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ON QUOTIENT MAPS 1IN GENERAL TOPOLOGY

Oswald Wyler

It is a well~known and sometimes troublesome fact that the class of Haus=
dorff spaces is not closed under the formation of quotient spaces. We claim that
this is the result of a simple (and quite common) misunderstanding: the quotient
nmaps of one category, topological spaces, are used in a quite different category,
nanely Hausdorff spaces. If quotient maps and spaces are properiy defined, then
the category of Hausdorff spaces has all the quotient spaces which one needs.

The basic properties of a quotient map or proclusion f : X —3»Y are the
following. f 1is surjective, and if Z is a space and u : Y 3 Z a mapping
such that u f : X —3»2Z is continuous, then u : ¥ —> Z is continuous. Our
definition of a proclusion translates these properties into categorical languaage.

We define proclusions and quotient spaces, and dually inclusions and sub-
spaces, in section 1, and we obtain some basic properties of proclusions and
inclusions in section 2. Section 3 is concerned with subspaces and quotient
spaces for epireflective and monocoreflective subcategories, and with topological
applications.

This note is mostly pure categorical algebra. This is appropriate since
quotient maps exist not only in topology, but alsc e,g. in universal algebra.
Categorical duality is an added benefit of the abstract treatment, and a very

welcome one.




1. Proclusions and quotient objects

1.1. Throughout this note, we consider two categories B ans T , and a
functor P: T — B, In topological applications,’ R may be the category of
sets or a category of algebras, T a category of topological swvaces or of topo=-
logical algebras, and P the functor which "forgets topologies". We do not

assume that P is fajithful.

1.2, We say that amap f : A —>B in J is a P-guotient map or a

P-proclusion, over an epimorphism e of B , if the following two conditions

are satisfied.

(i) Pf=ue for an epimorphism u of B .

(ii) If g:A—=C inJ and Pg=ve foramap v inJ , then
g=hf inJ for auniquemsp h:B—>C of I , with v=(Ph)u.

Dually, f : A —>B in 9 is salled a P-inclusion, over a moromorphism

n of B s if the following two conditions are satisfied.

(i*) Pf=mu fo:r" a monomorphism wu of B.

(ii*) If g:C —~—>3B in¥J and Pg=mv foramep v in B, then
g=fh inJ for auniquemap h: C—>A of I, with v=u (Ph) .

We say that B is a P-guotient object of A, over e , if a P-proclu-

sion f : A—> B over e is given, and we define P-gubobjects dually.

1.%. Every P-proclusion is epimorphic in 7 ; the converse is usually
false. If f is a P-ppoclusion over an epimorphism e of B , then f is
also a Pmpproclusion over P f . If e is not explicitely given, then e =P f

is understood. Dually, every P-inclusion f is a :Peinclusion over P f , and




m=Pf is understood if m is not explicitely given.

P-proclutions are P-opfibred morphisms f in the sense of [l; 7.1] for
vwhich P f 4is epimorphic, and P-inclusions are P-fibred morphisms f{ for
which P f is monomorphic. The name proclusion for quotient map has been pro-
posed in [4] to stress the duality between proclusions and inclusions.

If £ inJ 4dsa P-proclusion over an epimorphism e of B, then f
is also a P-proclusion over b e for every isomorphism b of B such that
b e is defined, and f may well be a P-proclusion over other epimorphisms
of B, If f:A—>B in 9 is a P-proclusion over e in JB , then a.map
f' : A —>B' of 9 is a P-proclusion over e if and only if f' =t f for

an isomorphism t : B —>B' of T.

1.4. If 9 is an equational category of algebras, and P the forgetful
functor from 7 to sets, then every monomorphism of 9 is é. P-inclusion, and
f in 9 is a P-proclusion if and only if P f is surjective. The example of
rings shows that 7 may have epimorphisms which are not P-proclusions.

If 9 is the category of topological spaces or the category of BHausdorff
spaces, and P the forgetful functor from T to sets, then amap f : 4 —>3B
of J is a P-inclusion if and only if P f is injective and f induces a
homeomorphism from A to a subspace of B . A P-proclusion is a quotient map
in the usual sense for topological spaces; a P-proclusion for Hausdorff spaces

need not be a quotient map in the usual sense.




2. Properties of proclusions

2.]l. We consider a diagram in T ac a map A : D —>T from a diggram
scheme D .to T . A assigns an object A4, of T to every vertex & of D,
and a map ay : Ay —>Ag to every arrow Aitx~—>@B of D, If B:D—>T
is a diagram with the same scheme, then a map f : A —>» B assigns to every ver-
tex ¢ of D amap f, : 44 —>Bg of 9" such that fﬂ an = b, f, for every
arrow AN :x—>» & of D. If A and B have colimits A, =.1_.i_§A°( and
By = 31:1; Bx » with maps a, : 45 —> A, and b, : B“—a By , thenamap f :

i A, —> B, , determined uniquely by the

A —>B has a colimit f, = Eg T

condition that f, o = b& fag for every vertex x of D .
With these notations, we have the following result.

Proposition, If every map f, is a P-proclusion, and if P f, is epi-

morphic in B, then f, = lim f, is a P-proclusion.

Proof. f, is epimorphic in 9~ since .fy 1% & colimit of epimorphisms.

If g: A, —>C in 9 with Pg=u (P f,) for some u in B, then
Plea) = uP(fya) = u(Pp)(Pg)

in B . Thus gad=h°<fx for a unique map hog:Bo(—->C of I, for every

vertex &« of D. If A : o« —>»R is an arrow of D, then
in T , and h“= hB by follows. Thus there is a map hy, : By —>C of v

such that h =h, b for every vertex o¢ of D . We have

hy fx 85 = hy b, £ = h, fy = 8 ay




and g =h, T, follows'

2.2. We consider a pair of functors U : f—> 9 and F: }7——7->;f’ such
that P is left adjoint to U , with unit (or front adjunction) 7 : Id

—>UF, and counit (or back adjunction) € : F U —>Id¥ . We recall that

g = g (Ff) == £ = (Ve

for f: A—>UB in 9§ and g: ¥4 —>B in ¥, and that this defines a

natural bijection
P £(r 4, B) —>9 (4, BU) ,
for all objects A of 9 and B of £ .

