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NONOSCILLATION AND DISCONJUGACY OF SYSTEMS

OF LINEAR DIFFERENTIAL EQUATIONS

by

Zeev Nehari

Abstract

The differential equations under consideration are of the

form

(1) §f = A(t)x,

where A(t) is a piecewise continuous real nxn-matrix on a real

interval a, and the vector x = (x-j...,x ) is continuous on a.

The equation is said to be nonoscillatory on a if every non-

trivial real solution vector x has at least one component xv

which does not vanish on a.

The principal concern of this paper is the derivation of con-

ditions, expressed in terms of various norms of A, which guaran-

tee the nonoscillation of (1) in a given interval.
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NONOSCILLATION AND DISCONJUGACY OF SYSTEMS

OF LINEAR DIFFERENTIAL EQUATIONS

by

Zeev Nehari

In the present paper we shall discuss various oscillatory

properties of differential equations of the form

(l.D ~ = A(t)x,

where A(t) is a real n x n matrix whose elements are defined

on a real interval a, and x = (x_,...,x ) is an n-vector.
1 n

While the case of principal interest is that in which A is

continuous on a, it soon becomes apparent that this assumption

is too restrictive and that, even for an adequate discussion of

the continuous case, it is necessary to consider coefficient ma-

trices A which may have a finite number of discontinuities at

interior points of a. Accordingly, we shall assume that A(t)

is continuous on a, with the possible exception of a finite num-

ber of interior points at which both the left and the right limit

of A(t) exist. The value of A(t) at a discontinuity t will

be defined as lim A(t); this enables us to define a unique (and

Research supported by the National Science Foundation under
Grant No. GP 23112.
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continuous) continuation of a solution x(t) as the point t is

passed from left to right. A vector x(t) will be called a solu-

tion of (1) on a if it is continuous on a and satisfies equa-

tion (1) in all subintervals of a which do not contain discon-

tinuities of A(t) .

A nontrivial solution x(t) of (1.1) will be said to be

oscillatory on a if each of its components x , ...,x vanishes

at some point of a. Equation (1.1) will be said to be nonoscil-

latory on a if none of its solutions are oscillatory on a, i.e.,

if every nontrivial solution has at least one component which does

not vanish on a.

An alternative description of the oscillatory behavior of

equation (1.1) may be based on the concept of the conjugate point,

which generalizes a similar notion employed in the study of scalar

n-th order equations [3,4,5,6,11]. If [a,b] e a, b will be said

to be a conjugate point of a with respect to equation (1.1) if

there exists a nontrivial solution vector x of (1.1) such that

each component of x vanishes at either a or b and if, more-

over, b is the smallest number for which this is the case. If

no point of a possesses a conjugate point, the equation is said

to be disconjugate on a. Evidently, an equation which is non-

oscillatory on a is also disconjugate on this interval. The

converse is in general not true. While there exist classes of

equation (1.1) for which the concepts of nonoscillation and
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disconjugacy coincide (e.g., equations which are equivalent to

scalar equations of the form y(n) + p(t)y = 0 [6]), an equation

(1.1) may be disconjugate on an interval without being nonoscil-

latory. As an example, we consider the equation

n 2 1 n

(1.2) y' = 2(t-a ) [£(t-a v) ]" E y v , k=l,...,n
K v=i v=i

(a real). Clearly, (1.2) is solved by the vector

y^1' = [(t-a ) ,...,(t-a ) ], and also by the constant vectors

y (k=2,...,n) whose only non-zero components are y = 1 and

fk)yv = -1. If Y is the solution matrix formed by the column

vectors y ,...,y , it is easily seen that the determinant of

2 2

Y has the value (t-a ) +...+ (t-a ) and this shows that, unless

all the a coincide, Y is a fundamental solution matrix on

(-00 ,oo). On an interval a containing the points a ,. . . ,a

each component of y has a zero, and the equation thus is oscil-

latory on a. Nevertheless (except in the case in which the set

a ,...,a contains only two different numbers), no point in (-co,oo)

has a conjugate point. In fact, as the following argument shows,

all real solutions of (1.2) which are not constant multiples of y

are nonoscillatory on (-00,00). Since Y is a fundamental matrix,

all real solutions are of the form Yc, where c = (a ,...,a ) is

a constant vector. If the n components of Yc are to vanish at
points t ,...,t , respectively, it follows from the special form

2 2 n

of Y that an(tv-av) + av_Li = o (k=l,. . . ,n-l) , a (t -a ) - £ a = o.
v=2
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n 2
Adding these equations, we obtain a T (t -a ) = 0. Since

1 k=l K *

a = 0 would lead to the trivial solution, this implies t = a ,

k = l,...,n, and thus a =...= a = 0, i.e., the only oscillatory

solutions of (1.2) are a y 1 , a ^ 0. A pair of conjugate points

a,b (a<b) is thus possible only if all the numbers a ,...,a

coincide with either a or b. In this case, a indeed possesses

a conjugate point, but no other point does.

