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SOME TRANSLATION-INVARIANT SPACES OF FUNCTIONS ON TOPOLOGICAL
GROUPS
by

E. J. Risler

ABSTRACT

We extend some of the results of the theory of &- and
J-spaces due to J. J. Schiffer to function spaces on a locally
compact Hausdorff topological group G. The class J consists
of non-zero translation-invariant solid normed spaces that are
stronger than L, the space of (equivalence classes of) measurable
functions that are integrable on compact subsets of G, with
the topology of convergence in the mean on every compact subset.
We introduce and study some spaces in J, in particular M,S,T.
Our main results concern the quasi local closedness and local
closedness of T. We also give a generalization of some
results about associate spaces and duality between M and T.

The results may be extended to normed spaces of functions with

values in a Banach space.




INTRODUCTION

We present some of the results obtained in the course
of reéearch done in order to generalize the theory of &-
and J-spaces introduced by Schaffer [7] and further developed
by Massera and Schaffer [6], Chapter 2.

In those works the spaces under consideration consist of
functions whose domain is an interval of the real line; we
consider here spaces of functions defined on a locally compact
Hausdorff topological group. Our main objective is to study
the spaces M,S and T (introduced in Section 3} belonging to
the class J, and our main results concern the quasi local
closedness and local closedness of T. For this we present
in Section 1 the necessary basic notions and results and in
Section 2 the new definitions and results concerning the class
J that we may need in Section 3, which contains the main
results. In Section 4 we give the rather straightforward
generalization of some results about associate spaces and
duality between M and T.

The theory of F-spaces is closely related to the work
of several authors; in particular see Luxemburg [4], Luxemburg
and Zaanen [5] and several subsequent papers of these two
authors. (A resumé of their work is to be found in Zaanen [8],
Chapter 15.) We refer to [6] and [7] for more detailed references
and explanations of the relations between the theory of F-

spaces and that of other authors.




This work is expected to constitute part of a Ph.D.
dissertation. The subject was suggested to me by Professor
J. J. Schaffer, my advisor. I have received from him valuable

advice and direction.




1. h-Spaces and J-Spaces

In this section we present all basic concepts, definitions,
notations, facts and results on MNh-spaces and F-spaces that we
may need in the following. We follow closely [7] and [6],
Chapter 2, extending some concepts to the more general framework
in which we are going to work. Proofs, examples and other
aspects of the theory are to be found there.

We shall use the usual terminology for vector spaces.

It A be a balanced convex set in a real or complex vector

space. We define its radial closure by

rad A = {x|AxcA, O < A < 1} = 0N tA.
t>1

Obviously rad A 1is convex and balanced. If rad A = A we say

that A is radially closed; for any nonempty balanced convex

set A, rad A is radially closed. 1In a topological vector
space rad A < ¢l A; therefore rad A 1is bounded if A is
bounded.
If X is a normed space, its norm is denoted by || ”X and
its unit ball {x[xcx,HxHX <1} by E(X). If N> 0, rX denotes
the normed space which is algebraically (and topologically) identical

with X but has Z(AX) = *Z(X) and therefore | = X_leHX for

%]

all =xeX. The spaces X and AX are said to be homothetic.

If Y and 7Z are normed spaces, we shall write Y < Z or
Z >Y if Y is algebraically contained in Z and X(Y) © £(Z).

The relation < 1is clearly transitive and Y < Z < Y implies Y = Z.




et E be a locally convex space (i.e. a locally convex
Hausdorff topological vector space) and Y a normed space
contained algebraically as a linear manifold in E. Y is

said to be stronger than E (or E weaker than Y) if the norm

topology of Y is stronger than the topology induced on Y

by E. Equivalently, Y is stronger than E iff: 1) the
inclusion map Y-»E is continuous, iff: 2) L(Y) is E-bounded,
iff: 3) for every continuous seminorm 7 on E, there is a
number @ > O such that m(y) g_aWHyHY for all yeY. 1In

the particular case that Y and Z are normed spaces, Y 1is
stronger than Z iff Y { AZ for some A > O, and iff

L(Y) © \Z(Z) for some X > O. The relation "stronger than"

is transitive. If Y and Z are two normed spaces and Y

is both stronger than and weaker than Z, then Y and 2

coincide as topological vector spaces, but not as normed spaces.

In this case, they are said to be norm-equivalent, which is

Jjustified by the above facts.
From now on E 1is a fixed locally convex space. We
define N(E) as the class of all normed spaces which are
stronger than E.
We also define the class I'(E) of all nonempty radially
closed E-bounded balanced convex sets in E. TI'(E) is a conditionally
complete lattice under inclusion, the lattice operations heing:
meet, A1AA2 = AlnA2 and join A1VA2 = rad conv (A UA,), for all
Al,Aer(E). With the order relation < N(E) is also a
conditionally complete lattice and the mapping Yr» Z(Y) is

a complete lattice isomorphism from n(E) onto I(E). The




lattice operations in N(E) may be described in the following

way: if Y,Zeh(E), YAZ is algebraically YNZ and ”u“YAz =

Il

max{HuHY,HuHZ]; YVZ is algebraically Y+Z and “u“YVZ =

inf{HyHY + HzHZ|u=y+z, yeY, zeZ). If [Yg}geEl is a family

in N(E), AY is the submanifold (possibly proper) of ﬂYg

g

where the norm Hu“AY = sup{HuHY [ec =} is finite; in the case

Y, < Y _eh(E), then VY

e is algebraically ZYg (set of finite

g

n
,u=2y
1

m
sums Zyg, ygng) with norm HuHVYg = inf{?”kaY K’

€ (k)
ykng(k); k=1,2,...,n for some n=1,2,... and some E€(1),...,E8(n)ec=}.
Norm-equivalence is a congruence in the lattice NW(E), i.e.
finite lattice operations preserve norm-equivalence.

The E-closure of a bounded balanced convex set in E
is convex, balanced, radially closed and bounded. Therefore
AcT'(E) implies clEAeF(E). The map Ar—»clEA is a closure
operation on the lattice TI(E) and clE(XA) = %clEA for A > O.

For every XeN(E) we then define lcEX, the local closure of X

in E, as the space in N(E) that satisfies Z(lcEX) = clEZ(X).
We may omit the reference to E if no confusion can arise.

