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ARITHMETICAL REDUCIBILITIES, I
by

Alan L. Selman

Abstract

A I%—reducibility.relation is defined to be a transitive
and reflexive relation R on sets of natural numbers, so that
for every two sets A and B, ARB implies AGQ:. Two hier-
archies of such reducibilities are studied, Rn’ n < w, and
Sn, n < w. The reducibilities of each hierarchy have natural
prope;ties not possessed by the other. Each Rn generalizes
relative recursion; each Sn has the property that the class
"of Z% sets is the o degree for the Sn-degree structure.

Various theorems concerning the structure of these reducibili-

ties are proved.




Arithmetical Reducibilities, Il
by

Alan L. Selman

Introduction. Let two sets of natural numbers A, and B, be

given. As is well known, A is arithmetical in B if and only
if there is some n so that AeZi- The relation "En in" de-
fined on the set of all subsets of ® is not transitive. On

the other hand, the nice properties of relative recursion (Tur-
ing reducibility), gr, are reflexivity and transitivity. Thus
r N r-l is an equivalence relation. We are interested in this
paper in easily definable subrelations of "En in" which share

these properties. Thus we are led to the following definition.

Definition 0.1. If ® and X are binary relations defined on

the set of all subsets of w, then R is an X-reducibility re-

lation, if R is reflexive, ® is transitive, and for all sets
A and B, if ARB, then AIXB.

Let G denote the relation "arithmetical in", defined by
AGB if and only if A is arithmetical in B. G is itself re-
flexive and transitive. By an arithmetical reducibility we mean

an G-reducibility relation.



If X is the relatibn "ZB in", then the term "Zh-reduci—
bility" will be used rather than the more cumbersome "'Z% in' -
reducibility". Similarly, the terms "Hn-reducibility" and
"An—reducibility" will be used though the relations involved
are "Hn in" and "An in".

Let R be a En—reducibility relation. We single out three
desirable properties which we would like ® to possess: R® should
generalize relative recursion, the class of En sets should be
the‘ o degree for the degree structure of R, and, finally, R
should be as "large" in ":n in" as possible, i.e., R should be
a maximal transitive subrelation of "En~ in". Actually, since
every set is recursive in its complement no transitive subrelation
of "En in" can both generalize relative recursion and have the
class of Zh sets as its O degree (Theorem 1.4, below). We
define two sequences of relations, ﬂn, n < w, and Sn, n< w,
so that the reducibilities of each sequence have natural proper-

ties not possessed by the other.

Definition 0.2. A Rn B **VX[XeEﬁ—e Xe#ﬁ], n > 1.
S L)
A n B X[BeEi—a Aezi], n'z_l.
Both Rn and Sn are ﬁn—reducibility relations. We will
see that Rn generalizes relative recursion, and tha£ the class

of Zn sets is the O degree for the Sn—degree structure.



various theorems concerning the structure of these reducibilities
are proved. This paper consists of two chapters. Chapter 1 of this
paper, in particular, contains proofs of the following theorems:
c R R R :
(1) Rn n+l’ n 7 n+l
(2) Rn is a maximal transitive subrelation of

"y in"; and
n

(3) the Rn-ordering is an upper semilattice.

The sequence of relations Sn is studied in Chapter 2.
This chapter contains proofs of the following theorems:
C -
(1) Sn gn+l’ 8n # gn+l'

(2) Sl is a maximal transitive subrelation of
" : 1] ; a
El in nd

(3) the Sn ordering is an upper semilattice.

The question of maximality for n > 1 is open.

We conclude this introductory section now with some addition-
al notation. If ® is any reflexive and transitive relation,
we will often write "A gﬂ B" for "ARB". Also, we will use the
notation "A gr B" for "A recursive in B", "A gm B" for "A is
many-one reducible to B", and "A gl B" for "A is one-one reduc-
ible to B". For any set A, A will denote the complement of
A. (Tﬁe universe of discourse is ®w throughout.) References
[9] and [10] are cited as standard references to the Kleene-Post

degrees of unsolvability. Kleene-Post degrees are denoted by



Chapter 1. The Sequence of Relations Rn

1. Prerequisites.

The deeper results in this chapter about
the sequence &n, n < w, are based on the observation (Theor-

em 1.8) that A Rn B eaA(n) gr B(n). This observation enables

+1
us to apply theorems concerning the degrees of unsolvability to
obtain our results. In particular, the following extensions of

well known theorems concerning the existence of sets of natural

numbers are used.

) ) _ (n) 2 ~
Theorem 1l.1. Vaﬂbﬂc[i(n = E(n =c ny _ E v c & ~¢2; & S{En 1.
Theorem 1. 2. VaVbHC[C(n) =cV E(n) =bV i(n)]'
Theorem 1.3. 4%B[a¢Z> & BeZ & am) ™M = o™ = am ™).

Theorem 1.1 for the case n = 1 without the additional prop-

a b
erties E{E; and gizf is due to Spector [17]. The technique
a b

used to prove b¢§;' and a¢E;' is due to Shoenfield [16].
Theorem 1.2 for the case n =1 is a relativized version of
Friedberg's characterization of the complete degrees [l]. Corres-
ponding to the original Kleene-Post construction [6] of Ei—incom—

parable sets in A Theorem 1.3 establishes the existence of

2,

an—incomparable sets in An+ Peter Hinman [3] has proved,

l.
corresponding to the Friedberg-Muchnik theorem ([5], and [111]),

that there exist - -incomparable sets in En

1 +1°



The proofs of Theorems 1.1, 1.2, and 1.3 are not presented
here. They are proved by forcing arguments
which mimic the original proofs for the case n = 1. The in-
terested reader may consult either [12] or [14] for a description

of the forcing method and the proofs of these theorems.

(n) (n) (n)

Corollary 1.1. VQVE[E 11.

< b= dclc =b & cla

The proof is an immediate consequence of Theorem 1.2.