Finally, we consider a property of equations of the type (1.1)

which is closely related to both nonoscillation and disconjugacy,

and which has the merit that it can be defined without reference to

the components of a solution vector. The equation is said to be

suborthogonal on a if, for t e a , t e a and any nontrivial so-

lution vector x, the scalar product x(t )x(t ) is positive. If

b is the conjugate point of a, we clearly have x(a)x(b) = 0;

thus, suborthogonality implies disconjugacy. Suborthogonality is

preserved if the coefficient matrix A is replaced by A = QAQ~ ,

where Q is a constant orthogonal matrix. Indeed, if x is a

solution of (1.1), then y = Qx is a solution of y! = A y , and

the assertion follows from the fact that Qx(t )*Qx(t ) = x(t )x(t )

If x(a)x(b) = 0, it is easy to see that there exists an orthogonal

matrix Q such that n - 1 of the components of Qx vanish at a

and the remaining component vanishes at b, i.e., b is a conjugate

point of a for the coefficient matrix QAQ [7]. Hence, equa-

tion (1.1) is suborthogonal on a if and only if there exists a Q
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such that the equation x1 = QAQ is disconjugate on a.

2. The conditions for nonoscillation, disconjugacy and subortho-

gonality to be derived in this paper are all expressed in terms of

certain norms of the matrix A or of some of its submatrices. If

we employ the Euclidean norm ||A||, it follows from ||QAQ || = ||A||

and the remark made concerning the relation between disconjugacy

and suborthogonality that a sufficient condition for disconjugacy

which depends only on ||A|| will also guarantee suborthogonality,

and vice versa. In the present section we shall show that such a

condition is also sufficient to guarantee nonoscillation, although

the latter is a more restrictive property than disconjugacy. This

will again be achieved by replacing the coefficient matrix A by

QAQ where Q is orthogonal in the interval under consideration.

However, in the present case Q will only be required to be piece-

wise constant, and the matrix QAQ" may thus have additional sim-

ple discontinuities.

Theorem J2.JL. JEJE equation (1.1) _is oscillatory on an interval a,

then there exists <i piecewise constant orthogonal matrix Q such

that the equation

(2.1) y» = QAQ^y

is not disconjugate (and thus also not suborthogonal) on a. Tn
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particular, Q may be required jto b£ a. diagonal matrix whose diag-

onal elements q ,...,a have the following property: For each

k (l^k^n) there exists 3L tfc e a such that qk = 1 for t < tfc,

tea and q = -1 for t ;> t , tea.

The existence of a matrix Q of the specified form will be

needed in Section 4. If it is only desired to establish the asser-

tion made above regarding the role of the norm ||A|| in nonoscil-

lation criteria, it is sufficient to prove the first part of Theor-

em 2.1. This is easily achieved by means of the following argument.

If equation (1.1) is oscillatory on a, there exist a closed inter-

val [a,b] in a and a solution x of (1.1) such that x is os-

cillatory in [a,b] and two of the components of x vanish, respec-

tively at a and b. If all the components of x vanish at eith-

er of the two points, the assertion is trivial. If there are com-

ponents x^ which do not vanish at a or b, we have x, (t ) = 0

for t e (a,b) . We now denote by Q = Q (t) the diagonal matrix

whose diagonal elements q are defined as follows: If ^C31) = 0,

= 0 or x_ (a)x. (b) < 0, we set q = 1 in [a,b]; if

xk(a)xk(b) > 0, we take qfc = 1 in [a^k)
 a^d qfc = -1 in [t^b] .

Q is orthogonal and, clearly, Q (a) x(a)-Q (b) x(b) < 0 (except in

the trivial case just mentioned) . By the construction of Q , the

vector y(t) = Q (t)x(t) is continuous on [a,b] (notwithstanding

the discontinuity of Q (t)), and it is a solution of the equation

y! = C^AQ^ y. But, as just shown, y(b)y(a) < 0, and this equation
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thus fails to be suborthogonal in [a,b]. By continuity (and the

fact that y(a)y(a) > 0) , there exists a point c€ [a,b] such

that y(a)y(c) = 0 . As shown in section 1, this implies the

existence of a constant orthogonal matrix Q such that the equa

-1 -1

tion w! = Q2 [Qj&Q± ]®2
 w hasJ a t c> a conjugate point with re-

spect to a. This proves our assertion (with Q=Qfl^) #

Before proving the second part of Theorem 2.1, we illustrate

the use of the result just obtained.

Theorem J2.J!.. Let p(t) be positive and piecewise continuous on

[a,b] and let A = min [A (b) ,,u (b) ], where A (b) and ^(b) are,

respectively, the lowest eigenvalues of the boundary value problems

(2.2) (puM? + Ap||A||2u = 0, u(a) = u' (b) = 0,

(2.3) (pv')f + MPllA||2v = 0, v' (a) = v(b) = 0 ,

and ||A|| .is the Euclidean norm of the matrix A. !£ A > 1, then

equation (1.1) _is both nonoscillatory and suborthogonal on [a,b].

This bound for A JLJ-L the best possible; indeed, the conclusion

does not necessarily follow if A = 1.

