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REGULAR MODULES

by

J. Zelmanowitz

ABSTRACT. In analogy to the elementwise definition of von

Neumann regular rings an R-module M is called regular

if given any element m€M there exists feHonL(M,R) with

(mf)m = m. Other equivalent definitions are possible;

and the basic properties of regular modules are developed.

The endomorphism ring E(M) of a regular module DM is

examined. It is in general a semiprime ring with a regular

center. An immediate consequence of this is the recently

observed fact that the endomorphism ring of an ideal of a

commutative regular ring is again a commutative regular

ring. Certain distinguished subrings of E(M) are also

studied. For example, the ideal of E(M) consisting of

the endomorphisms with finite-dimensional range is a regular

ring, and is simple when the socle of OM is homogeneous.

Finally, the self-injectivity of E(M) is shown to depend

on the quasi-injectivity of -,M.
K



REGULAR MODULES

by

Julius Zelmanowitz

INTRODUCTION. The notion of (von Neumann) regularity has

been extended to modules by D. Fieldhouse [5] and R. Ware

[10]. The former author considered arbitrary modules over

rings with identity elements while the latter author dealt

with projective modules only. Their definitions agree for

projectives, and it is in this context that module analogues

of ring-theoretic theorems are produced; e.g. [5; Theorem 8.7]

and [10; Proposition 2.1 and Theorem 2.12]. In §3 of [10]

we additionally find a study of the endomorphism ring of

a regular projective module.

In this paper we will identify a class of modules

(which we will at the risk of confusion still call regular)

somewhat more restricted than the class of modules intro-

duced in [5], somewhat broader than the regular projectives,

but for which structure theorems similar to those mentioned

above are still available. Regular modules are introduced

in §1, and their structure examined in §2. Afterwards, the

endomorphism ring of a regular module is studied.

§JL. Except as indicated, rings will not be assumed

to have identity elements, all modules will be left modules,

and module homomorphisms will be written on the right. When

a ring has an identity element, all modules are assumed to



be unitary.

We begin with some basic notation. Given an R-module

M, we set M* = HomD(M,R), E(M) = Hom_,(M,M). There are R-

bilinear functions ( ., ) : MxM*—>R and [ , ] : M*xM—>E(M)

defined by (m,f) = mf and m[f,n] = (m,f)n for all

m,neM and feM . Note that then [f,m]g = f(m,g) for all

meM, f,geM ; and that these functions induce R-R-bimodule

homomorphisms ( , ) : M ® M *R and [ , ] : M ® M—»E(M) .
E(M) R

We let T(M) denote the two-sided ideal of E(M) generated

by the image of [ , ].

An R-module is called projective if it is a direct
# #summand of a direct sum of copies of R , where R denotes

the ring obtained from R by adjoining an identity element

in the customary manner when R fails to have an identity
JL

element, and R = R otherwise. The usual properties of

projective modules then hold. If T(M) = E(M), with say
£ [f.,m.] = leE(M), f. GM , m.eM, then M is projective

t t
and M = £ Rm.. Conversely, if m.,...,m,eM and N = £ Rm.

is projective, then T(N) = E(N). (The usual proof of the

"dual basis lemma" establishes these facts. See [1; p. 132].

Of crucial importance to our discussion is a straight-

forward variant of a familiar construction. We include

the proof for completeness.

LEMMA 1.1. Let M be .an R-module and I a. left ideal of
2 2

E(M) . Suppose t h a t u = ju e l , v = v e l wi th MJI D Mv = 0



9
and v/i = 0 . Then t h e r e e x i s t s A = A e l wi th M(X © Mv = MA

Consequently Mju © Mv ±s^ a. d i r e c t sununand of M.

2
Proof. Set r? = ( l - /z )v . Then r?ei , v?7 = v(l- /x)v = v = v,

r?2 = (l-pi)vT? = (l-pi)v = v , \£0 = 0 = n/Li- Now

Mr? = M(l-f i )v c MV and Mv = Mv?) c Mr] , s o t h a t M77 = Mv

S i n c e ju and 77 a r e o r t h o g o n a l i d e m p o t e n t s M^+17 ) <=

M/i + MT? = (MpL+MV ) (M+?7 ) £ M(ji+7? ) , s o t h a t Mju + Mv =

M/i + M77 = M(fj.+ r) ) w i t h ju + 7? = (ju+t? ) e l . ||

PROPOSITION 1.2. Let M b£ _an R-module such that every

cyclic submodule of M jLs a. direct sununand of M. Then

given any direct sununand N of M and an element meM,
A &

there exists m1eM such that N + R m = N © R m1 and

N + R m J^ again a. direct sununand of M.

