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ON QUOTIENT MAPS IN GENERAL TOPOLOGY

Oswald Wyler

It is a well-known and sometimes troublesome fact that the class of Haus-

dorff spaces is not closed under the formation of quotient spaces. We claim that

this is the result of a simple (and quite common) misunderstanding: the quotient

maps of one category, topological spaces, are used in a quite different category,

namely fiausdorff spaces. If quotient maps and spaces are properly defined, then

the category of Hausdorff spaces has all the quotient spaces which one needs.

The basic properties of a quotient map or proclusion f : X — > Y are the

following, f is surjective, and if Z is a space and u : Y — ^ Z a mapping

such that u f : X — ^ Z is continuous, then u : Y •—^ Z is continuous. Our

definition of a proclusion translates these properties into categorical language.

We define proclusions and quotient spaces, and dually inclusions and sub-

spaces, in section 1, and we obtain some basic properties of proclusions and

inclusions in section 2. Section 3 is concerned with subspaces and quotient

spaces for epireflective and monocoreflective subcategories, and with topological

applications.

This note is mostly pure categorical algebra. This is appropriate since

quotient maps exist not only in topology, but also e.g. in universal algebra.

Categorical duality is an added benefit of the abstract treatment, and a very

welcome one.



1. Proclusions and quotient objects

1.1. Throughout this note, we consider two categories 3 and 9~" , and a

functor P : 3"—> -3. In topological applications, 3 may be the category of

sets or a category of algebras, j a category of topological spaces or of topo-

logical algebras, and P the functor which "forgets topologies". We do not

assume that P is faithful.

1.2. We say that a:map f : A — > B in !T is a P-quotient map or a .,

P-proclusion. over an epimorphism e of ^B , if the following two conditions

are satisfied.

(i) P f = u e for an epiraorphism u of CB .

(ii) If g : A —^.C in S" and P g = v e for a map v in T , then

g = h f in 5" for a unique map h : B —J> C of fT , with v = (P h) u .

Dually, • f : A — > B in 3~ is sailed a P-inclusion, over a monomorphism

m of 3$ , if the following two conditions are satisfied.

(i*) Pf = m u for a monomorphism u of JB .

(ii*) If g : C — > B in fF and P g = m v for a map v in JB , then

g = f h in ̂  for a unique map h : C — ^ A of T~ , with v = u (P h) .

We say that B is a P-quotient ob.iect of A , over e , if a P-proclu-

sion f : A ^ B over e is given, and we define P-subob.iects dually.

1.3. Every P-proclusion is epimorphic in T~ ; the converse is usually

false. If f is a P-pj5oclusion over an epimorphism e of ̂  , then f is

also a P-proclusion over P f . If e is not explicitely given, then e = P f

is understood. Dually, every P-inclusion f is a -̂-inclusion over P f , and



m = P f is understood if m is not explicitely given.

P-proclusions are P-opfibred morphisms f in the sense of [l; 7.l] for

which P f is epimorphic, and P-inclusions are P-fibred morphisms f for

which P f is monomorphic. The name proclusion for quotient map has been pro-

posed in [4] to stress the duality between proclusions and inclusions.

If f in 3" is a P-proclucion over an epimorphism e of 3 , then f

is also a P-proclucion over t> e for every isomorphism b of B such that

b e is defined, and f may well be a P-proclusion over other epimorphisms

of 3i> . If f : A —>• B in S~ is a P-proclusion over e in J& , then a.map

f* : A — > B * of £7~" is a P-proclusion over e if and only if f' = t f for

an isomorphism t : B —3>B' of £7" .

1.4. If 6/~ is an equational category of algebras, and P the forgetful

functor from tT to sets, then every monomorphism of J is a P-inclusion, and

f in 9" is a P-proclusion if and only if P f is surjective. The example of

rings shows that j may have epimorphisms which are not P-proclusions.

If 3" is the category of topological spaces or the category of Hausdorff

spaces, and P the forgetful functor from J to sets, then a map f : A -—> B

of ^F is a P-inclusion if and only if P f is injective and f induces a

homeomorphism from A to a subspace of B . A P-proclusion is a quotient map

in the usual sense for topological spaces; a P-proclusion for Hausdorff spaces

need not be a quotient map in the usual sense.



2. Properties of proclusions

2.1. We consider a diagram in J~ as a map A : D —p*3" from a diagram

scheme , L . to 5" , A assigns an object A^ of V to every vertex ex. of D ,

and a map a^ : A^ — > ko to every arrow A : o( — > /3 of D . If B : D — * 57"

is a diagram with the same scheme, then a map f : A — > B assigns to every ver-

tex o<. of D a map f̂  : A^ —> B^ of U~ such that f« a^= b^f^ for every

arrow X : c* — ) jS> of D . If A and B have colimits A^ = lim̂  A,,, and

B# = lim B^ , with maps a : A^ —> A^ and b^ : B ? B^ , then a map f :

A — ^ B has a colimit f# = lim f^ : A# — > B̂ . , determined uniquely by the

condition that f# a^ = b f for every vertex oi of D .

With these notations, we have the following result.

Rrop_osition. If every map f̂  is a P-proclusion, and if P f# is epi~

morphic in s!B , then f# = lim f̂  is a P-proclusion.

Proof, f̂  is epimorphic in 3T since .f# is a colimit of epimorphisms.

If g : A^ — ^ C in 9" with P g = u (P f*) for some u in JB , then

P (g aj<) = u P (f* a j = u (P b

in JB . Thus g a . = h^ f^ for a unique map h^ : B — > C of £T~ , for every

vertex <X of D . If A : « —>fi is an arrow of D , then

in T . and h_. = ho b\ follows. Thus there is a map h,. : Bj. — > C of

such that h^ = h^ b^ for every vertex CK. of D . We have

k* f* a<V = ^* ba ̂  = K, ̂ at = § a<*



and g = h* f* follows

2.2. We consider a pair of functors U : / — * 5~" and F : !T—»cf such

that P is left adjoint to U , with unit (or front adjunction) rj : Id

— £ U P , and counit (or back adjunction) g. : P U — ^ Id S . We recall that

g = £B (F f) <£=» f = (U g) jk

for f : A — > U B in T and g : F A — > B in •f , and that this defines a

natural bijection

<7>AB : f(PA, B)—>r(A, BU) ,

for all objects A of T and B of S .

