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Zeev Nehari

Abstract
The differential equations under consideration are of the

form

(1) &£ = anx,

where A(t) is a piecewise continuous real nxn-matrix on a real

interval o, and the vector x = (xl,...,xn) is continuous on a.
The equation is said to be nonoscillatory on o if every non-
trivial real solution vector x has at least one component x

k
which does not vanish on «.

The principal concern of this paper is the derivation of con-
ditions, expressed in terms of various norms of A, which guaran-

tee the nonoscillation of (1) in a given interval.
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In the present paper we shall discuss various oscillatory
properties of differential equations of the form

ax _
(1.1) I = Alb)x,

where A(t) is a real n x n matrix whose elements are defined

on a real interval a, and x = (X ,...,xn) is an n-vector.

1
While the case of principal interest is that in which A is
continuous on a, it soon becomes apparent that this assumption
is too restrictive and that, even for an adequate discussion of
the continuous case, it is necessary to consider coefficient ma-
trices A which may have a finite number of discontinuities at
interior points of a. Accordingly, we shall assume that A(t)
is continuous on &, with the possible exception of a finite num-
ber of interior points at which both the left and the right limit

of A(t) exist. The value of A(t) at a discontinuity tO will

be defined as lim A(t); this enables us to define a unique (and

tot?
0
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continuous) continuation of a solution x(t) as the point t0 i's
passed fromleft to right. A vector x(t) wll be called a solu-
tion of (1) on a if it is continuous on a and satisfies equa-

tion (1) in all subintervals of a which do not contain discon-

tinuities of A(t) .

A nontrivial solution x(t) of (1.1) will be said to be
oscillatory on a if each of its conponents X X vani shes
at sone point of a. Equation (1.1) will be said to be nonoscil -
|latory on a if none of its solutions are oscillatory on a, i.e.,

if every nontrivial solution has at |east one conponent which does
not vani sh on a.
An alternative description of the oscillatory behavior of

equation (1.1) may be based on the concept of the conjugate point,

whi ch generalizes a simlar notion enployed in the study of scalar
n-th order equations [3,4,5,6,11]. If [a,b] ea, b wll be said
to be a conjugate point of a wth respect to equation (1.1) if
there exists a nontrivial solution vector x of (1.1) such that
each conponent of x vanishes at either a or b and if, nore-
over, b is the smallest nunber for which this is the case. |If

no point of a possesses a conjugate point, the equation is said

to be disconjugate on a. Evidently, an equation which is non-

oscillatory on a is also disconjugate on this interval. The
converse is in general not true. While there exist classes of

equation (1.1) for which the concepts of nonoscillation and
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disconjugacy coincide (e.g., equations which are equivalent to

(n) + p(t)y = 0 [6]), an equation

scalar equations of the form vy
(1.1) may be disconjugate on an interval without being nonoscil-

latory. As an example, we consider the equation

n 5.1 B
(1.2) y;{=2(t—a) [ £ (t-a.) "] Xy., k=1,...,n
k hY Y
v=1 v=1
(ak real). Clearly, (1.2) is solved by the vector
(1) 2 2
y = [(t—al) ,...,(t—an) ], and also by the constant vectors
(k) . _ (k) _
4 (k=2,...,n) whose only non-zero components are Ve 1 = 1 and
yék) = -1. If Y 1is the solution matrix formed by the column
vectors y(l),...,y(n), it is easily seen that the determinant of

Y has the value (t—al)2+...+ (t—an)2 and this shows that, unless

all the ak coincide, Y is a fundamental solution matrix on

(-co,0). On an interval a containing the points al,...,a

(1)

n

each component of vy has a zero, and the equation thus is oscil-

latory on a. Nevertheless (except in the case in which the set

a an contains only two different numbers), no point in (-oco,0)

l’ooo,
has a conjugate point. 1In fact, as the following argument shows,

(1)

all real solutions of (1l.2) which are not constant multiples of vy
are nonoscillatory on (-co,o0). Since Y is a fundamental matrix,

all real solutions are of the form Yc, where c¢ = (al,...,an) is

a constant vector. If the n components of Yc are to vanish at

points tl,...,tn, respectively, it follows from the special form
5, D
= O (k=l’oou,n—l), a (t —a ) - EG. =
1" n n wo ¥

2
of Y that al(tk—ak) + ak+l

0.
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n

Adding these equations, we obtain «a r (t

1 )2 = 0. Since
k=1

x %k

a, = 0 would lead to the trivial solution, this implies tk =

l ak’

k=1,...,n, and thus az =, . .= an = 0, i.e., the only oscillatory

y(l)

solutions of (1.2) are «a , al # 0. A pair of conjugate points

1
a,b (a<b) is thus possible only if all the numbers a a

IERREEL
coincide with either a or b. 1In this case, a indeed possesses
a conjugate point, but no other point does.