Proof. Let M,N,m be as above. Since N is a direct

sununand of M, there exists a surjection ix : M—->N with

2 # # # #
y. = fi. Now R m £ R mju + R m(l-/n) £ N + R m(l-ju), and

the latter sum is direct since N 0 M(l-/i) = 0. So
x Jt A it it

N + RTm 5 N + R7rm(l-/i), and since RTm(l-^i) £ RTm + RTmpL
A A A

£ R m + N we have N + R m = M/LJ © R m(l-y), proving the
it

first statement. Since R m(l-pi) is cyclic, there exists
# 2

by hypothesis a surjection v : M—>R m(l-/i) with v = v.
it

So N + R m = MJU © Mv. Now apply the previous lemma. ||

The reader should note that this Proposition remains
it

valid with R replaced by R, provided that every submodule



of the form Rm is a direct summand of R. An easy induction

now establishes the following result.

COROLLARY 1.3. Let M t>e jan R-module which has the property

that every cyclic submodule is a. direct summand. Then

every countably (or finitely) generated submodule of M

is a. direct sum of cyclic modules and every finitely

generated submodule of M jjS a. direct summand of M.

We define an R-module M to be regular if and only

if given any meM there exists feM with m = (mf)m = m[f,m]

This provides a natural extension of the customary element-

wise description of a von Neumann regular ring, it being

obvious that a regular ring R is regular as a left R-

module. As an immediate consequence of the definition:

(1.4) A submodule of a. regular module is regular.

In particular every left ideal of a regular ring is

regular. This provides an ample source of regular modules

which are not projective. For example, the ring of linear

transformations of a countable dimensional vector space

contains non-projective left ideals. The maximal regular

ideal of a ring is clearly a regular module, as is any

regular ideal. Some interesting examples of regular pro-

jective modules over non-regular rings appear in [10].

Observe that if m is an element of a regular module,

then meRm.



(1-5) A cyclic regular R-module ĵ s protective and is

isomorphic to a. left ideal of R generated by an idempotent.

Proof. Let m be a generator of the cyclic regular module

M = Rm. Then from the existence of feM with m[f,m] = m

we have that [f ,m] is the identity homomorphism on M.

Hence T(M) = E(M) and M is projective. Furthermore, f
2

is clearly a monomorphism and Mf = R(mf) with (mf) = (mf) . ||

THEOREM 1.6. Let M _be a. regular module. Then every finitely

generated submodule of M Jjs a. direct summand of M. Every

countably (or finitely) generated submodule of M jijs a. direct

sum of cyclic regular modules.

Proof. In view of Corollary 1.3 we have only to prove that

a cyclic submodule Rm of a regular module M is a direct

summand. But m = m[f,m] for some feM , which implies

that M = Rm © ker[f ,m] . ||

COROLLARY 1.7. A countably (or finitely) generated regular

module is projective.

We will complete this section with an examination of

regular modules which satisfy a chain condition. The upshot

of the matter is summarized below.

THEOREM 1.8. Suppose that M _is a. regular R-module which

contains no infinite direct sums of submodules. Then M is

isomorphic to a. finite direct sum of minimal left ideals

generated by idempotents.



Proof. Because of Theorem 1.6, every submodule of such a

module M must be finitely generated and hence a direct

summand of M. It follows that M is a direct sum of simple

modules [9; p. 61], and this sum must of necessity involve

only a finite number of non-trivial components. Hence

M = Rm.. ©. . .© Rm , with each Rm. simple. By (1.5) each
JL S X

Rm. is isomorphic to a minimal left ideal of R generated

by an idempotent. ||

COROLLARY 1.9. JTf_ R 2s. 1L commutative ring with identity

element then a. Noetherian or Artinian regular R-module is

injective.

Proof. For such a module satisfies the hypothesis of the

previous Theorem, hence is a finite direct sum of simple

projective modules. But over a commutative ring with identity,

a simple module is flat if and only if it is injective

[10; Lemma 2.6] ; and a finite direct sum of injective modules

is injective. ||

An ideal of a ring is called a regular ideal if it is

regular as a subring. Each ring R has a unique largest

regular ideal M(R) [7; p. 112]. We call a ring (or module)

finite-dimensional if it contains no infinite direct sums of

left ideals (or submodules).

COROLLARY 1.1O. I^ R is a finite-dimensional ring, then

R = M(R) © T with M(R) semisimple Artinian and where T

is an ideal of R which has no non-zero regular ideals.