If X(X) is closed in E (i.e. lcEX = X), X is said to be
locally closed (in E). Clearly X < lc X and 1cX is

locally closed for all Xech(E). Spaces homothetic to a locally
closed space are locally closed, but local closedness in general
is not invariant under norm-equivalence. A space in Nn(E)

is called guasi locally closed (in E) if it is norm equivalent

to a locally closed space.




An important subclass of N(E) is that consisting of all
Banach (i.e. complete) spaces in N(E); we denote it by B8(E).

B(E) is a sublattice of N(E) and contains the meet of any
subclass. If E is a complete locally convex space, then
Y = 1lc Y implies YcB(E). Conversely if YeB(E) and 1lc Y has
the same elements as Y, then Y is quasi locally closed.

If E 1is complete then for every Ych(E), the set
(Z|ZeB(E), Z > Y} is not empty: it contains 1c Y. Then this
class has a least element (namely its meet) that we denote by

bY, that is
bY = N(Z [Z<B(E), Z > Y].
We can characterize bY as follows:

THEOREM 1.1. If YeNh(E), then bY consists of all uecE which

are E-limits of Y-Cauchy sequences; the norm is

= inf{ lim HynHYl(Yn) is a Y-Cauchy sequence, lim y_ = u}.

”quY n —s 0O n ook

PROOF: Cf. [6], 21.G.

bY is a kind of completion of Y but the trivial injection
Y —» bY need not be isometrical. Denote by ¥ the abstract

completion of Y.

THEOREM 1.2. If E is complete and Yeh(E), the following

statements are equivalent:

i) if (yn) is a Y-Cauchy sequence such that limEyn = yeY,

n-—- 0

then |iylly < Syl llys




Eyn = 0,
n —» 00

ii) if (y,) is a Y-Cauchy sequence such that 1lim

then 1lim ||y ||, = O;
. n-— oo n’y

iii) the canonical embedding of Y into e may be extended

to an isometrical isomorphism of bY into g

iv) the trivial injection from Y into bY is isometrical.

PROOF: [7] Theorem 2.4, and the above Theorem 1.1.

If Ych(E) and satisfies conditions i)-iv) of Theorem 1.2,

it shall be called E-completable. E-completability is invariant

under norm-equivalence.

We are going to deal with certain spaces of functions on
topological groups, which we always assume to be Hausdorff.

G shall denote a locally compact o-compact (Hausdorff) topological
group and pu shall denote an (essentially unique) left-invariant
(regular) Haar measure on G defined on the o¢-algebra of

Borel sets. We remark that every locally compact group has

an opén—closed g-compact subgroup ([3] Theorem 5.7) and, hence,

the group is a disjoint union of o-compact open-closed cosets;
these facts allow us to extend the results of the theory to

all locally compact groups in a rather direct way; we omit the
details of the argument.

We shall study spaces of (classes of equivalence of) strongly
measurable functions from G into X, a real or complex Banach
space with norm || ||. We identify functions equal a.e. and
sometimes confuse functions with classes of equivalence. The

characteristic function of a set E < G is denoted by Xg> @




subset of G 1is said to be bounded if it is contained in a
compact subset. We shall consider the space of all measurable
real-valued functions with its usual vector lattice structure;
equalities and inequalities between functions should always be
understood as holding almost everywhere. To any strongly
measurable function f from G into X, it corresponds

the measurable real-valued function |[f|| defined by |l£]|(t) = |[f(t)]
for all t in G.

Let E(X) be the space of all (equivalence classes of)
strongly measurable from G into X which are (Bochner)
integrable on compact subsets of G, endowed with the topology
of convergence in mean on every compact subset of G. L(X)
is a locally convex Fréchet space, i.e. complete and metrizable.
In case X = IR we shall write E(]R) = L. It is to be
remembered that feE(X) if and only if f 1is strongly measurable
and |f|eL.

We introduce now the class &, in full &, consisting of

G
all normed spaces F (with norm | IF) that satisfy:

(N) F is stronger than L (i.e. Eeh(k) =h) i.e. for
every compact subset C of G, there is a number %6 >0

such that f [£(t) |dp(t) < aclle for all feF
C ~

and

(F) if ¢cF and Yy 1is a real-valued measurable function

G such that [b| < [o|, then PeF and leF S_I¢|F.




We shall always denote by ¢ the least number with
the property expressed in (N).
For spaces of the class & it is possible to prove some

useful results concerning the local closures. With proofs

analogous to those in [7], we obtain:

THEOREM 1.3. Let Fed be given. If ¢eclc F, there exists

an F-bounded increasing sequence (¢n) of positive elements in F,

op < lo] such that  limo = o] and lol,, g = lin lo I

n—» 00 n-—->0 ~

Conversely if (@n) is an F-bounded increasing sequence of

positive terms in F, it converges in L to a function ¢clc F

and o], p < lim lo Iz (cf. [7] Theorem 3.5).
~ n — 00 ~
COROLIARY 1.4. 1If Fc&, then 1c Fed (cf. [7] Corollary 3.2).

COROLIARY 1.5. A space Fed is locally closed if and only if

for every E—bounded increasing sequence (¢n) of positive

terms in F its L-limit ¢ lies in F and |¢|F = lim |¢an
~ n— ~
(ct. [7] Corollary 3.3).

THEOREM 1.6. A space Fe& is quasi locally closed if and only

if for every F-bounded increasing sequence (¢n) of positive

terms in F its L-limit ¢ 1lies in F (cf. [7] Theorem 3.6).

COROLLARY 1.7. A space Fed is quasi locally closed if and only

if F and 1lc F consist of the same elements. (Cf. [7]

~

Corollary 3.4.)
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The following theorem is also proved in a similar way

to [7] Theorem 3.2.

THEOREM 1.8. For any non-empty index set = , if §§e$ for

all €c¢ = then AF_.c¥ and if Vgg exists (for instance if

g

is finite or F. < F_ for some F _en(L) and all EeZ) then

~E S
also VE§€3.

We shall also need:
THEOREM 1.9. If Fe¥, then DbFed.

PROOF: As in [7) Theorem 3.4, simplified by Theorem 1.1.




11

2. J-Spaces

The group G operates to the left on L(X) in the following

way: for any seG, fcL(X), st = LSf is defined by

(st) (x) = £(s Yx) for all xcG.

