non-differentiable is an £n-null set. Therefore v (kA) c= T
1 ^ x 4 7
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is W--null (Lemma 1.3).

We proceed to show that DTf exists everywhere on

T" = T1 - v (A-) . Given n , hereafter kept fixed, we may

* -1
partition y (%) into two subsets

C+ = *v (s) = e }, = [sey*~1(y) : v* (s)

Now since yeT", it follows that the limits below exist for all

S€V

(3.10) lim
h-* 0+

f (y*(s+h))-f(y*(s))

v* (s+h)-y*(s)

= lim
-* 0+

f(v*(s+h))-f(v*(s))

h
v (s+h)-v (s)

— p X (s)),

where & = 1 or -1 according as h—» 0+ or h —^ 0-. Moreover

the limit obtained is the same for all seC [respectively, for

all seC ]. This is a consequence of the relation

f(v*(s+h))-f(y*(s))
lim = lim

'A

f(v"(s)+hv'f(s)+o(h))-f(v'f(s))

-> 0+ -x (s> h—'•> 0+

(3.11)

= <

lim
h—» 0+

seC
h

f(y-h6

lim seC
h

where we have utilized the fact that f is Lipschitz. Note

that we may also deduce from this relation that in (3.10) the



34.

limits obtained for points seC are equal in magnitude but

opposite in sign to the corresponding limits for points seC

Now let {y.}, Cy•) t>e sequences in T satisfying (3.1),

(3.2) relative to i.e.

(3.12) e
\z±-z

\z\-z

We must show that the following quotients

(3.13)

converge respectively to limits Df(£ , Df(-£ ,£) of equalg p y D ( £ ,%) 9 D ( £ ,£) q

magnitude but opposite sign, which are the same for all sequences

{y.} and {yl} satisfying (3.12). Consider the quotient in (3.13..).

Since {y.jeT there exists a sequence {s.}eJ such that y. = v (s.)

To show convergence of this quotient it suffices to show that

one obtains one and the same limit for all subsequences {£.}

which correspond to one-sidedly convergent subsequences of

{s.}« Let s\ —•> s» and II be two such one-sidedly
k 0

convergent subsequences. Then by (3.12,) and (3.4)

= X = Z a n d

= l im
v (sj) v*(sy

j
lim

(s')
m 3 0

0 v*(s!)

= e
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v (s" ) = lim = lim;-sk O v*(s£)-v*(s£) k O

so that S'GC, , s"eC

of these limits with

lim

= -e

Consequently (3.11) implies existence

= lim h

lim
f (y. )-fv~k' = lim

h ^
-h

Here the right sides are clearly equal and independent of the

particular subsequences {st}, fs"} chosen, so that convergence
J K

of the quotient in (3.13-.) has been proved. Moreover, the same

argument shows that the quotient in (3.139) converges to a limit

of equal magnitude but opposite sign. It now follows by

Definition 3.2 that DTf{%) exists and that

DTf(Z) = | lim
h 0+

h

which yields (3.9).

It remains to prove absolute continuity. By Lemma 1.3 one

has for any measurable subset E c: j9

where p is an arc length function for w. Now consider the

closed subset v (U) c j. By a theorem of Banach [4, p. 282]



•*-1there exists a measurable subset E c v (U) such that

v (E) = U and v* is injective on E. Thus the set

36.

w(E) = w(v "(U)) = f(U)

is a connected set containing the numbers f(y,), f(y~). Since

on R., JL -measure coincides with £,-measure we have

(U)) =

On the other hand since by Lemma 1.3 p is absolutely continuous

on J, it follows from [4, p. 22 7] that

< p ( s ) d s .

Combining these inequalities, we obtain

i) I £ I P(s)ds = J |w(s) |ds,
1 E E

ds J
E E

*-1
the last equation following by Lemma 1.3. Now for sev (T")

it follows from (3.9) that

w(s) = DTf(v ( s ) )

Thus we may write

(3.14) ij
EOv*

D T f (v ( s ) ) d s

J
E

» - l

d s ,

where E! = E - E n v*"1(T"). Moreover, since v^(E!) = v (E)-T"

is W1-null it is not difficult to show using the Lipschitz
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property of f and the definition of ^..-measure that the set

w(E') = f(v (E'))

is IL-null. It then follows by Lemma 1.1 that the second

integral in (3.14) is zero.