Proof. The proof in [7] goes through verbatim, once it is

recognized that a finite-dimensional regular ring is semi-

simple Artinian. This follows from Theorem 1.8. ||

We note from the above that when R is a finite-

dimensional ring M(R) is in particular a projective R-

module. The same is now seen to be true for every regular

R-module.

THEOREM 1.11. lt_ R jLs either left perfect or ̂ s. finite-

dimensional then every regular R-module is projective.

Proof. Recall that a left perfect ring is a ring for which

direct limits of projective modules are projective [9; p. 170]

Since a module is a direct limit of its finitely generated

submodules, the desired conclusion follows from Corollary 1.7.

Suppose now that R contains no infinite direct sums

of left ideals, and let M be a regular R-module. Consider

g = { £ © Rm |m eM} partially ordered via S © Rm
aeA a a aeA a

<; E © Rmg if and only if Cm a} a e A £ (
mR^BeB' B y Z o r n' s

Lemma there exists N = 2 © Rm maximal in S. Clearly
aeA

then Nfl R i / 0 for every 0 ^ meM. We claim that N = M.

Let any meM be given. Rm is isomorphic to a left

ideal of R by (1.5), hence contains no infinite direct

sums of submodules. By Theorem 1.8, we can write

Rm = Rn.. ©...© Rn with each Rn. simple. Now

Rn. n N ^ 0 for each i, so Rn. 0 N = Rn.. Rm D N =
1 t 1 t1

(Rn ©...© Rn ) n N => £ © (Rn. 0 N) = £ © Rn. = Rm.
1 X i=l x i=l x
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It follows that Rm £ N, and so M = N proving that M

is protective. ||

§2_. We next develop several equivalent characterizations

of regularity. Note the following consequence of Theorem 1.6.

(2.1) Over a. ring with identity element a. regular

module is flat.

For a regular module is a direct limit of its finitely

generated submodules, each of which is projective. ||

THEOREM 2.2. For an R-module M, the following conditions are

equivalent.

(1) M j ^ regular.

(2) For every meM, Rm jus projective and is a. direct

summand of M.
t

(3) For every m,,...,m,eM, £ Rm. is projective and
1 t i = 1 i

is a. direct summand of M.

Proof. It is clear fran Corollary 1.3 and the remark

preceding it that (2)4=* (3). And (1.5) together with

Theorem 1.6 gives (1)=»(2). So (2)=* (1) remains to

be proved.

Assume that M satisfies (2) and let m be an

arbitrary element of M. By hypothesis Rm is projective

and Rm © N = M for some submodule N of M. Since Rm

is projective there exist elements f.e(Rm) and
t x

m.eRm, i = l,2,...,t, such that E [f.,m.]eE(Rm) is the
i=l 1 x



identity homomorphism on Rm. Now m. = r.m for some
t xt x t

r,,r ,...,r eR and so S [f m ] = E [f r. ,m] = [ S f r m]
L Z t i = 1 1 1 i = 1 x i i = 1 i i

t
Let g denote 2 f.r. extended across N to M. Then

i=l x x

geM* and m [g,m] = m, proving that M is regular. ||

THEOREM 2.3. Let R be si ring with identity element and M

an R-module such that every cyclic submodule of M is

contained i_n a. protective direct summand of M. Then any

one of the following conditions is equivalent to M being

regular.

(4) Every homomorphic image of M jls flat .

(5) IM n N = IN for every submodule N c>f M and

every right ideal I £f R.

(6) For any submodule N ^f M and any right R-

module L, the natural homomorphism L ® N—»L ® M JLS_ a.
R R

monomorphism.

In the proof we will utilize a result which is due

to Chase [2] for free modules and which was extended in [10]

to projectives.

LEMMA 2.4. Let R be a. ring with identity element. Given

si protective R-module M and a_ submodule K £f_ M, /K

is flat if and only if for any xeK there exists a. homo-

morphism a : M—»K with xa = x.

x x

Proof of the Theorem. First note that a module for which

every cyclic submodule is contained in a protective submodule
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is a direct limit of projectives, and hence flat. Assume

that M is a regular module and let K be any submodule

of M. We must prove that M/K is flat, and for this

it suffices to prove that every finitely generated sub-

module of /K is flat. Such a submodule is of the

form /K for some finitely generated submodule N of M.

Since N + K/K = N/N 0 K, N + K/K is a homomorphic image of N,

a regular protective module by (3) of the preceding theorem

N+K
and (1.4). Lemma 2.3 now implies that /K is flat,

completing the proof.