Proof. Suppose (1.1) is oscillatory on ta,b]. By Theorem 2.1,

there exists a ce [a,b] such that c is the conjugate point of a

with respect to an equation y! = By with ||B|| = ||A||, i.e., each

component y of y vanishes at either a or c. From y! = By

we obtain



8 .

lly« II2 = llBYll2 1 H B | | 2 | | y | | 2 = H A | | 2 | | y | | 2 ,

and thus, after multiplying by the positive function p(t) and

integrating over [a,c],

n CC t 2 P° 2 2

[J PY^dt - J p||A|| ykdt] £ 0.
a

J
k=l a

It follows that there must exist at least one index k for which

The function y vanishes at either a or c. If Yv(a) = 0k K

then, by classical results,

A(c) J p||A||2y^dt £ J py^dt,
a a

where x(c) is the lowest eigenvalue of the problem (2.2) for the

interval [a,c]. Comparing the two last inequalities, we find that

A (c) £ 1. Similarly, yv(c) = 0 leads to the conclusion jLt (c) £ 1,

where /i (c) is the lowest eigenvalue of the problem (2.3) for the

interval [a,c]. Since A (c) and ji (c) are nonincreasing for in-

creasing c, we thus find that if (1.1) has an oscillatory solution

on [a,b] we must have A = min [A (b) ,JLI (b) ] £ 1, contrary to our as-

sumption. Hence, (1.1) is nonoscillatory on [a,b].

That the assumptions of Theorem (2.2) also imply suborthogon-

ality follows by observing that if (1.1) is not suborthogonal, then

there exists a matrix C, with ||c|| = ||A||, such that w1 = Cw is
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not disconjugate. The rest of the argument is the same as before.

The special case of Theorem 2.2 corresponding to the choice

p(t) = ||A(t) ||" provides a new proof for a previous result [7]

according to which (1.1) is both nonoscillatory and suborthogonal

on [a,b] if

(2.4) J ||A(t)||dt < •£.
a

Indeed, t he e i g e n s o l u t i o n s of (2.2) and (2.3) a r e in t h i s case

u = s i n [ A j ||A(s) | | d s ] , v = cos [ A J | |A(s ) | |ds ] ,
a a

r e s p e c t i v e l y , where

A J ||A(t)||dt = |
a

and A (b) = /i(b) = A. The condition A > 1 is therefore in

this case equivalent to (2.4). Since equality in (2.4) is not suf-

ficient to guarantee nonoscillation or suborthogonality (cf.[7]),

this example also shows that the condition A> 1 in Theorem 2.2

is the best possible of its kind.

3. Before proving the second half of Theorem 2.1, we have to de-

vote some attention to what may be called "minimal intervals of

oscillation" associated with an equation (1.1) which is known to

be oscillatory on an interval a. By this we mean closed inter-

vals [a,b] e a such that the equation is oscillatory on [a,b] but
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not on any subinterval of [a,b]. The existence of at least one

such minimal interval is elementary. The example discussed at

the end of Section 1 shows that in the case in which a is a

closed interval [a' ,b! ], it is possible that a j4 a1 and b ^ b! •

A minimal interval of oscillation [a,b] is associated with at

least one nontrivial solution x of (1.1) which is oscillatory on

[a,b]. Evidently, x must have at least two components which van-

ish at a and b, respectively. A more accurate description of

x is given in the following statement.

Theorem .3.JL. JCJ. [a,b] jus a. minimal interval of oscillation of

equation (1.1) , then there exists ja nontrivial solution x o_f

(1.1) such that each component x^ ojE x has one of the following

three properties;

(a) x^a) = 0;

(b) xk(b) = 0;

(c) x^( t) vanishes at some point of [a,b], but ^ ( t ) !> 0

or x (t) £ 0 throughout [a,b].

Proof. If there is more than one minimal solution, we confine our

attention to that (or those) for which the number m of components

which vanish at either a or b is as large as possible. We as-

sume that m < n, since otherwise the assertion of the theorem is

trivial. We now choose a number c e [a,b] which is close enough

to b so that the zeros of the components of x with the property
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(c) are in (a,c) , and we define a nontrivial solution y of (1.1)

in the following manner: Yk(
a) - ° f o r those k for which

v (a) = 0; Yv(
c) " ° f o r k s u ch that ^(k) == °* with one

exception, the remaining components y are to vanish at one of

the internal zeros of the corresponding components x, . For the

exceptional component y f we require, say, yk!(
a) - !• Since (1.1)

is nonoscillatory in [a,c], this solution y is uniquely determined

and, moreover, y is a continuous function of c (as long as

CG (a,b)) [2]. Elementary considerations show that if c-*b

through a suitable sequence of values c ,c ,..., y will have a

uniform limit y which is a nontrivial solution of (1.1), and

which is such that all its components y (k^k1 ) have zeros in

[a,b] which coincide with zeros of the corresponding components of

x. We assert that y is a constant multiple of x. Indeed, if

this were not the case, we could construct a solution w = x + |3y

of (1.1) where the scalar constant p is so chosen that w, „ (a) = 0,
Xĵ n (b) ^ 0.

where k" is such that x̂ tf (a) ^ 0, /\ The solution w would thus

have m + 1 components which vanish at either a or b, and this

conflicts with our definition of m. Hence, y = yx, where y is

a constant.