Corollary 1.2. ViVEHS[S(n+l) = S(n) \% 3(n+l) = E \% i(n+l)].
Proof. By Theorem 1.2, c(n+1) L cV i(é+l) < c(n) v a(n+l)
= (cV a(n+l)) Vv c(n) g'c(n+1)

2. Basic Properties.

Theorem 1.4. No relation R satisfies both the property
(P1) VA,B[A <, B — ARB],
and the property

(P2) VA,B[BeEn & ARB = AeEn].

Proof. Suppose R satisfies both (Pl) and (P2). Choose AeHn
so that A{En. AL A. Thus ARA. Ke:n. Therefore, by (P2),

Aeih. ‘Contradiction.



Theorem 1.5. If R is a Z%—reducibility relation, and if ®

satisfies property (Pl), then R is a An—reducibility relation.

Proof. Suppose ARB. Then Aeﬁi. A < A therefore BARB.
—-ZP B . iqsqs
Thus Ac ' Hence AeAn. Therefore, # is a An—reduc1b111ty

relation.

Theorem 1.6. For all n > 1, Rn is a Eh-reducibility relation,
and Rn satisfies property (Pl) of Theorem O.1.

The proof of Theorem 1.6 is immediate.

Corollary 1.3. For all n > 1, Rn is a An-reducibility relation.

y 1l.4. R .
Corollary 1.4 A 1 B& A gr B

B, because R satisfies property (Pl).

Proof. A< B-— A R 1

1

By Corollary 1.3, AR, B— A gr B.

1

Corollary 1.5. gr and <q are the only El-reducibility rela-
1

tions which satisfy property (P1l).

Theorem 1.7. For all n > 1, A Rn Bé—éA(n) gl B(n).

Proof. XeZiea X< A(n). Assume A

(n)

(n) gi B(n). Then,

Xe22—+ X gl AV X 31 B(n)—+ XGZi. Conversely, suppose A Rn B.

)

Al Eﬁ. Therefore, al® Ei' Thus, an) <, g(n



Corollary 1.6. A! gl B'& A s-r B.

Corollary 1.6 appears in [9, p.255].

n n
Theorem 1.8. For all n > O, A Rn BHA( ) < B( ).

+1

‘ (n+1) (n+1)
Proof. By Theorem 1.7, A Rn+l Be— A <, B .
(n+l)

+1 ' n
By Corollary 1.6, A gl B(n )H A(n) gr B( ).

(n) B
Theorem 1.9. For all n > O, A Rn+1 B A Ten

(n) (n) (n) B
Proof. By Post's theorem [8], A gr B & A € An+l

Then use Theorem 1.8.
A B
Theorem 1.10. For all n > 1, A Rn B (—-)VX[XEAn—-) XeAn].

Proof. Suppose A Rn B. Then, Xeﬂﬁ - ieﬁs - 'X’eZE—) Xeﬂﬁ.

Thus, XGAA—-) XGAB.
n n

Conversely, suppose VX[XGAIA;—-) X€Ai]. A(n_l)eAi.

A(n—l) c A B

Therefore, n Then use Theorem 1.9.

Theorem 1l.11. (The hierarchy theorem) For every n > 1,

R g R

. Vnidad Z & & 4
n 2 Ynel In fact ndAIB [Ae 1 BeEl A n

& ® .
+lB - A nB]

Proof. For all A and B, A £, B A <, B'. Thus Rn c R 41
n

follows from Theorem 1.8.

Consider the following theorem proved by Friedberg [10, p.85]:




VaVb[a < b and b r.e. a - ﬂg,g(g vVds= E & at = ¢ = a

~ o~ ~ ~

&

cr.e. a&dr.e. a&agcé

~

by

<Al

(n+1) (n+1)

Let b =0 and (n)

c!

~

I
O

. Then Hg,g[g|g & Q

= d & o(n) L c & O(n < g & c r.e. g(n) & g r.e. g(n)]_ If

~ ~

2
)

n =0, chopose A and B so that g(A) = ¢ and g(B) = d.

Then AeEl & Bezl & A' = B' & A|B. Thus A Rz B, but not

A Rl B, by Theorem 1.8 and Corollary 1.4. Suppose n > 1.

Shoenfield and Sacks (see [l0, p.1l05] and [l6]) have proved

that

Va,b[(a' < b a" &b r.e. a) »dh[a { ha &hr.e. a&h' =D

n successive applications of this theorem to the degrees c and

d yield r.e. degrees x and y so that c = §(n) and d = Y(n)

~

Choose A and B so that g(A) = x and d(B) = y. Then AeEl

& BeT, & a(ptl) B(n+1), but A(n)IB(n). Thus, by Theorem 1.8,
R R . i .

A n+2 B, but not A n+l B This proves Theorem 1.11 for all

n> 1.

3. Maximality.

In this section it is shown that each Rn is a maximal
En-reducibility relation. That is, for each n and for each
relation 8, if Rn is a proper subrelation of 8, and if §

is included in the relation "En in", then 8 1is not transitive.




Observe that, by Corollary 1.5, this result is immediate for

the case n = 1.

Lemma 1.1. vx[x® gr A x < Bl o al® <, Bl

Proof. Let a = d(A). By Theorem 1.1, Hg,g[g vda = a(n) =

d(n) = g(n)]. Choose sets C and D so that g(c)

~

Il

¢ and
"~

g(D) d. C(n) gr A(n) and~D(n) gr A(n). Thus C gr B and

~

. n
D gr B. Therefore c¢ V d g,g. Hence, since c¢ V g = a( ),

al®) <, B.

Notice that the hypothesis of Lemma 1.1 can be rewritten

VX[X R n+l A—-X gr A], and that from the conclusion we can infer
v . e . R .
X[XeA 1™ X gr B]. This is interesting because n+l is not
equal to the relation "A in".

n+1l
Also, VX[X! gr A—X gr B] — A sr B is false. 1In fact,

choose A so that d(A) < O'. Then, for all sets B,

VX [X! L A-XL B]. Choose B so that A g& B.

