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1. Introduction.

In [7], Harrell and Karlovitz call a Banach space

flat if there exists on the surface of its unit ball a

curve of length 2 with antipodal endpoints. They observe

that L (/x), where \i is Lebesgue measure on the unit

interval, is flat, but that <t (KQ) is not. They had

shown earlier [6] that a flat space is not reflexive,

and that C([O,1]) is flat. In [12], Schaffer showed

that L (\i) for a general measure space is flat if and

only if \i is not purely atomic.

Continuing the investigation of the flatness of

"classical" spaces, we are led to consider the space C(K)

for a compact Hausdorff space K, and, more generally,

the subspace C (K) of those functions that are skew

with respect to an involutory automorphism a of K .

The purpose of this paper is to give a complete account

of which C (K) are flat: in terms of the topology of K,

they are exactly those for which there exists a non-empty

*The work of the authors was supported in part by NSF Grants
GJ580 and GP19126, respectively.
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dense-in-itself set in K not containing fixed points

of cr • The flatness of C (K) can also be characterized
o

in terms of the geometry of its dual: in particular,

C (K) is flat if and only if its dual is flat.

These various characterizations yield a similar

account for C(K) itself and for C (T), the space of

continuous functions vanishing at infinity on the locally

compact Hausdorff space T . Among other results con-

cerning spaces congruent to some C (K) we note the

fact that every infinite-dimensional space L00 (jz) is

flat.

The spaces C (K) are discussed and characterized
cr

by their metric properties in [2; pp. 87-96], an account

of work due in the main to Jerison. Lindenstrauss [8]

proposes an interesting definition of "classical Banach

spaces in the isometric sense"; he points out that they

turn out to be exactly the Banach spaces congruent to

Ii (JU) for 1 ^ p < OD , together with those whose dual

is congruent to some L (ju) . Now the lP{\i) are reflexive,
and therefore not flat, for 1 < p < <x> ; and the L

were classified as to their flatness in [12]. The spaces

C (K) are important instances of spaces with duals con-c
gruent to L -spaces, but do not exhaust this class by
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far (see [9] and references given there for a complete

description). It would be interesting to decide which

of the remaining such spaces are flat--thus completing

the survey of all "classical" spaces--or at least which

M-spaces or G-spaces are flat (terminology as in [9]).

The fragmentary results available on this point are not

included here.

The question of flatness of Banach spaces belongs

to an area of investigation begun in [11] and continued

in other papers, dealing with certain metric parameters

of the unit spheres of normed spaces. In another paper [13]

one of us shall discuss the values of these, viz., the

inner diameter, the perimeter, and the girth, for all the

spaces treated here.

Thanks are due to S. P. Franklin, D. J. Lutzer,

V. J. Mizel, and K. Sundaresan for their helpful sugges-

tions.
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2. Preliminaries.

If X is a normed space, a subspace of X is a

linear manifold of X (not necessarily closed), pro-

vided with the norm of X . A congruence is an isomet-

ric isomorphism of one normed space onto another.

A curve in X is a "rectifiable geometric curve"

as defined in [1; pp. 23-26] ; for terminological details

see [11; p. 61] . T*he length of a curve c is -t(c) ,

and its standard representation in terms of arc-length

is gc : [0,1(c)] -» X .

X is flat if there is a curve of length 2 in the

boundary of the unit ball of X such that its endpoints

are antipodal; i.e., a curve c with £(c) = 2, ||g (s)|| =1

for s e [0,2], and gc(0) + g (2) = 0 . If a subspace

is flat, it obviously follows that X itself is flat.

Let T be a Hausdorff space; then C(T) is the

Banach space of all bounded real-valued continuous func-

tions on T with the supremum norm. Let a be an involu-

tory automorphism of T, i.e., a homomorphism of T on-

to T with a o a = id. Then C (T) denotes the closed

subspace {feC(T) : f(t) +f(at) = 0, t€T} of C(T); it

is also a Banach space. We set Tff = [teT : at ̂  t} the
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open set of points not fixed by <j , and observe once

and for all that

(1) f eC (T) implies f(T\Tff) c {0} .