Finally, we consider a property of equations of the type (1.1)
which is closely related to both nonoscillation and disconjugacy,
and which has the merit that it can be defined without reference to

the components of a solution vector. The equation is said to be

suborthogonal on a 1if, for tleza, t2eza and any nontrivial so-

lution vector x, the scalar product x(tl)x(tz) is positive. If
b 1is the conjugate point of a, we clearly have x(a)x(b) = 0O;

thus, suborthogonality implies disconjugacy. Suborthogonality is

1

s

preserved if the coefficient matrix A 1is replaced by Al = QAQ
where Q 1is a constant orthogonal matrix. Indeed, if x 1is a
solution of (1.1), then y = Qx 1is a solution of y' = Aly, and
the assertion follows from the fact that Qx(tl)-Qx(tz) = x(tl)x(tz).
If x(a)x(b) = 0, it is easy to see that there exists an orthogonal
matrix Q such that n - 1 of the components of Qx vanish at a
and the remaining component vanishes at b, i.e., b is a conjugate
1

point of a for the coefficient matrix QAQ [7]. Hence, equa-

tion (1l.1) is suborthogonal on a if and only if there exists a Q




1

such that the equation x' = QAQ is disconjugate on «.

2. The conditions for nonoscillation, disconjugacy and subortho-
gonality to be derived in this paper are all expressed in terms of
certain norms of the matrix A or of some of its submatrices. If
we employ the Euclidean norm ||A||, it follows from HQAQ—IH = ||A}|
and the remark made concerning the relation between disconjugacy
and suborthogonality that a sufficient condition for disconjugacy
which depends only on ||A]] will also guarantee suborthogonality,
and vice versa. In the present section we shall show that such a
condition is also sufficient to guarantee nonoscillation, although
the latter is a more restrictive property than disconjugacy. This
will again be achieved by replacing the coefficient matrix A by
QAQ—l where Q 1is orthogonal in the interval under consideration.
However, in the present case Q will only be required to be piece-
wise constant, and the matrix QAQ—1 may thus have additional sim-

ple discontinuities.

Theorem 2.1. If equation (1l.1) is oscillatory on an interval «a,

then there exists a piecewise constant orthogonal matrix Q such

that the equation

(2.1) y' = oag”ly

is not disconjugate (and thus also not suborthogonal) on a. In
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particular, Q nay be required jto bf a. diagonal matrix whose diag-

onal elenments (q .,qn have the followi ng property: For each

1
k (I1~k™n) there exists 3L ty.ea_such_that g =1 or t < tgg

tea and qk:-l for t;>_tk, tea.

The existence of a matrix Q of the specified formw Il be
needed in Section 4. If it is only desired to establish the asser-
ti on nade above regarding the role of the norm ||A|] in nonoscil-

lation criteria, it is sufficient to prove the first part of Theor-
em2.1. This is easily achieved by means of the follow ng argunent.
|f equation (1.1) is oscillatory on a, there exist a closed inter-
val [a,b] in a and a solution x of (1.1) such that Xx is os-

cillatory in [a,b] and two of the conmponents of x vanish, respec-

tivel y)at a and b. If all the conponents of x vanish at eith-
er of the two points, the assertion is trivial. |If there are com
ponents x” which do not vanish at a or b, we have x,K(tK) =0

for tke (a,b) . W& now denote by Ql = Ql(t) t he di agonal matri x

whose di agonal el enents are defined as follows: If ~C%) = 0,

A

xk(b) =0 or x;k(a)x:k(b) < 0, we set =1 in [a,/b]; if.

9%
Xk(a)xg(b) >0, we take g =1 in [#Yy) #d g =-1 in [t"b].
Ql is orthogonal and, clearly, Ql(a) x(a)-Ql(b) x(b) < 0 (except in
the trivial case just nentioned) . By the construction of Ql, t he
vector y(t) = Ql(t)x(t) I's continuous on [a,b] (notw thstanding

the.discontinuity of Ql(t)), and it is a solution of the equation

y' = C"_AQ‘_ly. But, as just shown, y(b)y(a) < 0, and this equation
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thus fails to be suborthogonal in [a,b]. By continuity (and the
fact that y(a)y(a) > 0), there exists a point ce¢ [a,b] such
that y(a)y(c) = 0. As shown in section 1, this implies the
existence of a constant orthogonal matrix Q2 such that the equa-
tion w' = Q2[Q1AQ111Q;k” has, at ¢, a conjugate point with re-
spect to a. This proves our assertion (w}th Q=Q2Q1)~

Before proving the second part of Theorem 2.1, we illustrate

the use of the result just obtained.

Theorem 2.2. Let p(t) be positive and piecewise continuous on

[2,b] and let A= min[xl(b),ul(b)], where xl(b) and ul(b) are,

respectively, the lowest eigenvalues of the boundary value problems

(2.2) (pu')' + Aollal?u

1

o, u(a) = u' (b) o,

(2.3) (ov')' + pollal®v = o, v (a) = v(b) = O,

and ||a|]| is the Euclidean norm of the matrix A. If A > 1, then

equation (1.1) is both nonoscillatory and suborthogonal on [a,b].

This bound for A is the best possible; indeed, the conclusion

does not necessarily follow if A = 1.

