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SOME TRANSLATION-INVARIANT SPACES OF FUNCTIONS ON TOPOLOGICAL

GROUPS

by

E. J. Risler

ABSTRACT

We extend some of the results of the theory of 3>- and

JT-spaces due to J. J. Schaffer to function spaces on a locally

compact Hausdorff topological group G. The class 3" consists

of non-zero translation-invariant solid normed spaces that are

stronger than L, the space of (equivalence classes of) measurable

functions that are integrable on compact subsets of G, with

the topology of convergence in the mean on every compact subset.

We introduce and study some spaces in <T, in particular M,^,T.

Our main results concern the quasi local closedness and local

closedness of T. We also give a generalization of some

results about associate spaces and duality between M and T.

The results may be extended to normed spaces of functions with

values in a Banach space.



INTRODUCTION

We present some of the results obtained in the course

of research done in order to generalize the theory of 3-

and 3"-spaces introduced by Schaffer [7] and further developed

by Massera and Schaffer [6], Chapter 2.

In those works the spaces under consideration consist of

functions whose domain is an interval of the real line; we

consider here spaces of functions defined on a locally compact

Hausdorff topological group. Our main objective is to study

the spaces M,S and T (introduced in Section 3) belonging to

the class 3", and our main results concern the quasi local

closedness and local closedness of T- For this we present

in Section 1 the necessary basic notions and results and in

Section 2 the new definitions and results concerning the class

JT that we may need in Section 3, which contains the main

results. In Section 4 we give the rather straightforward

generalization of some results about associate spaces and

duality between M and T.

The theory of 3-spaces is closely related to the work

of several authors; in particular see Luxemburg [4], Luxemburg

and Zaanen [5] and several subsequent papers of these two

authors. (A resume' of their work is to be found in Zaanen [8],

Chapter 15.) We refer to [6] and [7] for more detailed references

and explanations of the relations between the theory of 3-

spaces and that of other authors.



This work is expected to constitute part of a Ph.D.

dissertation. The subject was suggested to me by Professor

J. J. Schaffer, my advisor. I have received from him valuable

advice and direction.



1. ft-Spaces and 3-Spaces

In this section we present all basic concepts, definitions,

notations, facts and results on fl-spaces and J?-spaces that we

may need in the following. We follow closely [7] and [6],

Chapter 2, extending some concepts to the more general framework

in which we are going to work. Proofs, examples and other

aspects of the theory are to be found there.

We shall use the usual terminology for vector spaces.

Let A be a balanced convex set in a real or complex vector

space. We define its radial closure by

rad A = {xfAxfA, 0 < A < 1} = fl tA.

Obviously rad A is convex and balanced. If rad A = A we say

that A is radially closed; for any nonempty balanced convex

set A, rad A is radially closed. In a topological vector

space rad A c cl A; therefore rad A is bounded if A is

bounded.

If X is a normed space, its norm is denoted by || || and

x

its unit ball (x fxeX, ||x|L < 1} by S (X) . If A > 0, AX denotes

the normed space which is algebraically (and topologically) identical

with X but has E (AX) = A£ (X) and therefore [lx|Lv = A"
1!^!! for

AX X

all xeX. The spaces X and AX are said to be homothetic.

If Y and Z are normed spaces, we shall write Y < Z or

Z 2. Y i f Y i s algebraically contained in Z and £ (Y) <= £(Z).

The relation <; is clearly transitive and Y < Z < Y implies Y = Z



Let E be a locally convex space (i.e. a locally convex

Hausdorff topological vector space) and Y a normed space

contained algebraically as a linear manifold in E. Y is

said to be stronger than E (of E weaker than Y) if the norm

topology of Y is stronger than the topology induced on Y

by E. Equivalently, Y is stronger than E iff: 1) the

inclusion map Y—>E is continuous, iff: 2) £(Y) is E-bounded,

iff: 3) for every continuous seminorm ir on E, there is a

number a >̂ 0 such that ir(y) < a ||y|L for all yeY. In

the particular case that Y and Z are normed spaces, Y is

stronger than Z iff Y <C AZ for some A > 0, and iff

E(Y) <= A£(Z) for some A > 0. The relation "stronger than"

is transitive. If Y and Z are two normed spaces and Y

is both stronger than and weaker than Z, then Y and Z

coincide as topological vector spaces, but not as normed spaces.

In this case, they are said to be norm-equivalent, which is

justified by the above facts.

From now on E is a fixed locally convex space. We

define h(E) as the class of all normed spaces which are

stronger than E.

We also define the class T(E) of all nonempty radially

closed E-bounded balanced convex sets in E. T(E) is a conditionally

complete lattice under inclusion, the lattice operations being:

meet, A.AA2 = A-^C^ and join A,VA2 = rad conv(A UAJ, for all

A, ,A2cF(E) . With the order relation <; h(E) is also a

conditionally complete lattice and the mapping YH-*£(Y) is

a complete lattice isomorphism from U(E) onto F(E). The



la t t ice operations in ft(E) may be described in the following

way: if Y,ZeH(E), YAZ is algebraically YflZ and !|u||v.z =

= max{||u||Y,||u||z} ; YVZ is algebraically Y+Z and ||u||YyZ =

= inf{||y||y + ||z||z|u=y+z, yeY, zeZ} . If (Y?)?e:? is a family

in h(E), AY- is the submanifold (possibly proper) of HY-

where the norm ||u|L = sup{||u|| \£,e£!} is f in i te ; in the case
1 Y SYF < Y e J l(E) 5

 t h e n VYP i s algebraically £Y_ (set of f initeF < Y e J l(E) 5
 t h e n VYP i s algebraically £Y_

m n
s u m s Ey y ?

e Y p ) W i t h n o r m llul
I I I

= ^ y

yk € Y?(k) ; k=1-'2» • • «»n f o r s o m e n=l,2,... and some ? (1) , . . . , § (n) e

Norm-equivalence is a congruence in the lattice M E ) , i-e.

finite lattice operations preserve norm-equivalence.

The E-closure of a bounded balanced convex set in E

is convex, balanced, radially closed and bounded. Therefore

Aer(E) implies clFAeF(E) . The map At—•cl—A is a closure

operation on the lattice F(E) and cl (AA) = Acl A for A > 0.

For every Xeft(E) we then define lc^X, the local closure of X
Hi

in E, as the space in H(E) that satisfies E(lc_X) = cl_£(x).

We may omit the reference to E if no confusion can arise.

