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ORTHOGONALITY AND NONLINEAR FUNCTIONALS

ON BANACH SPACES

by

K. Sundaresan

If M is a Banach space of real valued measurable

functions on a measure space and if x, y e M then x

is said to be orthogonal to y in the lattice theoretic

sense (x x y) if the set {t|x(t)y(t) ^ 0} is of mea-

sure zero. A real valued function F on M is said to

be L-additive if it is continuous and F(x+y) = F(x)+F(y)

whenever x 1 y. Integral representations of L-additive

functionals has been the subject of extensive study in

recent years. For these and related results we refer to

Drewnowskii and Orlicz [1] and Sundaresan [2] and the

bibliography cited therein. The concept of orthogonality

in the definition of L-additive functionals on M is very
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natural in these spaces. However there are several other

concepts of orthogonality which have been studied in detail

in arbitrary Banach spaces, see for example James [3,4].

These concepts are generalizations of orthogonality in Eu-

cledian spaces and are of intrinsic geometric interest.

One such concept of orthogonality is as follows. If B

is a real Banach space and x, y € B then x is said to

be orthogonal to y, in short x x y, if ||x+Ayj| ̂> ||x||

for all real numbers A. The purpose of the present note

is to characterize continuous real valued functions F on

B such that F(x+y) = F(x) + F(y) whenever x 1 y. For

a motivation of the study of such functionals it is enough

to note that for x,y e L (fj,) , x \ y implies x x y

while in general the implication cannot be reversed.

We discuss the results for the two cases when (1) the

domain of F is a Hilbert space and (2) the domain of F

is a Banach space of dimension at least 3, separately.

We generalize these results to the case when F is an addi-

tive function on B taking values in a locally convex space.

In the rest of the paper B stands for an arbitrary real

Banach space. Before proceeding to the main results we

summarize useful known results concerning the concept of

orthogonality (x) described above. (1) Orthogonality

is homogenous i.e., x J- y => Ax x jjy for all real



numbers A and \i. (2) Orthogonality is not symmetric

in general i.e. x x y does not necessarily imply yix.

However it is known, Day [5], that if dimension B j> 3 ,

then orthogonality is symmetric if and only if B is iso-

metric to a Hilbert space. (3) If x ^ 0 / y then x xy

if and only if there exists a nonzero continuous linear

functional f such that f (x) = jjfj] ||x|| and f (y) = 0.

(4) If L is a subspace of B and x e B then let us

say that x x L if x x y for all y e L. If B is a

finite dimensional or more generally if B is a reflexive

Banach space and L is a proper closed subspace then there

exists a vector x ^ 0 such that x x L. For a proof of

this assertion we refer to James [4].

DEFINITION. If B is a real Banach space then a

function F on B into a locally convex space E is said

to be additive if F(x+y) = F(x) + F(y) whenever x I y

and F is a continuous function.

THEOREM 1. If H is a Hilbert space of dimension

>̂ 2, then F is an additive functional on H if and only

if there is a constant c and a vector y e H such that

F(X) = c ||x1j2 + (y,x)



where ( • , • ) denotes the inner product in H .

Proof. Since the verification that any function F

as in the theorem is an additive functional is straight

forward we supply the proof for the "only if" part.

Let . F be an additive functional on H. Let F,,F,

be respectively the symmetric and anti-symmetric parts of

F i.e., F,,F? are the functions on H defined by

F1(x) = -| [F(x) + F(-x)] and F2 (x) = j [F(x) - F(-x)J.

It is at once verified that F,,F2 are additive functionals

on H and F,(x) = F,(-x) and F2 (x) = -F2(-x). Let

[ea] . be a basis for H. For each oceA let fQ be

the continuous function on R -» R defined by f (A) = F, (Ae )

From the additivity and continuity of F it follows that

if x = S x e a is a vector in H then F(x) = E f (x )
cceA a aeA a

We proceed to show that f is independent of a and
2

f (A) = A f (1) for all real numbers A. Let a,|8 e A,

a ^ £. Let x = A(ea + e3) and y = A(ea - e*3) where A

is an arbitrary real number. It is verified that x j. y .

Thus Fx(x+y) = Fx(x) + F± (y) and F^x-y) = F^x) +F 1(-y).