We put Q=PU : £—>R.

Proposition, If f : A—>B in J is a P-proclusion, and if Q F f is

epimorphic in B, then Ff is a Q-proclusion.

Proof. Suppose that Qg =1u (QFf) for g: FA—>C in ¥ and some-

u in B, If g =7>Ac(g) = (U g) 7A , then

Pg = ul(Qr)eg) = u@p)rs) ,

by naturality of P’7:P—-—9QF. Thus g =h f for a uniqgue h : B —>U C
in . 1r R=gu(h), then g=h¢ if and only if g=h (F 1),

by naturality of 7AC in A. Thus g=nh (F f) for a unique h in ] '

2.3, If U is full and faithful in the situation of 2.2, then U(®) is a
full reflective subcategory of 9-, equivalent to f by U, with reflections
P AhA—>UFA, and £ : FU —> 14 £ is a natural equivalence. Thus U

has a left inverse left adjoint, i.e. one for which F U = Ia & ,~ and & A= id A




for every object A of & . Ny = 1d U A follows. since (U.s)({y U) '=1d U i~

We:- congider P-inclusions f : A~—>B U in this situation.

We recall a definition. An epimorphism e of a category E is carlled
extremal if e =vu in ¥, for epimorphic w and monomorphic v in ¥,
always implies that v is isomorphic in ¥ . Surjective mappings, and surjec-

tive homomorphisms of algebras, always are extremal epimorphisms.

Proposition. If f : A—> UB is a P-inclusionand f = (U T) 7A for

FT: 74 -—>B in :?, and if P7A is an extremal epimorphism of B, then

7, is an isomorphism of 9, and T is a Q-inclusion.

Proof., Since P f = (Q f)(P 7A) is monomorphic, P 7A is monomorphic as
well as an extrcmal epimorphism. It follows that P 7A is isomorphic in B .
Now QF = (P )P 7A)-1 in BB, and thus UF=f x for some x inJ .
But then f x 7A =f, and x 7A = 1id A follows since f is monomorphic.

As U is full, », v=Uy forsome y:FA—>F4 in £, eand

(v y)7A =7, = (Uia ¥ 4) 77,
follows. But then y =1id P A . Thus 7A v=id UF A, and 71\. is isomor-
phic in T .

Now QF = (P )P '7A)-'l is monomorphic in B since P f is, and T is
monomorphic in f since U F =¢ (7 A)-l is monomorphic in  and the faithful
functor U reflects monomorphisms. If Qg=(QFf) v for g: C—>B in £
and some v in B , then PUg= (p f)(P7A)~1 v in B , and it follows that
Ug=fh1 for some hl:UC~——>A inT. If’7Ah1=Uh,with h:

C—>FA in P, then Ug=U(Th), and g=Fh follows|




3. Applications

2.,1¢ In this section, £ Genotes a full subcategory of T end U» :

&#~> T the embedding functor. We say that & is P-epireflecti:re in T ir d
is reflective, i.e. U has a left adjoint F : T —> $, and P7A is an
extremal epimorphism of B for every reflection ’7 Al A —>UPFA of an object
A of I into F. Dually, we call o P-monocoreflective if U has a right
adjoint G, and P GA is an extremal monomorphism for every coreflection £,
UGA—>4 into ‘;P . 30 is Pemonocoreflective in 9~ if and only if the dual
category § OP of f is P°P_epireflective in T °F .

If P is faithful, then every P-epireflective subcategory is epireflective,
and every P-monocoreflective subcategory is monocoreflective. The converse is
not always true: compact Hausdorff spaces define an epireflective subcategory of
Hausdorff spaces, but not a P-epireflective subcategory for the forgetful func-

tor P from Hausdorff spaces to sets.

2,2, Let £ be a P-epireflective full subcategory of I , and let F be
the left inverse left adjoint of U (see 2.3), with £, = id A =7UA for every
objJect A =UA4 of :f . Ve replace prefixes P and Q , for the functor

Q=PU, by affixes "in T " and "inf " .

Proposition. let f : A—»B in J . If f is an inclusion in I~ over

& monomorphism m of B and B an object of .30 , then ‘7 A is an isomorphism

of I, end f(’?A)-leA—eB is an inclusion over m in £ . If f is

& proclusion in T over an epimorphism e of ‘B and A an object of :f’ ’

then 7B f : A—>»F B js a proclusion in _30 over € .




Proof. In the first part, 7, is isomorphic by 2.3. Thus f (7A)‘1 is an
inclusion over m in T, and all the more in :Ip .

If Pf =ue in the second part, then Q (7]3 f) =u'e for u'= (P7B) u
which is epimorphic in R, If g: A—>C in oF satisfies Qg=ve fora
map v inB , then g = h, f in I for a unique map hy; : B—>C in T.
7B is a reflection for f and thus hl = h7B for a unique map h : F B —>C

in £ . It follows that g = h7B f for a unique map. h -in ‘;;? '

3.3, Let now B = ENS , the category of sets, and let P be a forgetful

functor. We say that J has all possible proclusions if for every object A

of I~ and every surjective mapping e with domain P A , there is in J a
proclusion f : A —>B over e . Having all possiblé inclusions is defined
dually.

For TOP , the category of topological spaces, the following is well known.
For every space A and every surjective mapping e with domain P A4 , there is
a unique proclusion f ¢ A —~>B with P f =e . For every space B and every
injective mapping m with codomain P B, there is in TOP a unique inclusion
f:A—>B with Pf=m . Thus TOP has all possible proclusions and all
possible inclusions.