We put Q = PU : ̂ — > ' h .

Proposition. If_ f : A — > B in S~ is a P-proclusion, and if Q P f is

epimorphic in 3 , then P f is a Q-proclusion.

Proof. Suppose that Q g = u (Q F f) for g :.F A ~—>C in •$ and some

u in B . If i =fAC(g) = (U g) Vk , then

P g = u(QFf)(Py A) = u(PjB)(?f) ,

by naturality of P fj : P — > Q F . Thus g = h f for a unique h : B — > U C

in S'. If H = ̂ ( h ) , then g = h f if and only if g = h (P f) ,

by naturality of a>.~ in A . Thus g = h (P f) for a unique h in o |

2.3. If U is full and faithful in the situation of 2.2, then u(5) is a

full reflective subcategory of $~ , equivalent to $ by U , with reflections

% : A — ^ U F A , and £ : F U — > Id £ is a natural equivalence. Thus U

has a left inverse left adjoint, i.e. one for which P U = Id ?f r and £k = id A



for every object A of ^ . *?UA = id U A follows. since (Uf/ty U) = id U v-

We- consider P-inclusions f : A — ^ B U in this situation.

We recall a definition. An epimorphism e of a category £ is called

extremal if e = v u in ^ , f or ,©pimorphic u and monomorphic v in £f ,

always implies that v is isomorphic in }f . Surjective mappings, and surjec-

tive homomorphisms of algebras, always are extremal epimorphisms.

Proposition. If f : A — > U B is a P-inclusion and f = (U f) y for

f" : 51 A — > B in ^ , and if P 71. is an extremal epimorphism of jB , then

rjk is an isomorphism of £T, and f is a Q-inclusion.

Proof. Since Pf=(Qf)(P<w.) is monomorphic, Pfl. is monomorphic as

well as an extremal epimorphism. It follows that P ft. is isomorphic in 06 .

Now Q ? = (P f )(P -wA)"
1 in 3 , and thus U f = f x for some x in T .

But then f x n. - f , and x 7J. = id A follows since f is monomorphic.

As U is full, « v = U y for some y : F A — > F A in •£ , and

follows. But then y = id F A . Thus -tfA v = id U F A , and Tj^ is isomor-

phic in JT" .

Now Q ? = (P f)(P r;A)"* is monomorphic in IB since P f is, and f is

D — i \— 1

monomorphic in J since U f = f (•».) is monomorphic in 3 and the faithful

functor U reflects monomorphisms. If Q g = (Q f) v for g : C — > B in $

and some v in 3 , then P U g = (P f)(p'?A)~
1 v in J3 , and it follows that

U g = f h for some h, : U C — > A in T". If 'M. h, = U h , with h :

C — y ¥ A in TP, then 13 g = U (? h) , and g = f h follows|



3. Applications

3.1. In this section, 8 denotes a full subcategory of J and U :
i

vf—» 7 the embedding functor. We say that cP is P-epireflective in 5" if $

is reflective, i.e. U has a left adjoint P : *J~—> £, and Pr?A is an

extremal epimorphism of 3 for every reflection ir) : A — ^ U F A of an object

A of S~ into ;P . Dually, we call xf P-monocoreflective if U has a right

adjoint G , and P €. is an extremal monomorphism for every coreflection £; , :

U G A — > A into "S . $ is j?««Bonocoref lective in U~ if and only if the dual

category ;fop of xP is Pop-epireflective in 3~Op .

If P is faithful, then every P-epireflective subcategory is epireflective,

and every P-monocoreflective subcategory is monocoreflective. The converse is

not always true: compact Hausdorff spaces define an epireflective subcategory of

Hausdorff spaces, but not a P-epireflective subcategory for the forgetful func-

tor P from Hausdorff spaces to sets.

3.2. Let cP be a P-epireflective full subcategory of 5T", and let F be

the left inverse left adjoint of U (see 2.3), with £ . = id A =^TTA for every

object A = U A of tf . We replace prefixes P and Q , for the functor

Q = P U , by affixes "in 5"" and "in £ " .

Proposition. Let f : A •—> B in ̂ J" . If_ f is an inclusion in 5T over

a monomorphism i of 3 and B an object of j , then rj. is an isomorphism

of_ ST", and f (-W )~ : F A — > B is an inclusion over m in f • If f is

e, proclusion in T" over an epimorphism e of, ̂B and A an object of •£ ,

then 'M^ f : A -—>F B is a proclusion in -o over e •



Proof. In the first part, % is isomorphic by 2.3. Thus f iyk)~ is an

inclusion over m in j , and all the more in j .

If P f = u e in the second part, then Q («B f) = u' e for u1 = (p? B)
 u

which is epimorphic in 3 . If g : A — 5 C in cP satisfies Q g = v e for a

map v in CB> , then g = h, f in S7"~ for a unique map h^ : B — ? C in S~ .

^•D is a reflection for J , and thus h, = h Wg for a unique map h : F B — > C

in ~£ . It follows that g = h l)~ f for a unique map:, h in ^ |

3.3. Let now JB = ENS , the category of sets, and let P be a forgetful

functor. We say that J~ has all possible proclusions if for every object A

of %T and every surjective mapping e with domain P A , there is in U~ a

proclusion f : A — > B over e . Having all possible inclusions is defined

dually.

For TOP , the category of topological spaces, the followine: is well known.