If £(X) is closed in E (i.e. lc£X = X), X is said to be

locally closed (in E). Clearly X < lc X and lcX is

locally closed for all Xeft(E). Spaces homothetic to a locally

closed space are locally closed, but local closedness in general

is not invariant under norm-equivalence. A space in h(E)

is called quasi locally closed (in E) if it is norm equivalent

to a locally closed space.



An important subclass of h(E) is that consisting of all

Banach (i.e. complete) spaces in H(E); we denote it by B(E).

fc(E) is a sublattice of h(E) and contains the meet of any

subclass. If E is a complete locally convex space, then

Y = lc Y implies Ye^(E). Conversely if YelB(E) and lc Y has

the same elements as Y, then Y is quasi locally closed.

If E is complete then for every Yeh(E), the set

fz|Ze&(E), Z ̂> Y} is not empty: it contains lc Y. Then this

class has a least element (namely its meet) that we denote by

bY, that is

bY = A( z |ZG(J(E) , z ;> Y} .

We can characterize bY as follows:

THEOREM 1.1. j[f Yeh(E), then bY consis ts of a l l ueE which

are E-limits of Y-Cauchy sequences; the norm is

||u|| = inf{ lim ||y |L | (y ) i s a Y-Cauchy sequence, lim y = uj
n-»oo n-» ooE

PROOF: Cf. [6] , 21.G.

bY is a kind of completion of Y but the trivial injection

Y—*bY need not be isometrical. Denote by Y the abstract

completion of Y.

THEOREM 1.2. _If E jls complete and Yeh(E) , the following

statements are equivalent:

i) if (y ) is a Y-Cauchy sequence such that iim v = veY
— n — — E n '

n—* co
||y|| < lim | | y JL ;1 n-*oo " x



ii) if (y ) is a Y-Cauchy sequence such that lim y = O,
— n — — hi n

n -*oo
then lim ||y || = 0;

n-» oo

iii) the canonical embedding of Y into Y may be extended

to an isometrical isomorphism of bY into Y;

iv) the trivial injection from Y into bY jis isometrical.

PROOF: [7] Theorem 2.4, and the above Theorem 1.1.

If YcY\.(E) and satisfies conditions i)-iv) of Theorem 1.2,

it shall be called E-completable. E-completability is invariant

under norm-equivalence.

We are going to deal with certain spaces of functions on

topological groups, which we always assume to be Hausdorff.

G shall denote a locally compact cx-compact (Hausdorff) topological

group and \i shall denote an (essentially unique) left-invariant

(regular) Haar measure on G defined on the cx-algebra of

Borel sets. We remark that every locally compact group has

an open-closed cr-compact subgroup ([3] Theorem 5.7) and, hence,

the group is a disjoint union of a-compact open-closed cosets;

these facts allow us to extend the results of the theory to

all locally compact groups in a rather direct way; we omit the

details of the argument.

We shall study spaces of (classes of equivalence of) strongly

measurable functions from G into X, a real or complex Banach

space with norm || || . We identify functions equal a.e. and

sometimes confuse functions with classes of equivalence. The

characteristic function of a set E c: G is denoted by Y ; a
hi



8

subset of G is said to be bounded if it is contained in a

compact subset. We shall consider the space of all measurable

real-valued functions with its usual vector lattice structure;

equalities and inequalities between functions should always be

understood as holding almost everywhere. To any strongly

measurable function f from G into X, it corresponds

the measurable real-valued function ||f|| defined by |jf||(t) = ||f(t)|

for all t in G.

Let L(X) be the space of all (equivalence classes of)

strongly measurable from G into X which are (Bochner)

integrable on compact subsets of G, endowed with the topology

of convergence in mean on every compact subset of G. L(X)

is a locally convex Frechet space, i.e. complete and metrizable.

In case X = IR we shall write L( IR) = L. It is to be

remembered that feL(X) if and only if f is strongly measurable

and ||f||eL.

We introduce now the class 3, in full „$, consisting of
Lr

all normed spaces F (with norm | | ) that satisfy:

(N) F is stronger than L (i.e. F€ft(L) = ft) i.e. for

every compact subset C of G, there is a number a,n ̂> 0

such that J |f (t) [dfi(t) < a §f| for all

and

(F) if </?eF and 0 is a real-valued measurable function

G such that |j/> | _< \<p\, then ipeF and f 0 J _< |<p|F.



We shall always denote by ccc the least number with

the property expressed in (N).

For spaces of the class 3 it is possible to prove some

useful results concerning the local closures. With proofs

analogous to those in [7], we obtain:

THEOREM 1.3. Let FeS be given. If cpelc F. there exists
^j —I — T- l^lt _ _ _ _ _ _ _ _ _ _ _ _ _ _

an F-bounded increasing sequence (<p ) __f positive elements in F,

<Pn < hi s u c h that 1±mjJPn = hi _M M i c F = l i m
n * °n—*oo

Conversely if ((p ) JLs_ an F-bounded increasing sequence of

positive terms in F, __t converges in L jt£ a. function <pelc F

and |<p|lc F <_ lim |c?nlF (cf. [7] Theorem 3.5).
~ n —* oo ~

COROLLARY 1.4. Jf Fe3, then lc Fe3 (cf. [7] Corollary 3.2).

COROLLARY 1.5. A space Fe3 __3 locally closed __f and only ̂ f

for every F-bounded increasing sequence (<p ) of positive
~ ————— n —

terms in F its L-limit <p lies in F and |<p|p = lim \<p |

~ ~ ~ ~ n—»OD n £
(cf. [7] Corollary 3.3).

THEOREM 1.6. A space FeJ? jLs quasi locally closed __f and only

jLf for every F-bounded increasing sequence (p ) __f positive

terms in F its L-limit <p lies in F (cf. [7] Theorem 3.6).

COROLLARY 1.7. A space FeS Ĵ s quasi locally closed if and

if F and lc F consist of the same elements. (Cf. [7]

Corollary 3.4.)
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The following theorem is also proved in a similar way

to [7] Theorem 3.2.

THEOREM 1.8. For any non-empty index set E , if F-eJ? for

all ?e 3 then AF_eJ? and if VF.. exists (for instance if

is finite or F_ <C F for some F eft (L) and all §e Z ) then

also
— • —

We shall also need:

THEOREM 1.9. If Fe3, then bFe3.

PROOF: As in [7] Theorem 3.4, simplified by Theorem 1.1
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2. 7-Spaces

The group G operates to the left on L(X) in the following

way: for any s?G, frL(X), sf = L f is defined by
-̂  s

(sf) (x) = fts^x) for all xeG.