To see that sf is strongly measurable it is enough to
realize that since the map x+—>s—1x is a homeomorphism on G,
for any scG, it maps Borel sets on Borel sets, and that
since pu is left invariant u(s_lB) = i(B), for any measurable
set B. To see that sf 1is integrable on compact sets, for

any compact C we have:

(2.1) jCHsf(x)ndu(x) jcuf(s’lx)ndu(x) = f _1 £ (x) |ldp (sx) =

s °C

il

] leelaue < e

s C

since feL(X) and s'lc is compact.

It is easy to see that the following relations hold:

(2.2) L 1 LS = Le = identity for every seG
S

(2.3) Ll = L ]l£]l for all seG

(2.4) Lst = LsLt for all s,teG.

Hence for every seG, LS is a continuous linear bijective
mapping from L(X) onto L(X).
We consider now the class 3, or in full J, consisting

G
of all spaces Fe&d satisfying the following additional conditions:
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(Z) E # {0}
(T) If oecF, seG, then s@eF and |s¢|F g.lmlF.

We remark that in (T) inequality may be replaced hy equality,

since by (2.2) |¢|F = |s"lsm|F g_lswlF < lwlF-

Classes & and J have their counterpart for strongly
measurable functions defined on G with values in X, a given
Banach space. For every Fe¥ we denote by F(X) the set of
feL(X) such that ||f||cF with the norm lle(X) = |HfH|F. By (F)
this definition means that E(jm) = F. Tge class of ;11
spaces F(X), Eeﬁ, for a fixed X, is written as &(X). In
the same way we define the class J(X), a subclass of F(X).

Every property of spaces of functions with values in X
can be deduced from the corresponding property of spaces of
real-valued functions, as it is allowed by the content of results
coincident with {7} Thm. 3.1, Thm. 3.3, Corollary 3.1, Thm. 3.8,
and Thm. 4.1. The proofs in our case would be literally the
same. Hence from now on we shall restrict ourselves to the study
of real-valued functions, with the knowledge that the results
of this section also hold for spaces in the class J(X).

From now on we shall work with a triple (G,K,u) where G
is, as before,a locally compact g-compact Hausdorff topological
group; K 1is a regularly closed compact symmetrical neighborhood
of the origin ecG; and u, as before, is a left-invariant Haar

measure on G, but normalized by pu(K) = 1.
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We now define an important space M, in full MK’ which

is the set of all functions fcL that satisfy supf [f(t) [du(t) <
seG sK
< o, with this supremum as norm.

LEMMA 2.1. Med and it is locally closed.

PROOF. We prove first that M satisfies (N). Let C be
any compact set of G, C € FK for some finite set F C G.
Then for all ¢cM

J dotoyjapt) < =] Jo(t) lau(t) < card Flol,,
C seF sK ~

M satisfies (F) and (Z) trivially. To see that it satisfies

(T), let 1reG and @cM be arbitrary, then

sup _1 | (re) (t) [du(t) = sup J lo(t) [du(t) = loly-
seG sK seG rskK ~

Thus MES.

The second part is proved, using the criterion given by
Corollary 1.5 in the same way as in [7] Lemma 4.1, with some
obvious changes.

We shall need the following.

THEOREM 2.2. (Density) Let G Dbe a locally compact group, Vv

a right-invariant Haar measure on G. Let E < G be a bounded

Borel set. 1If, for every =xe¢G, and every bounded neighborhood

_ V(ENUx) .
= ~V{ux) - then f, converges in the mean

(and hence in measure) to Xg 28 U-—e.

——— ———— . e

U of ecG, fU(x)

PROOF. Sketched in [2], p. 268 Ex. 5.

RUNT LrBRARY
CABNEGIE-MELLON UNIVEASITY
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We use this theorem now to prove a lemma that we think is

well known but for which we have not found a concrete reference.

LEMMA 2.3. Let G and p be as in our general context, A

and B two Borel sets, u(A) > 0. Then u(B N As) =0 for all

seG (or u(B N sA) = 0 for all seG) implies pu(B) = O.

PROOF. We may assume that A 1is bounded without loss of
generality. and, G being o-compact, we may also assume that

B is bounded.

_ V(ANUX)
U~ v(Ux)

for every bounded neighborhood U. A = {x|xeA, fU(X) < %} U

let v be a right-invariant Haar measure and £

U {x]|xeA, £ (%) 2-%}; since f, < 1 and since, by Theorem 2.2,
fU converges in measure to Xy 2S U— e,

v({x{xeA,fU(x) < %}) = v((XfxeA,fo(X)—xA(X)! > %})—a'o

as U=~= e. Hence v({x[xeA,f (x)'z-g})-—av(A) >0 as U-—e.

Suppose now Vv (B) > 0. Then similarly for g . (x) = v (BOUX)
U v (UX
v({xeB[gU(x) 2_%})——+v(B) >0 as U— e.
Choose V such that v({fv(x) 2_%}) > 0 and
v({gv(x) > %}) > 0, and then points Sl and s2 respectively

in each of these sets i.e. points such that

V(A N Vsl) 2_§V(Vsl) gv(V)

I}

V(B N Vs,) > 2v(Vs,) 2v(v) .
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-1
Set s = s1 sz. Then

v(AsNB) > v (AsNBNVs = v(AsﬂVsz) + v(BﬂVsz) - v((AsUB)ﬂVsz) >

)
2
> V(ANV _1) + v(BﬂVsz) - v(Vsz) Z_v(AﬂVsl) +

S,8
+ v(BﬂVsZ) - v(V) > %V(V) > 0.

Hence if u(B) > O, then v (B) > O, and we have shown above
that there is an se¢G such that Vv (BNAs) > O, thus pu(BNAs) > O.
The first implication is proved. For the second implication,
we use that for E Borel, p(E) > 0 iff u(E—l) > 0. Then

p(BNsA) = 0, for every scG, implies u(B_lﬂA—ls—l) = 0, for

all seG, and by the first part p(B—l) = 0, hence p(B) = 0.

LEMMA 2.4. If Fed there exists a non-null measurable set E

such that erE. Moreover for every measurable set A, u(A) > 0O,

there is a non-null measurable E' C A such that Xg1 €E-

PROOF. By (Z), F # {0}; then there is 0cF, o # 0. Hence

there is a o0 > O such that E = {t|]o(t)| > 0} has positive
measure. Then O < X < o 1lo| and (F) implies Xg€E. Since
H(A) > O, by Lemma 2.3, there is xeG such that uy(ANXE) > O,

and since Xyg = xXEeE by (T) and XA NXE S-XxE’ then XAﬂerF'

~

Take E' = ANXE.

THEOREM 2.5. Let = be a non-void index set.

