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ARITHMETICAL REDUCIBILITIES, I

by

Alan L. Selman

Abstract

A 3D - reductibility relation is defined to be a transitive

and reflexive relation & on sets of natural numbers, so that

for every two sets A and B, A&B implies AeZ^. Two hier-

archies of such reducibilities are studied, & , n < u), and
n

S , n < a). The reducibilities of each hierarchy have natural

properties not possessed by the other. Each & generalizes

relative recursion; each S has the property that the class
of £ sets is the 0 degree for the S -degree structure,

n ~ ^ n *

Various theorems concerning the structure of these reducibili-

ties are proved.
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if there is some n so that A€__
n n

Arithmetical Reducibilities, I

by

Alan L. Selman

Introduction, Let two sets of natural numbers A, and B, be

given. As is well known, A is arithmetical in B if and only

S . The relation "£ in" de-
n n

fined on the set of all subsets of u> is not transitive. On

the other hand, the nice properties of relative recursion (Tur-

ing reducibility), < , are reflexivity and transitivity. Thus

r fl r~ is an equivalence relation. We are interested in this

paper in easily definable subrelations of "£ in" which share

these properties. Thus we are led to the following definition.

Definition 0.1. If ft and I are binary relations defined on

the set of all. subsets of u), then ft is an I-reducibility re-

lation , if ft is reflexive, ft is transitive, and for all sets

A and B, if AftB, then AlB.

Let G denote the relation "arithmetical in", defined by

AGB if and only if A is arithmetical in B. G is itself re-

flexive and transitive. By an arithmetical reducibility we mean

an G-reducibility relation.
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If X is the relation "E in" , then the term "E -reduci-
n n

bility" will be used rather than the more cumbersome "! E in1 -

reducibility11. Similarly, the terms 1f II -reducibility" and

11A -reducibility" will be used though the relations involved

are "II in" and "A in",
n n

Let ft be a E -reducibility relation. We single out three
n

desirable properties which we would like ft to possess: ft should

generalize relative recursion, the class of S sets should be

the 0 degree for the degree structure of ft, and, finally, ft

should be as "large" in "E in" as possible, i.e., ft should be

a maximal transitive subrelation of "E in". Actually, since
n

every set is recursive in its complement no transitive subrelation

of "E in" can both generalize relative recursion and have the
class of E sets as its 0 degree (Theorem 1.4, below). We

n ~

define two sequences of relations, ft , n < u), and S , n < <a,
n n

so that the reducibilities of each sequence have natural proper-

ties not possessed by the other.

Definition 0 .2 . Aft B ^VXlXeT^-* XelP], n ^ 1.

A S B<~* VxtBeE*-* A€EX], n > 1.
n l n n * ^

Both ft and S are 23 -reducibility relations. We will
n n n

see that ft generalizes relative recursion, and that the class

of S sets is the 0 degree for the S -degree structure,n ~ n
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Various theorems concerning the structure of these reducibilities

are proved. This paper consists of two chapters. Chapter 1 of this

paper, in particular, contains proofs of the following theorems:

(1) ft eft ft ^ ft •v ' n n+1' n r n+1

(2) ft is a maximal transitive subrelation of

"£ in"; and
n

(3) the ft -ordering is an upper semilattice.

The sequence of relations S is studied in Chapter 2.

This chapter contains proofs of the following theorems:

(2) § is a maximal transitive subrelation of

11 S in11 ; and

(3) the S ordering is an upper semilattice.

The question of maximality for n > 1 is open.

We conclude this introductory section now with some addition-

al notation. If ft is any reflexive and transitive relation,

we will often write "A <^ B" for "AftB". Also, we will use the

notation " A ^ B" for "A recursive in B", "A < B" for "A is

many-one reducible to B" , and "A £ B" for "A is one-one reduc-

ible to B". For any set A, A will denote the complement of

A. (The universe of discourse is u) throughout.) References

[9] and [10] are cited as standard references to the Kleene-Post

degrees of unsolvability. Kleene-Post degrees are denoted by

a, b, c, etc.



Chapter 1. The Sequence of Relations »
f*s XX

1. Prerequisites.

The deeper results in this chapter about

the sequence ft , n < a>, are based on the observation (Theor-

em 1.8) that Aft B <-» A^ < B' . This observation enables

us to apply theorems concerning the degrees of unsolvability to

obtain our results. In particular, the following extensions of

well known theorems concerning the existence of sets of natural

numbers are used.

Theorem 1.1. Va3b3c[a(n) = b ( n ) = c(n) = b V c & b/E~ & c/£~ ].

Theorem 1.2. VaVb3c[c(n) = c v a(n) = b V a ( n ) ] .
— — — — — — — r*J />j rsj f*s r^t r»a < « * > / N ^

T h e o r e m 1 . 3 . 3 A 3 B [ A ^ S B & B / S A & d ( A ) ( n ) = 0 ( n ) = d ( B ) ( n ) ] -
n n ^ ~ ~

Theorem 1.1 for the case n = 1 without the additional prop
a b

erties b/%7 a^d s/%7 is due to Spector [17]. The technique
a ~ b

used to prove b^£~ and a£T~ is due to Shoenfield [16].

Theorem 1.2 for the case n = 1 is a relativized version of

Friedberg1 s characterization of the complete degrees [1]. Corres-

ponding to the original Kleene-Post construction [6] of £ -incom-

parable sets in & , Theorem 1.3 establishes the existence of

£ - incomparable sets in A ,. Peter Hinman [3] has proved,

corresponding to the Friedberg-Muchnik theorem ([5], and [11]),

that there exist A .-incomparable sets in S n.

n+1 * n+1
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The proofs of Theorems 1.1, 1.2, and 1.3 are not presented

here. They are proved by forcing arguments

which mimic the original proofs for the case n = 1. The in-

terested reader may consult either [12] or [14] for a description

of the forcing method and the proofs of these theorems.

