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K. Sundaresan and W. A. Woyczynski

1. Introduction

In spite of many questions yet to be answered the theory

of vector measures (i.e. measures taking values in a Banach

space) seems to be a well developed discipline today, Dincleanu

[1]• In particular when the range of the measure is a Hilbert

space and the measure is orthogonally scattered (i.e. has

orthogonal values on disjoint sets) the theory is especially

deep and elegant and its origins go as far back as the early

Wiener1s paper [13]. As highlights of this theory we mention

the description of the space of real functions that are

integrable with respect to such a measure and the applications

of harmonic analysis of such measures to stationary Stochastic

processes in the Wiener-Kolmogorov prediction theory.

Unlike his predecessors, recently Masani [6] wrote an expository

paper on the subject without using any probabilistic terminology.

Generalizations of this theory were pursued in several direc-

tions by a number of authors. All of them, to the best of

our knowledge, were trying to replace the Hilbert space in
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the range of the measure by a more general space (not necessarily

even locally convex) while retaining the property of "independent"

scatteredness of values of measure on disjoint sets. For ex-

ample the "independent" scatteredness means the orthogonality

of operators when the values of the measure are hermitian

operators in a Hilbert space [7], and it means stochastic

independence in the case of general random measures considered in

Urbanik, [12]. When the range space is a topological vector lattice

we have a natural concept of orthogonality namely the lattice

theoretic one. In the present paper we are making an attempt

to study vector valued measures taking values in certain topo-

logical vector lattices interpreting "independent" scatteredness

in terms of lattice theoretic orthogonality (-t-orthogonally

scattered measures). The elegance of the Wiener-Kolmogorov

theory stems from the fact that the positive measure associated

with the Hilbert-space valued orthogonally scattered measure is

not only mutually absolutely continuous with respect to the

vector measure in question but it is also algebraically closely

connected with it. In the case under consideration we have a

similar advantage.

It might be mentioned that there are several orthogonality

concepts available in arbitrary Banach spaces. For an extensive

discussion of such concepts we refer to James [4]. As pointed

out in [4] the most interesting of these concepts is the

following- (D). Let B be a Banach space. If x^yeB, x is

said to be orthogonal to y if ||x+Ay|| ;> ||x|| for all real
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numbers A. It has been shown recently in Sundaresan [11] that if

dim B y_ 2 and if F is a continuous function on B — » R such that

F(x+y) = F(x) + F(y) whenever x JL y then F is of the

form c||xj| + I (x) {I (x) ) where £eB* if B is a Hilbert space

(if B is not isometric with a Hilbert space). It is for

this reason that we have not considered measures orthogonally

scattered where orthogonality is interpreted following the

definition in (D).

In this paper we discuss the following three problems

concerning *--orthogonally scattered measures:

1) Hahn extension of these measures (Section 3)

2) representation theorem for such measures (Section 4)

3) Radon-Nikodym theorem for these measures (Section 5)

Finally we indicate some applications to random measures in

the concluding Section 6. The problem in Section 6 is the

essential motivation for the results discussed in Sections 3-5.



2. In this section we state the notation, few definitions and

elementary facts which are required in the subsequent sections.

X denotes a vector lattice in which xiy, x,yeX, means

|x|A|y| = 0 . In what follows X is frequently a space of

equivalence classes of measurable functions on a a-finite measure

space (Q9 £,|-0 , the ideal of p.-null sets in L being denoted

by A. The functional F X R is said to be additive if

F(x+y) = F(x) + F(y) whenever xiy, If I is a topological

vector lattice we require F to be continuous. An additive

functional p on a vector lattice X is said to be a modular

if it satisfies the following conditions: 1) x = O^^p(x) = 0

2) |x| 1 |y| P(x) £p(y), x,yel 3) O^xjx^pfx) = sup p (xn) .

||x|| = inf{a : p (~) <1 1} is an F-norm on X rendering X a

complete metric space9 Matuszewska and Orlicz [8].

IB stands for a pre-ring of subsets of a set T i.e.