Theorem 1.12, For each n > 1, R is a maximal An+l—reduci—

n+l
bility relation.

Proof. Suppose 8 1is a binary relation so that Rn ; § and so

B
that S
a A B—-)AeArH_l,

and B so that 4 A Rn B, but ASB. By Lemma 1.1 and Theorem 1.8,

for all A and B. Then, there exist sets A

A & XﬂAB

Hx[x S—: A & X gr B(n)]. That is, IX[X R n+13.

n+l

Since R . C 8, IX[XSA & XZAD

a+l n+1]' If 8 is transitive, then
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XSA and ASB yields XSB. But this is impossible, since

B

. Thus S8 1is not transitive.
n+1

XeA

Theorem 1.13. For each n > 1, Rn is a maximal :n -reduci-

+1 +1

bility relation.

Proof. 1If Rn+1 c 8, then g satisfies property (Pl) of

Theorem 1.4. The proof follows from Theorem 1.5 and Theorem 1.12.

4. Set Inclusions.

The purpose of this section is to describe completely the

set inclusion relationships among the relations ® "Zh in",

n+1’

"I in" , "y
n

in", and "II in".
n+l ’ n+

1

Our result is that the following figure is correct.
It is already known by Theorem 1.6 and Corollary 1. 3, that,

for all n > 1, the relation "Al in" is included in the relation

R and R
n

n+l’ is included in the relation "An in". Of course,

+1
. (Look at <B',B>

+1

: " R T B s : R
if n # 1, then A in" is not included in n+l

for any set B).

Theorem 1.14. If R is an G-reducibility relation which includes

the relation "El in", then R =G,

(n-1)
Proof. Suppose AGB. Then, for some n, AeEi. Thus, Aezﬁ
(k)
Now, for all Kk, B(k+1)e E? . Since R includes "El in",

arp (1) gl gp(022) ' 5(2)gpi | BiRB. Thus aRB. Hence

G =R.




Case n = 1

Casen > 1

n+1l

Figure

R
n

set inclusion relationships

n+l

in

ll.
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Corollary 1.7. For all n > 1, SAGB[AcE. & ~A R . B

B
® & .
Theorem 1.15. For all n > 1, ﬂAﬂB[Aeéﬁ & A n+l‘B AlAn]

Proof. By Corollary 1.2, with a =0, and b = 2(2n+2)’ there
exists ¢ so that S(n+l) = S(n) v g(n+l) = g(2n+2). Choose A
and B so that 4d(a) = 9(n+l)’ A€2n+1’ and d(B) = c. Then,
Aezi+l, g(A)Ig(B)(n), and a®™) - gD - qpae s, Aezi+l,
A¢A§+l, and A Rn+2 B, for all n > O.

B B
R & .
corollary 1.8. For all n > 1, ﬂAHB[AeHn & A N+l B Azan]

Theorem 1.16. For all n > 1, FAEB[A Rn B & A{Zﬁ & Agﬂil.

+1

Proof. Choose A recursive. By Theorem 1.1, there exists b
(n) a(a) '

so that g(A)(n) = E & Egﬂg . Then, choose B so that

4(8) = .

57 Rn-degrees.
As has been mentioned in the introduction, if ® is any
reflexive and transitive relation, then R N R_l is an equivalence

relation. We call the equivalence classes of such a relation the
R-degrees. R-degrees shall be denoted with boldface lower case
letters subscripted by ®, to distinguish them from Kleene-Post
degrees. If A is any set, then QR(A) is the R-degree to which
A belongs. If a,

? and ER are any two R-degrees, then we define

as < by if and only if A <q B, where gﬂ(A) = and ER(B) = ER'
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This definition is well-defined. Thus, the set of all R-degrees
is always a partially ordered set.

This section is devoted to a brief development of the struc-
ture of the Rn-degrees. Observe that, by Theorem 1.8,

dy (A) < dy (B) if and only if am ™ ¢ am ™.
n+l n+l

Theorem 1.17. The Rn-degree ordering is an upper semilattice.

Proof. If n = 1, there is nothing to prove (since A gﬂ B

1
“— A Sr B).
: o ) '
Let ag and E& be any two n+l degrees Choose sets A
n+l n+l
and B so that gﬂ (A) = agy and QR (B) = ER . Then, by

n+l n+l n+l n+l

Theorem 1.2, HS[S(n) =c \Y i(n) = E(n) \Y a(n)], where d(a) = a

and g(B) = b. Choose C so that d(cC) c, and let Ca =

n+1
QR (C). Since S(n) = i(n) \% E(n). Q@ (C) is a least upper
n+l n+l
R -
bound of the n+1'degrees ag and ER .
n+l n+1
Theorem 1.18. For each Rn+l—degree ag there is a greater one.
n+l
In fact, define ah to be dp (A'), where dg (a) = ao .
n+l n+l n+l n+l
Then Eh is well-defined and ag < gé .
n+l n+1l n+l

) (n) )(n) )

Proof. Suppose do (A) =dy (B). Then, d(a = d(B
n+l : n+l ~ ~
do (&) = [Clg(c)(n) - Q(A.)(n) = aa) @Dy,
n+l ‘ ~
HUNT LIBRARY

CARNEGIE-MELLON UNIVERSITY
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a) ™ = qm ) < a (n*1) | thus g

4 (a) =dg (B,

n+l n+l

Therefore ~é is well-defined. g(A)(n) < Q(A')(n). There-
n+l

fore ag < 2& .
n+l n+l

The upper semilattice of Rn -degrees has a least element.

+1

In fact, define 9& = 9& (A) , where g(A) = 0.
n+l n+l

Kleene and Post have proved [6] that there exist degrees b

and c such that

(m)

(1) Vm[g(m)g_g and O £ ¢cl; and

(m)

(i) V4[[d< b &d<cl—> @< o 1.