Corollary 1.1. VaVb[a(n) < b -* 3c[c(n) = b & c|a(n)]].

The proof is an immediate consequence of Theorem 1.2.

. . v _ _ r (n+1) (n) w (n+1) , w (n+1)
Corollary 1.2. VaVb3c[c = cv V av = b V ar ].

Proof. By Theorem 1.2, c ( n + 1 ) £ c V a ( n + 1 ) ^ c ( n ) V a ( n + 1 )

= (c v a
( n + 1 )) v c ( n ) < c ( n + 1 ).

2. Basic Properties.

Theorem 1.4. No relation & satisfies both the property

(PI) VA,B[A £ r B -

and the property

(P2) VA,B[BeS & AftB-^ AeS ]
n n

Proof. Suppose & satisfies both (Pi) and (P2) . Choose A€ll
n

so that A/S . A £ A. Thus A&A. AeS . Therefore, by (P2) ,

Contradiction,
n
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Theorem 1.5. If ft is a S -reducifcility relation, and if ft
. n

satisfies property (Pi), then ft is a A -reducibility relation.

Proof. Suppose AftB. Then AeJf. A < A, therefore AftB.

Thus AeSP. Hence A€AB. Therefore, ft is a A -reducibility
n n n

relation.

Theorem 1.6. For all n > 1, ft is a £ -reducibility relation,
"̂ n n

and ft satisfies property (PI) of Theorem 0.1.
n

The proof of Theorem 1.6 is immediate.

Corollary 1.3. For all n > 1, ft is a A -reducibility relation.
n n

Corollary 1.4. Aft. Bf) A ^ B.

Proof. A <£ B -> A ft-, B, because ft satisfies property (Pi)

By Corollary 1.3, Aft. B —» A < B.

Corollary 1.5. <̂  and <~ are the only 3D -reducibility rela-

tions which satisfy property (Pi).

Theorem 1.7. For all n ^ 1, A f t B

Proof. X G E V - * X £ ' A ( n ) . Assume A ( n ) £. B ( n ) . Then,
n 1 1

XGZ^-^ X ^ ^

E*. Therefore, A ( n )eB^. Thus, A ( n ) ^ B ( n )

A^n)^ X ^ B*n)-> XelP. Conversely, suppose A f t B
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Corollary 1.6. A' £ B' <-> A <^ B.

Corollary 1.6 appears in [9, p.255].

Theorem 1.8. For all n ^ 0, A n + 1

Proof. By Theorem 1.7, A ^n+1 B<-»A(n ^ B ( n

By Corollary 1.6, A ( n + 1 ) ^ B(n+1)<-> A ( n ) ^ B ( n )

Theorem 1.9. For all n ^ 0, A ft - B «-» A e A ,.

Proof, By Post's theorem [8], A*n) £ r B^
n) <-> A^n) e A

Then use Theorem 1.8.

Theorem 1.10. For all n > 1, A & B «-» Vx [X€AA—> X€AB].
n n n

Proof. Suppose A SI B. Then, X€lIA -» XelP -> X€zP-^ X€lIB.
^^ n J n n n n

Thus, X€AA-> X€AB.n n

Conversely, suppose Vx [XeAA-* XeAB]. A ^ ^ ' G A * .

n n n
Therefore, A €A • Then use Theorem 1.9.

n

Theorem 1.11. (The h i e r a r c h y theorem) For every n ]> 1,

ft 5 ft m f a c t Vn3A3B[A€£ & BeEn &Aft , B & - ^ A f t Bl
n T* n+1 1 1 n+1 n

Proof. For a l l A and B, A < B -> A! < B! . Thus ft c ft
*r ^r n -

follows from Theorem 1.8.

Consider the following theorem proved by Friedberg [10, p.85]:
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VaVbfa < b and b r . e . a ^ 3 c , d ( c V d = b & a' = c' = d»

& c r . e . a & d r . e . a & a £ c & a £ d ) ] .
r>j /N> rs* r+j r*0 fj r*s r»J

Let b = 0 ( n + 1 ) and a = 0 ( n ) . Then 3 c , d [ c | d & 0 ( n + 1 ) = c'

= d' & 0 ( n ) < c & 0 ( n ) < d & c r . e . 0 ( n ) & d r . e . 0 ( n ) ] . I f

n = 0 , choose A and B so t h a t d(A) = c and d(B) = d.
r*j r-J n>s r+J

Then AeS & BeE & A' = B' & A|B. Thus A &2 B, but not

A ft B, by Theorem 1.8 and Corollary 1.4. Suppose n ;> 1.

Shoenfield and Sacks (see [10, p.105] and [16]) have proved

that

Va,b[(a' < b < a" & b r.e. a) *-» 3h [a < h < a' & h r.e. a & h» = b] ]

n successive applications of this theorem to the degrees c and

d yield r.e. degrees x and y so that c = x and d = y

Choose A and B so that d(A) = x and d(B) = y. Then AeS
r+* <N/ n*s "As J_

& BeS1 & A
( n + 1 ) = B ( n + 1 ), but A(n)|B(n). Thus, by Theorem 1.8,

A ft o B, but not Aft _ B. This proves Theorem 1.11 for alln+2 n+1

n ^ 1.

3. Maximality.

In this section it is shown that each ft is a maximal
n

£ -reducibility relation. That is, for each n and for each

relation S, if ft is a proper subrelation of S, and if §
is included in the relation "E in", then § is not transitive.

n
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Observe that, by Corollary 1.5, this result is immediate for

the case n = 1.

Lemma 1.1. Vx[X(n) <^ A ( n ) -> X <^ B] _> [A(n) ^ B].