Proof. Suppose (l1l.1) is oscillatory on [a,b]. By Theorem 2.1,
there exists a ce¢ [a,b] such that ¢ is the conjugate point of a
with respect to an equation y' = By with ||B|| = ||A||, i.e., each
component Yy of y vanishes at either a or c¢. From y' = By

we obtain




Iyt 12 =ty < 1elfivi® = 1aniyi’,

and thus, after multiplying by the positive function p(t) and
integrating over [a,c],
n c c
2 2 2
T (] oy, at - [ llalygat) < o.
k k
k=1 a a

It follows that there must exist at least one index k for which
c c
1 2 2 2
[ Py atg fanAH y,dt.

The function Yy vanishes at either a or c¢. 1If yk(a) =0

then, by classical results,
< 2 2 ¢ 1
A(c) prlAIl v, at < I py, dt,
a a

where x(c) is the lowest eigenvalue of the problem (2.2) for the
interval [a,c]. Comparing the two last inequalities, we find that
%l(c) < 1. Similarly, yk(c) = 0 leads to the conclusion ul(c) <1,
where pl(c) is the lowest eigenvalue of the problem (2.3) for the
interval [a,c]. Since Al(c) and ul(c) are nonincreasing for in-
creasing c¢, we thus find that if (1l.1l) has an oscillatory solution
on [a,b] we must have A = min[%l(b),ul(b)] £ 1, contrary to our as-
sumption. Hence, (l.1l) is nonoscillatory on [a,b].

That the assumptions of Theorem (2.2) also imply suborthogon-
ality follows by observing that if (1.1) is not suborthogonal, then

there exists a matrix C, with ||C|| = ||Al|, such that w' = Cw 1is
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not disconjugate. The rest of the argunent is the sane as before.
The special case of Theorem 2.2 corresponding to the choice
p(t) = ||At) Hl provi des a new proof for a previous result [7]
according to which (1.1) is both nonoscillatory and suborthogona

on [a,b] if

(2.4) J|IAD)||dt < oE
a
Indeed, the eigensolutions of (2.2) and (2.3) are in this case

u=sin[Aj |A(S)]|lds], v = cos[ A J [|A(s)||ds],

a a
respectively, where
b
AJ [JAM]ldt = |
a

and Al(b) =/i(b) = A The condition A> 1 is therefore in

this case equivalent to (2.4). Since equality in (2.4) is not suf--
ficient to guarantee nonoscillation or suborthogonality (cf.[7]),
this exanple also shows that the condition A> 1 in Theorem 2.2

is the best possible of its kind.

3. Before proving the second half of Theorem 2.1, we have to de-
vote sone attention to what may be called "m nimal intervals of

oscillation" associated with an equation (1.1) which is known to
be oscillatory on an interval a. By this we nean closed inter-

vals [a,b] ea such that the equation is oscillatory on [a,b] but
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not on any subinterval of [a,b]. The existence of at least one
such minimal interval is elementary. The example discussed at
the end of Section 1 shows that in the case in which a is a
closed interval [a',b'], it is possible that a # a' and b # b'.

A minimal interval of oscillation [a,b] is associated with at
least one nontrivial solution x of (l.1l) which is oscillatory on
[a,b]. Evidently, x must have at least two components which van-
ish at a and b, respectively. A more accurate description of

X 1s given in the following statement.

Theorem 3.1. f [a,b] is a minimal interval of oscillation of

equation (1.1), then there exists a nontrivial solution x of

(1.1) such that each component X of x has one of the following

three properties:

() Xk(a) 0;

(b)  x (b) = 0;

(c) xk(t) vanishes at some point of [a,b], but xk(t) >0

or xk(t) < O throughout [a,b].

Proof. 1If there is more than one minimal solution, we confine our
attention to that (or those) for which the number m of components
which vanish at either a or b is as large as possible. We as-
sume that m < n, since otherwise the assertion of the theorem is
trivial. We now choose a number ce¢ [a,b] which is close enough

to b so that the zeros of the components of x with the property
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(c) are in (a,c), and we define a nontrivial solution y of (1.1)
in the following manner: Y (?) = ° f°" those k for which
v, () =0; Y, (6) = o for k such that A(k) T °*, with one

exception, the renmaining conponents are to vanish at one of

Yk
the internal zeros of the correspondi ng conponents X o For the
exceptional conponent y { e require, say, y@ﬂa) —le Since (1.1)
is nonoscillatory in [a,c], this solution y is uniquely determ ned
and, noreover, y 1is a continuous function of ¢ (as long as
CG(a,b)) [2]. Elenentary considerations show that if c-*b

t hrough a suitabl e sequence of val ues y wll have a

CarCorvinn
uniformlimt y which is anontrivial solution of (1.1), and
which is such that all its conponents y. (k*k!) have zeros in
[a,b] which coincide with zeros of the correspondi ng conponents of
X. W assert that y is a constant nultiple of x. Indeed, if

this were not the case, we could construct a solution w= x + |3

of (1.1) where the scalar constant p is so chosen that w, @ (a) =0,
X (b) ~ 0.

where k" is such that x™% (a) ™ 0, /\ The solution w would thus
have m+ 1 conponents which vanish at either a or b, and this
conflicts with our definition of m Hence, y = yx, where y is
a constant.