Noting that fQ(O) = 0 = F^O) and fQ(A) = fQ(-^) it is



seen from the preceding equations that f (2A) = 2[f (A)+f0(A)]

= f „(2A). Thus f = f_ . Let us denote the functions f
p o. p u

by f. From the preceding equations it follows that f(2A)

= 4f(A) for all real numbers A. Consider now for arbi-

trary real numbers A vectors x,y defined by x = Ae + A e

and y = . Aea - e where a,)3 e A, a ̂  £. Since x i y

F-^x+y) = F1(x) + P1(y) and F-^x-y) = F1 (x) + F-^-y).

Once again using f(A) = f(-A), f(2A) = 4 f(A) and f(0) = 0

2 2
it follows from the preceding equations f(A +1) + f(A - 1)

2
= 2[fCK ) + f(l)]. By straightforward induction it is veri-

2
fied that f(m) = m f(1) for all integers m. Further

since f(2A) = 4 f (7\) it is verified that for integers m,

n that ff-2-) = (-m-)2 f(l). Since f is a continuous
«n o

o
function it follows that f(A) = A f(l) for all real numbers

A. Thus if f(1) = c and x = L x e is a vector in H

2 ?
then F, (x) = c E x = c j|x|| . Next consider the addi-

•*• a e A a

tive functional F- on H. Let for real numbers 1\, F^ (Ae )
= g (A). Consider now for arbitrary non negative real numbers

A , n vectors x^y defined by x = Aea + ae , y = jxeQ - ae

2
where a = Â i . It is verified that x x y. Thus

F2 (x+y) = F2 (x) + P2 (y) . Since ga(*) = -gQ(-*) for all



a e A and for real numbers 7\, it follows from the pre-

ceding equation that gQ(A + p) = 9a(^) + 9 (ju) • Since

g (̂ ) = -g (-A) it follows that g : R -» R is a linear

function for all cteA. Let x = £ x e be a vector
aeA a

in H. Since F-(x) = E g (x ) it is verified that
z aeA a a

F~ is a linear functional. Since F_ is also continuous

it follows that there is a unique vector y e H such that

F2 (x) = (y,x) for all X€H. Thus F (x) = F. (x) + F2 (x)

= c ||x|] + (y,x) where c and y are uniquely determined

by F. This completes the proof of the theorem.

Before proceeding to the case of Banach spaces B(dimB^>3)

which are not isometric with a Hilbert space let us note a

couple of useful lemmas.

LEMMA 1. Let B be a two dimensional Banach space

such that orthogonality is not symmetric in B. Then a

functional F on B is additive if and only if F is

linear.

Proof. Suppose x,y e B such that x x y but y is

not j.x . From (3) in the introductory remarks it follows

we can choose a real number a / 0 such that y x ay + x.

B BSince for any two real numbers A, B, — x + (A+B)y =Ay + -̂  (ay+x)a a



we have

F (f x) + F [ (A + B) y] = F (Ay) + F [f (ay + x) ]
a a.

= F(Ay) + F(By) + F (- X)

Thus (*)' F[(A + B)y] = F(Ay) + F (By) .

Since y is not orthogonal to x there is a real number

b / 0 such that b x + y j. x. Suppose x is not ortho-

gonal to b x + y. Then it follows from the preceding ar-

gument that (**) F[(A + B)x] = F(Ax) + F (Bx) . If x j. bx + y,

since x x y as well,it follows from the identity

(A + B) x + £ y = Bx + ^ (bx + y) that F [ (A + B) x] + F (̂  y)

= F(Bx) + F[~ (bx + y)] = F (Bx) + F (Ax) + F(j|y) that

F[(A + B)x] = F(Ax) + F(Bx). Thus (**) is satisfied again.

It follows from (*) and (**) and continuity of F that

F (?\x + juy) = A F (x) + (ji F (y) for all real numbers A and JU

Hence F is linear. Since a linear functional on B is

additive the proof of the lemma is complete.