Proof. Let a = d(A) . By Theorem 1 . 1 , 3c ,d[c V d = â

d(n) __ c ( n ) ^ choose sets C and D so that d(C) = c and

d(D) = d. C ( n ) ^ A ( n ) and D(n) <^ A ( n ) . Thus C <^ B and

D < B. Therefore c V d < b. Hence, since c V d = a^

Notice that the hypothesis of Lemma 1.1 can be rewritten

Vx[X ft , A -» X < A], and that from the conclusion we can infer

VX[XGA —» X < B]. This is interesting because ft is not

equal to the relation "A in".

Also, VX[X' £ r A -> X <^ B] -^ A £ B is false. In fact,

choose A so that d(A) < 01 . Then, for all sets B,

Vx[Xf < A—> X < B]. Choose B so that A ^ B.

Theorem 1.12. For each n >̂ 1, ft is a maximal A -reduci-

bility relation.

Proof. Suppose S is a binary relation so that ft ^ S and so

B
that A^B —» AGA ,, for all A and B. Then, there exist sets A

n+±

and B so that -| A ft B, but ASB. By Lemma 1.1 and Theorem 1.8,

3XfX(n) ^ A ( n ) & X £ r B ( X 1 )]. That is, 3x [X R n + 1 A & ^

Since ftn+1 c g, ax[X§A & X ^ A ^ + 1 ] . If S is transitive, then
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X&A and A&B yields X§B. But this is impossible, since

X€A n• Thus S is not transitive.
n+1

Theorem 1.13. For each n ]> 1, ft - is a maximal S -reduci-

bility relation.

Proof. If ft c S, then g satisfies property (Pi) of
n+1

Theorem 1.4. The proof follows from Theorem 1.5 and Theorem 1.12.

4. Set Inclusions.

The purpose of this section is to describe completely the

set inclusion relationships among the relations ft , "E in",

11 n in", "S , in", and "II . in",
n n+1 n+1

Our result is that the following figure is correct.

It is already known by Theorem 1.6 and Corollary 1.3, that,

for all n ]> 1, the relation "A 1 in" is included in the relation

ft , and ft is included in the relation "A in". Of course,

if n ^ 1, then "A in" is not included in ft n. (Look at <B! ,B>

n n+l
for any set B).

Theorem 1.14. If ft is an G-reducibility relation which includes

the relation "E in", then ft = G.

Proof. Suppose AGB. Then, for some n, AeTr . Thus, Ae^T

/%.!) R ( )

Now, fpr all k, Bv ' e Z^ . Since ft includes "S in",

AftB(nil), B(nil)ftB(n"2) ,...,B(2)RB' , B'ftB. Thus AftB. Hence

G = R.



11-

Case n

in

Case n > 1

n
in

n+1

Figure R set inclusion relationships
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Corollary 1.7. For all n ^ 1, 3AaB[Aej£ & -i A » n + 1 B).

Theorem 1.15. For all n ± 1, SASBfAeX? & A R n + 1 B & J

Proof. By Corollary 1.2, with a = 0, and b = 0^ , there

exists c so that c ( n + 1 ) = c ( n ) V o ( n + 1 ) = O ( 2 n + 2 ). Choose A

and B so that d(A) = 0 ( n + 1 ) , AeS , and d(B) = c. Then,
** ~ n+1 *** ^

, d(A)|d(B)(n), and A ( n + 1 ) = B ( n + 1 ). That is, Aez£+1,

, and A ft B, for all n ;> 0.

C o r o l l a r y 1 . 8 . For a l l n ^ l , 3A3B[AeIIB & A fc B & A / A ^ ] .1. «— j ^ n+i n

Theorem 1.16. For all n ^ 1, 3A3B [A R n + 1 B & Aĵ cP & A/

Proof. Choose A recursive. By Theorem 1.1, there exists b
, . , . d(A)

so that d(A)l J = hK & b^S~ . Then, choose B so that

d(B) = b-

5. R -degrees,
n

As has been mentioned in the introduction, if ft is any

reflexive and transitive relation, then R (1 ft is an equivalence

relation. We call the equivalence classes of such a relation the

ft-degrees, ft-degrees shall be denoted with boldface lower case

letters subscripted by ft, to distinguish them from Kleene-Post

degrees. If A is any set, then dp(A) i s t h e ft-degree to which

A belongs. If a. and b^ are any two ft-degrees, then we define

£a <L tfo i f a n d only if A <^ B, where d^(A) = a^ and ^(B) = b^,
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This definition is well-defined. Thus, the set of all ft-degrees

is always a partially ordered set.

This section is devoted to a brief development of the struc-

ture of the ft -degrees. Observe that, by Theorem 1.8,

n

dft (A) £ d^ (B) if and only if d(A) ( n ) £ d(B) ( n ).
~ n+1 n+1 ~

Theorem 1.17. The ft -degree ordering is an upper semilattice.
n

Proof. If n = 1, there is nothing to prove (since A O, B
1

Let ao and bo be any two ft -degrees. Choose sets A
*M /M* n+i
n+1 n+1

and B so that d^ (A) = a^ and d^ (B) = b^ . Then, by
n+1 n+1 n+1 n+1

Theorem 1.2, 3c[c(n) = c V a(n) = b ( n ) V a ( n ) ] , where d(A) = a

and d(B) = b. Choose C so that d(C) = c, and let co
n+1

do (C). Since c(n) = a(n) V b ( n ). &a (C) is a least upper
n+1 n+1

bound of the ft .-degrees a. and b on+1 ~w r^rc
n+1 n+1

Theorem 1.18. For each ft .-degree ao there is a greater one.
n + 1 s*jrt

n+1
In fact, define a' to be dQ (A1 ), where do (A) = ao

n+1 n+1 n+1 n+1
Then a' is well-defined and ao < a'

n+1 n+1 n+1

Proof. Suppose d^ (A) = d^ (B). Then, d(A) ( n ) = d(B)
n+1 n+1

(A') = {c|d(C)(n) = d(A') ( n ) = d(A) ( n + 1 )

n+1 ~ . ~ ~
}.