Suppose now that the component x^t of x changes its sign at

one of its zeros, say t , in (a,b). Since y->Yx uniformly, if

c->b through a sequence {c }, the component y T of y must take

r JC
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both positive and negative values near t if r is large enough,

and it therefore must vanish at some point of (a,c ) . Since all

the other components of this solution y vanish in [a,c ] by con-

struction, y is found to be oscillatory in [a,c ]. But c^€ (a,c),

and the assumption that the solution x has a component which sat-

isfies neither of the conditions (a) , (b) , (c) has thus led to a

violation of our hypothesis that [a,c] is a minimal interval of

oscillation. This completes the proof of Theorem 3.1.

We also need the following result.

Theorem 3.2. Let equation (1.1) have a solution x on an interval

[a^b] such that each of its components x^ has one of the follow-

ing three properties:

(a) xk(a) = 0;

(b) xk(b) = 0;

(c) xk(a)xk(b) < 0.

Then a has ja conjugate point c e (a,b] with respect to equation (1.1)

Proof. Suppose there exists no conjugate point in (a,b]. For ele-

mentary reasons there will then exist a uniquely determined solution

y of (1.1) for which each component y takes prescribed values

(not all zero) at either a or Y, where ye (a,b]. We choose

these values in the following manner: We set Y-i_(a) = 0 if x
v(

a) = 0

y,(Y) = 0 if ^ ( k ) = 0, and Y v(
a) = xi<.(

a) ^ n those cases in which
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v (a)jc (b) < 0. The solution y(t) = y(t;y) will then be a con-

tinuous function of y for y e (a,b]. If, beginning from b,

Y decreases continuously, we must reach a value y e (a,b) such

that, for some k characterized by property (c), we have

y, (a;Y )yn (t>;Yrt) = 0. Indeed, y (a, Y)y, ( Y, Y) varies continuously
K 0 K 0 K K

with Y and the absence of such a value YQ would imply that

Y v(
a' Y)yv (Y, Y) < 0 for all ye (a,b] and all k with property (c) .

Thus y(t,y) would be oscillatory for t e [a,y] with Y arbitrar-

ily close to a, and this is absurd since yv(a,Y) has a fixed non-

zero value if k has property (c). Accordingly, for some k there

exists a y such that either y.(a;Y^) = 0 or yv(Yrk7Yrk) = 0.
0 Kl O K U U

If x had a total number m of components which vanish at either

a or b, the total number of components of y(t;YQ) which vanish

at either a or Y will be at least m + 1. We can now repeatthis procedure by letting y decrease beyond Yo*
 a^d it is clear

that in this way we finally arrive at a point c € (a,b] such that

all components of y(t;c) vanish at either a or c. This completes

the proof of Theorem 3.2.

We are now finally in a position to prove the second part of

Theorem 2.1. If the solution x of (1.1) is oscillatory on a,

there exists an interval [a^b] e a which is associated with a solu-

tion y of the type described in Theorem 3.1. If y has no com-

ponents with the property (c), the assertion of Theorem 2.1 holds

trivially. If there are such components y , we define a diagonal

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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matrix Q with the following diagonal elements q : If y (t ) = 0

(t G (a,b)), we set q = 1 for t€ [ajtO a n d <3k = -1
 f o r

te [t ,b]. For components of y which satisfy properties (a) or

(b) , we set q = 1 for te [a,b] . The (continuous) vector w = Qy

will then be a solution of the equation w1 = QAQ w, and it is clear

that w satisfies all the assumptions of Theorem 3.2. According

to the latter theorem, there will thus exist a conjugate point to

a in (a,b] with respect to the equation w1 = QAQ w. This con-

cludes the proof of the second part of Theorem 2.1.

4. in the present section we obtain nonoscillation criteria which

depend on the matrix norm ||A|| induced by the Holder norm
P

1n —
i|x|| = ( £ I V

P k=l

of the vec tor x =(x , . . M x ) , i . e . , ||A|| = max ||Ax|| for ||x|| = 1.

The l i m i t i n g cases p = l,oo correspond to the "maximum-column

norm11

n
(4.1) ||A||. = max £ | a I

1 s r=l r S

and the " maximum-row norm1

n
(4.2) llAll = max S la I1 "oo ., ' rs1

r s=l

of the mat r ix A = (a ) ;
r s
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The only example of a nonoscillation criterion expressed in

terms of a Holder norm ||A|| (other than the Euclidean norm
P

||A|| = ||A|| ) is due to B. Schwarz [9,10] who showed that (1.1) is

nonoscillatory on [a,b] if

(4.3) ||A|| dt < 2 log 2.
aa

An example, to be exhibited later, will show that the constant

2 log 2 is the best possible; indeed, the conclusion does not

necessarily follow if "<" is replaced by "<£" .

We shall prove the following result.

Theorem 4̂ -JL. JE_f either

(4.4) j ||A|| dt < c
a p

or

(4.5) J ||A*|| dt < cp,
p

where

|
a p

OO — —

f P q q +
OO

(4.6) c = f (l+s P ) P ( l + s q ) q d s , l < p < o o , - + - = 1,
P J P <3

and c_ , c are defined as lim c for p -> 1 or p ̂>oo, then
1 oo p

equation (1.1) is both nonoscillatorv and suborthogonal on [a,b].