For every space A and every surjective mapping e with domain P A , there is

a unique proclusion f : A J>B with P f = e . For every space B and every

injective mapping m with codomain P B , there is in TOP a unique inclusion

f : A — > B with P f = m . Thus TOP has all possible preclusions and all

possible inclusions.

Cince a map f in TOP is epimorphic if and only if P f is surjective,

a subcategory T of TOP is epireflective if and only if tT* is P-epireflec-

tive. Thus every epireflective subcategory 57" of TOP has all possible pro-

clusions and inclusions, by 3.2. Inclusions in V~ are inclusions in TOP , but

proclusions in ^~ are usually not proclusions in TOP .

Let now *xT be a full subcateg-ory of TOP and xr a full coreflective sub-

category of 7" . If 3 has a non-empty space among its objects, then one sees



easily that P e A is bijective for every coreflection £ A : G A •—> A for dP .

Thus the dual of 3.2 applies, and o has all possible preclusions and inclusions

if ST has all possible proclusions and inclusions. Proclusions in •£ are pre-

clusions in V~ ; inclusions in a need not be inclusions in *3~ .

Epireflective full subcategories of TOP , and their coreflective full sub-

categories, have been studied extensively; see e.g. [2] and L3J.

3.4. All statements made in 3»3 about TOP and its subcategories remain

valid for any top category over ENS , in the sense of [5] and [6], provided

that a singleton has only one structure* This condition is usually satisfied for

categories of sets with topological structures of some kind.

The categories considered in 3«3 and the preceding paragraph have the fol-

lowing properties in'common. (a) A map f of U" is monomorphic in 7 " if and

only if P f is injective. (b) All possible inclusions and preclusions exist

in U~ . It follows easily from (a) and (b) that the proclusions in 7~ are pre-

cisely the extremal epimorphisms of U~ (see 2.3). The corresponding statement

for inclusions may well be false. For example, if A is a subspace of a Haus-

dorff space B , then the inclusion map j : A — > B is always an inclusion as

defined in thir, note, but j is an extremal monomorphiEm of Hausdorff spaces

only if A is a closed subspace of B . One cannot decide once for all whether

all subspaces or only closed subspaces are the "right" subobjects for a Haus-

dorff spacei this depends very much on the context in which one works.
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CONVENIENT CATEGORIES FOR TOPOLOGY

Oswald Wyler

In [2l], N. E. Steenrod gave a list of criteria which a convenient category

of topological spaces should satisfy. One of these criteria is somewhat vague:

• the category should be large enough to have among its objects "all of the parti-

cular spaces arising in practice." The other two criteria can be made precise.

They are that the category should be large enough to be closed under standard

operations, and that it should be small enough so that these operations satisfy

certain reasonable identities. Using results of R. Brown [3], [4], Steenrod

showed in [2l] that k-spaces satisfy these criteria.

We study in this paper a class of categories of topological spaces which we

call compactly generated, and we obtain criteria for such a category to be con-

venient, in Steenrod's sense, k-spaces form the largest compactly generated

category; they satisfy our criteria. Sequential spaces, introduced by G. Birk-

hoff [2] and studied intensively by S. P. Franklin \_S], [lO] and others, form a

compactly generated category, and a convenient one. Sequential spaces are of

course also convenient in a more immediate way: they are the spaces for which

convergence of sequences does all the jobs for which convergence of filters

(or of nets) is usually needed. Some of our results have been obtained for

$^OtfV/7>^*/ p , r .

eoqitonoe spaces by J. A. Guthrie U3J, Ll4j. Other convenient compactly gene-

rated categories are listed in section 2.



In categorical terms, convenience means that the category should be carte-

sian closed. Closed categories, i.e. categories with an internal hom functor and

a tensor product functor, were introduced by S. Eilenberg and G. M. Kelly [8] and

by F. E. J. Linton [20], Long lists of examples have been given in [8] and [20],

and by M. Bunge in [5]. Closed categories have been studied intensively and many

useful results have been obtained for them. Thus it is helpful to know that a

given category is closed. A closed category is called cartesian if its tensor

product is the ordinary (or cartesian) product. The closed categories of inter-

est in topology are the cartesian ones, and categories of pointed spaces with a

smash product as tensor product. These are the categories with function space

topologies which are, in the language of J. Dugundji [7; XII.10], both splitting

(or proper) and conjoining (or admissible).

The methods of this paper are mostly categorical; we use very little "hard"

topology. V/e begin with some general properties of coreflective subcategories of

epireflectivc subcategories of the category of topological spaces. These cate-

gories were studied first by A. H. Gleason [l2], and then by J. F. Kennison [l9],

S. P. Franklin [ll], H. Herrlich and G. E. Strecker [l5], [l7], [is], and others.

See [16] for a survey of this theory and further references. We present only the

facts which we shall need. These facts are well known, but not available in

print in the form in which we need them. In section 2, we discuss topologies for

function spaces. Our main result is that a compactly generated category admits

function space topologies which are proper and admissible if certain simple con-

ditions are satisfied. Using results of [24], we show in section 3 that a ccar-

pactly generated category which satisfies these conditions is convenient.

All results of section 1 and section 3 remain valid in the general setting



of top categories [22], [23]. This is a trivial generalization; we leave it to

the interested reader. It is not without interest: C. H. Cook and H. R. Fischer

[6], and E. Binz and H. H. Keller [l], have shown that the category of limit

spaces is convenient. As this is a very large category, it would be useful to

obtain further results on convenient top categories.

1. Coreflective subcategories

1.1. We denote by TOP the category of topological spaces, and by 3~ an

epireflective f ull-subcategory of TOP . We assume for convenience that every

topological space which is homeomorphic to an object of S~ is itself an. .object

of S' . Among the possibilities for S7" are: TOP itself, T..-spaces, Haus-

dorff spaces, T_-spaces (without T,) and regular spaces (with T,), and com-

pletely regular spaces (with or without T ). The terms space and map will

usually refer to objects and morphisms of 3~ ; exceptions will be noted.