HUKT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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d (BM ( n ) - d(B) ( n + 1 ) = d (A) ( n + 1 ) . Thus d^ (AM = d^ (BM
~ ~ ~ n+1 n+1

Therefore a* is well-defined. d(A) (n) < d(A! ) (n) . There-

f o r e *ft < 2ft •
n+1 n+1

The upper semilattice of ft .-degrees has a least element.
^^ n+1

In fact, define 0^ = do (A), where d(A) = 0.
n+1 n+1

Kleene and Post have proved [6] that there exist degrees b

and c such that

(i) Vm[0 ( m )£b and 0 ( m ) £ c ] ; and

(ii) Vd[[d < b & d < c] -> 3m[d ̂ 0 ( m ) ]].

A corollary of this theorem is that the ordering of the Kleene-Post

degrees is not a lattice. We will apply this theorem to show that

the ordering of the ft -degrees is not a lattice.

Theorem 1.19. The ft .-degree ordering is not a lattice.
n+1

Proof. Consider the degrees b and c which are given by the

theorem quoted in the previous paragraph. By Corollary 1.1,

there exist degrees a and d so that a = b and d = c.
r*s /N/ rsj f>j rs* r+J

By (i) , we have,

( i i i ) Vm[0(m+n) £ a ( n ) & 0 ( m + n ) 1 d ( n ) ] .
r*s rsj rsj />-»

By ( i i ) , we have

(iv) Ve t [e ( n ) ^ a ( n ) & e ( n ) £ d ( n ) ] - * 3m [e ( n ) ^
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Let a^ and do be the & ,. degrees of the members
rJtfl rjft „ n+i
n+1 n+1

of a and d, respectively. Then,

(iiit) for every m, 0< m ) £ ^ and o£ m ) £ d^ ; a n d
n+1 n+1 n+1 n+1

( i V ) Ve R [ [ ^ i ^ & ^ <L<^ ] - > a m [ e ^ ^
n+1 n+1 n+1 n+1 n+1 n+1

Thus, ao and do can have no greater lower bound*
n+1 n+1

By Theorem 1.1, there exist sets A and B so that

A ( n + 1 ) .

Theorem

. B

1 .

(n+D

2 0 .

= A ( n )

aa at
n+1

V B ( n ) = 0

to *2a
n+1 n+1

^ ^ ^ ^
n+1 n+1 n+1 n+1

Extend the definition of & to number theoretic functions and
n

predicates in the usual way (see [6]). Then we may make the fol-

lowing definition.

Definition 1.1. A is & -enumerable in B if and only if A = 0

or there exists a function f so that f C. B and A is the
n

range of f.

Theorem 1.21. A is R -enumerable in B if and only if there

B B
exists a predicate R (x5y) so that R <~ B and

B n
3yR (x,y) ) .

Proof. Assume A is ft -enumerable in B. If a = 0, then

xeA «-» 3y [x j4 x & y ^ y]. if A j£ 0, it is the range of a func-

tion £, f ̂  B. Then, xeA <-*3y[f(y) = x]. Conversely, assume

n
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B, x _̂  J&xeA<-> 3yR (x,y), where R ^ B. If A = 0, it is ^-enumerable

n
B. If A i- 0, let keA. Define a function f by:

f(x) =

k, -. RB((x)Q,

^ (x)Q, R
B((x)Q,

B B
Clearly, A is the range of f. f ̂  R and R <^ B. Thus,

n

n

Observe that since < and ^ are identical, A is

ft -enumerable in B if and only if Ae£?.

Theorem 1.22. For all n ^ 1, if A is ft^-enumerable in B,

then AeZ^.
n

B B
Proof. Suppose x€A <-4 3yR (x,y) , where R <^ B. Then

RBe E B . Thus AGS 6.
n n

The converse of Theorem 1.22 is false for n ^ 1. For any

n ;> 1 and any set B, let A = B* n + . A G S P + 1 . If RB(x,y) is

a predicate for which Vx[xeA <-»3yR (x,y)) , then B <£ R .

(n) j B >

On the other hand, B %& B. Therefore, R £p B.
n+1 n+1

Corollary 1.9.

(1) There exist sets A and B so that A is not ft -enum-
n

erable in B, B is not ft -enumerable in A, do (A) < Oi, , and

n+1 n+1
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(2) 3a . Sbff t2ff < 5 P < 2» & 2e < 5fl < ° ' o & S» lbP 1-
n n n n n n n n nn

Proof, (1) is an immediate consequence of Theorem 1.3, and (2)

is an immediate consequence of Theorem 1.20.

Remarks.

(1) Let &a be the set of all ft -degrees. It is not known
w n
n

whether the structure <$^ ,<^,f > is elementarily equivalent to
n

the structure <$ o ,£,
 !>, for n ̂  m.

m
(2) For any recursive degree a- let ao be the ft -degree

n
of the members of a. The function a —> ao is not 1 - 1 .

n
a —> ao is not even a homomorphism. In fact, if ao V b o =

n n+1 n+1
c^ , then there are sets A,B, and C so that do (A) = ao ,

n+1 ^ ^
^ a n d SR (C) = £g • But in gene ra l A ( n ) v B

( n )
5ft SR £g

n+1 n+1 n+1 n+1
(AVB) ( n ) .
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Chapter 2. The Sequence of Relations S

1. Preliminaries,

Much of the contents of this section are standard and refer

mainly to [4] and [9],

We make use of the primitive recursive functions p., (a) %9

and £h(a) 9 defined by Kleene in [ 4 ]. A sequence number is a
a a
o s

number a = p • ... *p so that for all i < s, a. > 0. For
*o *s ^ ' l

any two sequence numbers a and 3, define a > p if and only

if lh(a) ;> lh($) and (p) . = (a)., for all i <

If f is any partial function whose domain includes the

set {0,1,2,•••,n}, then f(n+l) = II p. is a sequence number.