For p = 2, both (4.4) and (because of ||A*||2 = ||A|| ) (4.5)

reduce to the sharp condition (2.4). Since
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r°° -l -l
c = [max(l,s)] (1+s) ds = 2 log 2,
oo J

o

(4.4) yields the sharp condition (4.3) for p = oo . Because of

c - c and ||A* || = "A"rV ( 4 # 5 ) l e a d s to t h e n o n o s c i l l a t i o n

condit ion

(4.7) I|A|| dt < 2 log 2,

a X

where ||A|| is the maximum-column norm (4.1). (4.7) is likewise

a sharp condition, as will be shown later. The constant (4.6) is

thus the best possible for p = 1,2,00. There are indications that

it is the best possible constant for all pe [l,oo], but the con-

struction of the necessary examples seems to be rather laborious.

It will be shown presently that c £ —, with equality only

for p = 2. It is therefore of interest to note that the conclusion

of Theorem 4.1 will also hold if the left-hand sides of both (4.4)

and (4.5) are bounded by the larger constant ~.

Theorem 4.. 2. Ijf A satisfies the two conditions

b
(4.8) f ||A|| dt < ̂

P 2
|

a P

and

b
( 4 . 8 ' ) J ||A*|| dt < ^.

p 2
|

a p

then equation (1.1) is both nonoscillatorv and suborthogonal on
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Theorem 4.2 is an immediate consequence of the fact that

( 4 . 9 ) (I!A| |2)2 £ | |A*||p | |A||p.

2
To prove (4.9), it is only necessary to note that (||A||2) = A,

where A is the highest eigenvalue of the positive-definite ma

trix A*A. If x is the corresponding eigenvector, we have

||A*Ax|| = |jAx||p = A||x| |p ,

and thus

9 l|A*Ax||
2 P <L | | A * A | | £ I I A I I | | A | | p( | | A | | 2 ) 2 = A = | | x | |

 P <L ||A*A|| £ IIA ÎI | |A| |p .
Pp

If both (4.8) and (4.8T) are satisfied, it follows from (4.9) that

condition (4.4) holds for p = 2, and Theorem 4.2 is thus found to

be a consequence of Theorem 4.1.

Before we begin the proof of Theorem 4.1 we show that c < —

for p ^ 2, as asserted above. If we set
1 1

0 = (l+sP)P (l+sq)q ,
_1

-1 -1 x
P = a, q = 3, <P(x) = x log(l+s )5

we have log 0 = <p(oc) + <p(p) . A computation shows that <p" (x) > 0

1 i
if s ̂  1, and it follows therefore that -r log 0 = -r[(p(<x) -Kp(3) ] >

2 2
= <p(i) = i log(l+t2). Hence, by (4.6)

oo oo
c
P

r i-i r
= U) ds <

J r J
o o

as asserted. The convexity of the function <p(Y) also shows that
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c increases from 2 log 2 to -~ as p increases from 1 to 2,
P z

and then decreases to 2 log 2 as p increases from 2 to oo.

We now assemble some of the facts needed in the proof of Theor-

em 4.1.

a) If Q is the diagonal matrix described in Theorem 2.1,

then
(4.10) IIQAQ"1!! = II A|| •

Indeed, we have ||Qy|| = ||y|| for any vector y . Since Q = Q| ||y||

it follows that

a n d t h i s i m p l i e s b o t h || Q A Q ~ X|| £ | | A | | a n d | | A | | £ H Q Q ) !
P P P P

b) In order to prove Theorem 4,1, it is sufficient to show

that, under the stated hypotheses, equation (1.1) is disconjugate

on [a,b]. This follows from Theorem 2.1 and item (a).

c) If the conclusion of Theorem 4.1 follows from condition

(4.4), it also follows from condition (4.5). This is seen by com-

bining the information in item (b) with the fact that (1.1) is dis-

conjugate on [a,b] if and only if the adjoint equation yT = -A*y

is disconjugate on [a,b]. This fact, in turn, follows by observing

that

(yx) f = yAx - xA*y = yAx - yAx = 0,

i.e., yx is constant in an interval in which A is differentiable.



19.

Since x and y are continuous on [a,b], we have yx = const,

throughout [a ,b].

If ce [a,b] is a conjugate point of a for equation (1.1),

the latter has a nontrivial solution x = (x , ...,x ) such that

v (s ) = 0, k = l,...,n, where either sfc = a or sk = c. Since

x f 0, there exists a k1 such that x-f (c) ^ 0. If it were true

that c is not a conjugate point of a for the adjoint equation,

the latter would have a unique solution y = (y..,--*,y ) such that

y(a+c-s ) = 0 for k ^ k! and y (c) = 1. We would then have

x(a)y(a) = 0 and x(c)y(c) = x^t (c) ^ 0. Since, as just shown,

xy is constant on [a,b], this is absurd. Hence, c must be a

conjugate point of a for the adjoint equation.

d) If x is a differentiable vector, then

This is a consequence of the triangle inequality. Indeed, for any

vector norm || || we have ||x(t2) || = Hxft^+x(t2)-x(t]L) || £ ||x(t1) || +

||x(t )-x(t ) ||. Interchanging the roles of t and t , we obtain
fc JL -L «

|x(t )||-||x(t )|| x(t )-x(t )

-£-n 1 £ H

and (4.11) follows.