Cince a'map f in TOP is epimorphic if and only if P f is surjective,
& subcategory T of TOP is epireflective if and only if I is P-epireflec-
tive. Thus every epireflective subcategory T of TOP has all possible pro-
clusions and inclusions, by 3.2. Inclusions in ¢/ are inclusions in TOP , but
proclusions in 7 are usually not proclusions in TOP .,

Let now J be a full subcategory of TOP and 30 a full coreflective sub-

category of T . It :20 has a non~empty cpace among its objects, then one sees




easily that P EA is bijective for every coreflection £, GA—>A for & .
Thus the dual of 3.2 applies, and f’ has all possible proclusions and inclusions
if J has all possible proclusions and inclusions. Proclusions in dp are pro-
clusions in 57'; inclusions in o need not be inclusions in T .

Epireflective full subcategories of TOP , and their coreflective full sub-

categories, have been studied extensively; see e.g. [2] and [3].

3.4, All statements made in 3.3 about TOP and its subcategories remain
valid for any top category over ENS , in the sense of [5] and [6], provided
that a singleton has only one structures; This condition is usually sotisfied for
categories of sets with topological structures of some kind.

The categories considered in 3.3 and the preceding paragraph have the fol~
lowing properties in-common. (&) Amap f of ¥ is monomorphic in T~ if and
only if P f is injective. (p) ALl possible inclusions and proclusions exist
in 7 . It follows easily from (a) and (b) that the proclusions in 7 are pre-
cisely the extremal epimorphisms of I~ (see 2.3). The corresponding statement
for inclusions may well be false. For example, if A is a subspace of a Haus-
dorff smace B , then the inclusionmap j : A —>» B is always an inclusion as
defined in this note, but J is an extremal monomorphiesm of Hausdorff spaces
only if A is a closed subspace of B . One cannot decide once for all whether
all subspaces or only closed subspaces are the "right" subobjects for a Haus-

dorff spacey this depends very much on the eontext in which one works.
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CONVENIENT CATEGORIES FOR TOPOLOGY

Oswald Wyler

In [21], N. E. Steenrod gave a list of criteria which a convenient category
of topological spaces should satisfy. One of these criteria is somewhat vague:
.the category should be large enough to have among its objects "all of the parti~
cular spaces arising in practiee," The other two criteria can be made precise.
They are that the category should be large enough to be closed under standard
operations, and that it should be small enough so that these operations satisfy
certain reasonable identities. Using results of R. Brown [3], [4], Steenrod
showed in [21] that k-spaces satisfy these criteria.-

" We gtudy in this paper a class of categories of topological spaces which we
call compactly generated, and we obtain criteria for such a category to be con-
venient, in Steenrod's sense., k-spaces form the largest compactly generated
éategory; they satisfy our criteria. Sequential spaces, introduced by G. Birk-
hoff [2] and studied intensively by S. P. Franklin [9], [10] and others, form a
compactly generated category, and a convenient one. Sequential spaces are of
course also convenient in a more immediate way: they are the spaces for wﬁich
convergence of sequences does all the jobs for which convergence of filters
(or of nets) is usually needed. Some of our results hatve been obtained for
g%ggggzgﬂgpaces by J. A. Guthrie [13], [14]. Other convenient compactly gene-

rated categories are listed in section 2.




In categorical terms, convenience means that the category should be carte-
sian closed. Closed categories, i.e. categories with an internal hom functor and
a tenedr product functor, were introduced by S. Eilenberg and G. M, Kelly [8] and
by F. E. J. Linton [20]. Long lists of examples have been given in [8] and [20],
and by M. Bunge in [5]. Closed categories have been studied intensively and many
useful results have been obtained for them. Thus it is helpful to know that a
given category is closed. A closed category is called cartesian if its tensor
product is the ordinary (or cartesian) product. The closed categories of inter-
est in topology are the cartesian ones, and categoriec of pointed spaces with a
smash product as tensor product. %These are the categoriec with function space
topologies which are, in the language of J. Dugundji [7; XII.lO], both splitting
(or proper) and conjoining (or admissible).

The methods of this paper are mostly categorical; we use very little "hard"
topology. We begin with some general properties of coreflective subcategories of
epireflective subcategories of the category of topological spaces. These cate-
gories were studied first by A. M, Gleason [12], and then by J. F, Kennison [19],
S. P. Franklin [11], H. Herrlich and G. E. Strecker [15], [17], [15], and others.
See [16] for a survey of this theory and further references. We present only the
facts which we shail need., These facts are well known, but not available in
print in the form in which we need them., In section 2, we discuss topologies for
function spaces. Our main result is that a compactly generated category admits
function space topologies which are proper and admissible if certain simple con-
ditions are satisfied. Using results of [24], we show in section 3 that a cor-
pactly generated category which satisfies these conditions is convenient.

All results of section 1 and section 3 remain valid in the general setting




of top categories [22], [23]. This is a trivial generalization; we leave it to
the interested reader. It is not without interest: C, H. Cook and H. R. Fischer
[6], and E. Binz and H. H, Keller [1], have shown that the category of limit
spaces is convenient., As this is a very large category, it would be useful to

obtain further results on convenient top categories.

1. Coreflective subcategories

1.1. Ve denote by TOP the category of topological spaces, and by J an
epireflective full-subcategory of TOP ., We assume for convenience that every
topological space which is homeomorphic to an object of I~ is itself an. object
of T . Among the possibilities for & are: TOP itself, Tl—spaces, Haus-
dorff spaces, T3-spaces (without Tl) and regular spaces (with Tl), and com-
pletely regular spaces (with or without Tl). The terms gpace and map will
usually refer to objects and morphisms of g ;3 exceptions will be noted.