Moreover, if a is any sequence number, and if a partial function

f is defined by f(i) = (a). - 1, for all i < lh(a), then

a = "f(-th(a)) .

A two variable sequence number is a number

a. .

n Pj
 13

a- n P i
K n

so that for all i,j £ n, a.. > 0. For two variable sequence

numbers, we define

a >2 p<-> -th(a) ̂  ^(p) & Vi < -th(p) (a) ±
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If h is a function of two variables, then define

lip h<i,j)+l
3

Thus, h(i,j)- + 1 = (h(n+l,n+l) . ., if i £ n and j £ n. (This
*•* 3

discussion may be carried out for functions of n variables,

where n > 2, but for our purposes it is not necessary to do so) .

Definition 2.1. Characteristic sequence numbers.

Define Ch(cx) = a is a sequence number so that (a) . e{l,2}, for

all i < £h(cc) # Define Ch (a) = a is a two variable sequence

number so that (a) . .€[1,2}, for all i,j < £h(cx) .
1 > 3

The predicates >, > , Ch(a), and Ch (a) are primitive re-

cursive.

A recursive predicate R(w,x ,...,x ) will be called mono-

tonic increasing if, for all sequence numbers a and 3, a > p

and R(B,x.,...,x ) implies R(a,x ,,..,x ) . Given a recursive

predicate R(w,x.,...,x ) 9 define R*(w,x_,...,x ) =

l n 1 n& Vi < -fch(v) ((v)i = (w)± & R(v,x1,...,xk) ]. it is

immediate that R*(w,x ,•..,x ) is a monotonic increasing re-

cursive predicate and that, for any function f,

3yR*(f(y),xr...,xn) = 3yR("f(y),x1,...,xn).

Corresponding to the predicate T as defined in [5], there

2
is a predicate T (w,e,x_,....x ) so that

n l n
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Th(e,x_,...,x ,y) = T2(h(y,y),e,x_, . . . ,X ) . (See [4, p.291]).
n 1 n n i n

T as defined in [5], enables the normal form and enumeration
n

theorems to be written using "f instead of ft By the previous

paragraph, we will assume, without loss of generality, that

2 . . .
T is monotonic increasing,
n

2. Basic Properties.

Whereas the relations ft are A -reducibilities, the re-
n n

lations S are 22 -reducibilities but not A -reducibilities.
n n n

Consequently, we shall simultaneously consider the sequence

8- , n < <«), defined in Definition 0.2, and those sequences of re-

lations, defined as follows.

Definition 2.2. For each n ^ 1, A P B <-»>X[BeUX ~> AeIIX];
n n n

A ^ B ^Vx(B€A X—> A€A X].

Theorem 2.1. For each n ^ 1, S (P ,$ ) is a £ - (II -,A -) reduci-
n n n n n n

bility relation.

The proof is obvious.

Theorem 2.2.

(1) A S B *-» A P B;
n n

(2) A ^ B H A ^ B;

(3) A ^ B -> A &n B, for all n;

(4) B€AM & A & B -̂  AGA 7
n n n

(5) Be£n & A § n B -^
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(6) Bell & A P B -» Aell ;
n n n

(7) A€A —> A JS B, for all B;
n n

(8) Ae£ -* A S B , for all B;
n n

(9) Aell -> A P B, for all B;
n n

(10) and

Proof. The proof of each of the statements (l)-(9) is obvious.

(10) follows from (5) and (6) together with Theorem 1.4.

Theorem 2.3. (The hierarchy theorem) For all n > 1.

P q P ., and A
n ^ n+1' n n+1

Proof. Suppose A S B, and Bel? . Then B ^

(X' ) Since A S B, A <. (X1 ) (n)
n "*i

Thus Ae

A S n B. Hence S is included in S
n+1 n n+1

Similarly, B ^ A* n + 1 )
B

X

(A' )' ) (n) Thus A

Suppose A A B, and B€A X .. Then B <
n n+1 ~nr

Thus B ^ (X1)*11-1*.. since A &n B, A

Therefore, & is included in

(X

n

n n+1

That is,

B B.

= (Xf

' ) (n"1} . Thus AeA

n+r
To see that S ^ S choose sets A and B so that

n n+1

and

(8) and (5).

^ S
n n+1

Then, A

X

n+1

B, but A ^ g B, by Theorem 2.2,
n

Similarly, it can be shown that P / P , and &

Theorem 2.4.

(1) in" in" , and " ^ in"
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(2) "Sn in" g S n + 1 and " nn in" £ Pn+1, for n £ 1.

An in" ^ *n+l' f O r n

(3) S _•£"£ in", P , £ "n in", and 6 ,. £ "A in"-.n+1 c n n+1 c n ' n+1 c n

(4) S £ "A in" and P £ "A in".

Proof. Theorem 1.14 proves (1), and (2) follows from (1). To

prove (3), choose B recursive, and choose A so that either

A€£ . and A/£ , Aell , and A/II , or A€A , and A/A •
n+i n n+i n n+1 n

Then A § n B and A/S8, A pn+1 B and A/IIB, or A $ n B and

A/A respectively. To prove (4), choose B recursive, and

choose A so that AeS and A/A , or AcII and A/A . Then
n n n n

A <CP B and A/A or A ^ B and A/A , respectively.^ n "« nn n

Theorem 2 . 5 . S D P c g .
n n — n

Proof. Suppose A * B and A P B. B€AX—> B G I ^ & B€lIX—» Ac3^ &
*c n n n n n n

A€nX—> A€AX* Thus, A & B.
n n ' n

Theorem 2.6. S fl P ^ jfi .
n n n

Proof. S (IP = fl implies JB c S . This is impossible, be-
n n n * n n * 9

cause & generalizes relative recursiveness and S does not
n n

generalize relative recursiveness.