1) A,Befio A n B€»o, 2) A,Be(Bo, A c: B there is a finite in-

creasing sub-family C^9. . . 9 CneB such that A = C-,9 B = C

and C. ~ C. -€<B 9 i = ,.,.,n. We denote the a-ring generated

by B Q by B.

Definition: a) A mapping ^ : (S — > X is said to be a

£-orthogonally scattered (1-o.s.) measure if ^(AUB) = ^(A) +£ (B),

and £ (A) ± 4 (B) whenever A fl B = 09 A,Be(&o.

b) If X is a topological vector lattice then £ : B •—^X is

said to be a countably additive I-orthogonally scattered (c.a.1-o.s.)

measure if £ is a l.-o.s. measure and in addition



oo oo
£ (U A^) = £ £ (A.) whenever (A.} is a pairwise disjoint

oo
sequence from B such that .IL A. e B .

o i=l 1 o

Example. (Standard c.a.l.-o.s. measure). Let T = Q, B = £

and feX where X is normal (i.e. if geX, gT is a non-

negative measurable function such that 0 <̂  gr <̂  g then g!eX) .
f "F

•Then § defined by the formula § (A) = f-IA is a

c.a.l.-o.s. measure on £ X.

If £ is a c.a.l.-o.s. measure on B with values in a

topological vector lattice X and F is an additive

functional on X then, § p = F O § is a countably ad-

ditive real measure on B . We collect here few elementary facts

concerning £ and £ p. Since the results are immediate consequences

of the definitions, the proofs are not supplied.

(1) If A,BeB Q and B C A then F(£(A)-$(B)) = F (£ (A~B) ) +F (-£(B~A) ) ,

(2) If A , B G B Q and B e ^ then F(^(A)^(B)) = F (̂  (A) ) -F (£ (B) ) .

(3) If A , B G B and A - BeB^ then £ (A-B) = ^(A)-^(AflB)

(4) If A , B G B Q , A - B, B - A G B Q then

£ (AAB) = £ (A)+£ (B)-2£ (AflB) if AABeB .
Further we have the following elementary lemma.

Lemma 1. Suppose £ : B —-> X is a c.a.l.-o.s. measure and

F : X —> R is an additive functional. Then the following two

statements are equivalent.

(a) For all A,BeB o such that B <= A

F(£(A)-£(B)) = V(A)-V(B)

where v : B R is a c.a. measure.
(b) £„ = v



3. Here we proceed to discuss the Hahn extension of c.a.l.-o.s.

measure defined on a pre-ring B . in this connection we recall

the classical Hahn extension theorem on p. 54 in Halmos [2]. For con-

venience if v is any real countable additive measure on B

then its Hahn extension to B is denoted by \;.

"Theorem 1. Let £ : B X be a c.a.l.-o.s. measure

where (X,P) is a modular space and £ be the Hahn extension

of i to B. Let 3 = {A| A€ft,f (A)<oo}. Then there exists

a unique extension £ of £ to 5 such that (£)p = £olge

Proof. Let ft be the ring generated by ft . Let £ be

an extension of £ to ft. The existence of such an extension

is verified as follows. If Aeft chose an arbitrary family
n

of pairwise disjoint sets A,,•..>&n
e®o such that A =.U A^ and

A n A

let 4 (A) = ££(A.). It is verified that 4 is a c.a.l.-o.s.
i=l x

measure on ft into X and an extension of £. By the
theorem D,p.56 of [2], it follows that if Ae3, e > 0, there

exists Beft such that % (AAB) < €. Thus there exists a sequence

{Bn} c a such that ? (AABn)—^ 0 as n—>oo. Further it

is verified that | (BmABn)*^>> ° a s n~"*>0° • s i n c e

it follows that

p (̂  (Bm-Bn) )—•> 0 and p (£ (Bn~Bm) )-> 0 .



Hence, from (1) in Section 2

Since p is absolutely continuous

I U ) I I 0 .