We denote by ENS the category of sets, with mappings as morphisms,

1.2, In most of this paper, /& will be a fixed class of spaces which con-
tains at least one non-empty space. If X is any space, then :Q/X will denote
the class of all maps u : A —> X with A& A,

For a space X in T , we denote by o< X the space in & consisting of
the underlying set {Xl of X with the finest topology for which all maps u
in JQ/X remain continuous. We note that o« X is the limit in TOP of the dia-
gram consisting of all maps id |X]| : X, —>» X, for objects Xi of I with
underlying set |X| , and with a topology finer than that of X , but coarse

enough so that all maps u in f&/X renain continuous for Xi . By a standard




categorical argument, this limit is an object of T .

We call a space X an R-g_@c_:g_ if .« X =X . All spaces oc X, and all
spaces 4 in A, are )Q-spaces. The following two results show that ﬂ-spaces
are the objects of a full coreflective subcategory of T . We note without proof
that this is the smaellest coreflective subcategory of T for which all spaces

in £, and all spaces homeomorphi¢ to an object of the subcategory, are objects.

1.3, Proposition. If X is an A-sgpace and Y & _space, then a mapping

f : X—>Y is continuous if and only if f u : A —>Y is continuous for every

map u : A —>X _i_rlﬁ/X.

Proof. f u is continuous for all u in A/X if and only if the coarsest
topology of \Xl for wvhich f is continuous is coarser than the finest topology
for which all u in J%/X remain continuous, i.e. if and only if f tx X —> Y

is continuousl

1.4. Theorem. For every space X , the map id le t X —>X is g

coreflection for the category of ;q.—spaces.

Proof. We must show that f ! Y—> o« X remains continuous if f : ¥ —> X
is continuous and Y an ,Q-spcce. If u:A~—>7 is in J}/Y , then f u is
in A/X, and thus f u : A—> o« X is continuous. But then f : Y->oc X is

continuous by 1.3|

1.5. The category of ﬂ.-spaces ies generated by A s @3 already noted
in 1.2. There may of course be many classes of spaces which generate the same
coreflective full subcategory of I . Ve say that the category of R ~spaces is

compactly generated if it can be generated by a class of compact Hausdorff spaces.




We obtain the largest compactly generated coreflective subcategory of I vy
letting A be the class of all compact Hausdorff spaces in T . Ve call this
.category the category of k-gpaces in J. 1f T is the category of Hausdorff
spaces, then this is the category of k-spaces in the usual sense.

The smallest compactly generated coreflective subcategory of I is the
~ category of T -discrete spaces, generated by singletons. o¢X for this category
ie |X| with the finest topology of an object of I .

If A consists only of N,=N u{wk, the Alexandroff one-point compacti-
fication of the discrete smace N of natural numbers, then R—spaces are seguen=-
tial spaces in J . Arcontinuous map u : N,,—>X is basically a convergent
sequence (un) in X with limit u, . A convergent sequence in X which has
more than one limit defines more than one map u : N_,—>»X . In this example,
the topology of o X is the finest topology of an object of I with underlyingl
set |X| for which all convergences u n—> Y, of sequences in X remain
valid, A mapping f : X —>Y from a sequential space X in 9" to a space Y
is continuous if and only if f preserves the convergence of sequences., I1f F
is TOP , or the category of Ti—spaces, for i=0,1, 2, then sequential
spaces in T are sequential svpaces in the usual sense. We do not know whether

this remains true for other categories gJ.

1.6. VWe extend the operator o« +to maps by putting ¢ f =f t XX —> o ¥
foramap £ : X—>Y , It follows immediately from 1.4 that this is well
defined. Thus we have a functor ot from J to A -spaces. By its construction,
this functor is a coreflector for A-—spaces, i,e. ¢ 1is right adjoint to the
embedding functor from fl -~spaces to J . 'This has important consequences.

It is well known that every diagram A in TOP , with vertices Ai s has




a limit A* and a colimit 4, , and that the forgetful functor from TOP +o
ENS preserves and creates limits and colimits; we refer to [22;'6.2] for an
exact statement of this, If A is a diagram in 77, then A* _is a limjit of A
in 7, and if ’7A‘* : A, —>4A,, is a reflection for I, then A, is a
colimit of A in T . If A is a diagram of A -spaces, then the colimit A,
of A in T is anﬁ.—space, and a colimit of A in the category of ﬂ—upaces,
and A** =X A* defines a limit A¥* of A in the category of ﬂ,-—spaces.

Subspaces and inclusion maps behave like limits, -and quotient spaces and
proclusion maps like colimits; we refer to [24] for this.

For convenience, we denote by X® Y the product of ‘xX and oY inithe

category of N ~spaces. Thus

I@Y = xX®xY = x(XAx¥) = x(xXxexY) ,

for any spaces X and Y . This exoresses the well-known fact that the core-

flector (X preserves products.

2. Function spaces

2.1, PFor-two spaces X and Y in .‘7', vwe derote by c(%,Y) the set of

2ll maps from X to Y in J. For £:X—>X' and g:Y¥Y —>Y! in I

ve define a mapping
c(f,z) : c(x',Y) —>» c(x,¥Y)
by putting (C(f,g))(h) = ghf for h: X' —>Y in T . This defines a

hom functor C :T %Px T —>ENS ,+ Wwhere T °P  is the dual category of J .,

2.2. Ve wish to "lift" the hom functor by providing every set C(X,Y) with




a topology in such a way that all mappings C(f,g) become continuous maps. This
can be done in many ways; we describe a general procedure which includes most of
the function space topologies which have been used,

For u:A—X in A/X and V openin Y, we put
W(w,V) = {f cc(x,Y) : uwla)c £V} .

We denote by CR(X,Y) the topological space obtained by providing C(X,Y) with
the topology for which these sets W(u,V) form a subbasie of open sets.