We now prove Theorem 4.1. According to item (b) on the preced-

ing list it is sufficient to show that, under the stated hypotheses,

the interval [a,b] cannot contain a conjugate point c = c(a) for
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equation (1.1). Suppose, then, such a conjugate point exists, i.e.,

suppose (1.1) has a nontrivial solution x such that m(l£m<n) of

its components vanish at the point a and n - m components van-

ish at c. Separating these components, we write x = u + v, where

U(a) = v(c) = o and the number of not identically vanishing com-

ponents of u and v is m and m - n, respectively. Setting

||U|| = R, ||v|| = S, a = f, we have R(a) = S(c) = 0, and

p p b
1 1

(4.12) | CJ» | = |S~2(SR'-RS* ) | ̂  s"2(Rq+Sq)q(|R' | P+iS'| P) P

at those points at which a! exists. An application of (4.11) to

u and v shows that

| R ' I P + | s ' | P 1 ( l l u ' l l ) p + ( l l v ' L ) p = ( i l x ' l i _ ) p

xr Ir IT

and thus, by (1.1),
_1 JL

[|R« | P + |S» | P ] P 1 HAxll 1 llA|| | | x | | = I|A|| ( R P + S P ) P .
P P P P

Accordingly, (4.12) leads to the inequality
1 A

(4.13) [ crt | £ (l+aq)q(l-K7P)P||A|| .
P

The function a(t) varies continuously from 0 to oo as t in-

creases from a to c, and it thus follows from (4.13) that

c p i j ( l+aq)q( l+ap)p |a» |dt £ J ||A||pdt ^ j ||A|| dt
a a a.

where c is the constant (4.6). But this contradicts assumption

(4.4), and the proof of Theorem 4.1 is complete.
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We add here a remark concerning the cases p = 1 and p = oo .

If u and v are two vectors such that , for every k, either

u. = 0 or vk = 0, then we have IM^ + Hv^ = Hu+vl̂  and

Hull + llvll = l|u+vl| . I t is of interest to note that the val-

ue 2 log 2 for both c and c can be obtained by the sole

use of th is property and that, as a resul t , we have the following

more general cr i ter ion.

Theorem 4..J3. Let ||| y||| be a, vector norm with the property that

HI u+v||| = HI u||| + III v||| for two vectors u, v such that , for

every k, either u^ = 0 cxr v = 0, and le t |||A||| bê  the matrix

norm induced by ||| y||| . j^f

(4.14) J |f|A||| dt < 2 log 2,
a

then equation (1.1) is^ disconjugate on [a,b] •

Examples of vector norms with this property, in addition to

Hyl^ and Hyll^ , are the norms ||| y||| = a 1 | y 1 | + . . .+ a^j yn | and

HI y||| = max a | y | , where the a are given positive constants.

To prove Theorem 4.3 we set R = |||u||| , S = |||v||| , a = —•, where

u and v have the same meaning as in the proof of Theorem 4 .1 .

We then have

| at | £ S~2(S|R' |+|S« I)

£ s ~ 2 ( s | | M l III +R|||vMH>,

where the last inequality follows from (4.11). Hence
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|o« I £ S"2 max[S,R](||| u' ||| +|||v' ||| ).

By hypothesis ||| u1 ||| + ||| v1 ||| = ||| y' ||| and, by (1.1) ,

III y « III 1 III A | | | III y | | | = III A | | | ( R + S ) . T h u s

As before, the assumption that (1.1) is oscillatory implies that

a (a) = 0 , a(c) = oo , where c€ (a,bj. Since

P°° -1
I ((I4o)max[l,a]) da = 2 log 2,

o

we obtain
2 log 2 ̂  J !|| A||! dt £ J HI A||| dt.

a a

This contradiction to (4.4) proves Theorem 4.3.

We now exhibit an example which shows that the constant 2 log 2

appearing in conditions (4.3) and (4.7) (the special cases p = ao

and p = 1 of condition (4.4)) is the best possible. Using the

abbreviation Y = -r(a+b) , we choose a function r(t) which is in-

creasing and differentiable in [a,y)j and for which r(a) = 0,

lim r(t) = log 2. In [y,b]3 we define r by

r(Y+t) = -r(Y-t), Y*e(Y,b], and r(y) = -log 2.

We then define an nxn-matrix A as follows: All elements of A

other than a-i-i* a , a , a are identically zero. In [a,y)j we

set ai:L = a = 0, a 1 2 = r
1 , a 2 2 = -r

1 ; in [y,1o], we take

a = a = 0 , a = r1 , a = -r! . It is readily confirmed that

the equation x1 = Ax is solved by the following continuous vector



23.

function x = (x , ...,x ): x 2 = x 3 = . . . = x^ = 0; x 1 = 1-e

for t€ [a,Y), x = er for t€ [Y,b]; x 2 = e~
r for te [a,y),

x = 1 - e r for te [Y,lo]. Since x^a) = x2(b) = 0 and all

other components of x vanish identically, the equation is oscil-

latory in [a,b] . The maximum-row norm is ||A|| = r1 , and there-

fore

rb rb

||A|| dt = r'dt = 2 log 2.
j cP «
a a

This shows that the constant appearing in (4.3) cannot be improved.