Since X is complete there exists an xeX such that £ (B ) — ^

If now {c ) c 3 is another sequence such that 4 (AAC )—^0

then § (C ) — ^ y for some yeX. Thus

p(x-y) = 0 then x = y. Let us now define for AGJ?, £ (A) = x

if there exists a sequence B eil such that £ (AAB^)—>0

and ^ (B )—^x. From the preceding it follows that £ : J5—^X

is a function. We proceed to verify that £; is a ca.l.-o.s.

measure on the ring 5. Let AjBeJJ, B c A and let

^ , F-̂ e R, k = 1,2,..., be such that £ (H^AB)—^O and

?p(tkA(A~B))—>0. Thus 4p((EkUFk)AA)~^O. Let Gk =

Note that G.Gfc. Since lim p (£ (Gv) - 4(F>)> = 4^ (A)-?n (B)

it follows that p (I (A) - g (B) ) = g (A) - § (B) . Now from the Lemma 1

we infer that (|) = § |Jf. We proceed to exhibit a counterexample to

show that in general a c.a.l.-o.s. measure does not admit a

Hahn extension with respect to arbitrary additive functionals

on X.

Example; Let ft be the ring of all finite unions of

disjoint bounded left-closed right-open intervals in the real

line R. Let X = L-, (/i) where \x is the Lebesgue measure.



Let <p : R R be a continuous function such that <p has support

in [-j,l] , <P ̂  ° a n d range <p c [o,l]. Let F : L.,^)—>R be

the additive functional defined by F(x) = j cp(x)d|a.
R

Let £ :&—>L, (H) be a c.a.l.-o.s. measure defined by

4 (A) = S^ xAf1l , where ln = [n,n+l).

It is verified that if £_ is the extension of £„ to <J (bl)
t r

then iF(R) < oo, indeed 4p(R) = lira 4p[O,n) = 4p[O,2). If 4

has an extension ^ to 3 = { A| A C R , 4 F (A)<OO } 9 then since

£T-,(R ) < oo, ̂  (R ) is defined. However since 4 is c.a.l.-o.s.
rmeasure

= S 4(In) = S~ Xn n

which is not in L. (JLX) 9 a contradiction.

4. In the present section we deal with certain structure theorems

for c.a.l.-o.s. measures.

Proposition 1, Let I be an F-space of equivalence classes

of measurable functions supported by a measure space (̂ ,£,1*0,

Tand let £ : (S—>% be a c.a.l.-o.s. measure on a a-ring <S (c:2 ).

Then there exists a function fel and a cr-homomorphism

hA : B—»£/A such that

£ (A) = fX A , Aefi .
hA(A)

Proof, We note that if G c B such that A ^ A ^ G implies

A± n A2 = <p and AeG implies § (A) ^ O then card G ^ KQ.

For if card G > ̂  consider
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{||4 (A) || |A€G}. There exists G ^ G card GQ = KQ and a positive

number a such that AeGQ implies || £ (A) || > a. in such a

case, since £ is an l.-o.s. measure it is at once verified

that [Z £(A.)|A.GG } is not a Cauchy sequence. Hence
•I — I i i o n̂ > JL

it does not converge to £(UA^), a contradiction.

Now applying Zorn's lemma it follows that there exists a

maximal family G c B such that G is pair-wise disjoint

and AeGo implies 4 (A) / 0. Let TQ =AUQ A and £ (TQ) = fel.

Let h : B L/A be the mapping defined by h (A) = supp £ (A) ,

AGB. The mapping h is a cr-homomorphism on B into I/A.

Indeed

(1) hA(AUB) = support (^ (A~B) + £ (AOB) + £ (B~A) ) =

= support (^ (A-B) + ^(AfiB)) U support (£ (AnB) + 4(B-A))

= hA(A) U hA(B)

and (2) if A <= B then

hA(&~A) = hA(B) - hA(A)

since hA(B) = hA(B-A) U hA(A) and hA(A) and hA(B-A) are

disjoint. The fact that h is a a-homomorphism is implied

by the a-additivity and £-orthogonal scatteredness of £. Now

if j\ cz T (the case A jzf T may be reduced to the latter

because 4 (A~T ) =0) then T = A U (T ~A) and

f = £(TO) = ^ (A) + 4(TQ-A) .

Hence

f = f X + fX
hA(A)



Since £ (A) ±4 (T ~A) and support fx A = hA(A) = support £ (A)
hA(A)

we obtain £ (A) = f\ A > completing the proof of the proposi-
hA(A)

tion.