To see that sf is strongly measurable it is enough to

realize that since the map xt—>s x is a homeomorphism on G,

for any seG, it maps Borel sets on Borel sets, and that

since jz is left invariant JLI(S B) = fi(B) , for any measurable

set B. To see that sf is integrable on compact sets, for

any compact C we have:

(2.1) J ||sf(x)||dji(x) = J Hffs'^Jlldufx) = J ||f(x)|!dju(sx) =
C C 1

= J ||f (x)||dn(x) < oo

since feL(X) and s~ C is compact.

It is easy to see that the following relations hold:

(2.2) L T \* = L = identity for every seG

(2.3) ||Lsf|| = Ls||f|| for all seG

(2.4) L t = L gL t for all s,t€G.

Hence for every seG, L is a continuous linear bijective

s

mapping from L(X) onto L(X).

We consider now the class 3", or in full 3", consisting

of all spaces Fe3< satisfying the following additional conditions;
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(Z) F ft fO]

(T) If coeF, seG, then s<peF and |s<pl_ < Icpl-,.

We remark that in (T) inequality may be replaced by equality,

since by (2.2) |<p|F = Is^scp^ < |so|F < |<p|F-

Classes 3* and 3" have their counterpart for strongly

measurable functions defined on G with values in X, a given

Banach space. For every Fe.3 we denote by F(X) the set of

feL(X) such that ||f||eF with the norm |f|F/xj = |l|f|llF- By (F)

this definition means that F( 1R) = F. The class of all

spaces F(X) , FeJf, for a fixed X, is written as 3 (X) . In

the same way we define the class 3"(X), a subclass of 3(X).

Every property of spaces of functions with values in X

can be deduced from the corresponding property of spaces of

real-valued functions, as it is allowed by the content of results

coincident with [7] Thm. 3.1, Thm. 3.3, Corollary 3.1, Thm. 3.8,

and Thm. 4.1. The proofs in our case would be literally the

same. Hence from now on we shall restrict ourselves to the study

of real-valued functions, with the knowledge that the results

of this section also hold for spaces in the class tT(X).

From now on we shall work with a triple (G,K,|u) where G

is, as before, a locally compact cr-compact Hausdorff topological

group; K is a regularly closed compact symmetrical neighborhood

of the origin eeG; and \i, as before, is a left-invariant Haar

measure on G, but normalized by ju(K) = 1.
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We now define an important space M, in full Mv, which

is the set of all functions fcL that satisfy supj |f (t) |d/u(t) <
~ SFG S K

< oo, with this supremum as norm.

LEMMA 2.1. MflT and it is locally closed.

PROOF. We prove first that M satisfies (N). Let C be

any compact set of G, C c FK for some finite set F <= G.

Then for all

I |cp(t) |d^(t) < 2 J |co(t) fdju(t) < card F.|<p|
C s F sKC seF'sK ~

M satisfies (F) and (Z) trivially. To see that it satisfies

(T) , let reG and cpcU be arbitrary, then

sup J |(r«p)(t) |dji(t) = sup J |<p(t) |dju(t) = |<p| .
seG sK seG rsK ~

Thus Me?.

The second part is proved, using the criterion given by

Corollary 1.5 in the same way as in [7] Lemma 4.1, with some

obvious changes.

We shall need the following.

THEOREM 2.2. (Density) Let G t>e a. locally compact group, v

£i right-invariant Haar measure on G. Let E c: G _bjJ a. bounded

Borel set. If, for every xeG, and every bounded neighborhood

U _of eeG, fTj(x) = v (\ix) > t n e n ^TT converges in the mean

(and hence in measure) to XT? &§. U —» e .

PROOF. Sketched in [2], p. 268 Ex. 5.

ifumr
CXAMEfilE-MHION
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We use this theorem now to prove a lemma that we think is

well known but for which we have not found a concrete reference.

LEMMA 2.3. Let G and \x _be ass in our general context, A

and B two Borel sets, ju(A) > 0. Then u(B fl As) = 0 for all

seG (or /i(B H sA) = 0 for all seG) implies /i(B) = 0.

PROOF. We may assume that A is bounded without loss of

generality, and, G being cr-compact, we may also assume that

B is bounded.

Let v be a right-invariant Haar measure and f =LU V(Ux)

for every bounded neighborhood U. A = {xfxeA, frAx) < 7O U

U fx|xeA, fn(x) ̂  -~\ ; since f < 1 and since, by Theorem 2.2,

f converges in measure to XA a s U—* e,

U r̂ U ri. ^

as U—»e. Hence v (fx |xeA,fn(x) ̂  v))—>v(A) > 0 as U—»-e.

Suppose now v(B) > 0. Then similarly for g^ix) = ff,ls— ,

vffxeBfgyfx) ;> —})—^v(B) > 0 as U—>e.

Choose V such that v({fv(x) ̂  -j]) > 0 and

v(fg (x) ̂  -j}) > 0, and then points s, and s2 respectively

in each of these sets i.e. points such that

v(A n Vs1) ̂  ^(VSj) = ̂ v(V)

v (B n Vs2) 2 ^
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Set s = s, s_. Then

2) = v(Asnvs2) + 2

v(AHV , ) + v(BriVs0) - v(Vs9) > v(AHVs,)
ss"1s.s

2) - v(V) 2^v(V) > 0.

Hence if fi(B) > 0, then v (B) > 0, and we have shown above

that there is an seG such that v(BflAs) > 0, thus ^(BflAs) > 0.

The first implication is proved. For the second implication,

we use that for E Borel, /j(E) > 0 iff (U(E~ ) > 0. Then

1 1-1
JU(BHSA) = 0, for every seG, implies jx(B f!A s ) = 0, for

all seG, and by the first part ji(B~ ) = 0, hence n(B) = 0.

LEMMA 2.4. If FeJT there exists a non-null measurable set E

such that Xf^F. Moreover for every measurable set A, jx(A) > 0,

there is a non-null measurable E1 C: A such that •%„, eF.

PROOF. By (Z), F ^ {0} ; then there is (peF, 0 ^ 0. Hence

there is a a > 0 such that E = {t | |cp(t) | ̂  or} has positive

measure. Then 0 < Xr- < ^~ I<P I a n d (F) implies X T ^ F . Since

H(A) > 0, by Lemma 2.3, there is xeG such that u(ArixE) > 0,

and since x x E = xxE€F by (T) and x A f 1 x E < X x E, then X A n x E€F.