Finally, using the fact that DTf is W,-measurable (Lemma

3.2) and that v*(s) =1 on EH v*~ (Tt!) , we may employ a
/•%-» f+*>

result of Federer [1, p. 245] to write the first integral in

(3.14) as follows:

where the factor 1 in the second integral is a consequence of

our choice of E. This completes the proof.

Our next result yields some of the conclusions of Lemma 3.3

for functions with the null intersection property.

Lemma 3.4. Let T c R be the track of an absolutely continuous
— m

curve and let f : R —? Rn be such that S_p has the null
m l i

intersection property. Then f has an W--measurable tangential

derivative defined W, - a.e., and except on an W,-null set,

T coincides with the directional derivative of f along a

tangent ray:

(3.15) Df(e,yJ = lim
h --* 0+

= 7f(jr).6

Proof: As noted before there exists a Lipschitz curve
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v : J—* R whose track is T and which is parametrized by

arc length. By Corollary 1.1 there exists a subset T! c:

of full W,-measure such that (3.4) is valid for all J£eT! .

We proceed to show that DTf(^) exists and satisfies (3.15) for

every yeT = T!-S_p. Let {y.), {yl} be sequences in T

satisfying (3.12) relative to jr. We claim that the following

quotients

converge respectively to limits Df(9 ,jr), Df(-9 ,£) of equal

magnitude and opposite sign, which are the same for all sequences

{y.}^ {y!.) satisfying (3.12). In fact, since y/S we have

= Df(e ,

—^ 7f(y)-(-e ) s Df(-9

Thus DTf(£) exists and (3.15) holds. Measurability of

follows by Lemma 3.2.

It can be seen from the above proof that we actually have

Corollary 3.2. Let T be as above and let f : R.

function such that Sf 0 T is -measurable. Then f

De a

has

a tangential derivative Ji - a.e. on T~Sf, and except for an

JL-null set DTf coincides wherever it exists with the
l T

tangential derivative of f along a tangent ray in the sense

of (3.15) .
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One of the important properties of an absolutely continuous

function f on a real interval I is that it carries null sets

into null sets:

A c i, &1(A) = 0=» ̂ (ffA)) = 0.

This property of real valued functions f was introduced by

Lusin, who called it the (N) condition [4, p. 224] . We end this

section with a proof that a func tion f which is absolutely

continuous in our sense on a track T, satisfies the exact

analogue of the (N) condition.

Theorem J3.JL. Let T be the track of an absolutely continuous

curve and let f : T -> R-. be a function which is absolutely

continuous on T. Then f satisfies the following condition:

(NT) B c T, WX(B) = 0-^ ix(f (B)) = 0.

Remark. It should be noted that the (N) condition does not

characterize absolutely continuous functions on real intervals,

and thus the (NT) condition does not characterize absolutely

continuous functions on T.

Proof: As noted earlier there exists a Lipschitz curve

v : J—*R whose track is T and which is parametrized by

arc length. If B c T is Ik-null then by Lemma 1.1

— 1
v = 0 £ . - a.e. o n A = v (B) . Since v = 1 £ . . - a . e .v

it follows that A c J is an ^1-null set. Given £ > 0

let fj}^-, CI J be a countable collection of disjoint closed
n n^l

intervals covering A such that ^^i(J
n) < £> • Then
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= {B = v (J )} , is a cover of B5 which consists of closed

GD

connected subsets of T\ We observe next that C = U B ==> B
n=l n

can be decomposed as a union C = U C. of disjoint connected

sets C. which are "connected chains" in the following sense:

each C. is the union of countably many sets { B ' 1 ' } ̂ neB
1 k a

such that for all k ^> 1, U B^1' c: C. is connected as well

(1)as closed. We describe the construction of C-. . Set B^ = B-. .