Conversely, let M be as in (4) and take any meM.

By hypothesis Rm c p where P is a protective direct

summand of M. Composing the natural homomorphisms

P P
M » P » /Rm we see that /Rm is a homomorphic image

of M and hence is flat. Applying the Lemma to the exact

Psequence 0 »Rm *P *• /Rm *0, we obtain a homomorphism

a : P >Rm with ma = m. Thus Rm is a direct summand

of P; and it follows that Rm is protective and is a direct

summand of M. By the previous theorem, M is regular.

In [9; p. 133] it is proved that for a flat module M

and N a submodule of M,M/N is flat if and only if

IM 0 N = IN for every right ideal I. And P. M. Conn [3]

has shown that for a flat R-module M with submodule N,

M/N is flat if and only if the natural homomorphism

L ® N »L <8> M is a monomorphism for every right R-module L.
R R

This explains the equivalence of (4) , (5) and (6) . ||
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In case M is itself a protective module, many of the

hypotheses of the previous two theorems become redundant.

The equivalence of conditions (2) through (5) for a pro-

jective module over a ring with identity forms Proposition

2.1 of [10]. Using Theorem 2.2 the following properties

of a regular module are easily established. The proofs

involve little modification from those given in [10] for

regular protective modules, and will therefore be omitted

here.

(2.5) JTf M îs. 1L regular module, then the Jacobs on

radical of M equals zero.

(2.6) rf M is a faithful regular R-module, then R

is Jacobson-semisimple. Consequently, for any regular R-

module M, the annihilator of M jin R jus an intersection

of maximal left ideals.

(2.7) The singular submodule of a_ regular module

equals zero.

THEOREM 2.8. E © M is regular if and only if each M
a — a

is 3L regular module.

Proof. Assume that each M is a regular module. It

clearly suffices to show that M, © M2 is regular whenever

M, and ML are. In fact, given m,eM, and m->eM2 it

suffices by Theorem 2.2 to prove Rfm-.+nu) is then pro-

ject ive and a direct summand of M = Rm © Rnu .
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For i = 1,2, let TT. : M » Rm. denote the canonical

projection homomorphism, and set ir = ir, . . .

is an exact sequence

There

0 >t(m

where t(m,) = {reR|rm., = 0} and

is the kernel of ir. Since Rm_ is projective there

exists a homomorphism [i : Rm, »R(m,+m2) with \xir =

and R(m,+m2) = Rm,jj. © £(m,)m2.

Next, there is an exact sequence

0 >l(m1) >R »• R m 1 *• 0 ,

the homomorphism R »Rm being defined via r< »rm, . And

this sequence is clearly split by any f€(Rm.) with
2

ml = mit f» mi]' s o t h a t R = ^(m,) © Rm-f. Since m,f = (m-f)

it follows that I(m,) = R(l-(m,f)), and hence that

-t/(m,)m« is a cyclic submodule of Rnu. This already

proves that R(m].+m2) = Rm̂ iu © -t(m-L)m2 = Rm, © -t^EOmu is

projective.

Finally, £(m,)nu is a direct summand of Rm_, so

2
there exists a surjection v : Rnu »£(m..)m2 with v = v.

Then R(m,+m ) = Rm1̂ i © Rnuv = M (TT ĴU) © M (TUV) . Since
2 2

(ir-^H) = 7T1)i, (TT"2
V) = ^ 2

V a n d (7 r2V^T r l ' i^ = ° ' R ( m i + m
2 )

is by Lemma 1.1 a direct summand of M . ||

We remark that as a consequence of this theorem every

submodule of a free module over a regular ring is a regular

module.
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§_3. The endomorphism ring of a regular module need

not be regular. Indeed, Cukerman [4] and Ware [10] have

noted that the endomorphism ring of an infinitely generated

free module over a regular ring R is regular if and only

if R is Artinian. On the other hand, Wiegand [11] has

observed that the endomorphism ring of an ideal of a

commutative regular ring is again a commutative regular

ring. This is not true for non-commutative rings, as is

seen in the next example.

EXAMPLE 3.1. A left ideal of JI regular ring whose endomorphism

ring is not regular.