If T is locally compact, C Q ( T ) denotes the closed

subspace of C(T) consisting of the real-valued continuous

functions on T that vanish at infinity. If a is as

before, we set C_ (T) = C^Cr) n C (T) .

We summarize a useful remark for the study of C^(K) ,

K compact, in the following lemma.

1. Lemma. Let K be a. compact Hausdorff space

and a an involutory au tomorph i sm of K. Let KT = K a U {OD )

be the one-point compactification of the locally compact

space K a , and er1 : K' —> Kf defined by_ a11 = gt , teKa

and a' ao = <x> . Then Ct Ĵ s cm involutory au tomorph i sm

_of the compact Hausdorff space K1, K1 a = K° , and the

mapping f H* f' : C (K) -» C , (K1) defined by_ f' (t) = f (t) ,

t € Ka and f (OD )= 0 _is_ ̂ congruence.

Proof. Immediate from the definitions and (1).
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A Hausdorff space T contains a largest dense-in-

itself subset; this set is closed and is called the perfect

core of T . A space is scattered if its perfect core is

empty. PeJczynski and Semadeni [10] have given a great

number of equivalent conditions for a compact space K to

be scattered, and especially some involving C(K) and

(C(K))*. We reformulate for our use three of these condi-

tions. If K is a compact Hausdorff space and t e K,

the evaluation functional e e (C(K))* is defined by

(f,et> = f(t) , f e C(K) .

2- Theorem (PeJczynski and Semadeni). Let K be

_a compact Hausdorff space. The following statements are

equivalent:

(a) : K _is not scattered;

(b) : there exists h e C (K) such that h (K) = [0,1];

(c)t the linear mapping T : I1(K) -* (C(K))* defined

/T" '- —•*- surjective.

teK

Proof. [10; Main Theorem, (0), (3), (11)].

3- The main result.

We examine the following properties that a normed

space X may have:
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(Fl): X is flat;

(F2) : X* i§_ not the closed linear span of the ex-

treme points of its unit ball;

(F3) : X* i§_ not congruent to K, (A) for any set A;

(F4) : X* is flat.

We observe that I (A) is the closed linear span of the

extreme points of its unit ball, so that (F2) always

implies (F3).

Before we discuss these conditions as applicable to

a space C (K) , we look at a special case. We define

ir : [-1,1] —* [-1,1] by Trt = -t , an involutory automor-

phism of [-1,1] . The proof of the following lemma is an

adaptation of a construction in [6].

3. Lemma. The space C ([-1,1]) is flat.

Proof. We define g : [0, 2] [-1,1]) by

(2(l-s)t

(g(s)) (t) = -(g(s)) (-t) =

j4-4t-s|-l
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Then ||g(s)|| = | (g(s)) (1- \ s ) | = 1 , and ||g(s' )-g(s) ||= |s« -s| ,

as is easily verified directly. Therefore g is Lipschit-

zian, and is the standard representation in terms of arc-

length of a curve of length 2 in the boundary of the unit

ball of C ([-1,1]). But g(2) = -g(0) , so the endpoints

of the curve are antipodal, and the space is flat.

In the rest of this section, we shall be dealing with

a given compact Hausdorff space K and an involutory auto-

morphism a of K . The following construction is useful.

Let V be a closed set in K with V fl <yV - 0 , and let

fQ € C(V) be given. By the Tietze Extension Theorem there

exists f± e C(K) with flfj = ||fo|| and f1 (t) =-f]L(fft)= fQ(t),

teV . We define f : K-+R by f(t) =~(f]L(t) - f^fft)), teK ,

and find f e Cff(K) , ||f|| = ||fo|| , and f(t) = fQ(t), teV .

Such a function f shall be called a skew Tietze extension

of f _ .

For every teK, we consider the evaluation functional

ef e (C (K))*, (the restriction of e. to C (K)) defined

by {f,e^> = f(t) , f e C (K) . The set {a? : teKa} is

exactly the set of extreme points cjf the unit ball £f (C (K)) *

[2; p. 89].
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4. Lemma. With K, a jas specified, let ja non-empty

set P c K satisfy P 0 aP = 0 • Then the linear mapping

1 (P) • (C (K)) * defined by T y = ^ y(t)e£r p : I
1 (P) -• (C^ (K)) * defined by Tpy = ^ y(t)e£ , yel1 (P),

teP

is isometric.