A corollary of this theorem is that the ordering of the Kleene-Post
degrees is not a lattice. We will apply this theorem to show that

the ordering of the Rn -degrees is not a lattice.

+1

Theorem 1.19. The Rn -degree ordering is not a lattice.

+1

Proof. Consider the degrees E and c¢ which are given by the

theorem quoted in the previous paragraph. By Corollary 1.1,

(n) (n)

there exist degrees a and g so that a =Db and d = C.

?

By (i), we have,

(m+n)

(iii) Vm[Q < g(n)

By (ii), we have

(iv) Vg[[s(n) S-i(n) & e s.g(n)]__’_Ehn[g(n) S'9’(m+n)]].
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Let ag and QR be the Rn+1 degrees of the members
n+l n+l

~

of a and d, respectively. Then,

(iii') for every m, Qém) < ag and ) < 4o ; and
n+l n+l n+l n+l

. . (m)
(iv') Veg [leg <23 &g <dp I-mfeg op ]].
n+l n+l n+l n+l n+l n+l

Thus, ag and ga can have no greater lower bound.

n+l n+l
By Theorem 1.1, there exist sets A and B so that

a0t _ g(otl) () p(m) () s,

Theorem 1. 20. Hiﬂ HER [ié = Eé ) \ ER Qh 1.
n+l n+1l n+l n+l n+l n+l n+l

Extend the definition of Rn to number theoretic functions and
predicates in the usual way (see [6]). Then we may make the fol-

lowing definition.

Definition 1.1. A is Rn—enumerable in B if and only if A =g

or there exists a function f so that £ < B and A 1is the
n .

range of £.
Theorem 1.21. A is Rn-enumerable in B if and only if there
exists a predicate RB(x,y) so that RB gﬂ B and
B n
Vx(xeA « IyR (x,y)).
Proof. Assume A 1is Rn—enumerable in B. If a = @, then

XA 2 Iy[x#x &y #vyl]. If A #d@, it is the range of a func-

tion £, £ <o B. Theh, xeA « Iy [f(y) = x]. Conversely, assume
n




l6.

B B _ L
xeA « dyR (x,y), where R <5 B- If A=dg, it is Rn-enumerable
n

in B. If A # &g, let keA. Define a function £ by:

K, = RE((x) g, (0))
f(x) =
(x) ., RE((x) ., (x),).
o’ o’ 1

B
Clearly, A is the range of f. £ gr RB and R gR B. Thus,
n

f SR B.
n
Observe that since gr and e are identical, A 1is
1

Rl—enumerable in B if and only if AeZﬁ.

Theorem 1.22. For all n > 1, if A is Rn-enumerable in B,

then AéZP.
n

Proof. Suppose xeA(—éHyRB(x,y), where RB <z B Then
n
RBe »B.  fThus AeEB.
n n

The converse of Theorem 1.22 is false for n # 1. For any

B(n+l)

n>1 and any set B, let A = . A€2ﬁ+l. If RB(x,y) is

a predicate for which Vx[xecA & @yR"(x,y)), then (™) < R

On the other hand, B(n) gﬁ B. Therefore, rP g@ B.
n+l n+l

Corollary 1.9.
(I) There exist sets A and B so that A 1is not Rn-enum-

erable in B, B 1is not Rn-enumerable in A, do (a) < oh , and
n+l n+l

Q& (B) g_gé .
n+l n+l
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(2) d3, oy [9p <3y <% EQp <Dy < Qg &3 lnp I
n n n n n n n n n n
Proof. (1) is an immediate consequence of Theorem 1.3, and (2)

is an immediate consequence of Theorem 1. 20.

Remarks.

(1) Let BR be the set of all Rn—degrees. It is not known
whether the struczure <8R 3<,'"> is elementarily equivalent to
the structure <$& <>, ?or n # m.

(2) For anymrecursive degree a, let ag be the &n-degree
of the members of a. The function a — ag i: not 1 - 1.
a—ag is not even a homomorphism. In‘facz, if ao \% ER =

n n+l n+l
SR

n+l n+l n+l

(B) = E& , and 4 (C)
n+l n+l ~Rn+l n+l

# (ave) (™,

, then there are sets A,B, and C so that do (a) = ) ,
n)

(

= . But in general A V B

g’)

(n)



18.

Chapter 2. The Sequence of Relations Sn

1. Preliminaries.

Much of the contents of this section are standard and refer

mainly to [4] and [9].

We make use of the primitive recursive functions P, (a)i,

and 4{h(a), defined by Kleene in [4 ]. A sequence number is a

a a
number o = °. cee * S so that for all i s, a, > O. For
Py Ps i

any two sequence numbers 0 and B, define a > B 1if and only
if 2h(a) > th(B) and (B)i = (a)i, for all i < 4h(B).
If f is any partial function whose domain includes the
£(i)+1

set {0,1,2,...,n), then f(n+l) = I Py is a sequence number.

in
Moreover, if Q 1is any sequence number, and if a partial function
f is defined by f£f(i) = (a)i - 1, for all i < ih(a), then
o = f£(Lh(a)).

A two variable sequence number is a number

a, .,
Hpj +J

so that for all i,j < n, aij > 0. For two variable sequence

- numbers, we define

Q >2 B th(a) > th(B) & Vi < 4h(B) (cx.)i > (B)i .
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If h 1is a function of two variables, then define

I p.h(l,J)+l

. J
h(n+l,n+l) = I pijSn .
in

Thus, h(i,j) + 1 = (T{(n+1,n+1)i 59 if i< n and j < n. (This
E
discussion may be carried out for functions of n variables,

where n > 2, but for our purposes it is not necessary to do so).

Definition 2.1. Characteristic sequence numbers.

Define Ch(a) = a is a sequence number so that (a)ie[l,z}, for
all i< 4h(a). Define Chz(a) = o 1is a two variable sequence
number so that (OL)i je{l,2], for all i,j < th(a).

s

The predicates >, >2, Cch(a), and Chz(a) are primitive re-
cursive.