Suppose now that the conponent x4 of x <changes its sign at

one of its zeros, say t© in (a,b). Since y->Yx uniformy, if

c->b through a sequence {c }, the conponent y : of vy nust take
r JC
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both positive and negative values near to if r 1is large enough,
and it therefore must vanish at some point of (a,cr). Since all
the other components of this solution y vanish in [a,cr] by con-
struction, y 1is found to be oscillatory in [a,cr]. But cre (a,c),
and the assumption that the solution x has a component which sat-
isfies neither of the conditions (a), (b), (c) has thus led to a
violation of our hypothesis that {a,c] is a minimal interval of

oscillation. This completes the proof of Theorem 3.1.

We also need the following result.

Theorem 3.2. Let equation (l.1) have a solution x on an interwal

[2,b] such that each of its components X has one of the follow-

ing three properties:

I
o

(a) >5<(a)

G
o
z
1
e

(c) xk(a)xk(b) < 0.

Then a has a conjugate point ce (a,b] with respect to equation (1l.1).

Proof. Suppose there exists no conjugate point in (a,b]. For ele-
mentary reasons there will then exist a uniquely determined solution
y of (1.1) for which each component Yy takes prescribed values

(not all zero) at either a or Yy, where Ye (a,b]. We choose

i
o

these values in the following manner: We set yk(a) =0 if xk(a)

Y (Y) =0 if x, (b) = 0, and yk(a) = xk(a) in those cases in which
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y_k(a)jck(b) < 0. The solution y(t) =y(t;y) will then be a con-
tinuous function of y for ye (a,b]. [If, beginning from b,

Y decreases continuously, we nust reach a val ue Y o€ (a,b) such
that, for sone k characterized by property (c), we have

Y, (&Y )yn (t>Yy) =0. Indeed, y (a, V)y, (Y, Y) varies continuously
K 0 K 0 K K

with Y and the absence of such a value Yo would inply that

Yo(2 Y)Yy, (Y, Y <0 for all ye (a,b] and all k wth property (c) .
Thus y(t,y) would be oscillatory for t e [a,y] with Y arbitrar-
ily close to a, and this is absurd since vy,(a,Y) has a fixed non-

zero value if k has property (c). Accordingly, for sone k there

exists a vy such that either vy.(a;Y") =0 or vyuY«7Yx) = 0.
0 K 0] K U U

If x had a total nunmber m of conponents which vanish at either
a or b, the totalonun‘oer of conponents of y(t;Yg which vanish
ahi €i phetedar eoby Vettwhhl bhe decteast baydend. Yc}_fé 2c@n inow g eglesdr
that in this way we finally arrive at a point c¢ € (a,b] such that
all conponents of y(t;c) vanish at either a- or c. This conpletes
the proof of Theorem 3. 2.

W are now finally in a position to prove the second part of
Theorem 2. 1. If the solution x of (1.1) is oscillatory on a,
there exists an interval [a™b] ea which is associated with a sol u-
tion y of the type described in Theorem 3. 1. If y has no com
ponents with the property (c), the assertion of Theorem 2.1 hol ds

trivially. If there are such conponents vy., we define a diagonal

HUNT  LIBRARY
CARNEGIE-MELLON  UNIVERSITY
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matrix Q with the following diagonal elements q 2 If Yk(tk) =0
(;ke (a,b)), we set q = 1 for te [a,tk) and q = -1 for
te [tk’b]' For components of y which satisfy properties (a) or
(b), we set q = 1 for te [a,b]. The (continuous) vector w = Qy
will then be a solution of the equation w' = QAQ_lw, and it is clear
that w satisfies all the assumptions of Theorem 3.2. According
to the latter theorem, there will thus exist a conjugate point to

. . . -1 .
a in (a,b] with respect to the equation w' = QAQ W. This con-

cludes the proof of the second part of Theorem 2.1.

4, In the present section we obtain nonoscillation criteria which
depend on the matrix norm IIAHp induced by the H6lder norm

1
P

n
Il = ( 2 |x|P) p> 1,
p k=1 “x

of the vector x =(xl,...,xn), i.e., HAHP = max HApr for Hpr = 1.

The limiting cases p = 1, correspond to the "maximum-column

norm"
n
4, =
(4.1) IIAIIl max X Iarsl
s r=1
and the "maximum-row norm"
n
4, =
(4.2) lall , = max % |a_|
r s=1

of the matrix A = (ars);r,s =1,...,n.
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The only example of a nonoscillation criterion expressed in
terms of a Holder norm HA“P (other than the Euclidean norm
lall = HAH2) is due to B. Schwarz [9,10] who showed that (1.1) is

nonoscillatory on [a,b] if
b
(4.3) JlaHAlloodt < 2 log 2.

An example, to be exhibited later, will show that the constant
2 log 2 is the best possible; indeed, the conclusion does not
necessarily follow if "<" 1is replaced by "<".

We shall prove the following result.

Theorem 4.1. If either

b
4.4 [ dt
(4.4) [ lalae < ey

a
or

b
(4.5) j || Aax IIPdt < cp,

a
where

1 1

& L4ePIP 14D D 11

(4.6) e =] (1+sP)P14sD%Us, 1<p< o, Z+==1,
; p o b d
and C,,C, 2re defined as 1lim cp for p->1 or p-oo, then

equation (1l.1) is both nonoscillatory and suborthogonal on [a,b].