We recall that a a-algebra of sets is said to be a-perfect

if every a-filter in it is determined by some point. Further

we note that every a-algebra of sets is isomorphic to a a-perfect

a-algebra of sets, Sikorski [10]. We proceed to show that

the proposition 1 concerning the structure of 4 could be im-

proved in certain special cases. We adopt the following

notation: £ (Cl9Tf,\>x) is the space of all bounded measurable

functions f on (Q,£*MO and L (£},£,U) is the space of all

equivalence classes of ^ (C197J,\±) . In the next proposition we

choose for X = L (O*£»(-0 with £ 9 f—>(f) el> as the
oo oo oo

canonical mapping.

Proposition 2. If \x is a-finite, E, :B L (£2jL,(Ji) is

an c.a.l.-o.s. measure on a a-perfect a-algebra (S of subsets

of T then the homomorphism h of the preceding proposition

is induced by a point wise mapping i.e. there exists a mapping

T : £"2—̂ T and there exists an fe£ (£2,S,M.) such that

Proof: From the hypothesis on \i (causing its strict localiza-

bility) there exists a lifting on L i.e. a multiplicative

linear mapping A : L — ^ £ such that a) (A(f)) = f,

b) A(l) = 1, c) f ̂  0 A(f) ^ 0. (Chapter 4, Ionescu-Tulcea [3])

It follows that A is continuous and it is a vector lattice



10

homomorphism. Hence A £ : fi—»£ is a c.a.l.-o.s. measure.

Now we proceed as in the proof of the previous proposition.

Let us define h S B — » F, by setting h(A) = support A (£ (A) ) and

as before it is verified that h is a a-homomorphism of B

into L. Since B is a-perfect every a-homomorphism of B

into any a-algebra of sets is induced by some point-wise

mapping [10]. Hence there is r :Q—>T such that

h(A) = T" (A), Ae&. AS in Proposition 1 it is verified that

M £ (A) ) = fx i > AGB, f being by definition equal
r"1(A)

to M 4 (T) ) from which (*) follows.

Since for 1 <̂  p < oo there exists no positive linear

lifting on L the proof of Proposition 2 cannot be carried

over for L -spaces. Hence in general we cannot claim that

every c.a.l.-o.s. measure is a composition of standard c.a.l.-o.s.

measure and some rearrangement (r) of the underlying set.

However if we restrict the class of a-algebras B on which £

is defined we can prove the similar result. For completeness

sake let us recall that the a-algebra B is said to be an

solute Borel a-algebra if it is of the Hilbert cube [10]

For instance every a-algebra of Borel subsets of a separable

complete metric space is absolutely Borel.

Proposition 3O Let X be an F-space of equivalence classes

of measurable functions supported by a measure space (Ô LjI-O

and let £ : B X be a c.a.l.-o.s. measure on the cr-algebra &

of subsets of T where it is assumed that B is absolutely

Borel. Then the cr-homomorphism h A of Proposition 1 is induced

by a point-wise mapping i.e. there exists a function

and a mapping r : fi T such that

4 (A) = f • xA_n ,
r X(A)
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4 (A) =

The proof of this proposition is very similar in details

to the preceding one after noting Theorem 3.2.5, p.139 [10].

Therefore the details are omitted.

5. The real measure £ as defined in section 2 is absolutely

continuous with respect to the c.a.l.-o.s. measure £, and in

this section we discuss the existence of Radon-Nikodym derivative

of 4 with respect to 4F«

Theorem 2. Let £ : fo L (ft,Ej[i) , 1 <̂  p <̂  oo , be an c. a. l.-o. s.

measure. Let F be a fixed non-negative additive functional

on L (fi,£,M). If there exists AeB such that (1) 0 < €W(A) < oo
P *

(2) (A,& ,|4|) is a non-atomic measure space,where |4| is

a variation of 4 and B is the trace of & on A then £
£\

does not admit a Radon-Nikodym derivative with respect to £ .