If B PI B, = 0 for a l l n > 1, then C-, = B)"1"'. Otherwisen 1 1 1

let ko > 1 be the smallest index such that B^ H B-; ^ 0,

and set B^1^ = B, . If B^1* U B^1^ is disjoint from the
2 k9 1 2

(1) (1)
other sets in B then C, = Bj ' U B9 . Otherwise let

o / lor ko be the smallest index such that B, meets

Bl 2 5 a n d s e t B3 k # Proceeding in this manner

we either terminate after finitely many steps or obtain a sequence

^ '} , . In either case the union C-, of the resulting set

'} is a "connected chain", which is disjoint from all elements

of B,o. = B - [BK ;) .,. If C1 = U B we are finished.
(z; a aZ.l 1 1 n

Otherwise we may construct in the same manner as above a connected

chain Co from the elements of B / o v beginning with the B €B / O X
2 (2) n (2)

of lowest index. Obviously B will be exhausted after at most

countably many steps. Thus
00 CO
U C. = U B 3 B.

x n=l n

We now utilize the absolute continuity of f to show that

for any connected chain C., the length of the interval f(C.)c:R

satisfies
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ci

This follows from the fact that whenever y-,,yo€C. then by the

"connected chain" property there exists a finite index k such

that

A i
a=l

and thus since U. , is both closed and connected we have
ik

J V W d ^ £ J V
i 5k I

To complete the proof observe that by Lemma 1.3

(i) *Hence, denoting by Jv ; an i n t e r v a l J for which v (J )a n ^ n

B . , we have

oo ... oo

a=l a=l

Thus by (3.16) the total length of the family of intervals {f(Ci)}

satisfies

i 1 x i a l o c n

Since
oo

f(B) c f(C) = U f ( C . ) ,

it follows that f (B) is covered by families of intervals of

arbitrarily small total length. This completes the proof.
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§4. The Chain Rule for Tracks; Applications.

We begin this section by giving our version in R of Lem-

ma 1.2, the chain rule obtained by Vallee Poussin for m = 1. The

analogues of the direct and converse portions of Lemma 1.2 are

stated separately.

Theorem 4.1. Let v : I-*R be an absolutely continuous curve and

let g : R —* Rn be such that S has the null intersection prop-
m 1 g r- JT

erty. If the following conditions hold

(*) Vg(v)-v is £ -summable on I (with the product inter-

preted as zero wherever v = 0),

(ac ) g| is pre-absolutely continuous on T 9
v ~

then g| is actually absolutely continuous on T In addition
v ~

w = gov is absolutely continuous on I, and the chain rule holds, i.e.

(4.1) w = Vg(v)-v £ -a.e. on I,
j

with the above interpretation for the product term when v = 0.

Remarks .4.JL. 1. The function g is assumed to be defined on all

of R merely for convenience. What is actually needed for the
m

proof of (4.1) is that g| be extendable to a function possessing
v

a total differential Ji -a.e7 on T and satisfying (*) .
1 v

2. It follows from the null intersection property that D g

exists M -a.e. and is JL -measurable on T (Lemma 3.4). Moreover
1 1 v
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it will be seen from the proof that even without (ac ), condition

(*) implies that D g is H.-summable on T .

Proof; Along with v we again examine the Lipschitz curve

v : J-»R which is obtained from v by reparametrizing by its
~ m ~

arclength s. We proceed to show that the functions g^v and

g<>v* are absolutely continuous on their respective intervals. Gi-

ven a < a € I set s = s(a ) , s = s ( a ) and y = v(a ) = v*(s ) ,
L Z 1 1 Z Z ~± ~ ± ~ 1

= v(ao) = v*(sJ. Then (ac ) gives,
£ £ 1

g ( y , ) - g ( Y 1 ) | 1 [Drpg(y)dW (y) 1 [D g(y)N(v, [o ,a ],y)dJ( y =

u u
( 4 . 2 )

= fD_g(y)N(v*, [ S l , s

u
w h e r e U = v ( [ a a ] ) = v * ( [ s , s _ ] ) , a n d N ( v , [ a a ] , y ) [ r e s p e c -

~ L Z ~ X. Z ~ L Z

tively, N(v^", [s_ , s. ] ,y) ] denotes the cardinality of v (y) PI [0,0]

[respectively, of v (y) fl [s.,s ]]. The it -measurability of both
~ ~ 1 2 1

functions N follows by results of Federer [l,p.177], while the

equality of the last two integrals can be seen as follows. The

-1 *-lsets v (y) n [o ,o ] and v (y) 0 [s ,s ] have precisely the
~ ~ 1 Z ~ rsu 1 2

same cardinality unless y is such that for some a' < a" e I,

v(a' ) = v(a") = y and s(aT) = s(a"). Since the monotone function

s is then constant on [a* ,a" ] it follows that ye v(A) where

A = {a : s(a) =0} c: 1. However by absolute continuity of s,

s(A) is an £ -null set [4,p. 227]. Therefore by Lemma 1.3 v(A) is
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an H -null set, so the integrands in the last two integrals of (4.2)

are equal U -a.e.