(1) If F

§€3, for every £c¢ Z , then either /\’1\2"g = {0}

or /\Egd}’. In particular, if Z is finite /\Eg # {0]}.

(2) If F_.eF for every Ec= , and if Vgg exists - i

~E in
=
=

particular if

finite-, then V EgeJ.
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PROOF. (1) By Theorem 1.8 AE§€3, i.e. satisfies (N) and
(F). It is clear that A‘Eg satisfies (T). Thus if

AN Eg # (0}, we have AF.c3.

For the case of finite = , we may just consider two

spaces F, and 2263. By Lemma 2.4, there are sets E;,E,

of positive measure, such that XE eEl and Xg eEz.
1 2

there is xeG such that p(E,NXE;) > O. Then O # XEzﬂxE1 S

By Lemma 2.3,

< XEZGEZ and also O # XE2QXE1 g-XxElggl' Therefore ElA F, # {0]}.

(2) By Theorem 1.8, if \/Eg exists, it belongs to &.
It clearly satisfies (Z).
Let we\lgg and scG be given. If ¢ = 2¢§, ¢§€E§’ finite
sum, then s¢ = Isp,c VF, and }sol < Zlse). = Zle.)
s VEg = ¢ "5'Lg = Ee
and taking infimum over all possible finite sums such that

© = Z(pg, lS(pl VF < l(p' VF. " Hence Vgg satisfies (T).
~€ ~§
THEOREM 2.6. If FeJd, then DbFed.

PROOF. We use Theorem 1.1 to prove that bF satisfies (T),
which suffices since by Theorem 1.9, bDFe¥, and DbF > F # (0]}.
Let ¢eb§ and seG be given. For every F-Cauchy

sequence (wn) with L-limit ¢ we have s ¢k, for all n,

and Iso - s<pm|E < |s(<pn—mm)|E < |¢n*¢m|g and limk so, = So.
n-» @

Thus (swn) is an F-Cauchy sequence with L-1limit s¢ so that

specbF  and

|s<p|b,E < 1irré)o|s¢q|E < lim ‘wan'

n-— n-— o ~
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Taking infimum of the last member for all F-Cauchy sequences

with L-limit ¢ we obtain lS@le < |¢|bF' Therefore bFed.
THEOREM 2.7. If FeJ, then lc FeJ.

PROOF. By Corollary 1.4, 1lc Fe¥, and since 1lc F > F # {0},
it remains to prove that 1lc F satisfies (T). This is done

using Theorem 1.3 in a way similar to the proof of Theorem 2.6.

LEMMA 2.8. If Fed then F is stronger than M.

PROOF . Let ¢cF and secG be given. Then soecF  and
-1 -1
J oty fauce) = [ los™ oy Jants™le) = | Iso(t) fau(t) ¢
sk K K
< aKlswlz < aK|¢|E, since F satisfies (N) and (T).
Thus @M and 'w'M S'QKIO|E.

'REMARK. The preceding lemma shows that M is the weakest

element of the class J.
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3. Vefy strong spaces in 9

Our next purpose is to determine a class of "very strong"
spaces in d, i.e. the strongest spaces in J containing one
given nonzero function. By Lemma 2.8 any such given function
must belong to M. By (F) the desired space must then contain
the absolute value of the function, by (T) all translates of
the absolute value and finite linear combinations, as well as
measurable functions dominated, in absolute value, by any such
linear combination. We shall show that only these functions
are necessary.

Let then ¢eM, ¢ # O be given. We consider the vector
space §¢ consisting of all measurable real-valued functions

Y on G such that

(3.1) v ] < ¢ |

1 ll[

= Ms

n
a, |re| = ?a.T.

for some non-negative integer n, a finite sequence (ai) of

real numbers, a; > o, i=1,...,n, and a finite sequence
n
(Ti), of point G, endowed with the norm |¢|S = inf Zai,
1

where the infimum is taken over all choices of n, (ai), (Ti)
satisfying (3.1). The expression is obviously a seminorm,
and, it is easily seen to be a norm; indeed, every element
in Sw belongs to M and

n
(3.2) oty < loly, !

~




1°

1v1

M

which implies |¢|S > —-" | as desired. In particular ©eS
S0 < 19y ©

(n=1, a1=1, T1=e) with |w|s = 1.
~p
Following the proofs of [7], with obvious changes in

notation we have the following results which show that S

is the desired space.
LEMMA 3.1. §w€3 for every o¢eM, ¢ # O (cf. [7] Lemma 4.3).

THEOREM 3.2. 1f EcJ and ocE, @ # O, then fol7’

~

hence §@ is stronger than F (cf. [7] Theorem 4.8).

S F;

COROLLARY 3.3. If FeJ, then F = \/{I¢|;l§¢l¢eg} (cf. [7],
Corollary 4.5). ”

Clearly, if O # ¢, @'eM, then |o| < o' | implies §¢ < §w"
Because of this fact we are able to consider, among the spaces
§¢, a subclass of spaces which is still "strongest”, in the
sense that it contains spaces stronger than any given space in J.

For every bounded measurable set E < G, u(E) > 0, we

write S, =S. . In particular we write S = S,,.

THEOREM 3.4. If Fed, there is a bounded measurable nonnull

set E C G, such that SE is stronger than F.

~ ~

PROOF. By Lemma 2.4 there is a measurable nonnull set E C G,
which without loss of generality we may assume bounded, such

that erg. By Theorem 3.2, SE is stronger than F.

We want now to identify the strongest among all complete
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spaces in J. Clearly the spaces b§w are the ones we need
(see Theorem 3.6 below), but we shall give a direct description
of these spaces, similar to the definition of §¢

Let <M, 0 # O, be given. Consider the vector space Zw

of all measurable real-valued functions ¥ on G such that

@
(3.3) vl < iaifilw
@©
for some sequence (ai)ic]N’ ai > 0, such that iai < o, o
- - _ - 2
and a sequence (Ti)ielN in G, endowed with norm |¢|E¢ inf 1ai

where the infimum is taken over all possible choices of sequences

(ai), (Ti) satisfying (3.3).

Using the fact that M is complete, we see that yeM,

ol

lvl.. > ~—== , and hence } | is a norm. As above it follows
Lo = 1oly s

~0

E

bounded measurable non-null set E C G, and T=T

that wegm and |w|T = 1. We also write T_ = IX , for every

THEOREM 3.5. For ever eM, o O, Ted and T_ = bS_,
THEOREM For every oeM, 0 # 0, T,c3 and T, = bS,

hence Ew is a Banach space (cf. [7] Theorem 4.10).