Irf R is tiie class of compact Hausdorff spaces and X a Hausdorff space,
then CA(X,Y) is C(X,Y) with the ucual compact-open topology. If £ consists
of singletons, then CA(X,Y) is C(X,Y) with the topology of pointwise conver-
gence, For A = {Nw} (see 1.5), the spaces CA(X,Y) have been considered in

[13] and [14]. The following result is known for these three cases.

2.3. Proposition. Every mappinsg C(f,g) : CA(X',Y) —_— CA(X,Y') is con-
tinwous. If Y isa T, -space (i=0, 1, 2), then gﬂ(x,r) is a T;-space.
If Y isa Ta-wi A consists of compact spaces, then CR(X,Y) is a

!

T.j.-smce .

Proof. For u in A/X' and V open in Y' , we obviously have
=1/ . -1
(c(£,e))™((w,v)) = wlfu, g (V) .

It follows immediately that C(f,g) is continuous.

If £#f in ¢(X,Y), then f£(x) = f'(x) for at least one x€X .
If Y is Hausdorff, then the points f(x) &and f(x') have disjoint open neigh-
borhoods V and V' . If 4 in A is non-empty and u : A —>X is the con-

stant map to x , then fé& W(u,V) and f'é& W(u,V') , and these sets are open




in ch(x,Y) , and disjoint.

Every neighborhood of f is a neighborhood of g if and only if this is
true for every neighborhood W(u,V) of £, for every u and for every V ,
and this is the case if and only if f(x) €V implies g(x) &V, for every
x €X and every open V in Y ., If Y is a T,-space, it follows that f(x)
= g(x) for all x, i.e. T =g, and QRKX,Y) is a Tl—space. If Y is &
To~space, it follows that f =g if f and g have the same neighborhoods in
cﬁ(x,r) , i.e. CA(X,Y) is a 'I‘o-spacel

If A in At is compact and f & V(u,V) , then f(u(4)) is a compact sub~

set of the openset V of Y, If Y satisfies T this implies that

3 k4

flua)) C v, < haov

1 1
for an open set Vl . If g is in the closure of W(u,Vl) , and if x denotes
a point of u(A) and the induced constant map from. A , then W(x,V') is a
neighborhood of g , and intersects W(u,Vl) , for every open neighborhood V!
of g(x) . "his implies that V' intersects V, . Thus g(x) éivl , and g

maps u(A) into Vl . This chows that
fE W(u,Vl) e W(u,Vl) < wWlw,v) |,

and verifies T3 for subbasis neighborhoods, if A consists of compact spaces and

Y is a TB—space. T3 for all neighborhoods in CQSX,Y) follows immediatelyl

2.4, For any spaces X , Y , we have an gvaluation mapping

epy ¢ C(XY)x x| —> \xt

defined by eXY(f’x) = f£(x) . Ve have also a mapping

hey |X{ —> c(Y, xx ¥) ,




obtained by putting hXY(x)(y) = (x,y), forall x€X &ond y€Y . The

evaluation mapping e ie of course well known, but the closely related mapping

XY
hXY has received so little attention that it does not even have a name.

Ve are interested in situations in which the mappings ey and hXY becone
continuous maps. A preliminary step for this is to require that CR(X,Y) is a
space in & for all spaces X and Y in T . 2.3 states the known resulte in
this directionj further results would obviously be useful. A second step,
strongly suggested by known results, is to restrict ouxcelves to A-spaces.

In gfeneral, Cﬂ(X,Y) is not an_f} -space for A-spaces x and Y . This is well
known for k-snaces and the compact-~open topology. The remedy is simple:

replace the space CA(X,Y) in I by.the A-space o<Cu(X,Y) . The maps C(f,g)
remain continuous if we do this. If Y is an A-space, then hXY(X) t Y —

X® Y remains continuous for every x €& X , and we have a mapping
by @ Jxl—>cly, x@1) .

This leads us to the statement of our main result.

2.5. Theorem. Assume that A consists of compact Hausdorff spaces, and

that CA(X,Y) is a space in & for all spaces X and Y in 9 . Consider in

addition the following two conditions.

CL. Every point of a space A in R has a basis of closed neighborhoods

in A ywhich are continuous images of spaces in A .

CP, For any two spaces A and B in R, the product 4 x B is an
A-cnace.

If CL 1g satisfied, then

ey ¢ C&(X,Y)@x —_ Y
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is continuous for sll spaces X and Y in 9. If CP is satiefied, then

hy @ X —-—>CA(Y, I®Y)

is_continuous for all fl-spaces X and Y .

Proof. Ve must show for the first part that ery U is continuous for every
continuous map u : A —--—>CR(X,Y)>< X with A in A . Let u(a) = (f,x) for

some a&4A , and assume that f(x)& V , where V is open in Y ., Let

CA(X,Y) T 5 2L 33
be the component maps of u . w"l(f—l(V)) is an open neighborhood of a , and
there ics by CLamap j : B —>4 with B in A such that j(B) is a closed

. . . -1/ =1 R . .
neighborhood of a contained in w ~(f (V)) . Then f is in W(w j, V) which

is open in CR(X,Y) . oSince v is continuous, the set
No= §(B) A v Huw 3, V)

is a neighborhood of a in A . If a'&lN and ula) = (£',x') s then clearly
f'(x') € V. Thus Byy U is continuous.

We must show for the second part that hXY u is continuous for every con-
tinuous map w : A —»X with A in L . Thus assume that hXY(u(a)) is in
W(v,V) for an open set V of X®@Y andawmap v :B—>Y with B inB .,
This means that (ula), v(b)) €V for every b €B, By CP, AX 3B 1is an
fl~epace, and thus uxv : AX B~—>X®Y is continuous. Since this maps
{a} X B into V and B is compact, there is a neighborhood N of a in 4
such that u(N) x v(B) ¢ V . This means that h_(u(a')) € vi(v,V) for every

X1
a'€N. Thus hyy u is continuous §

2.6, We give a list of classes A which satisfy CL and CP, All spaces
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in A must of course be compact Hausdorff spaces in T .