For p = 2, both (4.4) and (because of HA*H2 = “AHZ) (4.5)

reduce to the sharp condition (2.4). Since
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oo

Cop = | [max(l,s)]-l(1+s)-|ds = 2 log 2,
0]

(4.4) yields the sharp condition (4.3) for p = oo. Because of

C; = Co and A<l = "Mrv (#9) leads o the nonoscillation
condition
(4.7) [ 1Al dt < 2 1og 2,

a X
wher e ||AH:L is the maxi mum colum norm (4.1). (4.7) is likew se
a sharp condition, as will be shown later. The constant (4.6) is

thus the best possible for p = 1,2,00. There are indications that
it is the best possible constant for all pe [I,00], but the con-
struction of the necessary exanples seens t1?r be rather | aborious.

It will be shown presently that cP £ < with equality only
for p=2. It is therefore of interest to note that the concl usion

of Theorem4.1 will also hold if the left-hand sides of both (4.4)

and (4.5) are bounded by the larger constant 2.

Theorem4. 2. _1if A satisfies the two conditions

b
(4. 8) f JIaAI dt <2
and

b
(4.8") \_]a||A I, dt <.

then equation (1.1) _is _both nonoscillatorv and suborthogonal on

ia,b]l.
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Theorem 4.2 is an inmedi ate consequence of the fact that

(4.9) (ITA112)* £ A [plIA]],-

>

To prove (4.9), it is only necessary to note that (||A]l9 = A
Is the highest eigenvalue of the positive-definite ma~
trix A*A | f

where A

X is the correspondi ng ei genvector, we have

IA*AX]l = [IAX]lp = AllX]lp,

and thus

[JA*A
QA = A= 2

T kL VAT 2 VRIS A -
P

If both (4.8) and (4.8") are satisfied,

it follows from (4.9) that
condition (4.4) holds for

p =2,

and Theorem 4.2 is thus found to
be a consequence of Theorem 4. 1.

Before we begin the proof of Theorem 4.1 we show t hat

Cp < e
for p N 2, as asserted above.

If we set
4 -1
0 = (I+sP)P (I+s99
1
-1 -1 X
P =4a q =3, <Ax =

x log(l+s )s

we have 1log O

(o) + <p(p) . A conputation shows that <p" (x) >0
1 .
if s~ 1, andit follows therefore that

|

-r log 0 =-r[(p(<x) -Kp(3) ] >
1 2 2
QI E+B) ) = <p(p) = b log(l+t?).

Hence, by (4.6)

00 . . 00 2 -1 -
c:fu)"ds<f (1+s%) "ds = 3,
P J J

0 0
as asserted.

The convexity of the function <p(Y) also shows that




18.

(NRE]

c increases from 2 log 2 to as p increases from 1 to 2,
P

and then decreases to 2 log 2 as p increases from 2 to oo.
We now assemble some of the facts needed in the proof of Theor-
em 4.1.
a) If Q is the diagonal matrix described in Theorem 2.1,
then
(4.10) loae™ M| = Jal_.
P p

. -1
Indeed, we have HQpr = HyHP for any vector y. Since Q=Q 7,

it follows that

-1 |

lload “xI| IHAQ||
P jo)

Hxllp anIIlo

-1
and this implies both | QAQ

I, < lall, and Al < lloag™ .

b) In order to prove Theorem 4.1, it is sufficient to show
that, under the stated hypotheses, equation (1l.1l) is disconjugate
on [a,b]. This follows from Theorem 2.1 and item (a).

c) If the conclusion of Theorem 4.1 follows from condition
(4.4), it also follows from condition (4.5). This is seen by com-
bining the information in item (b) with the fact that (1.1) is dis-
conjugate on [a,b] if and only if the adjoint equation y'= -Axy
is disconjugate on [a,b]. This fact, in turn, follows by observing

that

(yx)' = yAx - xA*y = yAX - yAXx = 0,

i.e., yx 1is constant in an interval in which A is differentiable.
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Since x and y are continuous on [a,b], we have yx = const,

t hr oughout [a, b] .

If ce [a,b] is a conjugate point of a for equation (1.1),

the latter has a nontrivial solution X = (X3 ...,X,) such that
nk(sk) =0, k=1,...,n, where either sic =a or s¢ =c¢. Since
x f 0, there exists a k' such that X-¢ (¢) 0. If it were true

that ¢ is not a conjugate point of a for the adjoint equation,
the latter woul d have a unique solution y = (y.,,--*,y,) such that
y£a+1>-sk) =0 for k" k' and Yii(€) = 1. Ve would then have
x(a)y(a) =0 and x(c)y(c) = xfg(c) A 0. Since, as just shown,
Xy is constant on [a,b], this is absurd. Hence, ¢ nust be a
conjugate point of a for the adjoint equation.