A recursive predicate R(w,xl,...,xn) will be called mono-
tonic increasing if, for all sequence numbers a and B, & > B
and R(B,xl,...,xn) implies R(a,xl,...,xn). Given a recursive
prédicate R(w,xl,...,xn), define R*(w,xl,...,xn) =
B [th(v) < th(w) & Vi < th(v) ((v), = (W), & R(VyXj50005% )], It is

immediate that R¥* (w,x ,..;,xn) is a monotonic increasing re-

1

cursive predicate and that, for any function £,

il

TyRe (E(y) ,% 5000 0x ) = BYR(E(Y) s 50 005X )
Corresponding to the predicate Ti as defined in [5], there

. . 2
is a predicate Tn(w,e,xl,...,xn) so that
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h
Tn(e,xl,...,xn,y)
Ti as defined in [5], enables the normal form and enumeration

2 —
Tn(h(y,y),e,xl,...,xn). (See [4, p.291]).

theorems to be written using f instead of £, By the previous

paragraph, we will assume, without loss of generality, that

2 . . . .
Tn 1s monotonic increasiling.

2. Basic Properties.

Whereas the relations Rn are An-reducibilities, the re-
lations Sn are En-reducibilities but not An—reducibilities.
Consequently, we shall simultaneously consider the sequence
8 , n< w, defined in Definition 0.2, and those sequences of re-

n

lations, defined as follows.

Definition 2.2. For each n > 1, A Pn B e»VX[BeHx-—)Aenx];
n n

AN B eeVX(BeAX—a.AeAX].
n n n

Theorem 2.1l. For each n > 1, Sn(Pn,Qn) is a pn_(nn"’An—) reduci-
bility relation.

The proof is obvious.

Theorem 2. 2.
(1) ASnBHXPng;
(2) AAQlB(-;AgrB;
(3) A.gr B A ﬂn B, for all n;
(4) BeAn & A sn B> AeAnr

5 r & S .
(5) Be h & A S B-—;AeEn,
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(6) Bell & AP B Al ;
n n n
(7) AeAn—4 A &n B, for all B;
(8) AeX —- A 8 B, for all B;
n n

(9) Acll. > AP B, for all B;
n n

(10) < Z Sn and & Pn.

Proof. The proof of each of the statements (1l)-(9) is obvious.

(10) follows from (5) and (6) together with Theorem 1.4.

Theorem 2.3. (The hierarchy theorem) For all n > 1, Sn ; gn+l’

Pn § Pn+l’ and ﬂn § En+l'

Proof. Suppose A Sn B, and B€E§+l' Then B Sl X(n+l). X(n+l)=

' 1
(x') . Since A S B, A gl (xX') . Thus AeEx 1 That is,

A Sn B. Hence 8§ is included in S8 .

+1 n n+l

Similarly, B £ A[n+ La- B £ (A‘)[n}. Thus AP B AP B.

1 1 n n+l
X (n) (n) _ , -1
Suppose A ﬂn B, and BeAn+1' Then B { X . X = (X') .

(n-1) . (n-1) X

1 1

Thus B £ (X') . Since A Sn B, A< (X') . Thus AeAn+1'

Therefore, ® is included in 8 .
n n+l

To see that 8§ # S s choose sets A and B so that AcX ’
n n+l n+1l

AZE and BeX . Then, A S
n n n

+1 B, but a ggn B, by Theorem 2.2,

(8) and (5).

Similarly, it can be shown that P # P and 8 # 9 .
n n n n

+1° +1

Theorem 2.4.

" E 3 n " 3 n " 1 n
(1) , in & Sn, E in" &£ Pn’ and El in" & ﬁn.

1
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(2) "En in" £ gn+l and "Hn in" &£ Pn+l’ for n > 1.

" 3 1
A, in Z 8 4 for n> 1.
t 2 " P " a3 " 1" J 1,
(3) gn+l Z En in®, P 4 & Hn in", and ﬂn+1,g A, in™.

4 g " > " P 11 < " .
(4) n & A in and n'z A in

Proof. Theorem 1.14 proves (1), and (2). follows from (1l). To

prove (3), choose B recursive, and choose A so that either

Ae2n+l and A{En, AeHn+l and A{Hn, or AeAn+l and AKAn.
B
P
Then A gn+l B and A{ZE, A n+l B and A¢Hn, or A £n+l B and

AiAi respectively. To prove (4), choose B recursive, and
choose A so that Aezh and A¢An, or AeHn and AKAn. Then

AL B and AKAi or A<, B and Aﬁai, respectively.
n

Theorem 2.5. Sn ne

c 9 .
n— n

Proof. Suppose A 8 B and A P_ B. BeAX—e»BeEX & BeHX—erAeEX &
—_— n n n n n n

Aeﬂx—+ AGAX. Thus, A §_ B.
n n n
Theorem 2.6, S NP #Q0 .
—_— n n n

Proof. 8 NP _ =9 implies ®_ < 8 . This is impossible, be-
—_— n n n n n

cause sn generalizes relative recursiveness and Sn does not

generalize relative recursiveness.

3, The Relation Sl.

Theorem 2.7. Sl is a maximal El—reducibility relation.
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Proof. Suppose Sl cCRcC "El in". Then C'IASB[A.gg B & ARB].

1
. X
A gg B, therefore HX[Befi & A¢E¥]. For some predicate RX, R
1l
. . X
recursive in X, Vx(xeB © dyR (x,y)). For any set C,
Rxe2§-% HyRXezg—é BeZﬁ. Thus, B 81 RX. Therefore, BRRX. If R

X X
is transitive, then ARR". But A{ET , Since A{zﬁ. Thus R is

not transitive.

Corollary 2.1. Vx[BeE)l{—) AeLJl(] & VX[B S, X— AeZ}l(].

1

Lemma 2.1l. For any two sets A and B, if there exist recursive
functions £ and g so that Vx[xeA<;>HszZ<f(y)g(x,y,z)eB),

then A Sl B.