We denote by ENS the category of sets, with mappings as morphisms.

1.2. In most of this paper, /h will be a fixed class of spaces which con-

tains at least one non-empty space. If X is any space, then &/X will denote

the class of all maps u : A — > X with A €: A .

For a space X in *O~ , we denote by oc X the space in *3~ consisting of

the underlying set |X| of X with the finest topology for which all maps u

in fi-/x remain continuous. We note that «. X is the limit in TOP of the dia-

gram consisting of all maps id |XJ : X — ^ X , for objects X. of U~ with

underlying set \X\ , and with a topology finer than that of X , but coarse

enough so that all maps u in Jh/x remain continuous for X. . By a standard
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categorical argument, this limit is an object of £T~ .

We call a space X an Jl -space if ex. X = X . All spaces oc X , and all

spaces A in JL , are Jl -spaces. The following two results show that Si -spaces

are the objects of a full coreflective eubcategory of 5̂* . We note without proof

that this is the smallest coreflective subcategory of S~ for which all spaces

in Jt , and all spaces homeomorphic to an object of the subcategory, are objects.

1»3» Proposition. If X is an -A-space and X a space, then a mapping

f : X —;>Y is continuous if and only if f u : A —^>Y is continuous for every

map u : A — > X iii /

Proof, f u is continuous for all u in JL/X if and only if the coarsest

topology of | X | for which f is continuous is coarser than the finest topology

for which all u in jfh/X remain continuous, i.e. if and only if f : « X — > I

is continuous|

1.4. Theorem. For every space X , the map id fxj : <*X — > X is a

coreflection for the category of A-spaces.

Proof. We must show that f : Y — ^ ex. X remains continuous if f : Y — > X

is continuous and Y an J\. -spr.ee. If u : A — ? Y is in Jk/l , then f u is

in JI/X , and thus f u : A—>• <x X is continuous. But then f : Y —> <v X is

continuous by 1.3|

1.5. The category of Jl-spaces is generated by Jl , as already noted

in 1.2. There may of course be many classes of spaces which generate the same

coreflective full subcategory of 3 . We say that the category ofM -spaces is

compactly generated if it can be generated by a class of compact Hausdorff spaces.



V/e obtain the largest compactly generated coreflective subcategory of 8~ by

letting A be the class of all compact Hausdorff spaces in V . We call this

category the category of k-spaces in ST . If fT is the category of Hausdorff

spaces, then this is the category of k-spaces in the usual sense.

The smallest compactly generated coreflective subcategory of 3~ is the

category of T'-discrete spaces, generated by singletons. c<X for this category

is | X J with the finest topology of an object of £T .

If Ji consists only of N w = N ^{u)jj, the Alexandroff one-point compacti-

fication of the discrete space N of natural numbers, then j^ -spaces are sequen-

tial spaces in 5~. A' continuous map u : N^—>X is basically a convergent

sequence (u ) in X with limit u . A convergent sequence in X which has

more than one limit defines more than one nap u : N w — ? > X . In this example,

the topology of ex X is the finest topology of an object of S~ with underlying

set | X| for which all convergences u .—> u ^ of sequences in X remain

valid. A mapping f : X — ^ I from a sequential space X in 9" to a space Y

is continuous if and only if f preserves the convergence of sequences. If 7"

is TOP , or the category of ^-spaces, for i = 0 , 1 , 2 , then sequential

spaces in j are sequential spaces in the usual sense. We do not know whether

this remains true for other categories V .

1.6. We extend the operator ex to maps by putting <* f = f : « . X — > as Y

for a map f : X — ^ Y . It follows immediately from 1.4 that this is well

defined. Thus we have a functor ex from 7" to .A.-spaces. By its construction,

this functor is a coreflector for ,/l-spaces, i.e. Ot is right adjoint to the

embedding functor from j\ -spaces to 3". This has important consequences.

Tt is well known that every diagram A in TOP , with vertices A. , has



a limit A* and a colimit A* , and that the forgetful functor from TOP to

ENS preserves and creates limits and colimitsj we refer to [22; 6.2] for an

exact statement of this. If A is a diagram in 7~ , then A* -is a limit of A

in T~ t and if 77. : A^ —^&-** is a reflection for V, then l!^ is a

colimit of A in tT". If A is a diagram of Jt-spaces, then the colimit A*#

of A in U" is an A. -space, and a colimit of A in the category of J\.-spaces,

and A** = ex. A* defines a limit A** of A in the category of A. -spaces.

Subspaces and inclusion maps behave like' limits,-aiid quotient spaces and

proclusion maps like colimits; we refer to [24] for this.

For convenience, we denote by X ® Y the product of <xX and <xY in'-the

category of A -spaces. Thus

X ® Y = ex X <g> <x Y = o<(XxY) = « ( « X x « l ) ,

for any spaces X and Y . This expresses the well-known fact that the core-

flector 0^ preserves products.

2. Function spaces

2.1. Fortwo spaces X and Y in 3~, we denote by C(X,Y) the set of

all maps from X to Y in T. For f : X — > X ' and g : Y —T»Y' in 3~,

we define a mapping

C(f,g) : C(X',Y) ? C(X,Y')

by putting (c(f,g))(h) = g h f for h : X' ^Y in tT. This defines a

horn functor C : 7"op,x !T —>EHS ,- where 7" 0 p i s the dioal category of

2.2. We wish to "lift" the horn functor by providing every set C(X,Y) with



a topology in such a way that all mappings C(f,g) become continuous naps. This

can be done in many ways; we describe a general procedure which includes most of

the function space topologies which have been used.

For u : A — ^ X in A/X and V open in I , we put

W(u,V) = {f£C(X,Y) : U(A) C f~\v)} .