Results analogous to Theorems 3.2 and 3.4 also hold.

THEOREM 3.6. If FcJ is a Banach space and ¢<F, ¢ # O,

then |¢|;1Z¢ < F. Hence E@ is stronger than F. Moreover

E = Vilol's, loeE} (cf. [7] Theorem 4.11).

~
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THEOREM 3.7. f Fe3 1is a Banach space there exists a

bounded measurable nonnull set E < G such that IE is

stronger than F. (Cf. [7] Theorem 4.,12).

Another property we shall need in the sequel is

THEOREM 3.8. For any bounded measurable non-null set E,

Sg is L-completable and T

[7), Theorem 4.13).

g 1is its I-completion. (Cf.

For the relative strength of the various S for different

~E

E, we have

LEMMA 3.9. Let E,E' be bounded measurable non-null sets

in G. Then 8§, [resp. T,] is stronger than §.,

if and only if there is a finite set F such that E C FE'

[resp. EE‘]

except for perhaps a null set (cf. [7] Lemma 4.4).

COROLLARY 3.10. For any bounded measurable non-null set E

§E [resp. EE] is stronger than S [resp. T} (cf. [7] Corollary

Therefore S is the weakest space of the type §E (and T is

the weakest space of the type EE) up to norm-equivalence.

Our main objective is to show that T is quasi locally closed.

For this we now need to establish a covering property that is
satisfied by all locally compact groups. 1In [1], Theorem
2.1.2, Emerson and Greenleaf have proved that all locally

compact groups satisfy the following covering property:

4.6).
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(C) For at least one relatively compact set C with
non-empty interior, there is an indexed family (Xa)aeJ
G such that (Cxa} is a covering for G whose

covering index at each point g(the number of aeJ

with g@Cxa) is uniformly bounded throughout G.

Moreover, in the same paper [1], Lemma 2.1.1, it is shown that
in property (C) we may replace, "For at least one..." with,
"For every...". It is clear that, by using the inversion
symmetry xr—ax_l, we may verify that the same property holds
for coverings by left translates of every relatively compact C
with non-empty interior. Following Emerson's and Greenleaf's

arguments we prove

LEMMA 3.11. Let G be a locally compact group and let C

be a symmetric compact neighborhood of ecG. Let (xa)aeJ

be an indexed family such that (x,C} is a covering of G with

covering index uniformly bounded throughout G. Then {xacz}

is also a covering of G with uniformly bounded covering index.

PROOF. Since ec(C, C2 3 C. Since C

(£):8,,+++,8) € G such that c° ¢

is compact we may choose

c_ .
1 &i

2
m
U
i=

We assert that if {xac} is a covering whose index is < N,

then {xaCZ} is a covering whose index is < Nm. Evidently

U xaC2 o U xaC = G. Also for each i =1,2,...,m, and

a a

for all xeG, xg}l ex,C for at most N choices of a; this
m

implies that xe¢ U xani for at most Nm choices of «a.
i=1

in
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m

Since x C2 c U xani for all o, this implies xexaC2
i=1

for at most Nm choices of «, as claimed.

Combining the previous results, we conclude that every

locally compact group satisfies the following covering property:

#

(C") For every compact symmetric neighborhood C of

the origin ecG, there is an indexed family (xa)aeJ in G
such that {xaC} and {XGCZ} are coverings of G
whose covering index is uniformly bounded through-

out G.

It is clear that if the group is also o¢o-compact the indexed

family can be chosen countable.
We are now able to prove

THEOREM 3.12. T is quasi locally closed.

~

PROOF. We shall exhibit a locally closed space which is norm-

#

equivalent to T. By property (C') and the above observation,

there is a countable family (x_ )

o) ne IN such that (an]n€ and

N

{XnKZ}neim' are coverings with uniformly bounded index.
00
Let F = {¢[p measurable such that I ess.sup|p(t)| < o)
1 tex K
n
®
normed with lwlF = I ess.suple(t)|. It is obvious that this
~ 1

tex K
n
is a norm and that Fe&.
We prove first that F is locally closed, using the criterion

of Corollary 1.5. Let (¢n) be a F-bounded increasing sequence
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of positive elements of F such that 1lim I@an = A. Let o
n Qo ~

be the k—limit as well as the pointwise limit a.e. of this

sequence. If a = ess.sup ¢m(t), the sequence (a__ ), for

mn mn
tean

each n fixed, is nondecreasing and bounded by A. Denote by
a its limit.
n

Since ¢ 1is the pointwise limit a.e. of (@m), an increasing

N
sequence, we have a_ = ess.sup ¢o(t). For any N, Za_ =
n n
tex K 1
n
N o
= lim L a <M. Hence Za < A. Thus, peF and |¢|F <A,
m ® 1 1 ~

Therefore, F is locally closed.

We prove now that T and F are norm-equivalent. Let

00
@cE. Let a = ess.suplo(t)|. Then [p] < a X, g; hence
tean 1 n
peT and |¢IE < l¢lE’
00
For the converse, let T and assume [p]| < Za Xg g
~ 1 i
for some sequences (ai) and (Si)' We remark that {anZ} is

a covering whose covering index is < N throughout G if
and only if for all teG, tK N an # @ for at most N choices
of n.
Assume tean. Then
lo(t) | < ?{ai]tesiK} < ?[ai!xnx N s,k # @}
Then

ess.sup [p(t) | S_Z{ailan N s;K # 7).
tEXnK i

Hence




25

00
|¢|F < 5 Z{ailan N s K £ @) =

~ n=1 i

1

0o o
iilaicard{n]an Ns;K# @) <N %ai.

Consequently |¢|F < N|¢|T, which ends the proof.

We shall give a sufficient condition for T to be locally
closed. For this purpose we now define a property (P) that may

or may not be satisfied by K.

(P) For each p > 1 and each ¢€§ = §K’ there is a positive
integer N = N{(p,¢) such that for every function ¥,
0< b < |o|], there is a finite set = c G of
cardinality at most N and a positive real-valued

function (a satisfying

§)§€3

i) 0L ¥ <L %EE aeXex

ii) L oa;. < pldle-
e 5 l lr§

We do not know whether or not this property (P) is satisfied

by all G and all K.