Proof. The proof follows easily from the definition of Sl.
The converse of Lemma 2.1 is also true if B # @, B # w,.

Define A 31 B «» there exist recursive functions f and g so
that Vx(xea & Hszz<f(y)g(x,y,z)eB). It will be shown that

AslBHAng, if B# g, BF# w.

Lemma 2.2, If there exist recursive functions f and g so
v Hy Vi V5 i, 5 i
that X [xeA & Yy li<f(y) 3j<f(y)g(x,y,1,3)eB), then there exist

recursive functions £, and g, so that

Vx(xeAf—)Hszz<fl(y)gl(x,y,z)eB).

1-1

Proof. Define a recursive function 7T:w x ® onto

w, so that

T(i,j)'< T(n,n) ¢«>i<né&3j<n, 7(n,n) < T(n+l,n+l), and so
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that between 7(n,n) and T(n+l,n+l) are precisely the values
T(i,n) and 7(n,j), for each i< n & j < n, so that the ordered
pairs <i,n> and <n,j>, for i< n & j < n, are ordered lexico-
graphically.

[To illustrate, T orders w x w as follows: <0,0>, <1,1>,
<0,1>, <1,05, <2,2>, <0,2>, <1,2>, <2,05, <2,1>, <3,3>, <0, 3>,
<1,3>, £2,3>, £3,0>, <3,1>, £3,2>, <4,4>,... .

T may be defined by the following recursion scheme:

f(0,0) = 0:

£(0,i+1)

f(i+l,i+l) + 1 = £(i,i+1) + 2;

f(i+l,0) = f(i,i+l) + 1;

f(i,i+1) + 1, i = j
f(i+l,j+1) = f£(i,341) + 1, i < j

£(i+l,3) + 1, i > 3.1

Then, there are recursive functions Hl and H2 so that
T(Hl(i)’n2(i)) = i, for all i. For any n, since T(i,j) <
T(n,n) «»i<né&j<n, z2z<7(n,n 0,(2) <né& Hz(Z) < n.

Now, assume A and Bv satisfy the hypothesis of Lemma 2.2,
it follows that Vx(xeA e»Hszz<T(f(y)’f(y))g(x,y,ﬂl(z),Hz(z))eB).
Choose fl(y) = T(£(y),£f(y)), and choose gl(x,y,z) =

g(x,y, Hl(z) ,HZ(Z) ) .
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Lemma 2.3, For any set A and any set B, B non-empty and
B # w, if there exist no recursive functions £ and g . so
that Vx(xeAf—aHszz<f(y)g(x,y,z)eB), then there exists a set ¢

so that Vx(xeBe—éHny-3yec) and AKZS.

Proof. Let A and B be given so that the hypotheses of
Lemma 2.3 are satisfied. We will construct a function h of
two variables, as the union of a chain of two variable character-
istic sequence numbers, so that Vx(xeB <> Iyh(x,y)=0), and so
that A{Zﬁ.

Define adm(a)e—achz(a) & Vx,y < Lh(a)((a)x v = 1 - xeB).

s

> >
Then, a adm B Q 5 B & adm(a) & adm(B).

Stage 0. Define hO =1, adm(ho).

Stage e + 1. By induction hypothesis he is defined and adm(he).
It is also assumed that Vx < th(h ) (xeB& 3y < 4h(h ) ((h)) =1)).
e e e’ x,y
There are three cases to be considered:

2
> o
Case 1. Ixida a he[sz & Tl(a,e,x)],
. =2
2, IxVo & :
Case Case 1 fails and X > he[xeA Tl(a,e,x)],

Case 3. cCases 1 and 2 both fail. That is,

VX [xeA & Ha > heTi(a,e,x)].

adm

We argue first that in fact case 3 fails. It follows that
case 1 occurs or case 2 occurs. Suppose that

Vx [xeA ¢— Ja > heTi(a,e,x)].

adm
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2
Ja >
ad heTl(a,e,x)

© Gy[Chy(y) &y > h_ & adn(y) & T>(y,e,x)]
2
> &
© dy[Ch,(y) &y > h_ & T, (y,e,x)

& Vi,j < Lh(y)((y)i 3 = 1~ xeB)].

3

Define R(x,y) = [Chz(y) &y > he & Ti(y,e,x)]. Then,
Vx [xeA & Iy (R(x,y) & Vi,j < Lh(y)((y)i,j = 1 — ieB))], and the
predicate R(x,y) is recursive.
Choose natural numbers a and b so that aeB & béB.
Define
i’(Y)i,j = 1;
9,(y,1,3)
a,(y)i’j # 1.
Suppose Vi,j < Lh(y)((y)i’j = 1 - ieB). Then
Vi,j < th(y)g,(ysi,])eB.
Conversely, if Vi,j < Lh(Y)gl(Y,i,j)eB, if i< th(y),

j < th(y), and (v), j = 1, then g,(y,i,j) = i. Thus,

s

3

Vi,j < th(y) ((y); 5 = 1 ieB).

Therefore,

Vx[xeA « dy(R(x,y) & Vi,j < Lh(y)gl(y,i,j)eB)].
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Define
gl(y,i:j) sR(x,¥):
g2(X,y,i,j) =

b, R(x,y) .

Suppose R(x,y) & Vi,j < Lh(y)gl(y,i,j)eB. Then, for each

i and j, 9,(xy,i,j) = g,(y,1i,3). Thus ¥i,j < th(y)g,(x,y,1,])eB.
Conversely, suppose Vi,j < Lh(y)gz(x,y,i,j)eB. Then

¥i,j < Lh(y)gz(x,y,i,j) = gl(y,i,j), since b¢B. Thus,

R(x,y) & Vi,j < th(y)g,(y,i,3)eB.