Proof; We can assume that 4 is absolutely continuous

with respect to £FJ for otherwise £ does not admit a Radon-

Nikodym derivative. Further let f be the function in L (Q̂ L̂ ii)

determined by £ so that £ (A) = f«x A 3 h A being the map
hA(A)

defined in proposition 1, section 4. For the sake of simplicity

and without loss of generality we assume that f ̂  0. Because

of the representation of £ and since 4 « 4 P it is verified

that |£ I « 4 . indeed if BeB and 4 (B) = 0 and |4|(B) = 6 > 0
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there exists B-^B such that j|£ (B1) || > Oo Hence ^(B-J ^ O.

Since F is additive £ (Bi) ^ O. Since £ (B) = 0 and f ̂> O,

f\ = £(B..) = 0. Further we note the following: a) there
A ( ) 1

exist a > 0, and &-.€&, A-. c: A such that i(A^) ^ O and

fX A ^ aX A > b) the measure ^ L « |i hA| ̂  .
A ( ) A ( ) F ^ \hA(A1) hA(A1)

For if (a) were to be false then for each a > o and for every

set B c A, Befc such that 4 (B) / 0 there exists a set

B, ̂ eft, B1 a B with fX A < oc. Pick An <= A such that
1 1 X hA(Bx

 1

£ (A1) ^ O and fX hA ( A * < a. Then either § (A-A^ = 0 or else

repeating the above procedure we obtain

£ (An) ^ O and fY < <x. Thus we obtain a finite family
2 hA(A2)

of pairwise disjoint ©-measurable sets [A1^A2^...^A }
n

such that 5(A-UA j) = O and fx < a or else there exists
i=l hA(UA±)

an infinite sequence of pair-wise disjoint (B-measurable sets

{A. }.N1^ § (A.) ̂  0 such that fx < a. in the first
1 ^ X hA(UA±)

case fX A < a. We shall show in the second case also the
hA(A)

same holds. Let T = {{A.}.,

and fX A < <x}. Partially order T by inclusion. If C

is a chain in T and if A, BeUC then AflB = fi. Since AeUC

implies % (A) ̂  0, UC is countable. Further AeUC implies

A < a# Ih^s UC is a member of T. Hence by Zorn's Lemma
hA(A)
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there exists a maximal sequence G = (A.. J^r. Now if

| (A~U A.) ^ O it is verified that the maximality of G

is contradicted. Thus % (A) = § (U A.) =fx A < a i.e.
i^l x h A(UA)

fX A < a. Thus if (a) is false for every a > 0 fx A < a.
hA(A) hA(A)

Since f ]> 0 this implies that § (A) = fx = O, contradicting
hA(A)

> 0. This completes the proof of a) and there exists5_-F
e 8 , An c A, Z(A) j i 0 s u c h t h a t fx . 1 a

 A
1 1 A hA(Al)

some positive number a.

b) follows directly from the representation of § stated

in proposition 1.

Since |k(C)||P = I fPX A dpi < oo for all CeH C c &
J hA(c)

it is verified that uOh |L is a f ini te measure. Since

§p|E- is a finite positive measure we can chose a j3 > 0

such that %F(A1) - P\J.Ol\A (Aj) > 0. If for every B c A^ BG»

§ (B) - £uOhA(B) ;> 0 then §p(B) = 0 implies |J hA(B) = 0

i.e. (*) |aohA| L7. « 5«| £, . Thus either (**) there exists a
Al * Al

set A2 c A1 such that O ^ v = §F|LA - j3f-iOhA| ^ 0 and v(A2) <0

or else (*) holds. Next suppose (*) holds. Since |(An) / 0

from the representation of 5 it is verified that |ar<hA(A1) ^ 0.

Hence from (*) it follows that | (Â )̂ ^ 0. Thus there is a

real number fi > 0 such that (/3^ohA|£A -§F)(A1) > 0. Hence

from Jordan decomposition theorem it follows that there is a

B—measurable set P.

HUNT LIBRARY
CARNE6IE-MEL10N
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satisfying the property (-**) . Thus from the preceding remarks

we can choose the set A itself to have the properties

1) there exists a > 0 such that fx A > aX
hA(A) hA(A)

2) there exists a 7 > 0 such that for all Be®, B c A,

gp(B) 1 y MOh A(B).