2.6.1. A singleton.

2.6.2. {N,}, if ¥, isin T .

2.6.3. {[0,1]} , if [0,1] isin T .

2.6.4. All compact metrizable spaces in J .

2.6.5. All compact Hausdorff spaces in 7 .

2.6.6. All compact Hausdorff spaces X in T with |X| countable.

2.6.7. All totally disconnected compact Hausdorff spaces in T.

The list can be made much longer, without great effort. CL is obvious for
all seven examples, and CP is obvious for five examples. N, ,x N, is metrizable
and hence sequential, and it is easily verified that a mapping f from the unit

square to a space X 1is continuous if f 1is continuous on every path.

2.7. A given coreflective full subcategory of I~ is generated by more than
one class A . The; topology of C&(X,Y) , and even that of ox CA(X,Y) , depends
in general on the choice of A . The author's student B. V. S, Thomas has pro-
vided the following example for sequential spaces.

let X =Y be the half-open interval [0,1) , with the usual topology.

Put £ (x) =x for x €X and n€N, with £(0) =1. For & = {N,},
lim fn = fw means that lim f n(u n) =f w(uw) for every convergent sequence u :
N,—>X . This is the case for f,=0. If X isinfl, then linf =0
requires uniform convergence on X which is not the case.

If we restrict ourselves to classes fl which satisfy CL and CP in 2.5, then
the situation changes, at least for R -spaces. It is well known that C(Y,Z) ,
for f{ -spaces Y and Z , has at most one HAe~space topology such that 3.1 is

true for all R-Spaces X .
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3, Convenient categories

We assume in this section that CA(X,Y) is a space in § . for all spaces
X,Y in T, and that the conclusions of Theorem 2.5 hold. We say that

R -spaces form a convenient coreflective subcategory of & in this situation.

3.1, Eégorem. Assume that A -spaces form a convenient coreflective sub—

category of 7, and let X, Y, 2 be A-spaces. For maps

f " X®Y —> 2 and g ¢+ X —>C

AL

the following conditions are logically equivalent.

(1) £ = ey, -(g@ia¥) .
c(ia ¥, f)-hXY.

]

(ii) ¢
(iii) flx,y) = e(x)(y) forall x&X and y&€Y.

Putting /'LXYZ(f) = g if these conditions are met defines a homeomorphism

HPxyg © % Cﬁ(xen, 2) —> x C, (X, xCp(¥,2))

which is natural in X , Y, Z2 .

Proof. If g is a map and f given by (i), then f is a map since ey,
is continuous, and f and g satisfy (iii). If f is a map and g given
by (ii), then g is a map since hXY is continuous, and (4ii) holds, £ and g

determine each other in (iii), and thus we have a bijection
Mxyz cx®y, z) —> c(X, CA(Y,Z)) .

Pxyg clearly is natural in X , Y, Z . Using the fact that Hxy7, is a bijec~
tion for any three ﬂ-spaces, we prove that Mty is a homeomorphism. .We omit

all subscripts, and we denote by
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a : I®Y)®Z — XR(Y®7Z)

the naturel homeomorphism, given by a((x,y),z) = (x,(y,z)) .

To show that /“‘XYZ is continuous, we begin with the evaluation map
e : G (xe¥, Z2)®(X®Y) —>2Z .
Vie have (nle-a))(f,x)(y) = elf,(xy)) = £(x,y)

for f:X®Y —>Z, x&€X, y&EY, and/a(/,\(e-a))=/lXYZ follows. This

ie continuous. For the evaluation map
et Cp(X,xCp(Y,2)) @ X —> x Cp(Y1,2)
we have (’A_l(e))((g,x),y) = elg,x)(y) = ax)(y) ,
for x€ X, y€&€Y, and g:X-——-‘?OtCA(Y,Z) /U\(/A (e-a ) = gl“x_{z

follows, and thus VLXYZ)-I is continuous{

2.2. Coroll ary. Let @ Y. e g product of R —spaces, with projections

—————— icl i
® Y -—-9»1’ . If 5e(f) = (p f). s for an ﬂ-space X and all maps
1€I iel
: X —> Q) v, , then
i€l
Jr x, & v,) —-—>®occ (x,%,)
1CI i€l

is a homeomorphism of R-spaces.

Proof. This follows immediately from the faé't that the functor o CA(X’ -)
on ﬂ-—spaces is right adjoint to the functor -« &X , by a standard categorical
arguﬁent which can be found e.g. in [1; o 9] l

Consider now a diagram A : D —>3 in T with scheme D y, with vertices

Ai and arrows a, Ai —_—> Aj corresponding to the vertices i and arrows A :

HUNT LIBRARY
CARNEGIE-MELLON UNIVEBSITY
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i —>j of D, and let A,y = IEi_gAi be a colimit of A in J, with maps

8 ¢ Ai —>Ayy o+ If X is a cpace, then the spaces Ai® X are the vertices,

and the maps aA®id X the arrows, of a diagram with scheme D which we denote

by A®X : D —> T, Ve denote by Z = (b;®X) a colimit of A®X,

1lim
—_
with maps z; Ai® X —>Z . The relations P z; = ai@ id X determine a map

F:2 —>A,,8X uniquely.

P (A,®X) —> (lim 4, )® X
1 —_— 1

lim
—

is a homeomorphism of ﬂ,—spaces.