We denote by CQ(X,Y) the topological space obtained by providing C(x,Y) with

the topology for which these sets W(u,V) form a subbasie of open sets.
«

If J{. is the class of compact Ilausdorff spaces and X a Hausdorff space,

than Cn(X,Y) is c(X,Y) with the usual conpact-open topology. If -ft consists

of singletons, then C^(X,Y) is C(X,Y) with the topology of pointwise conver-

gence. For Si = {®u>\ (see 1-5), the spaces C-(X,Y) have been considered in

and [l4]. The following result is known for these three cases.

2-3. Proposition. Every mapping C(f,g) : C^(X',Y) —>C^(X,Y') is con-

tinuous. I£ Y is a T.-sjaacs. (i = 0, 1, 2), ifoSR CA(X,Y) is a T.-space.
X .jx 1

If Y is a T -space and J\ consists of compact spaces, then Ca(x,Y) is a
3 , M-

T_-space.

Proof. For u in A/X 1 and V open in Y1 , we obviously have

(C(f,g))-1(w(u,v)) - W(f u, g-^V)) .

It follows immediately that C(f,g) is continuous.

If f ^ f' in C(X,Y) , then f(x) = f'U) for at least one x € X .

If Y is Hausdorff, then the points f(x) and f(x') have disjoint open neigh-

borhoods V and V . If A in Ji is non-empty and u : A — > X is the con-

stant map to x , then f 6. w(u,v) and f £. Vl(u,V') , and these sets are open
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in CQ(X,Y) , and disjoint.

Every neighborhood of f is a neighborhood of g if and only if this is

true for every neighborhood W(u,V) of f , for every u and for every V ,

and this is the case if and only if f(x) £ V implies g(x) €.V , for every

x £ X and every open V in Y . If Y is a T^space, it follows that f(x)

= g(x) for all x , i.e. f = g , and C^(X,Y) is a T^-space. If I is a

T -space, it follows that f = g if f and g have the same neighborhoods in

C (X,Y) , i.e. CA(X,Y) is a To-space|

If A in it is compact and f£V/(u,V) , then f(u(A)) is a compact sub-

set of the open set ¥ of Y . If I satisfies T, , this implies that

f(u(A)) c ya c vx c~ v

for an open set V. . If g is in the closure of Vj(ufV.) , and if x denotes

a point of U(A) and the Induced constant map from A f then W(x,V') is a

neighborhood of g , and intersects W(u,V,) , for every open neighborhood V

of g(x) . This implies that V intersects V1 . Thus g(z) £L V^ , and g

maps U(A) into V, . This shows that

f £ Wdi,^) C wCu^) c: W(u,V) ,

and verifies T̂ , for subbasis neighborhoods, if pt consists of compact spaces and

Y is a T,-space. T, for all neighborhoods in CO(X,Y) follows iramediately|

2.4. For any spaces X , Y , we have an evaluation mapping

e X I : C(X,Y) X |x| — > \i\ ,

defined by e (f ,x) = f(x) . VJe have also a mapping

: |XJ ^ C(Y, XX Y) ,



obtained by putting h ^ U X y ) = (x,y) , for all x £ X and y £ Y . The

evaluation mapping e v v is of course well known, but the closely related napping

h..Y has received so little attention that it does not even have a name.

We are interested in situations in which the mappings e^y an<i nvy become

continuous maps. A preliminary step for this is to require that C (X,Y) is a

space in t7~ for all spaces X and Y in U~ . 2.3 states the known results in

this directionj further results would obviously be useful. A second step,

strongly suggested by known results, is to restrict ourselves to A-spaces.

In general, Cn(X,Y) is not an Jl -space for J\,-spaces X and Y . This is well

known for k-snaces and the compact-open topology. The remedy is simple:

replace the space CA(X,Y) in 9" by.the .A-space oc^(X,Y) . The maps C(f,g)

remain continuous if we do this. If Y is an A-space, then h^(x) : Y —^•

X(5?>Y remains continuous for every x £ X , and we have a napping

^> C(Y,

This leads us to the statement of our main result.

2.5. Theorem. Assume that J\. consists of compact Hausdorff spaces, and

that Cj.(X,Y) is a sr)ace in 3" for all spaces X and Y in T . Consider in

addition the following: two conditions.

CL. Every point of a space A in. .A. has a basis of closed neighborhoods

in A which are continuous images, of spaces in /t .

CE. For any two spaces A and B ±n ft , the product A X B is an

If.CL is satisfied, then

eXY ' VX'^
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is continuous for all spaces X and Y in j . _I£. CP is satisfied, then

h ^ : X — > CA(T, X<g)Y)

is continuous for all f)-spaces X and Y .

Proof. We must show for the first part that e,™ u is continuous for every

continuous map u : A —>CL(X,Y)x X with A in Ji . Let u(a) = (f,x) for

some a <£A » and assvune that f(x)<£V , where V is open in Y . Let

be the component maps of u . w~ (f~ (v)) is an open neighborhood of a , and

there is by CL a nap j : B — > A with B in Jl such that J(B) is a closed

neighborhood of a contained in w~ (f~ (v)) . Then f is in w(w j, V) which

io open in C-.(X,Y) . Since v is continuous, the set

n v"X(w(W j, V))

ir a neighborhood of a in A . If a' £ N and u(a) = (f',x*) , then clearly

f'(x')£ V . Thus e ^ u is continuous.

We must show for the second part that h™ u is continuous for every con-

tinuous map u : A — ^ X with A in £L . Thus assume that hXY(u(a)) is in

W(v,V) for an open set V of X<g>Y and a map v : B •—>Y with B in 32 .

This means that (u(a), v(b)) £ V for every b G B . By CP, A X B is an

_/i-Epaco, and thus u x v : A x B — > X ® Y is continuous. Since this maps

_̂â  X B into V and B is compact, there is a neighborhood N of a in A

such that u(N) X V(B) C V . This means that h (u(a')) £W(v,V) for every

a1 ̂  N . Thus hvy u is continuous|

2.6. We give a list of classes $L which satisfy CL and CP. All spaces
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in A. must of course be compact Hausdorff spaces in V~ ,

2.6.1. A singleton.

2.6.2. {Nwy, if N u is in T.