Let R be a ring of column-finite countable matrices

over a field. Let [e..|l_<i,j <oo} denote the usual

matrix units of R. Set J = II Re, . ® Z © Re .,
j odd J j even J

a left ideal of R. Define a : J >J by setting

( n Re-, .)a = 0 and e .a = e, , . ^eJ for j even,
j odd 3 iJ MJ-J-;

Then a extends linearly to an R-endomorphism of J

and Jet = £ © Re, .. Were E(J) regular, Ja would be
j odd 3

a direct summand of J and hence of II Re, .. But this
j odd iJ

is easily seen not to be the case: for since

R = n Re-,. © II Re-., Ja = S © Re . would then
j odd J j even 3 j odd 1 J

be a principal left ideal, in clear violation of the fact

that it is an infinite direct sum.

HUNT LIBRARY
CAflNEGIE-MELLOH UNIVERSITY
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What then can one say affirmatively about the endo-

morphism ring of a regular module or ideal. One minor

observation:

(3.2) The endomorphism ring of a_ regular module is a.

semiprime ring.

For if 0 ^ aeE(M) with M regular, choose meM so
K

y

that ma / O . Since M is regular there exists feM

with ma = ma[f,ma] = m(a[f,m]a). It follows that

a[f,m]a ^ 0, and hence that E(M) is semiprime. ||

Before we can turn to our next result we need an

observation which is essentially contained in [6].

LEMMA 3 . 3 . Let ae c e n t e r of E(M). Then t h e r e e x i s t s

an element jSe c e n t e r of E(M) wi th afla = a x± arid only

_if M = Ma © ker a .

Proof. Suppose t h a t such a 8 e x i s t s . Set IT = j3a = a.8.
2

Then ir = ir; Ma = Ma7r c Mir and Mir = Mj3a c Ma so t h a t

Ma = M7r; and ker a = ker IT s i n c e ir - aj3 and a = ira.

C l e a r l y M = Mir ® M(l-ir) = Mir ® ker ir, and so M = Ma © ker a

Conversely, suppose that ae center of E(M) and

M = Ma © ker a. Given meM write m = na + k with neM

and ke ker a; and in turn write n = n.a + k, with n..€M
2

and k][€ ker a. Then ma = ((n1a + k-^a + k)a = (nxa)a .

Set xTO = n,aeMa. Observe that x is the unique elementm i m ^
2 2

of Ma such that ma = x a ; for if yeMa with ma = ya ,
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then (y-xm)a
2 = 0 so that (y-xm)aeMa 0 ker a = 0, and then

also y - x eMa 0 ker a = O so that y = xm. It is easy

to check that x r m = rxm, x m + n = x m + xQ, x m y = xmY for

any m,neM, reR, Y G E ( M ) . Consequently there is a homomorphism

j3eE(M) def ined by mj3 = x m . For any meM, maj3a = (ma/3)a =
2

x a = x a = ma, so that a#a = a. It remains only to

show that 3 is in the center of E(M). But this is

easy, for given any YGE(M) and any meM, myjS = x = xmY = rafty,

THEOREM 3.4. Suppose that M is a regular module. Then

the center of E(M) ĵ s a. regular ring.

Proof. Let ae center of E(M). Given any meM choose

* 2

feM with ma=ma[f,ma]=m[f,m]a. Then m = m[f,m]a +

(m-m[f,m]a) with m[f,m]aeMa and m-m[f,m]ae ker a. So

M = Ma + ker a. If maeMa fl ker a, then from the above
2 2

equation it follows that ma = m[f,m]a = (m,f)(ma ) = 0.

Hence Ma D ker a = 0 and M = Ma © ker a. Now apply the

previous lemma. ||COROLLARY 3.5. Suppose that J is. a. regular left ideal

of R. ^f J JLS. commutative then E(J) xs^ a. commutative

regular ring.

Proof. First recall that a regular (left) ideal is a (left)

ideal which is itself a regular ring. (For example, any

ideal of a regular ring is a regular ideal.) A regular left

ideal J of R is in particular a regular left R-module.

To complete the proof it suffices to show that E(J) is
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commutative when J is. Let a,j3eE(J) and let x be

any element of J. Choose yeJ with xyx = x. Then

xa|3 = (xyx)aj8 = (xy(xa))0 = (y(xa)x)£ = y(xa) (x6) = y(x8)(xa)

(y(xj3)x)a = (xy(xj3))a = (xyx) 0a = x0a proving that

a/3 = J3a. ||

N. Funayama has recently observed that Lemma 3.3 can

easily be used to prove that the ring of R-R-bimodule

endomorphisms of a regular ideal of R is a commutative

regular ring.

We have not been able to determine precisely which

regular modules have commutative (and hence necessarily

regular) endomorphism rings. The next result gives some

information about this situation.