Now choose a pairwise disjoint sequence of S-measurable sets

[ A i } i ^ 1 , A± a A, g(A±) £ 0. Since § « gp, gp(Ai) > 0. We

complete now the proof of non-existence of Radon-Nikodym deriva-

tive of § with respect to ?_ by discussing the two cases
r

l^pKoo^p^oo separately. If 1 <^ p < oo with the

sequence [A.}-N-i as chosen above consider the inequality,

for i ^ j,

(A.)fX
3

- §p(A.)fX
F X

a)aoh
A(Ai)

y *

f x A
Thus the sequence [ • i' does not admit a convergent

subsequence. Hence it follows from Theorem 1, Rieffel [9] that

|p does not admit a Radon-Nikodym derivative with respect to |.

If p = oo it is verified that

fx
hA(At)

Sp(A±)
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Once again applying Rieffelfs theorem the proof of the theorem

is completed for the case p = oo .

Remark 1. We note that from the preceeding theorem and theorem 1

in [8] that £ admits a Radon-Nikodym derivative with respect

£_ if and only if
r

(1) 5 « § , (2) |§|, the variation of §, is a finite measure

and (3) (T,B,|§|) is purely atomic.

Remark 2. In §4, Masani [6] obtained sufficient conditions for

the non-existence of Radon-Nikodym derivative of a c.a.o.s.

measure g taking values in a Hilbert space X with respect

to the measure ?„(•) = || §(•)!! and F( x) = llxll • ^e following

analogue of Masani1s theorem for c.a.l.-o.s. measures g is

an immediate consequence of the preceeding theorem.

Corollary. Let § :B tt be a c.a.l.-o.s. measure, where U

is the Hilbert space L2(Q,£,|J). Let F • U—> R be the additive

functional defined by F (x) = ||x|| . Then § admits a Radon-

Nikodym derivative w.r.t. § if and only if (1) |g| is a

finite measure and (2) (T,B,|?|) is purely atomic.

6. In this section we apply the results obtained in the pre-

ceeding sections to a probabilistic problem concerning in-

dependently scattered random measures.
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Let'')7\>,(7r,PjP) be a complete metric linear space (topology deter-

mined by convergence in probability) of all random variables

on a probability spaceT)\(7r,lP, P) . An independently scattered

random measure on the Borel subsets B on the unit interval T

is a mapping M : &—^7Y\,enjoying the following properties.

(+) for every sequence {E.} of pairwise disjoint Borel

sets
oo oo

Mi=l V =i5i M ( Ei )

where the series converges with probability 1.

(++) for every sequence E, ,. • . ,E of disjoint Borel

sets the random variables M(EJ,...,M(E ) are independent

For the theory of such measures the reader is referred to

[12] and references given therein. The measure M is said to

be non-atomic if M({a}) = 0 p.a.e. for every one point set (a).

Let [M] denote the closed subspace spanned in^VW by range of M.

The definition and the properties of the integral of real

functions on T with respect to M may be found in [12].

L-, (M) denotes the space of M-integrable real-valued functions on T.

Theorem 3. Let M be a non-atomic and non-gaussian in-

dependently scattered'tH-valued random measure. If N : B—f [M]

is an independently scattered random measure then there exists

a Borel measurable mapping r : T —^T and a function feLn (M)

such that the measure N has the following representation

N(A) = J f (t)M(dt) ,
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Proof: For every Borel set A, N(A)e[M]. Hence from the

representation theorem in Section 2 of [12], there exists an

fA€L1(M) such that N(A) = J fA(t)M(dt). Since the mapping

T
N(A)—^f is a continuous linear mapping the set function

B 3 A — ^ f , is a measure with values in the complete metric

space L1(M). If A and B are disjoint Borel sets then

N(A) and N(B) are independent and from theorem 2.1 in [12]

f and f are orthogonal in the sense of section 1. Thus

the set function 8BA —>f_ is a c.a.l.-o.s. L-, (M) valued

measure. It follows from Proposition 3 in section 4 that

fA = f X 1A

for some feL.(M) and a Borel measurable mapping r : T—^

This completes the proof of the theorem.
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