Take E1 = AflxE.

THEOREM 2.5. Let Z be a non-void index set.

(1) If F-elJ, for every fe 3 , then either A F. = {0}
~?> • — — ~ |

or /\F^eir. In particular, if S is finite f\ F- ^ [0] .

(2) If F_e7 for every §e£ , and if V F- exists - in
~5 — — — • — - — • — — ^ / ^ — — — — — —

particular if S finite- , then V F-e3".
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PROOF. (1) By Theorem 1.8 AFpeJ?, i.e. satisfies (N) and

(F). It is clear that \ Fp satisfies (T). Thus if

A F§ ̂  {O}, we have A F^eS .

For the case of finite 3. , we may just consider two

spaces F, and F^e^. By Lemma 2.4, there are sets E,,E»

of positive measure, such that x^ eF, and Xr. eF~ . By Lemma 2.3,

there is xeG such that J U ^ O X E ^ > 0. Then 0 ̂  xE n <

and also 0 ̂  X ^ p ^ < X^^- Therefore £ lA F2 * [0]

(2) By Theorem 1.8, if V|]P exists, it belongs to 3.

It clearly satisfies (Z) .

Let <pe\/Fp a n d S^G be given. If cp = S(p_, (p^eF-, finite

sum, then s<p = Sscp.e VF_ and |S(p| . <C

and taking infimum over a l l possible f in i t e sums such that

to = 2(0 , |s<p| W_ < Itpl w _ . Hence \f F- s a t i s f i e s (T) .
t \J jf ,m ~ V -^ (? "^ i)

THEOREM 2.6. _If FeJT, then bFe?.

PROOF. We use Theorem 1.1 to prove that bF satisfies (T),

which suffices since by Theorem 1.9, bFe3", and bF > F 4 fO} .

Let <p̂ bF and seG be given. For every F-Cauchy

sequence (<p ) with L-limit <p we have sip eF, for all n,
XX '"""̂  XI ^̂*

and |scpn - s<pJF < |s(<on-<om)|F < l<Pn-<P
/*w»

GD

Thus (s<p ) i s an F-Cauchy sequence with L-limit s<p so that

and

lim |s(pn |F < lim
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Taking infimum of the last member for all F-Cauchy sequences

with L-limit 0 we obtain |scp|, <. |(p|bF- Therefore bF £^ •

THEOREM 2.7. 1±_ FeJT, then lc FrlT.

PROOF. By Corollary 1.4, lc Feff, and since lc F ^ F ^ [O],

it remains to prove that lc F satisfies (T). This is done

using Theorem 1.3 in a way similar to the proof of Theorem 2.6

LEMMA 2.8. Ii_ FeO* then F is stronger than M.

PROOF. Let cpcF and seG be given. Then scpeF and

r r - 1 - 1 r
<p(t) du(t) = fco(s t) [du(s t) = |s</5(t) Idu(t) <

elf "V J v ~

^ aK|s<p|F < aK|<p|F, since F satisfies (N) and (T) .

Thus (peM and |cp|M <, a |(fl|.j-,.

REMARK. The preceding lemma shows that M is the weakest

element of the class 3".
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3• Very strong spaces in 3"

Our next purpose is to determine a class of "very strong"

spaces in 3", i.e. the strongest spaces in IT containing one

given nonzero function. By Lemma 2.8 any such given function

must belong to M. By (F) the desired space must then contain

the absolute value of the function, by (T) all translates of

the absolute value and finite linear combinations, as well as

measurable functions dominated, in absolute value, by any such

linear combination. We shall show that only these functions

are necessary.

Let then <peM, ip ̂ 0 be given. We consider the vector

space S consisting of all measurable real-valued functions

0 on G such that

(3.1) |0| < Sajr^l = SaiTi|(p|

for some non-negative integer n, a finite sequence (a.) of

real numbers, a. >̂ 0, i = l,...,n, and a finite sequence
n

(T . ) , of point G, endowed with the norm |J/>|Q = inf £a.,
~cp 1

where the infimum is taken over all choices of n, (a.), (T.)

satisfying (3.1). The expression is obviously a seminorm,

and, it is easily seen to be a norm; indeed, every element

in S belongs to M and
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which implies |i/)| ;> |—r^ , as desired. In particular peS

(n=l, a1=l, r-L=e) with |<p|g = 1.
<

Following the proofs of [7], with obvious changes in

notation we have the following results which show that S

is the desired space.

LEMMA 3.1. S eO1 for every <peM, (0 ̂ 0 (cf. [7] Lemma 4.3).
~<p ~

THEOREM 3.2. If FeS" and <peF, (p ̂  0, then I^I^S < F;

hence S is stronger than F (cf. [7] Theorem 4.8).

COROLLARY 3.3. If FG3", then F = V C |<p|~1S |cpeF} (cf. [7],

Corollary 4.5).

Clearly, if 0 ^ <p, cp1 eM, then jcp | < |<pT | implies S < S , .

Because of this fact we are able to consider, among the spaces

S , a subclass of spaces which is still "strongest", in the

sense that it contains spaces stronger than any given space in 3"

For every bounded measurable set E <= G, U(E) > 0, we

write 8 ^ = 8 . In particular we write S = Sv.

THEOREM 3.4. lt_ FeJT, there is â  bounded measurable nonnull

set E c: G, such that S_ is stronger than F.

PROOF. By Lemma 2.4 there is a measurable nonnull set E c: G,

which without loss of generality we may assume bounded, such

that X^eF. By Theorem 3.2, S- is stronger than F.

We want now to identify the strongest among all complete
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spaces in 3". Clearly the spaces bS are the ones we need

(see Theorem 3.6 below), but we shall give a direct description

of these spaces, similar to the definition of S .

Let (peM, 0 ^ 0, be given. Consider the vector space T

of all measurable real-valued functions ip on G such that

oo
( 3 . 3 ) |j/>| < E a . r . |<p |

1 x 1

for some sequence (a.). TO, a. >̂ 0, such that 2a. < oo ,
1 1C JW 1 ^ 1

and a sequence ( r . ) . _ TO in G, endowed wi th norm \cp\rr, = inf 2a.
X I t AIM X -i X<p l

oo
. < oo ,
1 OO

where the infimum is taken over all possible choices of sequences

(a±), (Ti) satisfying (3.3).