Now by Lemma 3.1, Corollary 1.1 and (3.15) there is a subset

S c u of full Ji -measure such that

vg(y) .v(cr)/|v(a)

Vg(y)-v (s) Vy € S , a G v (y) , s £ v* (y)

By use of this relation and a result of Federer [l,p.245] we deduce

from (4.2) the relations

g(yj-g(yn)

(4.3)

p
vg(y)

u

u

v N(v, [a a ],y)d» y = ra2
1~ Vg(v(a))•v(a) da

a

y=
rs2 (s) ) • v* (s) | ds.

(Note that the values of the integrand over the Ji -null set U - S

are irrelevant since by Lemma 1.1 v = 0 £ -a.e. on v (U-S) and

v* = 0 £1-a.e. on v* (U-S).) By appeal to (*) we see that the

right side of (4.3 ) and hence, by equality of the left hand inte-
1

grals above (see(4.2)), also the right side of (4.3 ) is finite. In

other words, we have

g(v(oj)-g(v(o)) vg(va) ) • v(a) | da < co ,
a

g(v*(s ))-g(v*(s ))
rs2

*vg(v (s) ) -v(s) ds < oo.
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These r e l a t i o n s y i e l d t h e a b s o l u t e c o n t i n u i t y of g«>v and g^v

b y d i r e c t c a l c u l a t i o n .

Now since the functions gcv, s and w = g^v = (gov )os are

all absolutely continuous on their respective intervals it follows

by Lemma 1.2 that

(4.4) w= ——(gcv^)-s £ -a.e. on I,
as 1

with the convention that the right side is zero wherever s = 0.

Moreover for a f u l l s u b s e t T c: T we have

(4 .5 ) dg(y) e x i s t s , v ( a ) / | v ( a ) | = v * ( s ( a ) ) , s ( a ) | v ( a ) | V y e T ^ G^Z1^X)'

Hence by Lemma 3.4,

*v
) s = Dg(—T~-, v) | v| = Vg(v) • v, for v = v* (s) = yeT..

v

ds

On the other hand on A = v (T-T ) , the functions v and s
r-1 1 rsJ

are zero £ -a.e. by Lemma 1.1. Moreover by Theorem 3.1

w(A) =

is an £ -null set, so that, again by Lemma 1.1, w = 0 £ -a.e. on A

Together these facts yield (4.1).

Theorem 4.2. Let v : I-»R and g : R —> Rn be as in Theorem 4.1
— m m l

Suppose in addition that the following conditions hold,

(ac ) g is absolutely continuous on T ,
v ~

(ac ) w = g^v is absolutely continuous on I.
mm*
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Then the chain rule (4.1) holds, i.e.

w = Vg(v) -v, £ -a.e. on I

(with the same interpretation for the product as before) , and hence

(*) is valid.

Proof: Let us introduce v* : J->R as before and let Tn c: Tm 1

again be a subset of full W -measure such that (4.5) is valid.

Since T - T is W -null we deduce as before that

v = 0, w = 0 £ -a.e. on A = v (T-T.).
1 ~ 1

Moreover for all oe I - A = v (T.) we have, using (4.5)
1

w(a+h)-w(a) g(v(a+h) )-g(v(a) ) vg(v(a))• (v(a+h)-v(a) ) +o( v(a+h)-v(a)

h

v(a+h)-v(a)
= vg(v(a))•(v

h

Vg(v(a) ) -v(o) .

Together these results yield (4.1) and thereby (*), since absolute

continuity of w implies £ -summability of w.