Proof. Obviously, P c Ke . Now ||e£|| = 1 , teP ,

so F is well defined, linear, and bounded, and ||TV>|| £ 1 .

It remains to prove that ||r y|| 2 ||y|| for all y e I (P) ,

or at least for all those with finite support. If Q c p

is finite and y(t) = 0 , teP\Q , we can find, by means

of a skew Tietze extension, f e C (K) with ||f|| = 1 and

f(t) = sgn y(t) , teQ . Then

l l r p y | | £ | | f | l | | r p y | | 2 \(f, Y y ( t ) e ° >
teQ

y(t)sgn y(t) = ^ |y(t) I = ||y|| •
teQ teQ

We are now ready to characterize those K and g for

which C (K) satisfies (Fl)-(F4).
cr

5. Theorem. Let K be _a compact Hausdorff space

and a am involutory automorphism of K . Then (Fl), (F2),

(F3), (F4) are eguivalent for X = C (K), and also eguiva-
_ _ _ g • — —

lent to each of the following statements:
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(a) : K9 .is. not scattered;

(b) : there exists h e C (K) with h (K*7) = [-1,1J;

(c) : there exists h e C (K) with h(K) = [-1,1J .
_______ _______ g.

Proof. We add one more statement to the list:

(d) : if P c K satisfies P p crP = 0 , P U o-P = K a ,

the isometric linear mapping T : I (P)-•(C (K))* defined
. — - — - — - — — — 1_____-_ p a

in Lemma 4 îs not surjective;

and prove the implications

(a)

(b) (d) *- (F2)

(Fl) ^ (c) (F3) « y (F4)

In view of the formulation of statements (a), (b),

(c), (d) it is possible to apply Lemma 1 (observing (1))

and assume without loss, as we shall in this proof, that

K\Kff is a singleton, say f<x> }. If Ka = 0 , the theorem

is trivial. We therefore assume without loss that Ka ^ 0 .
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The implication (F2) -* (F3) was noted above, and

the implications (b)—»• (c) and (F3)—* (d) are trivial.

(a) implies (b). The perfect core S of Kff is

not empty; choose t Q e S . since t fi ctQ , there

exists an open neighborhood U of t_ such that clU n

cl(crU) = 0 ; in particular, cl U c K*7 . Then U fl S

is non-empty and dense-in-itself, hence cl U is compact

and not scattered. By Theorem 2 there exists h_ e C(ci U)

with hQ(cl U) = [0,1]. A skew Tietze extension h of h

satisfies h e C (K) , [-1,1] 3 h (Ka) 3 h(cl U) Uh(cl(CTU)):
cr

[0,1] U [-1,0] = [-1,1] , as required by (b) .

(c) implies (Fl). With h as in (c), the mapping

«p »-• <p © h is a congruence of C ([-1,1]) onto a closed

subspace of C (K). By Lemma 3, this subspace is flat;

o
hence C (K) itself is flat.

(Fl) implies (b). Let c be a curve of length 2

in the boundary of the unit ball of C (K) , with antipodal
o

endpoints. Let r e [-1,1] be given. Since gc(l-r) eC (K),

||g (l-r)|| « 1 , there exists t e Kff such that (g^.(l-r))(t ) =1.

Then

-(1-(gc(0)) (tr>)

(gc(O))(tr) = (l+(gc(0)) (tr))-l ̂  ||gc(l-r)+gc

|gc(2) - gc(l-r)||-l ^ 2 -(l-r)-l = r .



Therefore r = (gc(O))(tr) e (gc (0)) (K
a) ; since re [-1,1]

is arbitrary and |]g (0) I! = 1 , we conclude that (b) is

satisfied with h = g (0).