3. The Relation S .

Theorem 2.7. § is a maximal £ -reducibility relation.
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Proof. Suppose §. eft £ "£. in". Then 3A3B [A £<. B & A&B].
1 1 S»1

A ^ q B, therefore 3X[Be2Jy & A/23*]. For some predicate R ,
1

R
1

X
recursive in X, Vx(xeB <-» 3yR (x,y)). For any set C,

^-» 3yRXeS^~> BeSj. Thus, B ^ RX. Therefore, B»RX. If B

is transitive, then A&R . But A/ST , since A/ZJ|. Thus ft is

not transitive.

Corollary 2.1. Vx[B€£^-» AeE^] ̂ > Vx[B ̂  X ̂ > A ^

Lemma 2.1. For any two sets A and B, if there exist recursive

functions f and g so that Vx [x€A £-» 3yVz .jsi x g(x,y, z) €B) ,

then A * B.

Proof. The proof follows easily from the definition of S .

The converse of Lemma 2.1 is also true if B ̂  0, B ̂  w.

Define A J B H there exist recursive functions f and g so

that Vx(xeA«-> 3yVz . g(x,y, z) eB) . It will be shown that

A 8 Bt-» A 3^ B, if B ̂  0, B ̂  0).

Lemma 2.2. If there exist recursive functions f and g so

that Vx[x€Af-> 3yVi Vj g(x,y,i,j)€B), then there exist

recursive functions f, and g, so that

2 (x,y, z) €B) .

Proof. Define a recursive function T:o) x co —-—* a), so that
onto

r(i* j) < r(n,n) •-> i < n & j < n, r(n,n) < r(n+l,n+l) , and so
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that between r(n,n) and T(n+l,n+l) are precisely the values

r(i,n) and T(n,j), for each i < n & j < n, so that the ordered

pairs <i,n> and <n,j>, for i < n & j < n, are ordered lexico-

graphically.

[To illustrate, T orders u) x u> as follows: <0,0>, <1,1>,

r may be defined by the following recursion scheme:

f(0,0) = 0;

f(0,i+l) = f(i+l,i+l) + 1 = f(i,i*l) + 2;

f(i+l,0) = f(i,i+l) + 1;

f(i,j+l) + 1 , i < j

^ f(i+l,j) + 1, i > j.]

Then, there are recursive functions II and II so that

r (II (i) ,11 (i)) = i, for all i. For any n, since r(i,j) <

T(n,n) < - > i < n & j < n , z < r(n,n) <-̂  ll^z) < n & n (z) < n.

Now, assume A and B satisfy the hypothesis of Lemma 2.2,

it follows that Vx(xeA •* 3yVz .f. . f. j j g ^ y ^ f z ) ,II2(z).)eB)

Choose f (y) = T(f(y),f(y)), and choose g (x,y,z) =

g(x,y,n1(z),n2(z)).
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Lemma 2.3. For any set A and any set B, B non-empty and

B ^ a), if there exist no recursive functions f and g so

that Vx(xeA f~*3yVz . g(x,y,z)eB), then there exists a set C
Z\f (y;

so that Vx(x€Bf-»3y2X- 3Y€C) and A^l£.

Proof. Let A and B be given so that the hypotheses of

Lemma 2.3 are satisfied. We will construct a function h of

two variables, as the union of a chain of two variable character-

istic sequence numbers, so that Vx(xeB «-> 3yh(x,y)=O) , and so

that

Define adm(a) <--> ch (a) & Vx,y < £h(a)((a) = 1 - 4 x€B) .

2 X J Y
Then, a > _ B^4a > 6 & adm(a) & adm(P).

aam z

Stage O. Define h = 1. adm(h ) .

Stage e + 1. By induction hypothesis h is defined and adm(h )

It is also assumed that Vx < -th(h ) (xeB<-» 3y < lh(h ) ((h ) =1))
e e e x,y

There are three cases to be considered:

Case 1. 3x3a > h [x/A & T?(a,e,x)];
aam e 1

Case 2. Case 1 fails and 3xVa > h [xeA & T (a,e,x)];

Case 3. Cases 1 and 2 both fail. That is,

Vx[xeA,H3a > h T?(a,e,x)].
aam e 1

We argue first that in fact case 3 fails. It follows that

case 1 occurs or case 2 occurs. Suppose that
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«-» 3y[Ch (y) 4 y > h 4 adm(y) &
<<& e

3y[Ch2(y) & y > h e & T^(y,e,x)

&

Define R(x,y) = [Ch (y) & y > h & T (y,e,x)]. Then,

Vx[xeA «^ay(R(x5y) & Vi,j < ^h(y)((y). . = 1 -> ieB)) ], and the

predicate R(x,y) is recursive.

Choose natural numbers a and b so that a€B & b/B.

Define

Suppose Vi, j < -th(y) ((y) . . = 1 -> i€B) . Then

Conversely, if Vi,j < ^h(y)g1(y,i,j)eB, if i <

j < ^h(y), and (y) = 1, then gn(y,i,j) = i. Thus,
1, J L

Vi,j < -th(y)((y) . = 1-* i€B).

Therefore,

VxfxeA ̂  3y(R(x,y) & Vi,j < *h(y) g][(y, i, j) eB) ]
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Define

b, R(x,y).

Suppose R(x,y) & Vi,j < £h(y)g (y,i,j)eB. Then, for each

i and j, g2(x,y,i,j) =g1(y,i,j). Thus Vi,j < <t,h(y)g2(x,y,i,j) eB.