THEOREM 3.13. Let {0.) © G be such that O < Y pes. 1f
THEOREM n <o, T o8

AK satisfies (P), then lim |¢nls = |¢|s.
n—s Q@ ~ ~

PROOF. By (P), we can choose, for each ne¢IN and each p > 1,
coefficients ain > O and points gineG’ i=1,...,N; N = N(p,p)

such that
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N
(3.4) 0Ly < ¥ aynfintx = % Binde, x

N .
(3.5) i a, < pl¢n|§.

Without loss of generality we may consider supp ¢ to
be compact, and it is also possible to consider that for
every 1 and every n gin is contained in a fixed compact
set C (e.g. C = (supp ©)K). 1In [O,pH@HS]N « cNerY x 6
a compact space with the topology induced ;y the product
topology, the sequence ((aln’""aNn’gln""’gNn))neIN
has a cluster point, say (al,....aN,gl,...,gN).

We claim that the following inequality holds

N
(3.6) lim 1nf(i§1 in%in¥g) < §1a €%
Since (al,...,aN,gl,...,gN) is a cluster point of the

above sequwe nce, there is a subnet converging to it, say

((aln(a)’"”aNn(a)’gln(a)’""gNn(a))) cp+ In particular,

for every i =1,...,N, a —> a., in IR and €

in(a) o i in(a)" @ %i

in C < G.
We prove now that for any index i, i =1,...,N; if

t¢Fr(giK) then 1;m E. n(m)xK(t) = E xg(t).

If te(EiK)o = EiKo, then there exists a neighborhood U

of e such that Ut C giK. Since g'n(af_* gi’ there is %y

-1

1n(a)) eU. Then for all

such that, for all a > a, €5 (8
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-1

LA e Ei(é tegiK, and consequently teg

in(a)’ in(a)K
Therefore 1lim g
o}

Similarly, if t%%iK, there is a neighborhood U of e

such that Ut C G\giK. Since gin(a)
“leu for every a » a_. Hence g(gin(a))"lte

——»gi, there is Oy such

that €, (§1n(a))

G\giK = gi(G\K) for all o > as and therefore teEg, )(G\K) =

in(a

= G\§ Thus 1lim €,

Xg(t) = 0 = E % (t).

o
N

From here we deduce that for every t¢ U Fr(g, K),

i=1

in(a)K in(a)

N N
iilain(a)gin(a)XK(t)‘_&"izlaigixx(t)'

N
Since pu( U Fr (g, K)) = 0 on account of the regularity of
i=1
the Haar measure, this implies in particular that for almost

N

all +t, z aigixK(t) is a cluster point of the sequence
i=1

N
(iil 1n§1nXK(t))nelN

Hence for almost all ¢t

N

1im inf( T a. g(t)) £ Z a8 %k (t)
n i=1 ln ln i=1 K

and (3.6) is proved.

From (3.4) and (3.6) we deduce

N N
(3.7) 0L o= 1lim o, < lim inf( £ a, g, ) < T a,E.x
n— @ n i=1 in 1n i=1 *7% K
g N
Since i=1ai is a cluster point of the sequence (lilaln)ne]N’

(3.5) implies
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N
a, < lim sup(.Z ain)-s o) 11m|¢nls.

(3.8) i
1 n 1=1 n-—-—->qo ~

I M=

i

From (3.7) and (3.8), it follows that

N
le < Za, <p lim Jo .
A n—ﬂwn| n|§

Since p > 1 is arbitrary, |¢|S < lim lwnls' The
~ n-—>» 0o ~
reverse inequality follows from (F), since §63.

THEOREM 3.14. f K satisfies (P), then T = T is locally

closed.

PROOF. Let (@n) be a T-bounded increasing sequence of positive
elements of T and ¢ its L-limit. By Theorems 3.12 and 1.6,
peT. For every € > O, by Theorems 3.8 and 1.2 there is ¢'cS
such that |@-¢'|T < € . Set Y = inffo,|p'|}. Since 0 < ¥ <

S "plT - I(D_(p'lT ..<_ I(Dlz - |<P‘¢’|E _<_ |¢|$ = |¢|§'

~ ~

< "D' ’s zb€§- S;nce '(P"lbl = Sup{O"D' f‘p' ” _<_ [(P"(D' [’ l‘plT - & L

Define P = inf{w,wn}. Then O < % < $; therefore
¢ne§.

Also 0 < ¥ < ¢, ; therefore l¢n|§ = lwnlz < |¢H|I. Finally
p-9 = sup{0,¥-¢ } < o-¢ . Thus (Y ) is an S-bounded increasing
sequence of positive terms in S with wn peS. Since K

satisfies (P), les = lim |¢nls- Then I¢'T -& <L |w|s =
® B ~ =2

~ n-—
= 1lim |3 < 1lim jeo .
am Bolg < tim loyly

Since € was arbitrary, Corollary 1.5 allows us to conclude

that T is locally closed.
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We devote the remaining of the section to an important
particular case in which K satisfies (P) and, hence, T is
locally closed; namely, when G = ]Rd x H, d finite, H a
compact group, G with the product group structure, K = KO X H
where KO is a compact symmetric convex polytope in ]Rd with
O as an interior point. We have not been able to obtain a
similar result when Ko is an arbitrary (compact symmetric)
convex set in ]Rd.

The importance of this particular case derives from the
fact that every connected locally compact Abelian group is
topologically isomorphic to a group ]Rd x H, d finite, with H
a connected compact Abelian group. We also remark that for any
locally compact Abelian group, the connected component of e
in the group is a subgroup, topologically isomorphic to a group
of this type, and the group can be written as a disjoint union
of translates of this component (cf. [3], Theorem 9.14); because
of these facts, the results we are going to prove may be applied

to any locally compact Abelian group. We omit the details of

the argument.

LEMMA 3.15. Let Ko be a compact convex symmetric polytope

in ]Rd, supported by linear forms fl,...,fn, i.e.

kK, = (x=(x",...,x% e ’RY e RY [-1ce (x)<1,1=1,...,n).

let ¢ = & a.x PR
=€ ez 5 5K,

For any positive integer r, ¢ may be majorized by a

finite, contained in IRd, ag > 0.

linear combination (with non-negative coefficients) of (2r)n +p
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characteristic functions of translates of K., whose coefficients

add up to at most ( T ag)(l + Z—EP-); here p is the least
Ec =

positive integer such that supp ¢ 1is covered, except for

perhaps a null set, by p tfranslates of K

PROOF. Let r be an arbitrary positive integer. Consider now
the functions wl : R—R defined by

(3.9) ¢i(t) = I f{a ffi(é) < t}l; i=1,...,n.
Ec = 3

These step functions wl are nonnegative, left continuous,
nondecreasing, O for large negative t, and constant (= £ ag)
EcZ
for large positive t.