(c) implies (d). With h as in (c), consider

once more the congruence <p \-+ <p o h of C ([-1,1]) onto

a closed subspace of C (K). If, contrary to (d), r

were surjective for some P c K , P n gP = 0 , then

every element of (C ([-1,1]))* would, by the Hahn-Banach

V v 1
Theorem, be of the form ^ ^^^hft) ' Y e £ (P) ; however,

pl
the linear functional <p <—M (p(r)dr on C ([-1,1]) is

0 ^

bounded, but not of this form.

(d) implies (a). Assume, contrary to (a), that Kc

is scattered. Since K\Kff is a singleton, K itself is

scattered. Let x* e (C (K))* be given. By the Hahn-

Banach Theorem, x* can be extended to an element of

(C(K))* . By Theorem 2, there exists y Q e -t
1(K) such

that

<f,x*> = <f,ryo> - <f, I yo(t)et)=(f, I yQ(t)eJ>,
teK

f e Cff(K),
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since ^f,e V = f(a>) = O . Thus

(2) x* = I yo(t)e*

Let P be any set in K that is maximal with

respect to the condition P n a P = 0 (such exist, by

Zorn1 s Lemma) ; then P U a P = K57 . We define y e t (P)

by y(t) = yQ(t) - yQ(at) , teP (so that ||y|| £ ||yo||).

Then (2) implies—since e g = -e^ , teP--
at r

teP tegP ttP

= I y(t)ej = rpy
teP

Since x* e (C (K))* was arbitrary, T is surjective,
ff P

in contradiction to (d).

(d) implies (F2) . Let P c K satisfy P (1 a P = 0,

P U a P == K° ; we have just shown that such a set exists.

As noted earlier in this section, the set of extreme points

of the unit ball of (C (K))* is (ef : teKff) = f+ef : teP}

But the image of Fp contains this set, and hence also

HUNT LIBRARY
CARNE6IE-MELL0N UNIVEfiSITY
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contains (actually, coincides with) the closed linear

span of this set of extreme points. The required impli-

cation follows.

(F3) is equivalent to (F4). Since (C (K))* is

an abstract L-space (cf. [9]), it is flat if and only

if it is not congruent to K, (A) for any set A [12] .

Remark 1. Using statement (a), it is possible to

apply the equivalences of Pe£czynski and Semadeni [10] to

derive many other conditions equivalent to (Fl)-(F4) for

X = C (K) ; e.g., there exists a. non-atomic regular finite

Borel measure v .on K such that v (Ka) > 0 .

Remark 2. in [13] we shall give further conditions

on the metric structure of the unit balls of X,X* that

are equivalent to (Fl)-(F4) for X = C (K) .
cr

4. Applications to other spaces.

Theorem 5 provides criteria for the flatness of

Banach spaces congruent to C (K). The following theorems

summarize some of these criteria.



[15]

6. Theorem. If T jLs a, locally compact Hausdorff

space, (Fl), (F2), (F3), (F4) are equivalent for X = C_ (T) ,
——— — ———-—— ——— o

and also equivalent to each of the following statements;

(a) : T _ijs not scattered;

(b) : there exists h e C_(T) with h(T) = [0,1].
_ _ _ _ _ _ _ _ _ _ _ _ {j

More in particular, if K jLs_ a. compact Hausdorff

space, (Fl), (F2), (F3), (F4) are equivalent for X = C(K),

and also equivalent to each of the following statements;

(a) : K _i§_ not scattered;

(b) : there exists h € C (K) with h(K) = [0,1J.

Proof. If T is a locally compact Hausdorff space,

let T + T be the topological sum of T and T ; the

points of T + T are, say, (t,j), teT, j = +, 1 . T + T

is a locally compact Hausdorff space; let K = (T+T) U (<x> }

be its on 2-point compactification (if T is itself com-

pact, OD is isolated and will do no harm). The mapping

a : K - » K defined by a(t,j) = (t,-j), teT, j = + 1,

and & CD = <x> is an involutory automorphism of K, with

Kff -- T + T. It is easily verified that the mapping fh-*>f :

c
0 ( T ) — * C ^ (K) is a congruence, where f is defined by

f ( (t, j)) = jf (t) , teT, j = +. 1 , and f' (GO ) = 0 . By

Theorem 5 applied to K, a as constructed, statements

(P1)-(F4) for X = CQ(T) are indeed equivalent, and
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equivalent to "T + T is not scattered" and "there

exists h e CQ(T) with h1 (T+T) = h(T) U- h (T) = [-1,11".