Proof. Since f] -spaces form a coreflective subcategory of 9~ which is
closed under homeomorphisms, the colimits are A -spaces. 3.3 follows immediately
from the fact that the functor -®X on ﬂ—spaces is left adjoint to the funce

tor o« CA.(X’ -) 3 Wwe sketch the standard argument. We define

¢+ ok —> oG, lig (400 X))
by putting G 8, = /u(bi) , for the colimit maps bi : Ai@) X —>B . One veri-
fies easily that G =},L(F-1) defines the desired inverse of F |

Let us now consider proclusions in J , as defined in [24], for the forget-

ful functor P : I —>ENS .,

3.4, Corollery. If f : X —>X' and g: Y —>Y' are P-proclusions

in 9, and if X and Y are fL-spaces, then X' .and Y' are A-spaces, and

f®eg: XY —X'®Y' is a P-proclusion.

Proof. The first assertion follows immediately from the dual of [24; '5.2];
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see also [24; 3.3]. Since
f®eg = (WX¥@elt@iaY) ,

and the composition of proclusions is a proclusion, we must prove only that
f®id Y is a proclugion., The map f & id Y clearly is surjective if f is ,
and the functor - ®Y on A -spaces is left adjoint to Cﬁ(Y, - ) . Thus
f®©id Y is a proclusion by [24; 2.2] {

We have verified four of the five "test propositions” of [21]. The remaining

test proposition is valid in I as well as for ﬂ—spaces.

3.5, Proposition. If A :D-—>J and B : D-—>YJ are diagrams in J~

with the same scheme D , and with vertices Ai and Bi » and if amap f :

A —> B consists of proclusions fi : Ai«-—aﬁi , Lthen a colimit

1_1£1>fi : llmAi——al_i_n;Bi

of £ in T is a proclusion.

Proof. By [24; 2.1], ve must only show that .‘l._lg f; is surjective. The
surjective maps fi are epimorphic in TOP , and thus a colimit f, : Ay —> B,
of f in TOP is epimorphic, i.e. surjective. If 7A* t Ay, —2> Ay, and
%3* : By —>B,, are reflections for J , then 7}3* Ty = Fyn 7A* for a unique
map fyuu : hyx —>Bey of 7, and f,, is surjective since the other three
maps in the relation defining f,, are surjective. 4,, and B,, are colimits
of A and B in 9, and f,, is a colimit of f |

In 3.1 through 3.4, we have used the continuity of the evaluation map exy
(see 2.5) only forﬂ -spaces X and Y . We conclude the paper with a useful

proposition which uses the full strength of 2.5.
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c(x,¥) = c(X,¥) amd o« Cq(Z,¥) = X CplX, ) .

Proof. C(X,Y) = ¢(X,xY) follows immediately from 1.4. CR(X,N Y) has the
finer topology than Cu(X,Y) . On the other hand, if u : & —> CR(X,Y) is con-
tinuous with A in R , then

q = exy.(usbidX) : A®X —> 1Y
defines amap U . Themap U : A® X —>XY remains continuous, and thus
u = ¢(X,q). hy @ A—> CalX,xY)

remains continuous. This shows that & Cﬁ(x,o(Y) = uca(x,x) .

3.7. The present paper raises some topological questions which it does not
ansver. Here are three of these questions.

3,7.1. For which epireflective subcategories J of TOP and for which
classes A of compact Hausdorff spaces in & is it true that .(;A(X,Y) is in
g for all spaces X , Y in 9—? In other words, can 2.3 be extended?

3eT7e2. 1If ‘f’ is an epireflective subcategory of TOP contained in T ’
and £ a class of compact Hausdorff spaces in .7, -then a space X in- T has
A-space modifications oX in 7 end o’X in" T’ . How are these related?
The example I = Hausdorff spaces, 9-/= regular spaces, A= all compact Haus-
dorff spaces, shows that o« X and o/X may be distinct.

B3T3 Ifjl—spaces satisfy the conditions of this section, is the class of
compact A ~spaces closed under the formation of finite products and of closed .
subspaces in I ? This is the case for k-spaces and for sequential spaces.

A related question: does 2.5 have a converse?
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CUNCERNING CONVENILNT CATLGURILE

lote by Uswald Wyler

The notations of this note will be those of the author's report: Convenient
Categofies for Topology, and all references will be to this report. We obtain a
converse of Theorem 2.5, and we generalize the well-known result that the product
of a k—sbace with a locally coumnact space is a k-space.

We recall that we operate in an epireflective subcategory J of TOP , and
that A -spaces are the objects of the coreflective subcategory of J generated
by a class A& of comvact Hausdorff spaces in J . These subcategories are
assumed to be full and replete (in the non-Freydian sense). o - denotes the
coreflector for f-cspaces, and X® Y is the fl ~space product of <X and o .
This must be distinguished catefully from the produect Xx Y in I,

We redefine convenient categories by saying that A.-spaces form a convenient

category if they have a convenient basis, and we say that JR is a convenient

basis for R -spaces if the following two conditions are net.

CE. If AER, then €y o Cp(4,2) X A —> Z is continuous for every
space 2 in I,

CP. For any two spaces 4 end B 4in A, the product Ax B in A is
an fl-space.

The results of this note show that this definition of a convenient category

is stronger than that of the report cited above, and enhances convenience.




Before proving the main results of tiis note, we derive an important cone
sequence of condition CL of “heorem 2.5, and we show that CE suffices for the

conclusion of Theorem 2.5.

Proposition 1. If A satisfies CL, then-LCAgA,-Z);-u_ihs_ c(A,2) with the

compact-open topology, for cvery AEA and every space Z in T .
Corollary. CL implies CE.

Proof. The comnact~open topology of C(A,Z) obviously is finer than the
topology of CR(A,Z) . For the converse statement, consider a set W(K,V) with
KC i compact and V< Z open. If £ €& W(K,V), then £ (V) is a neigh-
borhood of K . Since K is compact, it follows from CL that K 1is covered by
a finite number of sets ui(Bi) contained in f—l(V) , for maps u : Bi —> A
in A/A . The set { | W(u,,V) then ie a neighborhood of £ in Ch(4,2) , and
contained in W(X,V) . Thus W(X,V) 4is open in Cﬁ(A,Z) , and the topology of
CR(A,Z) is finer than the comvact-open topology.