d |If x is adifferentiable vector, then

d
(4.11) e il )< it
This is a consequence of the triangle inequality. Indeed, for any
vector norm || || we have [|x(ty [| = Hxft +x(t2)-x(ty) || £]]x(ty) || +
[[x(t,)-x(t.) ||. Interchanging the roles of t, and t,, we obtain
fc JL -L «
IXCEDL-TIXA )T x(ty)-x(ty) .
) - - n_ o B t - t “3 t2 - tl’
2 1 2 1

and (4.11) follows.
W now prove Theorem4.1. According to item (b) on the preced-
ing list it is sufficient to show that, under the stated hypot heses,

the interval [a,b] cannot contain a conjugate point c¢ = c(a) for
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equation (l.1). Suppose, then, such a conjugate point exists, i.e.,
suppose (1l.1l) has a nontrivial solution x such that m(1l<{m<n) of
its components vanish at the point a and n - m components van-
ish at c. Separating these components, we write x = u + v, where
u(a) = v(c) = 0 and the number of not identically vanishing com-
ponents of u and v is m and m - n, respectively. Setting

, we have R(a) = S(c) = O, and
1 1

n|w

“u“p = R, “V“p =5, 0 =

(4.12)  Jot| = |s"%(sr-rs") | < sT@%sH (|t [P+|s |P)P

at those points at which o' exists. An application of (4.11) to

u and v shows that
IR [P+ s P < np)P + (v 1) = (i np)P

and thus, by (1l.1),

1 1
[r P + s PP ¢ Il < Nl =l = nAnp<RP+sp>P.

Accordingly, (4.12) leads to the inequality
1 1

(4.13) lor| < (1+Gq)q(l+0p)p||Allp.
The function 0(t) varies continuously from O to oo as t in-

creases from a to ¢, and it thus follows from (4.13) that
1 1

le] o — —— c b
a,q P\P| -,
cp < Ia(lw ) H(1+0%) T |or [at < fauAHPdt < faHAnpdt

where cp is the constant (4.6). But this contradicts assumption

(4.4), and the proof of Theorem 4.1 is complete.
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We add here a remark concerning the cases p =1 and p = ®.
If u and v are two vectors such that, for every Xk, either
w, = 0 or v =0, then we have Hqu + Hle = ||u+v||l and
| + |lvl| = |lu+v|| . It is of interest to note that the val-
@ 00 (e’e}
ue 2 log 2 for both <y and SHN can be obtained by the sole

use of this property and that, as a result, we have the following

more general criterion.

Theorem 4.3. Let |||lyll be a vector norm with the property that

W a+vlll = |l ulll + |l vl for two vectors u, v such that, for

every k, either w =0 or v = 0, and let ||[All be the matrix

norm induced by ||| ylil . If
b

(4.14) [ e at < 2 109 2,
a

then equation (1l.1) is disconjugate on [a,b].

Examples of vector norms with this property, in addition to

HyHl and “y“oo’ are the norms || ylll = allyll+...+ an|yn| and
Il yll = max ak|yk|, where the a, are given positive constants.
k
To prove Theorem 4.3 we set R = |ulll , s = |Ivlll , © =-§, where

u and v have the same meaning as in the proof of Theorem 4.1.
We then have
-2
lov] < s “(s|Rr|+|s'])

< s™2 (sl Il +RIN D

where the last inequality follows from (4.11l). Hence
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o« I £ S max[S,RI(II| u" Il +lIv Il ).

By hypothesis [l u* [l + I v'Il = lly Il and, by (1.1),
Iyl L0 Al Iyl = 0OAJ[] (R+S).  Thus

|ot] < (l+o)max[Ll,o]ll All .

As before, the assunption that (1.1) is oscillatory inplies that

a(a) =0, a(c) =o00, where c€ (a,bj. Since

pe -1
d  ((l4o)max[l,a]) da =2 log 2,
0

we obtain

210g2~J || Aldt £J H Al dt.
a a
This contradiction to (4.4) proves Theorem4. 3.

We now exhi bit an exanpl e which shows that the constant 2 log 2
appearing in conditions (4.3) and (4.7) (the special cases p = ao
and p =1 of condition (4.4)) is the best possible. Using the
abbreviation Y = -ir'(a+b) , We choose a function r(t) which is in-
creasing and differentiable in [a,y)j ®nd for which r(a) = 0,

limr(t) = log 2. In [y,b]s we define r by
ty

r(y+t) = -r(Y-t), Y*e(Y,b], and r(y) = -log 2.

We then define an nxn-matrix A as foll ows: Al elenents of A

- . . e
ot her than 1" 8, 3y, 8, are identically zero. In [a&aVY)]j
set ai.L=a, =0 ap-= rt, a,,=-r'; in [y, 1l0], we take
a,.=a_..=0, a..=r', a..=-r". It is readily confirned that

the equation x* = Ax is solved by the follow ng continuous vector
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_r
N = . = = L ee = - ; - l_
function x (xl,...,x ): x2 x3 X 0 xl e

-
for te [a,Y), X, = e’ for te [v,b]; x, = e for te [a,Y),
X, = 1- er for te [Y,b]. Since xl(a) = xz(b) = 0 and all

other components of x vanish identically, the equation is oscil-
latory in [a,b]. The maximum-row norm is IIAIIO0 = r', and there-

fore
b

b

I lall _ dt = j r'dt = 2 log 2.

(6@
a a

This shows that the constant appearing in (4.3) cannot be improved.