Using the fact that M is complete, we see that 0€M,

MM
>̂ i --• • , and hence | | is a norm. As above it follows

that <peT and |o|T = 1. We also write T = T , for every

bounded measurable non-null set E c G, and T = T.r.

THEOREM 3.5. For every tpeM, o ^ 0, T p? and T = bS ,

hence T ^s a. Banach space (cf. [7] Theorem 4.10) .

Results analogous to Theorems 3.2 and 3.4 also hold

THEOREM 3.6. If FG? is a Banach space and <peF, <p ̂  0,

then |cp|~ T < F. Hence T is stronger than F. Moreover

F = Vf Icpl^T, |<peF} (cf. [7] Theorem 4.11).
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THEOREM 3.7. JĴ  Fe^ ±s_ <i Banach space there exists &

bounded measurable nonnull set E c G such that T- is

stronger than F. (Cf. [7] Theorem 4.12).

Another property we shall need in the sequel is

THEOREM 3.8. For any bounded measurable non-null set E,

SL, ij3 L-completable and TV, _is J-ts L-completion. (Cf.

[7], Theorem 4.13).

For the relative strength of the various S^ for different

E, we have

LEMMA 3.9. Let E,E' be bounded measurable non-null sets

in G. Then S^ [resp. T_] is stronger than S,-,, [resp. T^, ]

if and only if there is a. finite set F such that E c FE1

except for perhaps ji null set (cf. [7] Lemma 4.4) .

COROLLARY 3.10. For any bounded measurable non-null, set; E

SE fresp. T_] is stronger than S fresp. T] (cf. [7] Corollary 4.6)

Therefore S is the weakest space of the type Sw (and T is

the weakest space of the type T_) up to norm-equivalence.

Our main objective is to show that T is quasi locally closed.

For this we now need to establish a covering property that is

satisfied by all locally compact groups. In [1], Theorem

2.1.2, Emerson and Greenleaf have proved that all locally

compact groups satisfy the following covering property:
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(C) For at least one relatively compact set C with

non-empty interior, there is an indexed family (x ) in
CX CC€J

G such that {Cx } is a covering for G whose

covering index at each point g(the number of oteJ

with geCx ) is uniformly bounded throughout G.

Moreover, in the same paper [1], Lemma 2.1.1, it is shown that

in property (C) we may replace, "For at least one..." with,

"For every...". It is clear that, by using the inversion

symmetry xi—>x~ , we may verify that the same property holds

for coverings by left translates of every relatively compact C

with non-empty interior. Following Emerson's and Greenleaf's

arguments we prove

LEMMA 3.11. Let G _be a. locally compact group and let C

be a symmetric compact neighborhood of eeG. Let (x^} T

— — OC CXGJ

be an indexed family such that (x C) jLis «i covering of G with

covering index uniformly bounded throughout G. Then (x C }

is also ji covering of G with uniformly bounded covering index.

2 2
PROOF. Since eeC, C 3 C Since C is compact we may choose

2 m

[g1,g2, . . .,gm) c= G such that C <= U C .
i=l *> j_

We assert that if {x C} is a covering whose index is < N,
cx —~

2
then {x C } is a covering whose index is < Nm. Evidently

2
U x C =3 U x C = G. Also for each i = l,2,...,m, and
a a
for all xeG, xgT ex

aC for at most N choices of a; this
m

implies that xe U x Cg. for at most Nm choices of a.
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2 m 2
Since x C <= U x Cg. for all a, this implies xex C

oc - -i oo x ex

for at most Nm choices of a, as claimed.

Combining the previous results, we conclude that every

locally compact group satisfies the following covering property:

it
(C ) For every compact symmetric neighborhood C of

the origin ecG, there is an indexed family (x_)_ T in G
2

such that [x C} and [x C } are coverings of G

whose covering index is uniformly bounded through-

out G.

It is clear that if the group is also cr-compact the indexed

family can be chosen countable.

We are now able to prove

THEOREM 3.12. T xs^ quasi locally closed.

PROOF. We shall exhibit a locally closed space which is norm-
it

equivalent to T. By property (C ) and the above observation,

there is a countable family (x ) _T such that fx K} _T and
n ne IN n ne IN

{x K } w are coverings with uniformly bounded index.

Let F = f<p Jcp measurable such that £ ess .sup |<p(t) | < co }

CD

normed with |(p| = 2 ess .sup |cp(t) |. It is obvious that this
£ 1 tex Kn

is a norm and that Fe3.

We prove first that F is locally closed, using the criterion

of Corollary 1.5. Let (<p ) be a F-bounded increasing sequence
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of positive elements of F such that lim \cp [ = A. Let <p
n oo n t

be the L-limit as well as the pointwise limit a.e. of this

sequence. If a = ess.sup <p (t) , the sequence (a ), for
texnK

each n fixed, is nondecreasing and bounded by A. Denote by

a its limit,n

Since <p is the pointwise limit a.e. of (<o ) , an increasing
m N

sequence, we have a = ess.sup <p(t) . For any N, 2a =
n tex K 1 n

n
N oo

= lim 2 a < A. Hence 2a <̂  A. Thus, cpeF and \<ply < A.

Therefore, F is locally closed.

We prove now that T and F are norm-equivalent. Let
~ ~ oo

<peF. Let aM = ess .sup |(p(t) (. Then \cp \ < 2 a x v; hence
n tex K 1 n X n K

<peT and |(p|T < |cp|F.

oo
For the converse, let (peT and assume \tp \ •< 2a.x v ,

o
for some sequences (a.) and (s.). We remark that [x K } is

a covering whose covering index is < N throughout G if

and only if for all teG, tK fl x K / 0 for at most N choices

of n.

Assume tex K. Then

|<p(t) | < 2{ai|tesiK} < 2 { a i |xnK fl S;LK ^ 0} .

Then

ess.sup |(p(t) | _< 2{a. |x K fl s.K ^ 0}
texnK i * n

Hence
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CO

< E E{a. |x K 0 s K ji 0) =
£ ~ n=l i X n x

oo oo
= E a.card{n|xnK n sjLK ̂  0} < N La .

Consequently |cp|F < Nl<p|_,, which ends the proof.

We shall give a sufficient condition for T to be locally

closed. For this purpose we now define a property (P) that may

or may not be satisfied by K.

(P) For each p > 1 and each <peS = S , there is a positive

integer N = N(p,cp) such that for every function 0,

0 <. 4> <. \<o\ > there is a finite set E <= G of

cardinality at most N and a positive real-valued

function (a,). -. satisfying

i) 0 < i|> < E a-irW

We do not know whether or not this property (P) is satisfied

by all G and all K.