We now wish to employ Theorems 4.1 and 4.2 in obtaining general-

ized versions of the results obtained in section 2 for locally Lip-

schitz functions. It will be necessary to introduce the following

definition.
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Definition 4.1. Let Q be a domain in R and let u = (u,.....u )
n ~ 1 m

be in A(Q) . Suppose that g : R—* Rn is a real-valued functionx ** m l

on R . We shall say that g is locally u-absolutely continuous
m ~

provided that g is Borel measurable and, for almost all lines r

parallel to any one of the axes in R , g is absolutely continuous

on every track of the form T = u(I) where the interval
u, I ~

I c r fl Q, is compact.

If u = (u.....,u ) where the u. are £ -measurable functions
~ 1 m l n

on Cl which are equal a.e. to functions u. e A(Q) , i = l,...,m,

then g is said to be locally u-absolutely continuous provided

that it is locally u-absolutely continuous, where u = (u_,...,u ).
~ ~ 1 m

Our next result is an analogue of Theorem 2.1.

Theorem 4.3. Let Q be a domain in R and let u = (u_ , . . . ,u ) ,
n ^ 1 m

loc
where u, • . . . ,u € W., , (Cl) . Suppose that g : R -* R, is locally

1 m 1,1 m l *
u-absolutely continuous and S has the null intersection property.
~ g

loc
Set v = G(u.,...,u ) = Gu. Then v is in Wn .. (Q) if and only if1 m ~ 1,1

the functions

m
(4.6) v. = E

l . _
3=1 j

loc
belong to L (Cl) , where d. denotes a distribution derivative and

where the products in (4.6) are to be interpreted as zero wherever

their second factor is zero. Moreover we then have

(4.7) v. = d . v £ -a.e. in £2, i=l,...,n.
v l i n
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Remark; It will be seen from the proof that the " if" portion also

follows under the assumption that g is only "u-pre-absolutely

continuous"9 where the definition of this concept is obvious.

Proof; By Lemma 1.5. for each j = l.....m, u. coincides £ -a.e.
J. -̂  D n

in Cl with a function u. e A(Cl) fl L (Q) such that

du.
= B.u. £ -a.e. in Q, i = l,...,n.

ox. 1 j n

Since the function v = G(u_^...J?u ) = Gu coincides with v £ -a.e
1 m ~ n

loc ^ loc
in Q,, we will have v e W (Q) if and only if v G W (Cl) .

} 1 9 1

Suppose first that (4.6) holds. Then also the functions

m ^ ou.
(4.8) v. = f^ ( ) ^

1 . . Ot, ^ OX.
1

loc
are in t, (O) . Now let r be a line parallel to the x.-axis such

that (1) u_ , . . . ,u are locally absolutely continuous on r Pi Q,,
1 m

(2) g is absolutely continuous on every track T~ for compact

intervals I c r fl fl, and (3) v. is locally summable on r fl fl.

It follows by Theorem 4.1 that v is locally absolutely continuous

on r D Q and that

Sv ~ loc, ^^v „
= v. G Ln (rfifl) £ -a.e. on r.T = v. e Ln (TC\Q £

ox. I 1 1
I

Since almost all lines r parallel to the x.-axis satisfy con-

ditions (1), (2), and (3), it follows from this that veA(fl) and

that ^ e Ln (Q) , i = l.....n. This shows by Lemma 1.5 that
ox. 1
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v e W (f? ) for each bounded subdomain CH c Q which satisfies the
1 1

loc
cone condition, and hence that v e W (Q) .

1 1

loc
Conversely, suppose that v is in W (Q) . It follows that

1,1
r~> lOC
v is in W „ (Q) and hence coincides £ -a.e. on C with a function

1,1 n
•# loc
v €W (Q) PI A(fi) . Let r be a line parallel to the x.-axis satis-

l l l

fying conditions (1). and (2) above as well as: (3! ) v* is locally

absolutely continuous on r Pi £1, and (4T ) v coincides with v*

Z -a.e. on r D Q. It follows by the continuity of v on r 0 Q,

(Remark 3.1 ) that actually v is itself locally absolutely con-

tinuous on T fl 0. Since almost all lines T parallel to the

x.-axis satisfy conditions (1), (2), (31), (4!) (i=l,...,n) it fol-

o-/ lOC
lows that V G A ( Q ) Pi w (Q) . Moreover, by Theorem 4.2 we have

I 1

^— = v. £ -a.e. on r fl fl, for all such T. Conclusions (4.6) and
ox. I 1

I

(4.7) now follow from Lemma 1.5 and the relations:

5 , v = T £ - a • e • in V2, v. = v . £-a.e. in u.
I ox. n I I n

I

In order to give analogues of Theorems 2.2 and 2.3 we first in-

troduce the following definition and prove an important lemma.