The same example also shows that inequality (4.7) is the best

possible. The point b is a conjugate point of a for the equa-

tion x' = Ax. As shown above, it therefore is also a conjugate
point of a with respect to the adjoint equation y' = -A*y.
Since HAHOO = HA*Hl, the equation y' = -A*y has the required
properties,

5. A conjugate point b = b(a) of an equation (l.1) is associated
with a solution vector x = (xl,...,xn) such that k (1<k<n-1)

of its components vanish at a and the remaining n - k components
vanish at b. Without loss of generality we may assume that

xl(a) = xz(a) =,,.= xk(a) = xk+l(b) = xk+2(b) =, .= xn(b) = 0;

this can always be achieved by re-numbering the components of x.
Generalizing a similar concept which has proved to be useful in the

study of the oscillatory behavior of linear n-th order equations
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[3,5], we shall say that b = b(a) is a (k,n-k) -conjugate point
of (1.1). The absence, on an interval , of a point which pos-
sesses a (k,n;k)-conj ugate point on a wll be referred to as
(k, n-k)-disconjugacy of (1.1) on a. Evidently, (1.1) is dis-
conjugate on a if and only if it is (k,n-k)-disconjugate on a
for all k =1,...,n-1.
The main result of this section is the follow ng sufficient

condition for (k,n-k)-disconjugacy.

Theorem J5. JL let AN A Ay A Dbe defined b” partitioning

the matrix A according to the schene

(5.1) A= s
34

wher e AL iS. ja kxk-matrix, and set

(>-9 HALL, = <P, = 1,234 1£pEco.
Lt

(5.2*) T(t) = exp{| (o +,)at].
a

Denote by w the solution of the second-order differential equa-

tion

(%) (> Jiv) "+ <Pryw=0

with the initial conditions wa) =0, w (@ =1. JP W >0 in

the jnterval [a,b], then equation (1.1) JLS (ksn-k)-disconjugate on

[a,b].
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Suppose there exists a point a € [ac) which has a (k,n-k)-
conjugate point b' € (a,c]. |If the coefficient matrix A is
partitioned in accordance with (5.1) and if u, v denote the
vectors u = (x. i\({) and v = (’\._i_‘- . -*Xl)]* respectively,

1 o

(1.1) may be replaced by the system

u’ = AU + AV

' =
v A311+A3

(5. 4)
Vs
where u(a') :v(b!.) =0. If we set R= ||q|P, S = ||v||p and ob-
serve (4.11) and (5.2), we find that (5.4) leads to the system of
inequalities | R | E<gR+0.5 | St E<gR+<g S where Ra») =
S(b') = 0. Hence, the function a == is subject to the inequal -
ity

ot < SYSRe|+rIS |1 < §2(5(0,R40,8) + R(0R40,8) ],

i-.e. s

2
(5.5) al <pa, T (P-gpja+P,

W note that a(a*) =0, and a(t)-*+co for t->b'.
If w is a solution of (5.3), then the function r:cpzw(w’)"l

is a solution of the Riccati equation
(5.6) ‘T"=(p1'2+(tp+tp)‘r+tp.
3 174 2

By hypothesis, (5.3) has a solution w such that w(a) =0 and

wt > 0 in [a,b]. Because of the Sturm separation theorem (or,
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rather, a trivial modification of it) the solution w of (5.3)

1

defined by wl(a') = 0, wl(a‘) 1 will have a positive deriva-

tive in [a',b]. The function 7 = ¢o_w (w'l)—l will thus be a

solution of (5.6) which vanishes at a' and remains finite on

[a' ,b']. Subtracting (5.6) from (5.5), we obtain

t
d
= [(c—nexp{—ufa' [(0+7)¢, + 0, +¢,1ds}] < O.
Since o(a') = T(a') = O, it follows that o0 T throughout

[at ,b']. But this is absurd, since T remains finite in this
interval and 0 -—+4+00 as t-b!'. The assumption that the inter-
val [a,b] contains a point and its (k,n-k)-conjugate has thus led
to a contradiction. This completes the proof of Theorem 5.1.

We illustrate the use of Theorem 5.1 by two examples. First,
we consider the scalar n-th order equation

(n) (n-2) . _
(5.7) Yy + r oY +eoot ry + Iy = o
which, in the usual manner, we replace by a vector equation of

(n-1)

the form (1.1), where x is the vector (y,y',...,y¥ ), and A

is the n x n matrix whose only non-zero components are

=1 = o o0 - = = LI - . i i-
%m,m+1 (m=1, »n-1), a_ o rm—l(m 1, sn-1) If A is parti

tioned in the manner indicated by (5.1) and we set k=n - 1

(i.e., Al is an (n-1)x(n-1)-matrix), it is easily seen that, for

all pe [1,000, Al = layl, = 1, lall, =0 and gl = lizll,

where r is the vector (ro,rl,...,rn_l,o). The function (5.2!')
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is n = et, and an application of Theorem (5.1) yields the fol-

lowing result.

Let w Dbe the solution of the second-order equation

(5.8) w' o+ w4+ Herw =0

determined by w(a) = 0, w'(a) = 1, and let y e the solution

of (5.7) satisfying the initial conditions y(a) = y'(a) =...