We now define the following numbers

(3.10) - max{tlwi(t) g_% X ag]
J Ec= j=0,...,r-1
t;=00 i=1,...,n.

The definition of t; is consistent with those of t;,

0<<Jj<r-1, by the above mentioned properties of ¢1.

Let us also remark that for every i =1,...,n; j=0,...,r-1,
i, i i, 1 1 . i i
. ) - = X .
(3.11) ) (t3+l) P (tj + 0) < - . ag if tj < tj+1

With the use of these numbers, we define the following, possibly

empty, subsets of ]Rd:

i dieiy i

By; = [xe RO [e1(x) = ¢}

i d,,i _ i i . L

sz+1 = (xe R [tj < £7(x) < tj+1} i=1,...,n; j=0,...,r-1,
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n
Consider now the class B8 = [Bi n...n B 0K
1 n
< kl""’kn S'Zr-l} of (possibly empty) subsets of ]Rd. This

class of sets is disjoint and has at most (2r)n elenments;

and every @:E: is contained in one, and only one, set of 8,
We select an arbitrary point in each one of the at most (2r)n
nonempty sets of B and define a map 7 :E:~9]Rd by letting
T(§) be the chosen point of the set in ® to which £ belongs.
We remark that the set {7(f) [Ec= )} has cardinality at most (2r)n.

We consider now a new function ¢' = X 26X a

Ee o

linear combination of at most (2r)n distinct characteristic

§)+KO’

functions of translates of Ko'

We want to obtain a bound for [p'-¢| on rY. Let =xemY
be given. Since ¢'(x) - o(x) = ¥ a_(X (x) - % (x))
£c T g T(§)+Ko §+KO

we have to determine those & for which ¥ (x) and
T(§)+KO

X§+K (x) differ (and therefore differ by 1).

o)

The only such € are at most those for which, for some i,
fl(g) # £'(r(€)), and £ (g) and £ (x) + 1, or £ (£) and

fl(x) - 1, lie in the same open interval (t;,t;+l) for some j,

0<j<r-1. But if, for fixed i, t§ < flx) +1 < t;+1, or
i i i
tj < f(x)y - 1< tj+1’ then
> g1 o gt £y =ttty - pied
EEE{agiJ< (8) < typ) =07 (ty,y) - 7 (t; +0) <
<z r a, by (3.11).
EecZ

Hence taking into account all possible contributions for
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i=1,...,n, we conclude that

0 < lo' (%) -q:(X)lg—f:—rl Z_ae-

€c =
p
There is a least positive integer p such that supp o © U si + Ko’
i=1
for some sieimd.
Thus
, 2n )
0L <o + (3 ag)ﬂxs+K
€= i=1 o
2n
= ¥ a.x + (&% a_) ¥ g .
EeZl § T(€)+Ko r EeX 5 i=1 %1%,

The last member is the majorant required to prove this Lemma.

COROLLARY 3.16. Assume G =IRd x H, d finite, H a compact

group, G with the product group structure. Let Ko be as in

= . = 5
Lemma 3.13, and K K0 x H Let o gec-agx(§+Ko)XH’ ag > 0,
= C]Rd, finite. For any positive integer r, ¢ may be

majorized by a linear combipation of (2r)n + p characteristic

functions of translates of K, whose coefficients add up to

at most (£ a.)(1 + 2%2); where p 1is the least positive

T

integer such that supp ¢ 1is covered, except for perhaps a

null set, by p translates of K.

PROOF. We remark that for (T,h)eimd x H its action on

Xg = XdeH is (T,h)XK = X(T+KO)XH’ since hH = H. Then, any

translate of K = Ko X H is of the form (T+Ko) X H for some

TeE le. Now




33

(x,h) = % _a (x,h) = X a,x (X) Xy (h) =
@ = YeX (54K )xH o EEK T TH

Eex

= X a.X (x) =:0(x).
§€S g €+KO

By Lemma 3.15, @(x) may be majorized by a suitable linear
combination of characteristic functions of translates of Ko’
and the conclusion follows immediately from the previous
inequalities and remark.

Finally we arrive at the desired result for the particular

case.

THEOREM 13.17. Assume G =2Rd x H, 4 finite, H a compact

group, G with the product group structure. Assume K = K, x H,

K, a compact symmetric polytope in ]Rd with O as an interior

point. Then K satisfies (P) and, consequently, T = IK is

locally closed.

PROOF. Let ¢ecS =S, and p > 1 be given. Let ¢ be any

K
function, necessarily in S, such that O < ¥ < l@[. By

definition of §, there is a finite set T C]Rd and a positive

real valued function (aT);’_€ such that

T
(3.12) 0< ¥ < Tax

re T (THKIXH

(3.13) a. <ol

TeT £

Let p Dbe the least positive integer such that supp ) C

p
C supp o ©€ U siK for some sieG; then p depends on ¢ but
i=1
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not on Y. Choose now r large enough so that 1 + 2%2 < pl/z,
where n is, as in Lemma 3.15, the number of linear forms

that support Ko' We obtain the required N = N(p,¢) by
setting N = (21')n + p. Indeed, by Corollary 3.16, TzTaTX(T+KO)XH’
and hence Y, may be majorized by a linear combination of N
translates of K such that the sum of the coefficients is

< (Ta)+22® ¢plyly by (3.13) and the choice of r.
DueTig the arbitrariness ;f p,o and ¥, it follows that K

satisfies (P). By Theorem 3.14, we have in this case that

T = EK is locally closed.
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4. Associate spaces in Jd

Let EeJ be given. Consider the set F' of all measurable

and valued functions ¥ on G such that

(4.1) II opdu| < k for all eeZ(F), 0 < k depending on ¥ alone.
G

F' 1is clearly a vector space. Since @cZ(F) implies Imlsgn¢62(g),

by property (F), (4.1) implies and hence is equivalent to the

(apparently stronger) condition

(4.2) J o [dp < k  for every ¢@ecL(F).
G

We may define

4.3) Ply, = supf IJGWduH«peZ(,E)} = sup{jG lob |ap loeZ (B)} < oo.