THEOREM 3.6. Suppose that M is a regular module with

E(M) commutative. If either R jjs left self-injective

or RM 2i§. protective, then M is_ isomorphic to & left

ideal of R.

Proof. If nM is a module with E(M) commutative, then
rt

Na £ N for every endomorphic image N of M and every

cceE(M) . (Let N = Mj3 with j3eE(M) ; then Na = Mj3a = Maj3

M0 = N.) Consequently, if _M is additionally a regular

module, then Na c N for every submodule N of M and

every aeE(M). (For given any neN, Rn is a direct

summand of M, so a fortiori is an endomorphic image of M

Hence naeRna £ Rn £ N.)
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Now let N = X © Rm. be any submodule of M which
iel 1

is a direct sum of cyclic submodules. For each iel write

Rm. = Ma. where a.eE(M), and set N. = S Rm.. By
1 1 1 x j€l,j*i J

By Lemma 3.3, M = Ma. © ker a. = Rm. © ker a. for each iel

By the first paragraph, N.a. c N. H Rm. = 0 , so that

N. c ker a. for each iel. Also HonL(Rm.,N.) = 0 since

any YeHom_(Rm.,N.) can be extended across ker a. via

(ker a.)y = 0 to an element yeE(M); and then

(Rm.)y £ Rm- fl N. = 0 so that y = 0. In particular,

Horn (Rm.,Rm.) = 0 whenever i,jel with i ^ j.

For each iel, there exists by (1.5) an R-isomorphism
2

f . : R m . — * R e . w h e r e m . f . = e . = e . e R a n d ( m . f . ) m . = m . .
1 1 I 1 1 1 1 v i i / i i

can extend f. to an R-homomorphism g.eM by definingWe

g. = 0 on ker a.. g = S (g. ) is then a well-defined
1 1 iel 1 w

R-homomorphism from N to R, and Ng = S Rm.f. = Z Re..
iel x X iel

We claim that g is a monomorphism, and to see this it

suffices to prove that £ Re. is a direct sum.
iel 1

Set L = S Re., L. = £ Re., and suppose that
iel X x jel J

aeRe. H L.. Since Re. = Rm. is regular, Ra is a direct

summand of Re.. Hence if a ^ 0, then 0 -4 Horn (Re.,Ra)

c Horn.. (Re. ,L.) . Since L. = £ ©Re., HomD (Re. ,L.) ̂  0
- "R i i i j e I j j ^ 3 R i i

implies that there exists jel, j^i with HOTTL. (Re. ,Re .) jt 0,

But HomR(Rei,Re .) a* HomR(Rmi ,Rm.) = 0. Hence a = 0 and

2 Re. is a direct sum, establishing the fact that g is
iel 1

a monomorphism of N into R.
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If ^M is protective then we can choose N = M

giving the desired conclusion. For a protective module

is a direct sum of countably generated projectives (by [8;

Theorem 1] applied to a regular protective module), each of

which is by Corollary 1.3a direct sum of cyclic submodules.

In general, we may use a Zorn's Lemma argument as in the

proof of Theorem 1.11 to choose N with the property that

N fl Rm / 0 for every nonzero element meM. If now R is

injective we can extend g to an R-homomorphism g' : M »R,

Since ker g1 H N = ker g = 0, it follows that ker g' = 0

and M is therefore isomorphic to a left ideal of R. ||

One final comment on a related result is in order. It

follows directly from Corollary 4.3 of [12] together with

Theorem 1.8 of this paper that over a prime ring R a

regular module with a commutative endomorphism ring is

isomorphic to a minimal left ideal of R.

(3.7) Let R be a commutative ring and P a protective

R-module such that E(P) is a regular ring. Then P is a

regular module.

For rings with identity elements this is Theorem 3.9

of [10]. We note that with but minor modification the proof

given there is valid for rings without identity elements.

It can be extended as follows.



19

THEOREM 3.8. Let R jje a. commutative ring, and let M

be an R-module with the property that every cyclic

submodule of M jjs contained in si projective direct summand

of M. Jjf E(M) _is_ SL regular ring then M jis. a. regular

module.

it
Proof. Let meM be given. By hypothesis R m 5 P where P

is a projective direct summand of M. Letting -w denote

the canonical projection homomorphism of M onto P,

E(P) = TE(M)TT, S O that E(P) is a regular ring. By

(3.7), P is regular. Hence there exists geP with

(mg)m = m. Extending g across a complementary summand of P

in M to a homomorphism feM , we have (mf)m = m, proving

that M is regular. ||

§4^ We have already seen that the center of E(M) is

a regular ring when M is a regular R-module. In this

section it is our intention to investigate other distinguished

subsets of E(M). Three come immediately to mind; namely,

T(M), F(M) = {ct€E(M) I Ma is finitely generated}, and

G(M) = (aeE(M)IMa is finite-dimensional}. T(M) is an ideal

of E(M), F(M) is a multiplicative subsemigroup of E(M),

and G(M) will shortly be seen to be an ideal of E(M).