Definition 4.2. A function g : R -* R. is said to be fully absolutely
m i

continuous provided that it is Borel measurable and is absolutely con-

tinuous on T for every T which is the track of an absolutely con-

tinuous curve. The class of all such g is denoted by
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Remark; By Lemma 3.3 the class includes all locally Lipschitz

functions on R . It would be very interesting to have a good

characterization of

Lemma 4.1. Let g i R—* R- be a Borel function. Then for any
^ m 1 J

j = l.....m the domain of Tv~ is a Borel set and
at. ot.

3

is a

Borel function.

Proof: For j fixed let e. be the unit vector in the direction

of the t.-axis. Since g is Borel measurable, the function on

t i

R x Rn x Rn (Rn=R -{o}) defined by
m 1 1 1 1

g(t+he J - g ( t )

is Borel measurable. Consequently for any L > 0 the following

subset of R x Rn x Rn is a Borel set
mil

It follows that for each pair of integers i,k )> 0, the set

C i,k < \, Vhe t-^]

1 1 ! 1 1
is a Borel set in R x R. , where [-r^r;] = [-TT ]̂ - f0} • In factx

1

C. . = R x R. - TT(R x [-r-,r;]x(R - C . )) 5

where TT is the canonical projec t ion of R x Rn x Rn onto R x R.
^ J m i l m l

However the set
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oo oo

G = n U C. n <=: R x R
1=1 K—1

is the graph of the relation >-̂ — , which completes the argument.
6

Theorem 4_.4_. Let Q be a bounded domain in R possessing the cone

property. Let g be a function on R satisfying the hypotheses

of Theorem 4.3 and denote h. = ^~~ , j = l,...,n. Then each h.

is necessarily Borel measurable and defined £ -a.e. Given p.
n

1 ̂  P <L n> suppose that for some q, p < q < n, the functions h.

determine, via composition, mappings which satisfy:

m (fl) j = l,...,n, with q* = ^ - , q' =

Then g yields, via composition, a mapping which satisfies

Moreover, with v = g(u_,...,u ) one has, for u = (u.,...,u ) e W. (fi)
1 m ^ 1 m l , q

m
^^(u)S.u. i =
dt. - 1 3

D

the products being interpreted as zero wherever the second factor is
zero.

Remark; The hypotheses of the theorem as regards the h., 1 <^ j <£ n,

are met, in particular, if the h. satisfy growth conditions of the

type in (2.8). However the theorem is not limited to such cases.

Since h. is defined at all points of R - S , the Borel meas-
3 m g

urability of the functions h. ensures that they are defined £ -a.e.

Thereafter the proof utilizes Gagliardo1s characterization (and Theor-

em 4.3) in almost exactly the same way as was done in Theorem 2.2.
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loc
Theorem 4.5. Let Q, be a domain in R . Given u € W^ n(£2)'de-

n o 2,1

note u. = S.u 9 i = l,...,n, and set u = (u ,un,...,u ). Sup-
I I o ~ o 1 n

pose that g : R -* R is locally u-absolutely continuous and that

for T the track of any absolutely continuous curve in R , the

projection of S PI T on the t -axis is £ -null. Set
g o 1

loc
v = G(u ,u ^...jU ) = Gu. Then v is in W (Q) if and only if

the functions

n
^f(u)d.u + Z Tt(u)d.d.u

l ot ~ l o . . ot. ^ l i o
o 3 = 1 j

(4.9) v. = ^f-(u)d.u + Z
l ot l o .