LEMMA 2. Suppose F is an additive functional on a

real Banach space B such that F is linear on a subspace

L of dimension at least 2. If Z e B such that Z x L

then F is linear on the span of Z and L.
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Proof. We can assume that z / L. Let u be a non-

zero vector in L. Choose a such that Z + au is not

orthogonal to u. Since Z + au is orthogonal to a maxi-

mal closed subspace of B that does not contain u, there

is a real number b and a vector v e L such that Z + au x Z

+ bu + v. Since u x cu + v for some c we can assume

that v is so chosen that u x v. Thus

F[A(Z + au) + B ( Z + b u + v ) ] = F[A(Z + au ) ] + F [ B ( Z + b u + v ) ]

= F(AZ) + F(BZ) + F(aAu) + F(bBu + Bv)

= F(AZ) + F(BZ) + F [ ( a A + b B ) u + BvJ .

A l s o ,

F[A(Z + au) + B ( Z + b u + v ) ] = F[(A + B)Z+ (aA + bB)u + Bv]

= F[(A + B)Z] + F [ ( a A + b B ) u + Bv]

so that F[(A+B)Z] = F(AZ) + F(BZ) and F is linear on

the span of Z and L.

THEOREM 2. Let B be a real Banach space of dimension

at least 3. If B is not isometric to a Hilbert space and

if F is an additive functional on B then F is a continu-

ous linear functional.



Proof. Since dim B ̂ > 3, and B is not isometric

with a Hilbert space there are nonzero vectors x,y such

that x x y but y is not orthogonal to x. Let L be

the two dimensional subspace spanned by x and y. From

Lemma 1 it is inferred that F is linear on L. Now

suppose Z / L. Then there is a vector £ ̂  0, in the

span of Z and L such that | x L. It follows from

Lemma 2, F is linear on the span of Z and L. Now if

Z e B, and Z' is not in the span of Z and L then

repeating the above argument it is verified that F is

linear on the span of Z, Z1 and L. Thus for arbitrary

vectors Z, Z1 , F is linear on the span of Z, Z1. Hence,

F is linear. Since by hypothesis F is continuous, F

is a continuous linear functional. This completes the

proof of Theorem 2.

THEOREM 3. Let F be a continuous function on a

Banach space B into a locally convex space E. If B

is a Hilbert space of dimension at least 2 then F is

additive if and only if there exists a vector £ e E and

a continuous linear operator T : B -» E such that F (x)

= ||x|| § + T(x) for all x e E. Further if dimension

B 2. 3 an(3 B is not isometric with a Hilbert space then

F is a continuous linear operator on B to E.

HUNT LIBRARY
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Proof. Let B be a Hilbert space. Let E* be the

topological dual of E. Let F be a additive function

on B -• E. Let F,, F~ be the symmetric and antisymmetric

parts of F as defined in the proof of Theorem 1. Now

if f e E* then fo F^, and f'F, are symmetric and anti-

symmetric additive functionals on B. Thus there is a

constant c~ and a continuous linear functional L~ on

B such that f o F, (x) = c f |lx|| and f oF2(x) = <tf(x).

It is verified that the mapping f -• cf is a a^-continuous

linear functional on E*. Hence there exists a fixed vector

§ e E such that f(£) = cf for all f e E*. Since E*

separates points in E it follows that F, (x) = ||x|l £ .

Again since for each f e E*, f • F2 is a linear functional

on B it follows that F~ is a linear operator on B -* E.

Further since F is continuous F2 is a continuous linear

operator on B -» E. Considering symmetric and anti-symmetric

parts of F it is verified that § and T are uniquely de-

termined by F. Thus F (x) = |lxj| £ + T(x) as stated vin the

theorem. Since any function F with the above representation

is an additive function the proof of the part of the theorem

dealing with the case when B is a Hilbert space is complete.

The case when B is not a Hilbert space is similarly dealt

and the proof is omitted.
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In conclusion it might be mentioned that our investi-

gation of additive functionals on two dimensional normed

linear space is not complete. The results do not provide

a characterization of additive functionals on two dimen-

sional normed linear spaces in which orthogonality is

symmetric but which is not isometric with a Hilbert space.

For a general method of constructing such two dimensional

norms, we refer to Day [5]. However we conclude this note

stating the following conjecture. If B is a two dimen-

sional normed linear space not isometric with the Eucledian

space then every additive functional on B is linear.
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