Therefore,

Vx[xeA < dyVi < Lh(y) Vi < &h(y)gz(x,y,i,j)eB]-

Then, by Lemma 2.2, there exist recursive functions f and g so

that Vx(xcA «» dyVz )g(x,y,x)eB). But, this contradicts the

< f(y
hypothesis of our Lemma 2.2. Thus, case 3 does not occur.

We return now to cases 1 and 2 of stage e + 1:

Case 1. iIxda > m he[x¢A & Ti(a,e,x)]. Choose x and let

ad
at = g > h_[x¢A & T:(a,e,%)].
ai,
By ?
al = 1 p j<th(a')
i<th(a') *

where, for each 1i,j < th(a!'), aije[l,Z}. For each i < th(a'),




define
a a
. . . o
t(1) = T s
j<th(at')
where ai&h(a') = l,‘lf ieB, and aiLh(a') = 2, if 1i¢B.
Define
k(th(a')) = 0  p.,
j<th(a')
if 4h(a')eB, and
2
K(¢h(at)) = 0  p3,
j<th(ar) ?
if 4h(a')¢ZB. Define
(4
he+l - f Pi(l)'
iKth(at)
Then, adm(he+l), and for each x < Lh(he+l), if xeB, then
(h_..) = 1.
e+l x,&h(he+l)
-2
Case 2. IxVa >adm he[xeA & Tl(a,e,x)]. Choose x, and let
a' = h . Extend a' to h exactly as in case 1.
e e+l
Finally, define h by
h(x h = 1.
(x,y) ( ue[x,y<he]) X,y
Suppose, for some x and y, that h(x,y) = O.
adm(h Thus, (h ) l. Hence xeB.

pe 1x,y<h 1)

pe [x,y<h 1%,y

28.



29.

Now, suppose xeB. Let e' = pe[x<th(e)). Then
= 1). dyh = 0.
By < th(h,) ((h ), = 1). Thus, Gyh(x,y)
Therefore

xeB «> dyh(x,y) = O.

We show that Aﬁﬁ?. Aef? if and only if there exists an e
so that Vx(xeA<++HyTi(E(y,y),e,x)). For each e, either case 1
or case 2 of stage e + 1 holds. If case 1 holds, then there is
. 2
an x so that x¢A and so that Ti(a',e,x). Since Tl is mono-
2
> at, Tl(h

2 —
tonic increasing and he s€,X). Thus, EyTl(h(y,y),e,x).

+1 e+l

On the other hand, if case 2 holds, then there is an x so that
xcA and so that Vo > a'Ti(a,e,x). Thus, Vy > Lh(a')Ti(H(y,y),e,x).
But, Ti is monotonic decreasing. Thus, Vyfi(ﬁ(y,y),e,x); There-
fore A%ﬁ?.

Define C = {z]h((z)o,(z)l) = 0}. Then Ang, and

Vx(xeB-evﬂyZX'ByeC). This completes the proof of Lemma 2. 3.

We are now ready to state the equivalence which was promised
in the discussion following the proof of Lemma 2.1l. The proof

follows directly from Lemmas 2.1 and 2. 3.

Theorem 2.8. For all A and B, B#@ and B # w, A°'S. By A J_ B.

1 1

Remark. A 31 gd->A=¢g, and A 31 w > A =w, On the other hand,

S
A 1¢<—>Aezl and A S we—»AeEl.

1
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By Theorem 2.2(10), A gr B does not imply A gg B. We
1
establish next the existence of a set A so that A and A

are Sl-incomparable.

Lemma 2.4. There exists a function o so that {x|a(x) = 0} # 4,
{x]a(x) = 0} # w, and

(1) VVx(a(x) = 0 or a(x) = 1):

(2) there are no partial recursive functions = and 9,
so that a(x) = 0« &yVi(g,(y) defined & (ilg,(y) —» (9,(x,y,1)
defined & a(g,(x,y,1)) = 1))):

(3) there are no partial recursive functions gl and 9,
so that a(x) = llhaﬁyVi(gl(y) defined & (i<gl(y)—+ (gz(x,y,i)

defined & a(gz(x,y,i)) =0))).

Proof. o will be constructed by induction.

condition (2) is equivalent to the following (2'):

(2') VeVidx({ [a(x) = O & VyHi({e}(y) defined — (i{e}(y)
& ([L}(x,y,i)'defined-a a({t}(x,¥,1)) = 0)))] or [a(x) =1 &
Hy?i({e}(y) defined & (i<{e}(y) = ({1} (x,y,1) defined &
aff2}(x,y,1i)) = 1)))1}.

condition (3) is equivalent to the following (3'):

(3') VeViidx( [a(x) = 1 & Vydi({e}(y) defined - (il{e}(y)
& ({1t} (x,y,i) defined - a ({4} (x,y,1i)) = 1)))] or [a(x) = O &
ByVi({e} (y) defined & (ic{e}(y) — ({4} (x,y,i) defined &

G([L} (XJY’i)) = 0)))]}-
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Let T, Hl, and H2 be as defined in the proof of Lemma 2.2.

Construction of Q:
Stage 0. Define ao = ].

Stage 2s + 1. By induction hypothesis a2s is defined. a2s+l
shall be defined at this stage so that the part of (2') within
the quantifiers on e and 4 holds at e = Hl(s) and 4 = Hz(s)

for all extensions of Q

Il

Let Hl(s) = e and Hz(s) 1.

2s+1°
Case 1. Hx[(xzﬁh(GZS) or (x(&h(azs) & (azs)x = 1)) &
Vy[{e} (y) undefined or Hi(i<{e}(y) & ({1} (x,y,1) undefined or

({4} (x,y,1)<th(a, ) & (a = NIl

28) (43 (x,y, 1)
Let a be the least x satisfying the hypothesis of case 1.

Suppose a < Lh(azs) & ( ) = 1. Then (2') is already

o3
2s' x

satisfied at e and 4. Define

1 » 2
o] = Q ‘P ‘P .
2s+1 2s Lh(QZS) Lh(a28)+l

(Thus o is not the characteristic function of either @ or  w.)