Conversely, suppose Vi,j < -th(y)g (x,y,i,j)eB. Then

Vi,j < ^h(y)g2(x,y,i,j) = g1(y,i,j), since b/B. Thus,

R(x,y) & Vi,j < *h(y)g1(y,i,j)eB.

Therefore,

Then, by Lemma 2.2, there exist recursive functions f and g so

that Vx(xeA <r* 3yVz . . g(x,y,x) €B) . But, this contradicts the

hypothesis of our Lemma 2.2. Thus, case 3 does not occur.

We return now to cases 1 and 2 of stage e + 1:

Case 1. 3x3a > h [x^A & T,(a,e,x)]. Choose x and let
ctditi © i

at = na >adm hefx/A & T^(a,e,x)].

n
n D

where, for each i,j < -th(a' ) , a. .€{1,2}. For each i < £h(a' ) ,
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define

where a. §. , tx = 1 , if ieB, and a.,_ , fN = 2, if
i^h(a«) ' ' i^h(a!) '

Define

K(-th(a«)) = n p 4,

if £h(a! )eB, and

if -t,h(a«)̂ B. Define

= n

Then, adm(h ) , and for each x < <th(h ) , if xeB, then

—2
Case 2. 3xVa > , h [xeA & Tn(oc,e,x)]. Choose x, and let

adm e 1

a1 = h . Extend a1 to h _ exactly as in case 1.
e e+1 *

Finally, define h by

y) = (Vtx, x,y

Suppose, for some x and y, that h(x,y) = 0 .

adm(V[x,y<h ]>' Thus' (V[x,y<h ]>x,ye e
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Now, suppose xeB. Let e1 = /le [x<£h(e) ) . Then

«i(hel) (<
h
e, >x,y

 = !>• T h u s> aYh<x>y) = °-

Therefore

xeB «-»3yh(x,y) = 0.

We show that A^2£\ AeEy if and only if there exists an e

2
so that Vx(xeA <-» 3yT (TT(y,y) ,e,x)) . For each e, either case 1

or case 2 of stage e + 1 holds. If case 1 holds, then there is

2 2
an x so that x/A and so that T (aT,e,x). Since T is mono-

2 2

tonic increasing and h > a' , T (h ,e,x) . Thus, 3yT (h(y,y) ,e,x)

On the other hand, if case 2 holds, then there is an x so that

x€A and so that Va > afT^(a,e,x). Thus, Vy > ^h(a» ) T^(TT(y,y) ,e,x) .

2 2
But, T is monotonic decreasing. Thus, VyT-(h(y,y),e,x). There-fore Aĵ Z?

Define C = {z| h( (z) , (z) ) = 0}. Then A^S^, and

x y
Vx(xeB <r* 3y2 • 3 €C) . This completes the proof of Lemma 2. 3.

We are now ready to state the equivalence which was promised

in the discussion following the proof of Lemma 2.1. The proof

follows directly from Lemmas 2.1 and 2.3.

Theorem 2.8. For all A and B, B ^ 0 and B ^ u), A S B «-yA 2 B.

Remark. A S. 0 -» A = 0, and A 3" u> -* A = u>. On the other hand,

AeX^ and A S u) <->A€£ .
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By Theorem 2.2(10), A < B does not imply A £ g B. We
-r ^

establish next the existence of a set A so that A and A

are § -incomparable.

Lemma 2.4. There exists a function Q> so that {x|oc(x) = 0} ^ 0,

(x|<x(x) = 0} ^ a), and

(1) Vx(a(x) = 0 or a(x) = 1) ?

(2) there are no partial recursive functions g and g

so that a(x) = 0 <-» 3yVi(g1(y) defined & ( K g ^ y ) ^ (g2(x,y,i)

defined & a(g2(x,y,i)) = 1)));

(3) there are no partial recursive functions g and g

so that a(x) = 1 *-» 3yVi(g (y) defined & (i<g (y) —> (g~(x,y,i)

defined & a(g (x,y,i)) = 0))).
2

Proof, a will be constructed by induction.

Condition (2) is equivalent to the following (2 1):

(2») VeV^ax{[a(x) = 0 & Vy3i({e}(y) defined -> (i<(e}(y)

& ((*)(x,y,i) defined^ a((t} (x,y, i)) =0)))] or [a(x) = 1 &

3yU({e}(y) defined & (i<{e}(y) -^ ([I) (x,y, i) defined &

a((4}(x,y,i)) = 1)))]).

Condition (3) is equivalent to the following (3' ) :

(3») VeV^3x{[a(x) = 1 & Vyai(fe}(y) defined-^ (K{e)(y)

& (f-f-}(x,y,i) defined -> a((-C) (x,y,i)) =1)))] or [a(x) = 0 &

ayVi({e}(y) defined & (i<[e)(y) —> ([I](x,y,i) defined &

x,y,i)) = 0)))]}.
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Let r, II , and II be as defined in the proof of Lemma 2.2,

Construction of CX;

Stage 0. Define a = 1.

Stage 2s + 1. By induction hypothesis a is defined, a
2S

shall be defined at this stage so that the part of (2! ) within

the quantifiers on e and I holds at e = II (s) and I = II (s)

for all extensions of a . Let II (s) = e and II (s) = I.

Case 1. 3x[(x^h(ot2s) or (x<<,h(ot2s) & ( a 2 s ) x = 1)) &

vy[{e)(y) undefined or 3i(i<(e}(y) & ([1](x,y,i) undefined or

([I] (x,y, i)<£h(cx ) & (a )<•#•>/ -\ ^ !)))]]•

Let a be the least x satisfying the hypothesis of case 1.

Suppose a < £h(a, ) & (a ) = 1. Then (21) is already
2s 2s x

satisfied at e and t. Define

a = a -p1 -p2

2s+l 2s ĥfoĉ  ) ^h(cx^ ) +1
2s 2s

(Thus a is not the characteristic function of either 0 or . m.)