THEOREM 4.1. _lf_ M jis. a. regular R-module then given aeF(M)

there exists /3eF(M) with a = aj8a.
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Proof. Let aeF(M), M a regular module. One can write

Ma = Rin^a © . . . © Rm ta, M = Ma © N f o r some e l e m e n t s

m,,...,m.eM and N a submodule of M. Since each Rn^a

is regular, there exist homomorphisms gie(Rmia) for

i = l,...,t such that (nuag^nKa = n^a. Set

M. = Rm.a ©...© Rm. ,a © Rm. -a ©...© Rm.a © N; Rm.a © M. = M
1 1 1~* 1 1+1 X 1 1

.y

for each i = l,...,t. Let f.eM denote g. extended
1 t

across M. to M via (Mi)f± = 0; and set B = £ [f1,mi]eT(M)

t
Then CLBCL = a; for, given any meM, write ma = £ ^n^a

t t
with r,,...,r.eR, and then mafia = ( 2 r^.a) ( £ [f.,m.a]) =

t t t
£ r.(m.a,f.)m.a= £r.(m.ag.)m.a= £ r.m.a = ma. Finally

observe that ^eF(M) since Mj3 = (Rm^ ©. . .© Rmta © N)j3 =

t
£ R(m.ag.)m- is finitely generated. ||

COROLLARY 4.2 . [10; Theorem 3.6] JIf M is a finitely

generated regular module, then E(M) jJL B: regular ring.

THEOREM 4.3. G(M) is a regular ideal of E(M) and

G(M) £ F(M) c T(M).

Proof. For any aeG(M), Ma is by Theorem 1.8 a finite

direct sum of simple modules. Hence G(M) c F(M). For

any a,]3eG(M) and YeE(M), M(a+j8) c Ma + MB, Mya £ Ma,
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and May = (Ma)y. Since finite sums, submodules and homo-

morphic images of a finite direct sum of simple modules are

again of the same type, it follows that a + 0, ya, ay€G(M)

proving that G(M) is an ideal of E(M).

To see that G(M) is regular, simply use Theorem 4.1 to

choose for a given cteG(M) an element 3eF(M) with a = aj3a.

Then a = a(j3aj8)a with j9a£eG(M) since G(M) is an ideal

of E(M). It remains to prove that F(M) £ T(M). Let

ooeF(M) and choose £eT(M) as in the proof of Theorem 4.1

with a = a|3a. Since T(M) is an ideal of E(M) ,

a = a£aeT(M) . ||

COROLLARY 4.4. Jjf R Jj3 finite-dimensional and M is a

regular R-module then G(M) = F(M) = T(M).

Proof. First note that every finitely generated submodule N

of M is finite-dimensional. For by Theorem 1.6, N is

isomorphic to a finite direct sum of left ideals of R, each

of which is finite-dimensional. In particular, F(M) £ G(M).
t

Next let a = S [f.,m.]eT(M), f.eM , m.eM. Then
i = 1 l l I I

t t t
Ma c S (Mf.)m. £ S Rm.. Since £ Rm. is finite-dimensional.

i=l x x i=l 1 i=l x

so is Ma. Hence T(M) £ G(M). Now apply the preceding

theorem. ||

In analogy to the situation for the ring of linear

transformations of a vector space, we will show that G(M)

is a simple ring when the simple submodules of M are all
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of the same isomorphism type (such a module is said to have

a homogeneous socle). The proof for vector spaces is easily

adapted, the key step being the following lemma, whose proof

is sketched below for the sake of completeness.

LEMMA 4.5. Assume that M jLs_ fin R-module with the property

that every finite direct sum of simple submodules of M JLS_
2

a. direct summand of M. Suppose that ju = jLt eG = G(M) and

that N is_ a. submodule of M with both M/u. and N finite

direct sums of simple modules of the same isomorphism type.

2
Then there exists v = v eG|uG with Mv = N.

Proof. Write Mjz = ML ©. . .© M. with each M. simple. First

assume N is simple. Choose an isomorphism a : N >M, ,

and extend a across a complementary summand of N in M,

so t h a t aeG(M) . Define j3 : MjLt »N v i a )3 M = cc1,

j3 „ = 0 ( i = 2 , . . . , t ) , and extend ft a c ro s s a complementary

summand of Mji in M, so t h a t j8eG(M) . Set v = a/ij3eG|iG.