The same example also shows that inequality (4.7) is the best

possible. The point b is a conjugate point of a for the equa-

tion x! = Ax. As shown above, it therefore is also a conjugate

point of a with respect to the adjoint equation y! = -A*y.

Since ||A|| = ||A*|| , the equation y! = -A*y has the required

properties.

5, A conjugate point b = b(a) of an equation (1.1) is associated

with a solution vector x = (x.,.,.,x ) such that k (l^k^n-1)

of its components vanish at a and the remaining n - k components

vanish at b. Without loss of generality we may assume that

xx(a) = x2(a) =...= x^a) = X j ^ W = x k + 2
( b ) =---= x

n^
b ) = °7

this can always be achieved by re-numbering the components of x.

Generalizing a similar concept which has proved to be useful in the

study of the oscillatory behavior of linear n-th order equations
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[3,5], we shall say that b = b(a) is a (k,n-k) -conjugate point

of (1.1). The absence, on an interval a, of a point which pos-

sesses a (k,n-k)-conjugate point on a will be referred to as

(k,n-k)-disconjugacy of (1.1) on a. Evidently, (1.1) is dis-

conjugate on a if and only if it is (k,n-k)-disconjugate on a

for all k = 1,...,n-l.

The main result of this section is the following sufficient

condition for (k,n-k)-disconjugacy.

Theorem J5.JL. Let A^ A^ Ay A^ be defined b^ partitioning

the matrix A according to the scheme

(5.1)

where A. .is. ja kxk-matrix, and set

(5-2) HArllp = <Pr, r = 1,2,3,4; 1 £ p £ co .

(5.2*) Tj(t) = exp{j
a

Denote by w the solution of the second-order differential equa-

tion

(5*3) (<P~ Tjw! ) + <P3r)w = 0

with the initial conditions w(a) = 0, w
! (a) = 1 . JJP wf > 0 in

the interval [a,b], then equation (1.1) JLS (k5n-k)-disconjugate on
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Suppose there exists a point a! € [a,c) which has a (k,n-k)

conjugate point b! € (a,c]. If the coefficient matrix A is

partitioned in accordance with (5.1) and if u, v denote the

vectors u = (x , ...,x) and v = (^.i'• • • *x )* respectively,

(1.1) may be replaced by the system

u1 = A u + A v

(5.4)

where u(a! ) = v(b! ) = 0. If we set R = ||u|| , S = ||v|| and ob-

serve (4.11) and (5.2), we find that (5.4) leads to the system of

inequalities | R! | £ <p R + o S, | S1 | £ <p R + <p S, where R(a» ) =

S(b!) = 0. Hence, the function a = — is subject to the inequal-

ity

S"2[S|R«

i.e.

2
(5.5) a1 < <p a + (<p -np )a + <p .

3 1 4 2

We note that a(a* ) = 0, and a(t)-*+co for t->b!.

If w is a solution of (5.3), then the function r = cp w(wr)"

is a solution of the Riccati equation

By hypothesis, (5.3) has a solution w such that w(a) = 0 and

w1 > O in [a,b]. Because of the Sturm separation theorem (or,
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rather, a trivial modification of it) the solution w of (5.3)

defined by w (a!) = 0, w'(a* ) = 1 will have a positive deriva-

tive in [a!,b]. The function r = <p w (w )" will thus be a

solution of (5.6) which vanishes at a1 and remains finite on

[a',b!]. Subtracting (5.6) from (5.5), we obtain

— — [(a-r)exp{-f [(a+r)<po + <Pn + <PA]ds}] < 0.dt Ja? 3 1 4

Since a (a1 ) = T(a!) = 0, it follows that o <^ T throughout

[a!,b!]* But this is absurd, since r remains finite in this

interval and a-»+oo as t-»b! . The assumption that the inter-

val [a,b] contains a point and its (k,n-k)-conjugate has thus led

to a contradiction. This completes the proof of Theorem 5.1.

We illustrate the use of Theorem 5.1 by two examples. First,

we consider the scalar n-th order equation

(5.7) y(n) + r n 2y
( n" 2 ) +... + r ^ + rQy = 0

which, in the usual manner, we replace by a vector equation of

the form (1.1), where x is the vector (y,y!,«»«jY ), and A

is the n x n matrix whose only non-zero components are

a = l ( m = l , . . . , n - l ) , a = r (m=l,. . . , n - l ) . I f A i s p a r t i -
m,m+l nm m-1

tioned in the manner indicated by (5.1) and we s e t k = n - 1

( i . e . , A1 i s an ( n - l ) x ( n - 1 ) - m a t r i x ) , i t i s e a s i l y seen that , for

a l l p e [ l , o o ] , | | A l l | p = ||A2Hp = 1, ||A4Hp = 0 and ||A3I| = ||r|| ,

where r i s the vector (r , ^ , . , . , 1 ,0) . The function (5 .2 ' )
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is r\ = e , and an application of Theorem (5.1) yields the fol-

lowing result.