Suppose a > -th(a ) . Define
z, s

a
2 s + i

(Then, a(a) = o and a is not a constant function.)
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Case 2. Vx[(x^h(a2g) or (x^hfa^) & (a 2 s ) x = 1)) -» 3y [{e} (y)

defined & Vi(i<{e}(y) -> ((*)(x,y,i) defined & ({<C}(x,y,i) >

Let a = £h(oc ) . Let b be the least y satisfying the
2s

consequent of case 2. Let c = max {£} (x,y, i) .

Suppose c < lh(a ). Then, define
2s

2 1
a2s+l ~ a2s'p^h(a^ )'p<th(ao )+l*

2s tds

Then a(a) is defined so that a(a) = 1. Thus (21) is satisfied

at e and I.

Suppose c > £h(a ) . Define
£» S

n 2

= a n P *2 8 + 1

Then a(a) = 1 and Vi < {e}(b), a(f-t) (a,b, i) ) = 1. Thus, (2»)

is satisfied at e and I.

Stage 2s + 2. By induction hypothesis a is defined, a
^S+l ZS"TZ

is defined at this stage so that the part of (3T) within the

quantifiers on e and t holds at e = n (s) for all extensions

The construction of oc is the same, mutatis mutandis, as

a2s +r.
 F i n a l lY> l e t a be defined by a(x) = (a/ig[x<^h(a } }) x * 1
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Theorem 2.9. There exists a set A so that A £„ A and

A J£Q A.
1

Proof. Apply Lemma 2.4 to obtain the function a. Let

A = {x|a(x) = 0 } . Then A ̂ ~ A and A ̂  A. A / 0 and
1 1

A 7̂  a). Thus, by Theorem 2.8, A £„ A and A <£ A.
*1 Sl

4. S -degrees,
n

We conclude this chapter with a brief development of the

S -degrees. Concepts and notation are analogous to those of the

first paragraph of Chapter 1, section 5.

Theorem 2.10. For each S -degree there is a larger one.

Proof. For each set A, dg (A) < d§ ( A ( n + 1 ) ) , since A ( n + 1 ) £ A.
~ n ~ n n

Remark. d§ (A
T ) is not always greater than d§ (A) . For the

proof we cite [13, Theorem 4 and Corollary 3, pp.6-7].

Definition 2.3. Define the recursive sup. of the two sets A

and B by A V B = (x|(x)^eA & (x)_€B).

Lemma 2.5. A £ § A V B and B £ § A V B.

Proof. X€A «->3y2X.3Y€A V B. XGB <r± 3y2Y- 3XeA V B. Thus,

Vn(A ̂ § A V B & B £ § A V B) .
n n
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Theorem 2.11. Vx[A V B G S * ^ AeE* & Bl n n n

Proof. The implication from left to right follows from Lemma 2.5.

Y y }£ x
Suppose AeTr and BeTr. For some S and R , recursive in X,

X X
x e A ^ S y ^ . .Qy^S (x.y^ .. . ,y^) , and xeB f-> Ry^ .. C&MR ( x ^ , . . . ,yn) .

Thus xeA V B4-4[3yi...QynS ( (x) ̂ Y ^ • • • ,Yn)
 &

3y1.-.QYnR
X((x)1,y1,...,yn)]. Thus, A v BG!^.

Theorem 2.12. d§ (AVB) is the least upper bound of dg (A) and
~ n ~ n

ds (B). Hence, the E -degree ordering is an upper semilattice.
n

Proof. By Lemma 2.5 and the remark following, dQ (AVB) is an
n

upper bound. Suppose A ̂ Q C and B <£<, C. Then,

^ - ^ AeS^ & BeS*]. Thus, by Theorem 2.11, VxfCeS^—=• A V Be

Hence, A V B <£a C. Thus, d_ (AVB) is a least upper bound,
n n

Theorem 2.13. 0o is the class of all 2} sets.

n

Proof. The proof follows immediately from Theorem 2.2 (5) and (8).

The example used to prove the following theorem was suggested

by Thomas Grilliot.

Theorem 2.14. The g -degree ordering is not a lattice.

Proof. Let C be a complete S set. (We will without further

mention use the theorems of [5] that are by now well-known.)
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It will be shown that there is no greatest lower bound of d~ (C)

and do (c) . Suppose A <£« C and A ^ Q C. By Theorem 2.8,

~si h si

there exist recursive functions f and g so that

V U ( U € A M 3yVz < f (y)g(x,y,z) €C) . Since Ce£ , there is a recur-

sive predicate P so that Vu(ueC <-» 3aVxP(<x(x) ,u) ) , where a is

a function variable. Thus, Vu(ueA f-> 3yVz < f (y) 3aVxP(cx (x) ,g(u,x, z) )

Therefore, AeZ . Similarly it can be shown that Aell . From

AeT?. fi n^ it follows that A ! t€^ 0 nj. Hence A" £ C and

A" ^ C. Therefore, A" £ g C and A" <^ *C. By Theorem 2.10,

dn, (A) < dCT (A"). Thus A is not a greatest lower bound.

Open Questions.

As has already been mentioned in the Introduction, the prin-

cipal open question about the hierarchy of relations S , is whether

§ , for n > 1, is a maximal £ -reducibility. It is also not known

whether there is something analogous to Theorem 2.8 for n > 1. Our

paper [15] will contain a more detailed discussion of these questions,

Without such a characterization for S , n > 1, it is not known,

for C a complete £ set, whether A ^ Q C-*A€E_. Thus it is
J. ^ 1

n

not known whether the above argument is applicable if n > 1. In-

deed, we can only conjecture that the S -degree ordering is not a

lattice.
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FOOTNOTES

1. This paper is part of the author1s doctoral dissertation
directed by Professor Paul Axt and partially supported by
NSF Grant GP 7077• The results in this paper were first
announced in [11].
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