3 =
loc

belong to L (£2) 9 where the products are to be interpreted as zero

wherever their second factor is zero. Moreover we then have

(4.10) v. = S.v £ -a.e. in Q, i = l,...,n.
l I n

Proof; By Lemma 1.5 there exists for each j = 0,l,...,n a function

fl)u. eA(fl) such that u. = u. £ -a.e. in Q and such that u. = ^r
D 3 3 n ^ D i

o
-a.e. in Q. Moreover we have by Remark 1.1 that ^r = S .u

n 2 dx, ] o
u. J

£ -a.e. in 0 and ^r—^ = S.d.u & -a.e. in 0. Set v = Gu.
n ox. I i o n

1 T
^̂  /*̂y I O C

Clearly v coincides with v £ -a.e. in Q, so that v e W_ . (Q) if
n 1,1

loc
and only if v e W

Suppose first that (4.9) holds. Then also the functions

-v Su n -v
oq ,~x o ^ oq

v. = ̂ T-(uK + S T7~()^
l dt - ox. . . dt. - ox

1I ] = 1 j l

lOC '-'— 1
belong to h_ (0) . Set M = u (S ) . Now let T be a line parallel

1 ~ g
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to the x.-axis such that
1

(1) u , ...,u are locally absolutely continuous on T fl fi,

(2) g is absolutely continuous on every track T~ for

compact intervals I c T fl fl. Since

u(MriT) c U(M) 0 u(rnfl) c= S n u(Tflfl) , it follows that the range of
y S

~ O
u on M n r is an. £ -null set. Hence by Lemma 1.1 ^ = 0
o 1 J dx,

O

£ -a.e. on M fl T. It follows that T =0 £ -a.e. in M, with
1 ox. n

I
i = l,...,n since the choice of i above was arbitrary. Thus

u. = 0 £ -a.e. in M, i = l,...,n. Let M! c M be the £ -null
i n n

set where (u_ , . . . ,u ) ̂  (0, . . . ,,
1 n -v^

ou .
We proceed to show that —̂-̂  =0 £ -a.e. in M. For this let

ox. n
i

r be a line parallel to the x.-axis which in addition to (1) and (2)

above satisfies (3) M! 0 r is an £ -null set, and (4) v. is locally

summable on T. Then u(Mnr) c u(M! (IT) U { (0,. . . ,0) }. Hence by the

local absolute continuity of u on r Pi fl and the fact that M? PI r

is a null set we conclude (Lemma 1.3) that U(MPIT) is JL -null. Hence
r>-f 1

Lemma 1.1 implies that

(4

ox
-1 = 0 £-a.e. in M PI r9 j = 0,1,..., n.. 1

as.
^ =From this it follows that ^—^ =0 £ -a.e. in M, with i,j = l,...,n,

ox. n
I

since the conditions (1), (2), (3), (4) hold for almost all r paral-

lel to the x.-axis, and the choice of i was arbitrary. In addition

we point out that S meets each of the tracks T~ . for I a com-
g u,Ipact subinterval of r fl fl, in a set which is actually W -null, not
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merely one whose projection on the t -axis is £ -null. This fol

lows from (4.14) and Lemma 1.3, since s = |u| =0 £ -a.e. in
rsu 1

T (1 M implies that s(rOM) is an £ -null set [4,p.227]. There-

fore we may conclude by Theorem 4.1 (and Remark 4.1 ), that v

is locally absolutely continuous on r fl fl and ^— coincides with
i

v. £ -a.e. on T n fl, whenever r is an interval satisfying (1),

(2), (3), (4). Since these conditions hold for almost all lines

and the choice of i was arbitrary, we deduce by Lemma 1. 5 that

ve

Conversely, if v is in W (fl) then v is in W (fl) and
JL , JL JL , JL

-v- l O C
coincides almost everywhere with a function v e A(fl) fl W, n (fl) .

1,1

On almost all lines r parallel to any axis the absolute continuity

of g on T~ ensures continuity of v, as in the proof of Theor-

em 4.3. Hence v coincides with v* on T fl fl for almost all

rsJ lOC
lines T, and it follows that veA(fl) n W (fl) . We can then show

1,1

as above that every S 0 T~ is !i -null for almost all choices
g u, I 1

of T, and hence we obtain (4.12), (4.13) by use of Theorem 4.2.

This completes the proof.

Clearly one could now give a direct analogue of Theorem 2.4 as

well. We omit the obvious formulation and proof.
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