2.6.3. {[0,1]} , if [0,1] is in T.

2.6.4. All compact metrizable spaces in I T .

2.6.5. All compact Hausdorff spaces in T .

2.6.6. All compact Hausdorff spaces X in T' with |X| countable.

2.6.7. All totally disconnected compact Hausdorff spaces in 3~ .

The list can be made much longer, without great effort. CL is obvious for

all seven examples, and CP is obvious for five examples. N w x N^ is metrizable

and hence sequential, and it is easily verified that a mapping f from the unit

square to a space X is continuous if f is continuous on every path.

2.7. A given coreflective full subcategory of O~ is generated by more than

one class Jx. . The topology of Cn(X,Y) , and even that of <y. Cn(XfY) , depends

in general on the choice of ft . The author's student B. V. S. Thomas has pro-

vided the following example for sequential spaces.

Let X = Y be the half-open interval [0,l) , with the usual topology.

Put fn(x) = x
n for x e x and n £ N , with fQ(o) = 1 . For j£ = { N w } ,

lim f = f means that lim f (u ) = ^U^HM) ^or e v e ry convergent sequence u :

^ . This is the case for fw = 0 . If X is in JR. , then lim f = 0

requires uniform convergence on X which is not the case.

If we restrict ourselves to classes il which satisfy CL and CP in 2.5, then

the situation changes, at.least fox il-spaces. It is well known that C(Y,Z) ,

for Ji -spaces Y and Z , has at most one _ft*epace topology such that 3.1 is

true for all R -spaces X. .
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2^ Cgnvenient_categgries

We assume in this section that Cj,(X,Y) is a space in T • for all spaces

X , Y in V~ , and that the conclusions of Theorem 2.5 hold. We say that

j{ -spaces form a convenient coreflective subcategory of ^T in this situation.

^•1• Theorem. Assume that A -spaces form a convenient coreflective sub-

catepcory of T , and let X , Y , Z be. .#-spaces. For maps

f : X ® Y — > Z and g : X — * cJY.z) ,

the following conditions are logically equivalent.

(i) f = eYZ- (g<*> id Y) .

(ii) g = C(id Y, f) • h ^ .

(iii) f(x,y) = g(x)(y) for all x £ X and y £ Y .

Putting yM-̂ Y (f) = g if these conditions are met defines a homeomorphism

which is natural in X , Y , Z .

Proof. If g is a map and f given by (i), then f is a map since evr7
lei

is continuous, and f and g satisfy (iii). If f is a map and g given

by (ii), then g is a map since h^, is continuous, and (iii) holds, f and g

determine each other in (iii), and thus we have a bisection

: C(X®Y, Z) >C(X, C^

/*XYZ clearly is natural in X , Y , Z . Using the fact that A*-XYZ * S a

tion for any three A-spaces, we prove that .̂ 4-i_ is a homeomorphism. We omit

all subscripts, and we denote by
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the natural homeomorphisin, given by a((x,y),z) = (x,(y,z)) .

To show that /^vy^ ^s continuous, we begin with the evaluation map

e : C^Xf&Y, Z)<S> (x® Y) > Z .

We have (/x(e • a))(f,x)(y) = e(f,(x,y)) = f(x,y) ,

for f : X®Y •—* Z , x £ X , y £ I , and ju (^(e • a)) = /^ Y z f°ll°WG« T h i s

ie continuous. For the evaluation nap

e : CA(X,«CA(Y,Z))«)X —>ocCA(Y,Z) ,

we have (ju" (e))((g,x),y) = e(g,x)(y) = g(x)(y) ,

for x £ X , y £ Y , and g : X —•? <x CA(Y,Z) . j*(fA~\e)' a""1) = 1

f o l l o w s , a n d t h u s ^ L ) ~

. C^r^Ll&EZ* Let, £§) Y. be a. product of M -spaces. with projections

p. : QD Y. —>Y. . If /t(f) = (p. f)-^!- » for an .ft-space X and al l maps

f : X —> (^) y, , then
i € I x

7T : ex C (A, & Y ) > ® oc CjX.Y.)
•* i(£I x i € I A

is a homeomorphism of fi.-spaces.

Proof. This follows immediately from the fact that the functor ex C (X, - )

on Jl-spaces is right adjoint to the functor -<S)X , by a standard categorical

argument which can be found e.g. in [l» p. 9] |

Consider now a diagram A : D >J in J~ with scheme D , with vertices

A. and arrows a% : A. — > A . corresnonding to the vertices i and arrows A :
1 A 1 J

HUNT LIBRARY
CARNEeiE-MlLLON UNIVERSITY
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j of D , and let A** = lira A. be a colimit of A in J", with maps
—$> x

. : A. —>&**. • If X is a space, then the spaces A. ® X are the vertices,

and the maps â g)id X the arrows, of a diagram with scheme D which we denote

by A ® X : D —3> 3~. We denote by Z = lira (A ±®x) a colimit of A ® X ,

with maps z. : A. & X — > Z . The relations P z. = a. a id X determine a map

F : Z ; — ^ A ^ & X uniquely.

3.3. Corollary. If all vertices A. of. A are A-spaces, then

F : lim (A±<$ X) — > (lim k±)<S>X

is a homeomorphism of ft-spaces.

Proof. Since J\.-spaces form a coreflective subcategory of £T* which is

closed under homeomorphisms, the coliraits are>^.-spaces. 3.3 follows immediately

from the fact that the functor - ® X on ,/Z-spaces is left adjoint to the func-

tor Oi Cfi(X, - ) ; we sketch the standard argument. We define

G : lim A — > <* CA(X, lim (A.® X))

by putting G a. =juib.) , for the colimit maps b. : A. ® X —:>B . One veri-

fies easily that G = li(F~ ) defines the desired inverse of F |

Let us now consider preclusions in J , as defined in [24], for the forget-

ful functor P : T —> ENS .

