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THE SELF-CIRCUMFERENCES OF POLAR CONVEX DISKS
by

Juan Jorge Schaffer

1. Introduction

Let E Dbe an oriented real euclidean two-dimensional
vector space,and let K be a convex disk (compact convex set
with non-empty interior) in E, with O in its interior. The

guage function of K,

H

(1) HXHK = min{?» : xe¢rK}, xeE

determines a (not necessarily symmetric) "Minkowski metric".
For each rectifiable curve in E (rectifiability in terms of
the euclidean metric of E) it is then possible to define, in the
usual way, its K-length determined by this "metric".
In [2], Golab discussed, apparently for the first time, the

self-circumferences of K, i.e., the K-lengths of the two simple

closed curves (one the opposite of the other) that describe the
boundary of K. If OK is this boundary, let B+K and 9 K
be the simple closed convex (hence rectifiable) curves whose
image is OK; for definiteness,,5+K leaves K on its left

according to the given orientation of E. We let 0+(K), o (K)

be the K-length of B+K, B_K, respectively; these are the self-




circunferences of K (with respect to 0). Further work on these

paraneters appears in [3] and [1l], and in papers there cited

Let K be the convex disk polar to K wth respect to
the inner product of E  The purpose of this paper is to show
that cryK =a (K), a (K =o0r(K<).

If instead of a single euclidean plane we had considered a
pair of oriented two-dinensional vector spaces in duality, we
could have stated our result w thout involving any Euclidean
structure. W shall not deprive the reader of the pleasure of
carrying out this refornulation in the general case. For disks
symretric with respect to 0O such a reformulation is, however,
related to sonme geonetric problens that will be nentioned at

the end of the paper.

2. The Mai n Resul t

W denote the inner product of u,veE wth respect to the
eucl i dean structure of E by u-v. An oriented line | in E

is an oriented line of support of the convex disk K if it

contains a point of K and if K lies entirely in the left
cl osed hal f-plane determned by | and the orientation of E
If 1,V are oriented lines in E, the ordered pair {19V)

forns <a_right angle if the (euclidean) unit vector of V s

obt ai ned fromthe unit vector of | by a rotation of -TiT




according to the orientation of E.
It follows at once from (1) and from basic facts about con-

vex sets that

(2) HxHK = max{@(x) : ¢ a linear functional on E, ¢(K) < (-o00,1l])

max{x-y : yeK'}, xeE.

1. Theorem. Let K be a convex disk in the oriented real

euclidean two-dimensional vector space E, with O in its

interior. Let K' ©Dbe the polar disk. Then 0+(K) = 0_(K'),

o (K) = o+(K').

Proof. 1. It is clearly sufficient to prove the first
equality: the second follows on reversing the orientation of E.
On account of the existence of an obvious approximation procedure,
it is sufficient to prove this first equality for polygonal K;

indeed, more specifically, for K satisfying

(3) K 1is a polygonal disk, and the parallel through O to each

side of K contains no vertex of K.

The polar disk of a polygonal disk is polygonal (with the same
number of sides); Condition (3) is easily seen to be equivalent

to

(4) K 1is a polygonal disk, and no side of K is perpendicular

to a side of the polygonal disk K'.




2. We now assume that K satisfies (4) and let n Dbe
the number of its sides. We consider an ordered pair (4,4')
of oriented lines in E forming a right angle, and such that
4 1is an oriented line of support of K and 4' an oriented
line of support of K'. We let this pair rotate counterclockwise;
as it does so, the pair of points where 4 supports K and 4!
supports K' describes a cyclic sequence ((uj,vj)), chZn,

such that

(5) uj # u, or v, # Vj-l’ but not both, for each jeZ

j-1 j 2n’

This property is a consequence of (4). The fact that the sequence
has 2n terms follows from (5) and from the fact that each one
of the n vertices of K and the n vertices of K' appears
in the sequence, each term introducing one of them for the first
time.

The sides of K, taken as oriented segments leaving K on

the left, are exactly the oriented segments u for those

. u.
j-173

jez for which uj # u

on By the construction of the sequence

j-1°
and by (2) we have

la.-u. = (u.-u )V, = u.,-v, - u, .°v, je2

J J-lHK j 3-1 3 j 3 j-1 j-1 By 7 u,

2n’ 7j -
where (5) was used for the last equality. Thus
6 g = . - . - J
(6) L (K) Z[uj Vi1Vt 3eZgn, ug £ ug ).




Using (5 to reshuffle (6), we find

(7 L0 = ‘Z 39575
]r22n
wher e
1 if u. “u. . and v. N v. ,
3 3-1 3 3+1
= -1 if v. ™. and u. ” u. j NZ
(8) Pl 3 3" 3 Y3a 1Ty

0 ot herw se.

3. in order to conpute a_(K’) , e app}y the preceding line
of argument to K instead of K, with the orientation of E
reversed. Since K' = K K satisfies the anal ogue of (4) ;
t he anal ogue of the construction at the beginning of Part 2 of
the proof yields the sane lines with the opposite orientation,
paired in the opposite order, and rotating "backwards", i.e.
in the new countercl ockw se sense. The pair of points at which

K!', K are supported then describes the sequence ((v ;ju .J)),

J€Z?n’ and we concl ude that
(9) a (KM = 2 piv .ou _,

wher e




—j * V-j__+ I_.and u__j 3‘ u

(10) p\__J = -1 if u_yg ¥ U441 and v_j_ £ v .

(0] otherwise.

| nspection of (8) and (10) shows that p’. =p ., jczZ 7
3 "3 2n
hence conparison of (7) and (9) yields a (K =a (K , as desired.

3. Norned Spaces and the Grth of Spheres

If X is a real norned space, we let £(X) denote its unit
ball. If dimX= 2, we denote by L(X) one-half the |ength
(in ternms of the normof X) of the sinple closed curve describing
t he boundary of the symmetric convex disk £(X) (see [4]). Thus,
if E 1is any oriented euclidean space coinciding algebraically
with X, we have L(X = a+(2(x)) = v_(E(x)). Now t he sane vector
space, with the polar disk (£(X))" as unit ball, is congruent
to X, the dual space of X W obtain the follow ng consequence

of Theorem 1.

2. Corollary. 1f X is a*_real norned space with dimX= 2,

and X JLS its dual space, then L(X) = L(X) .

More generally, if x 1is a normed space with dimX; 2,
one can define m(X) , the infinumof the lengths of rectifiable
curves with antipodal endpoints and lying entirely in the boundary

of 2(X); 2mX) is the girth of £(x). W refer to [4] for a




detailed discussion of this definition. Corollary 2 then gives
an affirmative answer for dim X = 2 to the following conjecture,

which has been verified in a few isolated additional cases.

3. Conjecture. f X 1is a real normed space with

* *
dim X > 2, and X is its dual space, then m(X ) = m(X).

For the reader acquainted with [4] we remark that if we
replace the parameter m in the conjecture by either M or D,
the statement, while still true for dim X = 2 by Corollary 2,

becomes false for every other dimension.
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