THEOREM 3.13. Let {cp } e G be such that 0 < <p \ <peS. If

K satisfies (P) , then lim |<Pnls = l<p|s-
n—» oo r~> ~

PROOF. By ( P ) , we can c h o o s e , f o r e a c h neIN and e a c h p > 1 ,

c o e f f i c i e n t s a . >̂ 0 and p o i n t s 5 - n
e G > i =

 1 5 - - . J N ; N = N(p,(p)

such that



26

N N

(3.5) S
1 —™ J_

Without loss of generality we may consider supp o to

be compact, and it is also possible to consider that for

every i and every n %. is contained in a fixed compact

set C (e.g. C = (supp(p)K). In [O,p||(p|L]N x C N c m N x GN,

a compact space with the topology induced by the product

topology, the sequence ((aln>•••>
a
Nn>5ln*•••>5Nn))ne ^

has a cluster point, say (a,,....a % . . .,% ).

We claim that the following inequality holds

N N
(3.6) lira inf( £ a S X ) < * ai5,XK.

n 1=1 i n i n K i=l x x K

Since (a_,...,aN,§,,...,§ ) is a cluster point of the

above sequence, there is a subnet converging to it, say

((a l n ( a ),...,a N n ( a ),5 l n ( a ),.-.,5 N n ( a ))) a e A• In particular,

for every i = l,...,N, a, „ lm ̂  —^-* a, in TR and %.„,„,—_>. §±

in C c G.

We prove now that for any index i, i=l,...,N; if

t^Fr(§±K) then lim §in(a)XK(t) = §±XK(t).

If te(|.K)° = %.K°, then there exists a neighborhood U

of e such that Ut c ?.K. Since %. . .—* ?., there is a

such that, for all a ^ aQ, l±(5in/a))"
1eU. Then for all
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a >• ao, Sidjn^j) 1te5iK, and consequently te5in(a)K.

Therefore lim 5in(a)XK(t) = 1 = ?iX

Similarly, if t/§.K, there is a neighborhood U of e

such that Ut c G\liK. Since 5in/a\—»
>?i, there is a Q such

that ?i(5in(a))~
1eU for every a >- aQ. Hence § (§ i n ( a ) )"

1te

G\§.K = |.(G\K) for all a >• a , and therefore te|. . >(G\K)
I X O 1 1 1 \ CC )

- T h u s ^ 5 in(a)% ( t ) = ° = 5 i*K ( t ) '
N

From h e r e we d e d u c e t h a t f o r e v e r y t/ U F r ( § . K ) ,
i=l X

N
Since ji( U Fr(?.K)) = 0 on account of the regularity of

i=l 1

the Haar measure, this implies in particular that for almost

N
all t, 2 a.5.x~(t) is a cluster point of the sequence

i=l x x K

N

Hence for almost all

and (3.6) is proved.

From (3.4) and (3.6) we deduce

N N
(3.7) 0 < ip = lim <p < lim inf ( S a | vJ 1 2 a ? v .

n—»OD n n i=l i n x n K i=l 1 x K

N N
Since 2 a. is a cluster point of the sequence ( 2 a. ) „ ,

^_T i . , xn' ne IN-

(3.5) implies
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N NN
(3.8) 2 a < lim sup ( E a ) < p lim|<p I .

i=l n i=l n-*oo ~

From (3.7) and (3.8), i t follows that

N
|<pls < £ a± < p lim n g

~ i = l n—*• CD ~

Since p > 1 is arbitrary, \ip\~ < lim |cp | o . The
o n o
~ n —*• oo ~

reverse inequality follows from (F) , since S€3?.

THEOREM 3.14. If K satisfies (P), then T = Tv is locally

closed.

PROOF. Let (<p ) be a T-bounded increasing sequence of positive

elements of T and <p its L-limit. By Theorems 3.12 and 1.6,

cpeT. For every £ > 0, by Theorems 3.8 and 1.2 there is <p'eS

such that |(O-cp'|T .< £ • Set 0 = inff<p, [<p' | ) . Since 0 _< «/) _<

< |(p' |, 0eS. Since |<p-0 | = sup{0,0- |<p' |) < |<p-cp' |, |<p|T - £ <

Define J/> = inf{^,(/5 }. Then 0 < ty < j/); therefore

n

Also 0 < j/)n < <pn; therefore | ^ n | g = |«/>nlT < I^nIT* F i n a l l y

ty-ty = sup{0,4>-(p } _< <P~ipn- Thus (j/) ) is an S-bounded increasing

sequence of posit ive terms in S with 0 ^e§,- Since K

sa t i s f i e s (P) , |J/J| = lim | ^ n l s - Then |<p| - 8 < | ^ | s =
~ n—• oo -S A S

= lim |0 | < lim |<p |
n-^oo ~ n—> oo ~

Since £ was a rb i t ra ry , Corollary 1.5 allows us to conclude

that T i s locally closed.
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We devote the remaining of the section to an important

particular case in which K satisfies (P) and, hence, T is

locally closed; namely, when G = IR x H, d finite, H a

compact group, G with the product group structure, K = K x H

where K is a compact symmetric convex polytope in IR with

0 as an interior point. We have not been able to obtain a

similar result when K is an arbitrary (compact symmetric)

convex set in IR .

The importance of this particular case derives from the

fact that every connected locally compact Abelian group is

topologically isomorphic to a group IR x H, d finite, with H

a connected compact Abelian group. We also remark that for any

locally compact Abelian group, the connected component of e

in the group is a subgroup, topologically isomorphic to a group

of this type, and the group can be written as a disjoint union

of translates of this component (cf. [3], Theorem 9.14); because

of these facts, the results we are going to prove may be applied

to any locally compact Abelian group. We omit the details of

the argument.

LEMMA 3.15. Let K be a compact convex symmetric polytope
— — — Q , .*

i n IR , s u p p o r t e d by l i n e a r f o r m s f , . . . , f n , i . e .

KQ = { x = ( x 1 , . . . , x d ) G I R d ) e m d | 1

L e t <p = £ a xPJ.K- , E* f i n i t e , c o n t a i n e d i n IR , a - > 0 .

%eZ 5 5 o *
For any positive integer r, cp may be majorized by a

linear combination (with non-negative coefficients) of (2r)n + p
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characteristic functions of translates of K , whose coefficients

add up to at most ( £ a_) (1 -t *-) ; here p is the least
5 e S s r

positive integer such that supp cp jis covered, except for

perhaps a null set, by p translates of K .