3.4. Cjr̂ iiary.. If f : X — ^ X 1 and g : Y — ^ Y 1 are P-proclusions

in g~, and if .X and Y are A-spaces, then X' - and Y1 are A-spaces. and

f & g '• X ® Y — > X1 ® Y' is a P-proclusion.

Proof. The first assertion follows immediately from the dual of [24; 3.2];
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see also [24; 3.3]. Since

f & g = (id X'<& g)(fg> id Y) ,

and the composition of proclusions is a proclusion, we must prove only that

f <§ id Y is a proclusion. The map f <8> id Y clearly is surjective if f is ,

and the functor - <8> Y on Jl -spaces is left adjoint to <x ̂ ( Y, - ) . Thus

f<g> id Y is a proclusion by [24; 2.2] |

We have verified four of the five "test propositions" of [2l]. The remaining

test proposition is valid in "3~ as well as for .#-spaces.

3.5. Proposition. If A : D —>5T* and B : D — > T ~ are diagrams in 3~

with the same scheme D , and with vertices A. and B. , and if a map f :
1 1

A —-> B consists of proclusions f. : A. -—>B. , then a colimit

lim f. : lim A. —j> lim B.
— y l — ^ l — ^ l

of f ±n_ T Is a proclusion.

Proof. By [24» 2.l], we must only show that lim f. is surjective. The
— ^ l

surjective maps f. are epimorphic in TOP , and thus a colimit f^ : A* -— > B #

of f in TOP is epimorphic, i.e. surjective. If fj^ : A^ — ^ Â .̂  and

M_ : B# ^B^^ are reflections for ^~ , then <WB f* = f*^ % for a unique

map f̂ .̂ : Â .̂  —j> B ^ of *3~ , and f ^ is surjective since the other three

maps in the relation defining f̂.̂. are surjective. Â .̂  and B.^ are colimits

of A and B in f , and f ^ is a colimit of f |

In 3.1 through 3.4, we have used the continuity of the evaluation map e^y

(see 2.5) only for/I -spaces X and Y . We conclude the paper with a useful

proposition which uses the full strength of 2.5. .
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3.6. Proposition. If X is an R -space and Y a space in T , then

C(X,Y) = C(X,otY) and ocC^X^) = cxr '"- vX

Proof. C(X,Y) = C(X,<XY) follows immediately from 1.4. C^jXcxY) has the

finer topology than C^,(X,Y) . On the other hand, if u : A — > C^(X,Y) is con-

tinuous with A in J\. , then

u = e ^ » (u ®id X) : A<g> X — > Y

defines a map u . The map u : A <2> X — > c< Y remains continuous, and thus

u = C(X,u") • h ^ : A — » CA(X,ocY)

remains continuous. This shows that CK CQ(X,OCY) = O£CL(X,Y) J

3.7. The present paper raises some topological questions which it does not

answer. Here are three of these questions.

3.7.1. For which epireflective subcategories ?7~ of TOP and for which

classes J^- of compact Hausdorff spaces in ^~ is it true that Cft(X,Y) is in

£T for all spaces X , Y in J ? In other words, can 2.3 be extended?

3.7.2. If tT is an epireflective subcategory of TOP contained in 5" ,

and fi, a class of. compact Hausdorff spaces in 3" , then a space X in^ V' has

Ji -space modifications otX in ^ and oc'X in- £T . How are these related?

The example ^~ = Hausdorff spaces, T= regular spaces, A. • all compact Haus-

dorf f spaces, shows that ex X and ex' X may be distinct.

3.7.3. If A. -spaces satisfy.the conditions of this section, is the class of

compact J2-spaces closed under the formation of finite products and of closed .

subspaces in ^ ? This is the case for k-spaces and for sequential spaces.

A related question: does 2.5 have a converse?
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CONCERNING CONVENIENT CATLUORII£

Note by Oswald Wyler

The notations of this note will be those of the author's report: Convenient

Categories for Topology, and all references will be to this report. We obtain a

converse of Theoren 2.5, and we generalize the well-known result that the product

of a k-space with a locally compact space is a k-space.

Me recall that we operate in an epireflective eubcategory J~ of TOP , and

that .ft -spaces are the objects of the coreflective subcategory of 7" generated

by a class JL of compact Hausdorff spaces in J~. These subcategories are

assumed to be full and replete (in the non-Preydian sense), ex denotes the

coreflector for ^.-spaces, and X ® Y is the J\,-space product of ocX and oc Y .

This must be distinguished carefully from the product XX Y in 3~ .

We redefine convenient categories by saying that A. -spaces form a convenient

category if they have a convenient basis, and we say that fi. is a convenient

basis for Ji. -spaces if the following two conditions are met.

CE. If A £ .ft, then e^, : «CJJ(A,Z) X. A — > Z is continuous for every

space Z in 9~*.

CP. For any two spaces A end B in M , the product A x B in Ji. is

an ,A-space.

The results of this note show that this definition of a convenient category

is stronger than that of the report cited above, and enhances convenience.



Before proving the main results of tids note, we derive an important con*

sequence of condition CL of Theorem 2.5, and we show that CE suffices for the

conclusion of Theorem 2.5.

?4||2gj:. II A satisfies CL. tl̂eri .C^A^} is. C(A,z) with the

compact-open topology, for every AfiA and every space Z in 9" .

Corollary. CL implies CE.