It is well known that e,

AZ,
compact Hausdorff space and C(4,Z) has the conpact-open topology. Used for all

: C(4,2) X A —>Z is continuous if A is a

spaces A in A , this is somewhat stronger than CE'

Prop. 1 is useful not only because of its corcllary, but mainly becsuse the
spaces CA(A,Z) with A& in R determine all spaces (:’A.(Y,Z) . To see this,
let Cp(Y,Z) be the set :C(Y,Z) with the topology of pointwise convergence,
The sets W({x}, V) , for x€ X and V openin Z, form a subbase of open
sets for this topology, and CR(Y,Z) has a finer topology than CP(Y,Z) . Thus
the following diagram (all arrows) is a commutative diagram in TOP , for every

mep u : A—3»Y in R/Y .




¢ (¥,2) =~ L2 50.(a,2)
| |
(1) :id ¢(Y,2) id c(4,2)
v

cp(Y,z) __c_(_u_,_z_)__> cp(A,z)

The class of all diagrams (1) determines C&(Y,Z) as follows.,

Proposition 2, Let D be the diagram in TOP consisting of all solid

arrows .of diserans (1). C&(Y,Z) , with all broken arrows of diagrams (1), is a

Jimit of D in TOZP .

Proof. ¢(Y,2) , with the broken arrows, is trivially a limit of D at the
set level. Thus we need only show that CR_(Y,Z) has the coarsest topology for
which all broken arrows of diagrame (1) remain continuous. This is the topology
for which the sets (C(u,2))™H(V) , fér arbitrary w : & —3Y in A/Y and V
in a subbase of Cﬁ_(A,Z) , form a subbase of open sets. If V =W(v,U) for a

map v :B—>A in R/a and U open in 2%, then clearly
(clu,z)™ (V) = wluv, U) .
These sets form a subbase of open sets for Ck(Y,Z) |
We note that D is a large disgram if R/Y 1is a proper class. This does

not matter for many applications, including the one given below, and in any case,

D can easily be reniaced by a swall subdiagram with the same linmit.

Proposition 3, If 2 is a space in J sguch that C4(4,2) isin T for

gvery space A€ R , then C&(Y,Z) is in 9 for every topological space Y .

Proof. CP(Y,Z) is horeomorphic to a subspace of the product space Z‘y'

and thus is in T regardless of the topology of Y . Now CA(Y,Z) is the limit
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in TOP of a diagrem with vertices in theepireflective subcategory J . Since o
is full and replete, it follows that C}}SY,Z) is a space in 9—.
After this digression, we return to the main theme of the present note.

Proposition 4. If A satisfies CC, then ey, * CR__(Y,Z)@Y —>»Z is_con-

tinuous for éll spices Y and Z in A.

Proof. We must chow that eyy U is continuous for every map u : & —>

C‘g.(Y,Z)xY with & in R . If u={p,q} for p:4—>Cy(Y,2) and q:
A—>Y, andif ¥ ={p, id a%:a—>oCy(Y,2) x A, then ¥ is continuous,

and the following diagram clearly commutes at the set level.
A —T > aCy(¥,2)x 4 Clg,2) 144 xCpla,2) x 4
(2) u idx g €y .
onCp(¥,2) x ¥ S1z > 7

The. upper leg of (2) is continuous by C<, and thus eys U is continuousl
We note that the product in M aonpears in CE, and the product of S -spaces

in Prop. 4. Although our next result eliminates this distinction, it is vital in

its proof.

Theorem 1. 1f R-~spaces form a convenient category, and if an R-space ¥

is a locally compact Hausdorff snace, tien the product Xx Y in J is an

ﬂ-sggce for every ;Q -cpace X .

The topology of X @ Y is finer than that of XX Y ; we must . .-

Proof.
We do this first for Y = A in a convenient basis S for

prove the converse.

The identity mapping fromw X x A to X@® A is the composite map

A-spaces.




" .

h,, % id e,
> ! N A
AR A —22 otC&(A, X® A) X h—22EBE 5 v o

which is continuous by CE and 2.5.
In the general case, let W be a neighborhood of (x,y) in X® Y . Since
hy(x) : T—>X@ Y is contimuous, (hyy(x))™ (W) is a neighborhood of y

in Y. Thus {x3}XN C VW for a compact neighborhood ¥ of y in Y . Let
vV = {x'éX :{x'}XHC W} .

Clearly x&V and VXH C VW, and ve are done if V is a neighborhood of x
in X . &ince X is an R-cpace, this reans that, for every pair (u,a) with
nta—2X in ‘H/X and a &4 scveh that ula) = x , there is a neighborhood
U of 2 in 4 such that w(U) @V . low uxid¥Y : AXYT—>I®Y is con-
. . - . . P ; . -1 ¥
tinuous since A XY is an A-—space, and thus hu = (u xid Y) (W) defines a
neighborhood ‘-‘-Ju of (a,y) in A XY . Clearly {agx NC Wu . Since N is
compact, UX N C W for some neighborhood U of a in A ., But W) v

for such a neighborhood U I

Theorem 2. If R-spaces form a convenient category, then the class of all

compact Hausdorff R-spaces is a convenient basis for ﬂ.-spaces.

Proof. Denote this class by B , and assure that £ is a convenient basis.
By Theorem 1 and Prov. 4, B scatisfies CP, znd en, ucﬁ(B,Z) X B—2>7Z is
continucus for every smace Z in 9 . Lince Cg-topologies are finer than
%-topologies, eno reuaine continuous if (ZQ(B’Z) is recplaced by CB(B,Z) .

Thus B also satisfics CLf
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