] IF' is obvipusly a seminorm in F'. To prove that it is a
nor;, let YcF' and be # 0. By the argument of Lemma 2.4,
there is a nonnull measurable set E and o0 > O such that

oxg < [ |. By the same Lemma 2.4 there is a set F < G,
measurable, bounded and of positive measure such that XFEE'

By Lemma 2.3 there is xe¢G such that u(E N xF) > O. Since F

satisfies (T) xXFeE and lxXF'F = lXFIF' Then

olp boxgly > fG<xxF) ¥ ldp > UJG(xxF)xEdu > OW(ENxF) > O,

Thus F' is a normed space with norm | lF" It is called

the associjiate space of F.
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By the above definition, EF' is isometrically isomorphic
to a linear manifold of the dual E* (continuous linear
functionals) of F (it will follow from Theorems 4.5 and 4.7

that it is a closed subspace), under the map from F' into E&,

b— 0", where ¢ (o) = J opdy.
G

LEMMA 4.1. If FeJ is a Banach space and ¥ is a measurable

function such that I oydy exists and is finite for all ocF,
G

then yYeF'.
PROOF. [7] Lemma 4.7. Cf. also [4] p. 8.

LEMMA 4.2, f Ee3, then for every bounded set E we have

1
XE€E .
PROOF. Since F satisfies (N), it is obvious by definition of F'.

LEMMA 4.3. If F,GeT and F < G, then G' < F'. If F,G are

~

norm-equivalent so are F',G'.
—_— ~

PROOF. The first assertion is obvious from the definitions.

The second follows from the first and from (aF)' = a"lF'

for every a > O.
THEOREM 4.4. For every Fed, F' = (lc F)'.
PROOF. As in [7] Theorem 4.15 with obvious changes in notation.

THEOREM 4.5. For any FeJ, E'e3.
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PROOF. First we prove that F!' satisfies (T). Let 7Te¢G,

(13 8 YeF' be given. Then

Jle(t)(rw)(t)ldu(t) = fle(t)w(T'lt)!du(t) = fle(rt)w<t)!du<t) =
= JGIT_lw(t)w(t)ldu(t) < leg,lr’lmlE = Py Lol

This implies TycF' and |T¢|F, S-lw'F" as we see by taking
supremum over ¢eZ(E). Thus F' satisfies (T).
We prove now that F! satisfies (N). We begin by showing

that there is «a such that for every ¢€E', Y is integrable

K
on K and QMMuS%MQN

By Lemma 2.4, there is a measurable set E < K such that
p{E) > O and XEeE. For every seG, steE and then
jK(SXE) !lb ld“ L JG(SXE) N) ldﬂ < lSXElgl‘bIE! = lXEIE'¢|Er J

The set K2 is compact, u(Kz) < o, hence, by Fubini's Theorem,

o > s bxglploly, > [ awen[ o) 0 loce) fawce) =
~ K

= [ apm)] xglroy oo lape) = [ oo lauce) ( Xg(Tt)dp(r)) =...
K2 K K K2

Since xEt"I vanishes outside K° for all teK ((XEt—l)(r)=
= xE(Tt) # 0 1iff 7TtcE < K, and thus only if TGEt_l o K2, tek),

we may continue our chain of equalities:

= IK,¢(t)ldp(t)(jGXE(Tt)du(T)) = ] e la e hap) | spmaucn =
K G
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= u(E)jKAr(t'l) b (t) ldp(t) > éxu(mJKIw(t) |du(t)

where 6K = min{Ar(tfl)[teK} > O, for the right-hand modular

function Ar(t) is continuous and positive and K 1is compact.
-1 -1
Therefore we may choosi Qp = 6K K(E) u(Kz)lelg. Now for
any compact C, C < U TiK, for some n and some TieG,
i=1
i=1,...,n. Then

I ™Mps
=t

n
-1
ICM lau < ig_le_Kwdu = JKITi b law < noy ol

i
since F' satisfies (T). Thus F! satisfies (N).
From (4.2) and (4.3) it is obvious that F' satisfies (F).

From Lemma 4.2 it is clear that F' # {o}.

THEOREM 4.6. For any Fed, F' is locally closed.
PROOF. [7] Theorem 4.17 (cf. [5] p. 113).

THEOREM 4.7. f Fcd is locally closed, F" = F.

—_— ~

PROOF. [7] Theorem 4.18 and Remark. It follows from a theorem
of Luxemburg [4] and Luxemburg and Zaanen [5] p. 113.
COROLLARY 4.8. If geﬁ, then E" = lc F.

PROOF. Theorems 4.4 and 4.7.

THEOREM 4.9. A quasi locally closed space FeU contains the

characteristic function of every bounded measurable set E < G.
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PROOF. It is sufficient to assume F locally closed. Then

by Theorems 4.5 and 4.7 and Lemma 4.2, erE” = F.

COROLLARY 4.10. f Fed is quasi locally closed, then F

—

is weaker than T.

PROOF. Theorems 4.7 and 3.

Combining Theorem 3.12 and Corollary 4.10, we conclude that
T is, up to norm-equivalence, the strongest quasi locally closed
space in J.

We prove now:

THEOREM 4.11. T' =M and M' = lc T. f T is locally closed,

~ —

then M' = T; this is the case, in particular, if X satisfies

(P), and, more in particular, if G =]Rd x H, d finite, H a

compact group, G with the product group structure, K = Ko X H,

where K 1is a compact symmetric convex polytope in ]Bd with

O as an interior point.

PROOF. Let yeM be given. For every ¢eT, we have o] <

@ 00
< ?aiXTiK for some seqguences (ai), (Ti) with ?ai < ©. Using
(T) for M, we have
[ Jovlan < T af (roxplvlas < Ea] 77 lslan <
G Tis g 1K T i=1 g o1 -

QO -1 QO
< gailri vly < <§ai>|wlM-

Taking infimum of the last member over all suitable

sequences, we obtain I lop [dp < 'wllelM, so that PeT' and
G ~ e
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ld"'zr S IlbIM‘ Thus M _<_ E' *
Conversely let cT'. For every seG

J o law = j'G(xsK) [0 law < Ixg el = Tl

5]

whence weM and, taking supremum of the first member over all s,
we have lw'M < l¢lT" which implies T' { M. Thus T' = M.

From Corollary 4.8, M' = g" =1lc T. 1In case T is locally

~

I

closed we indeed have M' = lc E T. The last statement

~

of the theorem follows from Theorems 3.14 and 3.17.
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