Suppose a > Lh(azs). Define

[0 4 =
2s+1 = %2s f

. plOPZ
th(a, )<x<a a+l

(Then, a(a) = 0 and @ 1is not a constant function.)
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Case 2. Vx[(xxth(a,)) or (xth(a, ) & (a,) = 1))—Iy[(e}(y)
defined & Vi(i<{e}(y) = ({4} (x%,y,i) defined & ({1} (x,y,i) > Lh(c,zs)

= 2)))11].

°r (%y8) (2} (x,y,1)

Let a = Lh(azs). Let b be the least y satisfying the

consequent of case 2. Let ¢ = max (4} (x,y,1).

iK{e} (b)
Suppose c¢ < Lh(azs). Then, define
%2

2 1
(04 = ‘P ’p .
2s+1 s Lh(azs) Lh(a28)+l

Then a(a) is defined so that a(a) = 1. Thus (2') is satisfied
at e and 4.

Suppose c > Lh(GZS). Define

a =a_ ° it p2~pl
2s+1 2s Lh(o_ )<x<ce X T c+l
2s
Then a(a) =1 and Vi < {e}(b), a({t}(a,b,i)) = 1. Thus, (2')
is satisfied at e and 1.
Stage 2s + 2. By induction hypothesis Cooyy 1S defined. a2$+2

is defined at this stage so that the part of (3') within the

quantifiers on e and 4 holds at e = Hl(s) for all extensions

of %os42’
The construction of a25+2 is the same, mutatis mutandis, as
o} . i a i a = (a = 1.
2s+1° Finally, let be defined by (x) ( us[x(éh(as)])x 1




Theorem 2.9. There exists a set A so that A gg A and
1

A Lg A
1

Proof. Apply Lemma 2.4 to obtain the function a. Let

A = {x|a(x) = 0}. Then A £ A and AgZ; A. AF# g and
1 1

A # w. Thus, by Theorem 2.8, A <4 A and Efgg A.
1 1

4, Sn—degrees.

We conclude this chapter with a brief development of the
Sn—degrees. Concepts and notation are analogous to those of the

first paragraph of Chapter 1, section 5.

Theorem 2.10. For each Sn—degree there is a larger one.

(n+l) A(n+l)

Proof. For each set A, ggn(A) < gsn(A ), since ﬁg A.
n

Remark. Qg (A') is not always greater than dg (A). For the
1 ™
proof we cite [13, Theorem 4 and Corollary 3, pp.6-7].

Definition 2.3. Define the recursive sup. of the two sets A

and B by A VB = (xl(x)OeA & (x)leB}.
Lemma 2.5. A g AVB and B <g AV B.
1l 1l
Proof. xeA «38y2*.3Yca V B. xeB & Ty2Y.3%ca V B. Thus,

Vn(A g AVB&BZK, AVB).
n n
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Theorem 2.11. VX[A V Bezﬁee AeZﬁ & Be2§].
Proof. The implication from left to right follows from Lemma 2.5.

Suppose Aetﬁ and BeZﬁ. For some SX and Rx, recursive in
X X
xeA<~+Hyl...QynS (x,yl,...,yn), and x€B<e93yl...QynR (x,yl,...,yn)-
X :
. e o o &
Thus xeA V B «=[dy,...Qy S ((x)o,yl, ,yn)

X
Hyl...QynR ((x)l,yl,...,yn)]. Thus, A V B€Z§.

Theorem 2.12, gs (AVB) is the least upper bound of Qg (A) and
n n

dg (B). Hence, the Z%-degree ordering is an upper semilattice.
n

Proof. By Lemma 2.5 and the remark following, dg (AVB) is an
n

upper bound. Suppose A gg C and B gg C. Then,
n n
VX[CeEﬁ—a AeEi & Beﬂzl. Thus, by Theorem 2.11, VX[Ce?i—% AV B€Z§].

Hence, A V B gg C. Thus, gg (AVB) is a least upper bound.
n n

Theorem 2.13. QS
n

is the class of all Zh sets.

Proof. The proof follows immediately from Theorem 2.2 (5) and (8).
The example used to prove the following theorem was suggested

by Thomas Grilliot.
Theorem 2.14. The gl-degree ordering is not a lattice.

Proof. Let C Dbe a complete Z% set. (We will without further

mention use the theorems of [5] that are by now well-known.)

X,
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It will be shown that there is no greatest lower bound of Qg (c)
1

and dg (C). Suppose A gs C and A <g C. By Theorem 2.8,
1 1 1

there exist recursive functions £ and g so that

Vu(ueA e dyVz < f(y)g(x,y,2z)eC). Since CeZi, there is a recur-

sive predicate P so that Vu(ueC « JaVxP(A(x),u)), where a is

a function variable. Thus, Vu(ueA « dyVz < £(y)da¥xP (G (x),g(u,x,z)).

1
Therefore, Aezi. Similarly it can be shown that AeHl. From

AeEi N Hi it follows that A?eEi N Hi. Hence A" < ¢ and
A" gl C. Therefore, A" g C and A" (g C. By Theorem 2.10,
1 1
dg (n) ; dg (A"). Thus A 1is not a greatest lower bound.
1 1

Open Questions.

As has already been mentioned in the Introduction, the prin-
cipal open question about the hierarchy of relations Sn, is whether
Sn, for n > 1, is a maximal En-reducibility. It is also not known
whether there is something analogous to Theorem 2.8 for n > 1. Our
paper [15] will contain a more detailed discussion of these questions.
Without such a characterization for Sn, n > 1l, it is not known,
for C a complete E} set, whether A gg C —,AeEi. Thus it is
not known whether the above argument is ap;licable if n> 1. In-

deed, we can only conjecture that the sn—degree ordering is not a

lattice.
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FOOTNOTES

This paper is part of the author's doctoral dissertation

directed by Professor Paul Axt and partially supported by
NSF Grant GP 7077. The results in this paper were first

announced in [11].
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