Then Mv = N and v
2

= 1 so that v = v.

Suppose now N = N, ©...© N. with each N. simple.
2

By induction, there exists v1 = (V) eGjiG with

Mv'= N, ©...© N, , = N' . Write N. = Rn and say

t-1 t-1
n.v' = S n., n.eN.. Then clearly n = n. - S n.e ker v1
T i = 1 i i x t i = 1 i

and N = N' © Rn, so that Rn is simple. By the first
2

paragraph, there exists v" = (v" ) eGfjG with Mv" = Rn.

Set v = v! + v" - v'v"eG^G. For any n'eN', n'v =

n1 + n'v" - n'v" = n', while nv = nv" = n, so that
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= 1. Hence Mv => N. On the other hand Mv c Mv' + Mv" £ N,

2
so that Mv = N and v = v .

THEOREM 4.6. JEf M ij[ & regular R-module with homogeneous

socle then G(M) JLs_ a. simple ring.

Proof. Let O ^ oteG = G(M) ; we must show that GaG = G.

Since G(M) is regular we can choose 0eG(M) with a = aj3a.
2

Then (j3a) = j3aeG(M) . Given any yeG(M) we apply the lemma
2

to choose v = v eG(/3a)G with Mv = My • Then

Y = YveyG(/3a)G £ GaG, proving that GaG = G. ||

For M an arbitrary regular module, the situation is

not much more complicated. G(M) is then the direct sum of

ideals G.(M), one for each homogeneous component L.

of the socle of M. Each G.(M) is simple, and in fact

G. (M) = G(M) fl HOIIL (M,L.) • The details are elementary.

COROLLARY 4.7. JLf R ji§. a. simple Artinian ring and M

is any R-module then G(M) jits £i simple regular ring.

We conclude this section with a description of the

regular modules with semisimple endomorphism rings.

THEOREM 4.8. Let M be a regular module. Then E(M) is

semisimple with minimum condition if and only if M ^s.

finite-dimensional.
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Proof. If M contains no infinite direct sums, then by

Theorem 1.8 M is a direct sum of finitely many simple

modules and so has a semisimple endomorphism ring. Con-

versely, suppose that E(M) is semisimple with M a

regular module, and that £ © M. c M for some collection
i€l X

of nonzero submodules M. of M. It is easy to see that

2 [M ,M.] then forms a direct sum of nonzero left ideals of
iel x

E(M) . So I must be a finite index set. ||

§_5_. In this brief concluding section we determine

exactly when the endomorphism ring of a regular module is

left self-injective. The next result is of some independent

interest.

THEOREM 5.1. Assume that M ^s_ jin R-module with the property

that for every cyclic submodule L ^f M there exists «i

surjection of M onto L. Jf. E(M) ;Ls left self- injective,

then DM is quasi-injective.

Proof. Let N be an R-submodule of M and let aeHomr>(N,M) .

We must prove that a can be extended to an element of

E = E(M). Set I = HomR(M,N), a left ideal of E. Define

9 . j ^j; v i a (Y)Q _ v^a, yel. Clearly 6eHom_(I,E).

Since _,E is injective and contains an identity element,

there exists a homomorphism a'eE with (Y)9 = Yt»cc' for

all yel. The proof is concluded by demonstrating that

L=a.
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For any neN there exists by hypothesis a surjection

.D(M,R n). Choose meM with mB = n. Note that Bel.

Then na' = (mfl)a' = m(B-a}) = m(j3»a) = (mj3)a = na, so that

N = a . II

THEOREM 5.2. For M a regular R-module, E(M) is left

self-injective if and only if RM JJ=L quasi-injective; and

when this is the case E(M) 2J= regular.

Proof. The "only if" part is a consequence of the previous

result, it being evident that a regular module satisfies the

hypothesis of Theorem 5.11. While it is possible to give an

independent proof of the remainder of this theorem, it is

actually a special case of a more general result. It is

known that the endomorphism ring E of an injective or

quasi-injective module nM is regular and left self-injective

when J(E), the Jacobson radical of E equals zero. Further-

more, J(E) = {aeE |ker a PI N £ 0 for every R-submodule N ^ 0

of M}. (See for example [9; pp. 102-104].) When M is

a regular R-module it is a simple matter using (2.7) to

verify that J(E) = 0. II
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