Proof. The comact-open topology of C(A,z) obviously is finer than the

topology of CQ(A,z) . For the converse statement, consider a set W(K,V) with

K C2 A compact and V CL Z open. If f £ w(K,V) , then f-1(v) is a neigh-

borhood of K . Since K is compact, it follows from CL that K is covered by

a finite number of sets u.(B.) contained in f~ (v) , for maps u. : B. — > A

in pi /A . The set f\ W U ^ V ) then is a neighborhood of f in CA(A,Z) , and

contained in Vi(K,V) . Thus w(K,V) is open in C«(A,z) , and the topology of

Cn(A,Z) is finer than the comoact-open topology.

It is well known that e _ : c(A,Z) X A —•> Z is continuous if A is a

compact Hausdorff space and C(A,Z) has the conpact-open topology. Used for all

spaces A in & , this is somewhat stronger than CE|

Prop. 1 is useful not only btcause of its corollary, but mainly because the

spaces CA(A,Z) with A in ft determine all spaces C«(Y,z) . To see this,

let C (Y,Z) be the set ; C(Y,Z) with the topology of pointwise convergence,

The sets '̂(-[x̂ , V) , for x £ X and V open in Z , form a feubbase of open

sets for this topology, and cJYjZ) has a finer topology than C (Y,Z) . Thus
•** P

the following diagram (all arrows) is a commutative diagram in TOP , for every

map u : A — ^ Y in



CA(Y,Z)~Bil,ZL

(l) |idC(Y,Z) id C(A,Z)

c u tz)
 c(u'z) > cp(A,z)

The class of all diagrams (l) determines C-(Y,Z) as follows.

Propositipn__2. Let D be the diagram in TOP consisting of all solid

arrows of diagrams (l). C»(Y,Z) , with all broken arrows of diagrams (l), is a

limit of D in TO? .

Proof. C(Y,Z) , with the broken arrows, is trivially a limit of D at the

set level. Thus we need only chow that C«(Y,Z) has the coarsest topology for

which all broken arrows of diagrams (l) remain continuous. This is•the topology

for,which the sets (c(u,Z))"1(v) , f<>r arbitrary u : A T ~ > Y in $cfl and V

in a subbase of C_(A,Z) , forn a subbase of open sets. If V = W(v,U) for a

map v : E —•> A in Jt/k and U open in Z , then clearly

(C(u,z))"1(v) = W(u v, U) .

These sets form a subbase of open sets for Cj.(Y,Z) |

We note that D is a large diagram if A/Y is a proper class. This does

not matter for nany applications, including-; the one given below, and in any case,

D can easily be replaced by a small subdiaeram with the same limit.

Proposition^. If_ z is a space in 3~ such that C^U.Z) is in 3" for

every space A6-/5. , then C,.(Y,z) is in fT for every topological space Y .
JZ — —

Proof. C (Y,Z) is hor.eonorphic to a subspace of the product space Z *

and thus is in T regardless of the topology of Y . Now CL(Y,Z) is the limit



in TOP of a diagram with vertices in theepireflective subcategory 5 r . Since 3"

is full and replete, it follows that C^Y.Z) is a space in 3" |

After this digression, we return to the main thene of the present note.

Propositionjr. If, A satisfies CE. then eIZ : 0^.Y,i)<S)Y — ^ Z is con-

tinuous for all spices Y and Z in A.

Proof. We must ehow that e™ u is continuous for every map u : A — >
— — — — j££

Cft(Y,Z)xY with A in Jl . If u = |p,q^ for p:A—=>C f t(Y,Z) and q :

A —•> Y , and if v = {p, id A^ : A — > < * C^Y.Z) x. A , then * is continuous,

and the following diagram clearly commutes at the set level.

(2)

c<cA(Y,z)x A cU>z) ^±t> KQA(A,Z)X A

idxq

oCplXz) x Y

'AZ

The upper leg of (2) is continuous by CE, and thus eyZ u is continuous|

We note that the product in HT~ appears in Cfi, and the product of ./^-spaces

in Prop. 4. Although our next result eliminates this distinction, it is vital in

its proof.

' If , A -spaces fern', a convenient category, and if an r ft-space Y

is a locally compact llausdorff space, then the product X X Y in 3" is an

fl for every $ -space X .

x>f. The topology of X ® Y is finer than that of X X Y ; we must ...

prove the converse. Vie do this first for Y = A in a convenient basis Jl for

A-spaces. The identity napping from X x A to X fi> A is the composite map



h.,. x id e.
A — ^ > <*cĵ A» *e>^)x A —

which is continuous by CE and 2.5.

In the general case, let W be a neighborhood of (x,y) in X ® Y . Since

h ^ x ) : Y ) l g l is continuous, (h^Cx))"*1^) is a neighborhood of y

in Y . Thus ^x^ X. Ii C W for a compact neighborhood H of y in Y . Let

V = {x1 <£ X : {x1} X N C V»'} .

Clearly x £ V and V x D C W , and we are done if V is a neighborhood of x

in X . bince X is an./£-epaee, this r.eans that, for every pair (u,a) with

u : A — ? X in A / A and a ̂  A fciich that u(a) = x , there is a neighborhood

U of a in A such that u(u)<G*V . liov u x id Y : A K Y — ^ X ® Y is con-

tinuous since A X I is an $.-space, and thus Vi = (u x id Y ) ~ (W) defines a

neighborhood VJ of (a,y) in A x Y . Clearly ^a^ X N C ¥ . Since N is

compact, U X H C W for some neighborhood U of a in A . But u(u) <Z. V

for such a neighborhood II |

Theorem 2. If jR,-spaces form a convenient category, then the class of all

compact Hausdorff Jl-spaces is a convenient basis for Jl-spaces.

Proof. Denote this clasc by J& , and assume that /i is a convenient basis.

By Theorem 1 and Prop. 4, JB satisfies CP, and e^ : c<Cft(B,Z)x B — ^ Z is

continuous for every trpace Z in £7" . Lince C -topologies are finer than

C -topologies, er.r, reuains continuous if C (B,2) is replaced by CQ(B,Z) .

Thus Jfe also satisfies Ch\
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