= y(n_z) (a) = O, y(n—l) (a) = 1. f w! > (0] iﬁ [a:b]’ _t_}ﬁ_rl

y(n—l)(t) > 0 (and therefore, as shown by a repeated application

of Rolle's theorem, y(t) > O) in the same interval.

Our second example deals with the second-order vector-matrix

equation

-1 '
(5.9) (B""u') + cu=o0,

vwhere B and C are continuous nxn-matrices, and B 1is non-
singular, on [a,b]. We wish to obtain a condition which prevents
the existence of a solution vector u of (5.9) such that wu(a') =
u' (b') = 0, where a  a' < b' < b. Writing (5.9) as a first-order
system for a (2n)-dimensional vector (u,v), we have u' = Bv,

v! = -Cu, where v is subject to the condition v(b') = 0. Par-
titioning the 2n X 2n coefficient matrix of the system in accord-
ance with (5.1) (with k=n), we obtain A, = A =0, A_ = B,

1 4 2

A3 = -C. The existence of a solution of (5.9) with the indicated
properties corresponds to the existence of an (n,n)-conjugate point

for the first-order system. Accordingly, Theorem 5.1 leads to the

following criterion (cf.[1,8]).
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Let w Dbe the solution of

[(IlBllp)"lw'] + liclw = o,

defined by w(a) = 0, w'(a) = 1. f w' >0 in [a,b], then the

equation (5.9) cannot have a nontrivial solution vector u for

which wu(a') = u'(b') = 0, a a' < b!' < b.
Theorem 5.1 will yield more accurate criteria if it is pos-

sible to obtain fundamental solutions of the equations
(5.10) C' = AC, D' = A D,

where A and A are the square matrices appearing in (5.1).

1 4
1 1 1

- 1 - - -
Since (C l) = -C "C'C = ~-C A the first equation (5.4) can

1

l,
. . -1 ! -1 - -1
then be written in the form (C "u) = [(C 7)+C Al]u + C A2v =

C_1A2v. Similarly, the second equation (5.4) transforms into
-1 -1 . .
(D "v) =D A3u. Accordingly, if we set

the system (5.4) may be replaced by

-1
C A2DV

D lA4CU,

U|

]

Vl

and Theorem 5.1 leads to the following result.

Theorem 5.2. Let A (k=1,2,3,4) have the same meaning as in

Theorem 5.1, and let C and D denote fundamentall solution ma-

trices of the equations (5.10). Let w denote the solution of
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(5.11) (¢;lw‘)' +ow = 0o, w(a) =0, w'(a) =1,

where .

(5.12) 0. = llctapl , ¢.=ptacl, pell,ol.
' 2 2 'p’ 3 4" "p’ ?

f w' >0 for te [a,b], then equation (1.1) is (k,n-k)-discon-

jugate on [a,b].

As an application of this result, we consider the equation
(1.1) corresponding to the n-th order equation

(n)

(5.13) ’ y - r(t)y =0
in the manner described in the discussion of equation (5.7). The
only non-zero elements bvu of the kxk-matrix Al are

. . k
bv,v+l =1 (v=1l,...,k-1). Since Al is constant and A1 = 0,

the solution C of the first equation (5.10) with the initial

condition cC(a) = I 1is
k—lA\])_tV
C =exp[A,t] =I + X —
1 vl
v=1
and we have
VoV
-A_t k-1 At
-1 1 Vo]
C = e = I + Z (-1) .
vi
v=1

Similar expressions (with k replaced by n-k) are obtained for D
-1

and D ~. The matrices A2 and A3 have each only one nonvanish-

ing element -- 1 and p(t), respectively -- which appears at

the bottom of the first column. Combining these facts, we find

that the (kxn-k)-matrix C_1A2D has the non-zero elements




Ktd- V= 2
k- t
= - Vo= T — k? = l ' n—k-
6'\)“ ( l) (k“\)—l)l(“-l)l 3 1.! b ) u ] 3
Hence, L
_ k-1 2m n-k-1 £ .2
e, ., = max =~ — T Ivyr
" m~O (ml ) =0
’) 2 = . . - .
for YO. +...+ \r(r Jom 1 .Accordingly, if <p is the quantity

defined in (5.12) (for p=2) we have, for t ~ O,

K~142™ n-k-1 .21 _ o _A
qo& - p 2L 2f --?-—£ <"1+t ) € (1+t) 4
m=0 (ml) O (V)
ice., <p .<E (1+tF 2 . A similar computation shows that

0, < lr(t)] (1+t) 22,

The assertion of Theorem 5.2 remains valid if the quantities
<|% and cg are repl aced, respectively, by upper bounds for these
quantities (this follows either fromthe proof of Theorem 5.1, or
el se by applying the Sturm conpari son theoremto equation (5.11)).
By conmbi ning our estimates for (p2, <R wi th Theorem 5.2 we there-
fore obtain the following criterion.

Let w be the solution of the differential equation

[(1+)2~"W 1"+ (1+)"™~* |p(t)|w=0

deternmined by the initial conditions w0) =0, w (0) = 1. J&

w (t) >0 in [0,b], then the n-th order equation (5.13) cannot

have a. solution y for which y(a) =y'(a = ..=y" -(a) =

y(k+l)(b) 0" y(N-U(y) =0, 0~ a<b, 0"kA"n-2.
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