PROOF. Let r be an arbitrary positive integer. Consider now

the functions 0 1 : Bt—*IR defined by

(3.9) 0i(t) = £ (a |fi(?) < t}; i = l,...,n.

These step functions ij) are nonnegative, left continuous,

nondecreasing, 0 for large negative t, and constant (= £ a_)

for large positive t.

We now define the following numbers

i = 1 n

(3.10) t1 = max{t|0i(t) < £ £ a )
J 5eS 5 j = 0,...,r-l

t 1 = o o i = 1, . . . ,n.

The definition of t1 is consistent with those of t^,

0 _< j _< r-1, by the above mentioned properties of i/1* •

Let us also remark that for every i = l,...,n; j = 0,...,r-l,

(3.11) ^(tj^) - ̂ (tj + 0, < i ̂ a? if t] < tj+1.

With the use of these numbers, we define the following, possibly

empty, subsets of ]R :

B^j = fxe ]Rd|fi(x) = tj]

B2j+1 = f^e^ltj < fl(x) < *J+1) i = l,...,n; j = 0,
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Consider now the class 6 = [B?; D...n B, |0 <
1 n d

_< k-,...,k <. 2r-l} of (possibly empty) subsets of IR . This

class of sets is disjoint and has at most (2r) elements;

and every gc 'EL is contained in one, and only one, set of IB.

We select an arbitrary point in each one of the at most (2r)

nonempty sets of IB and define a map r :IE—>IR by letting

r(g) be the chosen point of the set in IB to which g belongs.

We remark that the set {r(g) |ge£} has cardinality at most (2r)n.

We consider now a new function cp1 = 2 a_x /c\ v »
geS l T ( § ; + K o

» a
o

linear combination of at most (2r) distinct characteristic

functions of translates of K .
o

We want t o o b t a i n a bound for |<pf -tp | on IR . Let xe IR

be g iven . Since <p' (x) - <p(x) = E ^ a p ( X T ^ ) + K (x) - x § + K (x))

we have t o determine those g for which x /ir\ ^ (x) and
T(S)+Ko

X- v (x) differ (and therefore differ by 1).

The only such 5 are at most those for which, for some i,

7^f1(r(5)), and f1(5) and f1(x) + 1, or f 1^) and

i i i

f (x) - 1, lie in the same open interval (t.,t. ,) for some j,

0 < j < r-1. But if, for fixed i, t* < f1(x) + 1 < t1 , or

tj < f1(x) - 1 < tj + 1, then

<< £ S^ a? by (3.11).

Hence taking into account all possible contributions for
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i = l,...,n, we conclude that

0 < \v' (x) - <p(x) I < ~ S aF.

P
There is a least positive integer p such that supp <p c U s. + K ,

d i = l x °
for some s . e TR .

Thus

2n p

° ^ * 1 + ( f v E v

The last member is the majorant required to prove this Lemma.

COROLLARY 3.16. Assume G =IR x H, d finite, H a. compact

group, G with the product group structure. Let K be as in

Lemma 3.13, and K = K x H. Let <p = S a_X/F,«. W H > a. ̂  OJ
o p îf c, (c, +ft.Q; x n c,

3 <= 3R , finite. For any positive integer r, <p may be

majprized by JI linear combination of (2r) + p characteristic

functions of translates of K, whose coefficients add up to

at most ( S a_) (1 + — ^ ) ; where p is the least positive

integer such that supp ip ±s^ covered, except for perhaps a.

null set, by p translates of K.

PROOF. We remark that for (T,h)e K x H its action on

X K = XK x H is (r,h)xK = X ( r + K j x H ^ since hH = H. Then, any

translate of K = KQ x H is of the form (r+K ) x H for some

re IR . Now
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<p(x,h) =

= E a xF .«• (x) =:S(x) .

By Lemma 3.15, £>(x) may be majorized by a suitable linear

combination of characteristic functions of translates of K ,
o

and the conclusion follows immediately from the previous

inequalities and remark.

Finally we arrive at the desired result for the particular

case.

THEOREM 13.17. Assume G = R d x H, d finite, H a. compact

group, G with the product group structure. Assume K = K x H,

K a compact symmetric polytope in 1R with 0 as an interior
o ' -

point. Then K satisfies (P) and, consequently, T = Tv is

locally closed.

PROOF. Let cpeS = SR and p > 1 be given. Let ip be any

function, necessarily in S, such that 0 <C # < \<p \. By

definition of S, there is a finite set T ci IR and a positive

real valued function (a ) such that

(3.13) E a < p1/2M .
TeT T S

Let p be the least positive integer such that supp 0 <=
P

supp 0 c U s.K for some s.eG; then p depends on o but
i=l x x
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not on i/>. Choose now r large enough so that 1 + —*- K p ,

where n is, as in Lemma 3.15, the number of linear forms

that support K . We obtain the required N = N(p,p) by

setting N = (2r)n + p. Indeed, by Corollary 3.16, £ aJt
reT r

and hence 0, may be majorized by a linear combination of N

translates of K such that the sum of the coefficients is

< ( S a ) (1 + ̂ E ) < p|i/>L by (3.13) and the choice of r.
reT r ~

Due to the arbitrariness of p,<p and 0, it follows that K

satisfies (P). By Theorem 3.14, we have in this case that

T = T« is locally closed.
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4. Associate spaces in 0*

Let FeZ be given. Consider the set F' of all measurable

and valued functions 0 on G such that

(4.1) |[ (p0dju | <_ k for all </je2 (F) , O < k depending on ip alone
G

F1 is clearly a vector space. Since cpeS(F) implies |<p |sgnj/)e£ (F) ,

by property (F), (4.1) implies and hence is equivalent to the

(apparently stronger) condition

(4.2) I \cpij) fdjU < k for every (pe£(F).