Let w be the solution of the second-order equation

(5.8) w" + w1 + ||r|| w = 0

determined by w(a) = 0, w! (a) = 1, and let y be the solution

of (5.7) satisfying the initial conditions y(a) = y1 (a) =...

= y(n"2)(a) = 0, y(n"1)(a) = 1 . ijf w' > 0 .in [a,b], then

y (t) > 0 (and therefore, as shown by ja repeated application

of Rolle1 s theorem, y(t) > 0) jln the same interval.

Our second example deals with the second-order vector-matrix

equation

(5.9) (B"1^ )' + Cu = 0,

where B and C are continuous nxn-matrices, and B is non-

singular, on [a,b]. We wish to obtain a condition which prevents

the existence of a solution vector u of (5.9) such that u(a! ) =

uf (b! ) = 0, where a £ a' < b! £ b. Writing (5.9) as a first-order

system for a (2n)-dimensional vector (u,v), we have u! = Bv,

v! = -Cu, where v is subject to the condition v(b!) = 0. Par-

titioning the 2n x 2n coefficient matrix of the system in accord-

ance with (5.1) (with k=n), we obtain A = A = 0, A = B,

A 3 = -C. The existence of a solution of (5.9) with the indicated

properties corresponds to the existence of an (n,n)-conjugate point

for the first-order system. Accordingly, Theorem 5.1 leads to the

following criterion (cf. [1,8]).
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Let w be the so lu t ion of

[(liB||p)"1W ] + ||C||pW = 0,

defined by w(a) = 0, w1 (a) = 1. I_f w1 > 0 in [a,b], then the

equation (5,9) cannot have â  nontrivial solution vector u for

which u(a') = u1 (b1 ) = 0 , a £ a! < b1 < b.

Theorem 5,1 will yield more accurate criteria if it is pos-

sible to obtain fundamental solutions of the equations

(5.10) a = A±C, D1 = A^D,

where A and A are the square matrices appearing in (5.1).

-1 ! -1 -1 -1
Since (C ) = -C C1 C = -C A., the first equation (5.4) can

-1 ! -1 f -1 -1
then be written in the form (C u) =[(C )+C A ]u + C AQv =

C A v. Similarly, the second equation (5.4) transforms into

-1 ! -1
(D v) = D A^u. Accordingly, if we set

C*"1u = u, D^v = V,

the system (5.4) may be replaced by

U! = c" A D V

V1 = D-1A4CU,

and Theorem 5.1 leads to the following result.

Theorem 5._2. Let A, (k=l,2,3,4) have the same meaning as in

Theorem 5.1, and let C and D denote fundamental' solution ma-

trices of the equations (5.10). Let w denote the! solution of
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(5.11) (<p~ W )' + <P3
W = 0* w( a) = 0* w' (a) = 1>

where

(5.12) <p_ = HC^A-Dll , <P_. = ||D" A C|| , pe [l,oo].

jEf w1 > 0 for te [a,b]^ then equation (1.1) .is (k,n-k)-discon-

jugate on [a^b].

As an application of this result, we consider the equation

(1.1) corresponding to the n-th order equation

(5.13) y(n) - r(t)y = 0

in the manner described in the discussion of equation (5.7). The

only non-zero elements b of the kxk-matrix A. are

b , = 1 (v=l,...,k-l). Since An is constant and An = 0,v5v+l
 v 1 1

the solution C of the first equation (5.10) with the initial

condition c(a) = I is
v v

k-1 At
C = exp[A..t] = I + £ — — ,

and we have v v

-At k-1 At
1 L ^C""1 = e L = I + E (-1) ^

v-=l

Similar expressions (with k replaced by n-k) are obtained for D

and D~ . The matrices A and A^ have each only one nonvanish-

ing element -- 1 and p(t)^ respectively — which appears at

the bottom of the first column. Combining these facts, we find

that the (kxn-k)-matrix C~ AJD has the non-zero elements
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Hence,
k - 1 2m n - k - 1

= max
m=O (ml

for Y? +...+ Y2 , = 1 .Accordingly, if <p is the quantity
o n-" Jc~ J. <*-

defined in (5.12) (for p=2) we have, for t ̂  0,

k ~ ! 4 2 m n - k - 1 .21 o A

\ L i 2 n 2 2 n 4

2 -̂  2 2
m=0 (ml) ^O (U)

, <p <£ (1+t) ~ . A s imi lar computation shows that

The assertion of Theorem 5.2 remains valid if the quantities

<p and cp are replaced, respectively, by upper bounds for these

quantities (this follows either from the proof of Theorem 5.1, or

else by applying the Sturm comparison theorem to equation (5.11)).

By combining our estimates for (p , <p with Theorem 5.2 we there-

fore obtain the following criterion.

Let w be the solution of the differential equation

[ ( l + t ) 2 ~ n W ] ! + ( l + t ) n " ~ 2 | p ( t ) | w = 0

determined by the initial conditions w(0) = 0, w! (0) = 1. JEf

w! (t) > 0 in [0,b], then the n-th order equation (5.13) cannot

have a. solution y for which y(a) = y1 (a) =. . .= yv (a) =

ss9 ̂  ̂  y(n-U (b) = 0, 0 ̂ . a < b, 0 ̂  k ̂  n-2.
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