G

We may define

(4.3) | 0 | , = sup{ |J <p0d/iffc)eS(P:)) = supf j fcpj/) |dM (cpeE(F)} < oo .
^ G G

| | is obviously a seminorm in F1. To prove that it is a

norm, let 0eF' and be ^ 0. By the argument of Lemma 2.4,

there is a nonnull measurable set E and a > 0 such that

crx™ <1 |0 I • By the same Lemma 2.4 there is a set F c G,

measurable, bounded and of positive measure such that Xv£F-

By Lemma 2.3 there is xeG such that n(E 0 xF) > 0. Since F

satisfies (T) xxpeF and |xxF|p = |xFlF- Then

l^lF.|xxFlF ̂  J (xxF) |0 M M 2 orj (xxF)XEdjU > (TM(EnxF) > 0.
'— ~ G G

Thus F' is a normed space with norm | | . It is called

the associate space of F.
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By the above definition, F' is isometrically isomorphic

to a linear manifold of the dual F (continuous linear

functionals) of F (it will follow from Theorems 4.5 and 4.7

that it is a closed subspace), under the map from F' into F

•X- * f

J/J —• i/> •> where 0 (cp) = J <p0dju•
G

LEMMA 4 . 1 . _If_ FPJJ is^ a. Banach space and i/j jls_ ft measurable

function such tha t j <pi/)dji e x i s t s and i s f i n i t e for a l l <peF,
G

then

PROOF. [7] Lemma 4.7. Cf. also [4] p. 8.

LEMMA 4.2 . Ĵ f FeJT, then for every bounded set E we have

VI'•
PROOF. Since F satisfies (N), it is obvious by definition of F1

LEMMA 4.3. If F,Ge? and F < G, then G! < F'. If F.G are

norm-equivalent so are Fr ,G!.

PROOF. The first assertion is obvious from the definitions.

The second follows from the first and from (ccF) ' = a F1

for every a > 0.

THEOREM 4.4. For every Feff, F' = (lc F)'.

PROOF. As in [7] Theorem 4.15 with obvious changes in notation.

THEOREM 4.5. For any FeJT, F'eJT.
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PROOF. First we prove that F1 satisfies (T). Let reG,

, J/)eF' be given. Then

J f
G G G

J |<p(t)(Ttf>)(t) |dM(t) = J |(p(t)0(r"
1t) |d^t(t) = f |<p(Tt)0(t) |dju(t) =

G G G

= J |r"1(p(t)^(t) |dju(t) l
G

This implies T«/>eF' and |TJ/)|F, <̂  I$ITM > a s w e s e e by taking

supremum over (pe^(F). Thus F' satisfies (T) .

We prove now that F1 satisfies (N). We begin by showing

that there is oĉ  such that for every jieF1 , «/) is integrable

on K and J \ty |d/i < aK|^|pl •

K ~>

By Lemma 2.4, there is a measurable set E c K such that

u(E) > 0 and X~,eF. For every seG, sx^eF and then

J («xE)|0|dM < J
K G ~ ^ ~ <-'

The se t K i s compact, /u(K ) < oo , hence, by Fubin i ' s Theorem,

oo > M(K 2 ) |X E | F | 0 | F , 1 J dM(r)J (T-\E)(t)\$(t)\dvL(t) =
~ - K 2 K

= J d M ( r ) J X E ( T t ) | j / ) ( t ) | d / i ( t ) = J | 0 ( t ) | d j L i ( t ) ( J X E ( T t ) d M ( T ) ) = . . .
K 2 K K K 2

-1 .2 -1

Since x ^ vanishes outside YT for all teK ((XE* ) (T) =

= XE(Tt) ^ O iff TteE c K, and thus only if reEt"1 c K 2, teK),

we may continue our chain of equalities:

|«|)(t) |d)H(t)(J XE(Tt)djU(T)) = J |0(t) |Ar(t"
1)d|li(t)J XE(T)djLl(T) =

K G K G
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\ Ajt / [
"K * K

where 6 = minfA (t~ ) |teK} > O, for the right-hand modular

function A (t) is continuous and positive and K is compact.

Therefore we may choose a R = &~ fi(E)~ JU(K )|xE|F- Now for
n ~

any compact C, C <= U T.K, for some n and some T-eG,
i=l 1 x

i = 1,...,n. Then

J I0|dfi£ 2 | |jMdM = s j f r '^ ld/ i < na |)/)|
JC i l K i l K x1=1 T-K 1=1 K

since F1 satisfies (T). Thus F' satisfies (N).

From (4.2) and (4.3) it is obvious that F' satisfies (F)

From Lemma 4.2 it is clear that F1 ^ {0}.
r*J

THEOREM 4.6. For any Fe3", F' is locally closed.

PROOF. [7] Theorem 4.17 (cf. [5] p. 113).

THEOREM 4.7. Jf FeS" is locally closed, F" = F.

PROOF. [7] Theorem 4.18 and Remark. It follows from a theorem

of Luxemburg [4] and Luxemburg and Zaanen [5] p. 113.

COROLLARY 4.8. _If Feff, then F" = lc F.

PROOF. Theorems 4.4 and 4.7.

THEOREM 4.9. A quasi locally closed space FeS" contains the

characteristic function of every bounded measurable set E c: G.
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PROOF. It is sufficient to assume F locally closed. Then

by Theorems 4.5 and 4.7 and Lemma 4.2, XEeF" = F.

COROLLARY 4.10. _If Fe? is. quasi locally closed, then F

is weaker than T.

PROOF. Theorems 4.7 and 3.

Combining Theorem 3.12 and Corollary 4.10, we conclude that

T is, up to norm-equivalence, the strongest quasi locally closed

space in 3".

We prove now:

THEOREM 4.11. T1 = M and M' = lc T. If T is locally closed,

then M1 = T; this is the case, in particular, if K satisfies

(P) , and, more in particular, if G = IR x H, d finite, H a.

compact group, G with the product group structure, K = K x H,

where K is a compact symmetric convex polytope in IR with

0 ais sin interior point.

PROOF. Let $ e M be given. For every <peT, we have |<p | .<
oo ~ " oo

— ^ a i ^ K ^or s o m e sequences (a.), (r.) with Sa. < co . Using
(T) for M, we have

|» OD » OO -

Lr 1 = 1 ti 1 = 1 K

CD , CO

1 ~ 1

Taking infimum of the last member over all suitable

sequences, we obtain J [<pj/j fdju < |<p|Tl^(M, so that ĵ eT' and
G /~> AJ
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M T , < |*IM. Thus M < T' .

Conversely let $eT'. For every seG

J I* M M = J (xsK) 10 MM < lx8KlTl0lT, =
sK G ~

J
sK G

whence 0eM and, taking supremum of the first member over all s,

we have |^I M < |^|Tt> which implies T1 < M. Thus T1 = M.

From Corollary 4.8, M1 = T" = lc T. In case T is locally

closed we indeed have M1 = lc T = T. The last statement

of the theorem follows from Theorems 3.14 and 3.17.
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