The first of these is equivalent to statement (a). The

second implies that statement (b) is satisfied with

|h| e cr)(T) instead of h; and if h satisfies (b)

then indeed h(T) U - h (T) = [-1,1].

The result for compact K follows from this, since

C(K) = CQ(K) .

Remark 1. For compact K and X = C(K), the equi-

valence of statements (a), (b), (F3) appears in [10;

Main Theorem, (0), (3), (12)].

Remark 2. A result closely analogous to Theorem 5

can be formulated for C (T) , where T is a locally

compact Hausdorff space and o an involutory automorphism

of T , since a has an obvious unique extension to an

involutory automorphism of the one-point compactification

of T .

Remark 3. Theorem 6 implies that C
O(

A) (sometimes

called 1^ (A)) is not flat for any set A . This is in

contrast to 1^° (A) (or m (A)) , which is flat for every

infinite set A (Corollary 8 or Theorem 10).
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7. Theorem. If T .is, _a completely regular Hausdorff

space, then (Fl), (F2), (F3), (F4) are equivalent for

X = C (T), and hold if and only if either T .is not pseu-

ctocompact or there exists _a continuous mapping of T onto

ro,i].

Proof. Let T be embedded (as a dense set) in its

Stone-Cech compactification /3T. The mapping f •—*f :

C(T)—»-C(j8T) is a congruence, where f is the unique

continuous extension of f to ^T . We may therefore

apply Theorem 6 to K = /3T and conclude that statements

(F1)-(F4) are equivalent for X = C(T) and hold if and

only if

(*) there exists h e C(T) such that h(T) is a

dense subset of [0,1].

If T is pseudocompact, every continuous image of T in R

is pseudocompact, hence compact; in this case, (*) is equiva-

lent to the existence of h e C (T) with h(T) = [0,1]. If,

on the other hand, T is not pseudocompact, we use an

argument adapted from [4]. Let f : T —>R be an unbounded

continuous function; then there exists a countably infinite

set S c f(T) that is closed and discrete in R. Since R

is normal, there exists, by the Tietze Extension Theorem, a
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continuous <p : R—»[0,l] such that <p(S) i s dense

in [0,1] . Then h = & c f satisfies (*) .

Remark. An analogous theorem can be formulated for

C (T), where T is a completely regular Hausdorff space
cr

and Q is an involutory automorphism of T , since a

has a unique extension to an involutory automorphism of /3T

8. Corollary. If T jLs_ ja metrizable space, (Fl),

(F2), (F3), (F4) are equivalent for X = C(T) , and

hold unless T _is_ compact and scattered.

Proof. From Theorems 6 and 7, since a metrizable

pseudocompact space is compact.

For non-compact pseudocompact spaces, Theorem 7 re*

mains unsatisfactory: pseudocompactness itself has a

simple intrinsic characterization for completely regular

Hausdorff spaces [3; p. 232], but we lack such a charac-

terization of those pseudocompact spaces that can be mapped

continually onto [0,1], or, equivalently, have a Stone-

Cech compactification that is not scattered. We point out

that such a pseudocompact space may well be scattered it-

self: it is easy to construct a suitable instance of the

scattered pseudocompact space ^ described in [5; 51]
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so that it has a continuous mapping onto [0,1]; the

construction is suggested by [5;6QJ.

A topological space is basically disconnected if the

closure of every co-zero set is open. Extremally disconnected

spaces are basically disconnected.

9. Theorem. If T _is _a completely regular Hausdorff

space that is basically disconnected, then (Fl), (F2), (F3),

(F4) are equivalent for X = C(T) and hold unless T is

finite.

Proof. If T is infinite, |3T contains a subset

homeomorphic to /3N [5; 9H] ; but £N is not scattered,

hence /3T is not scattered. Since C(T) and COT) are

congruent, the conclusion follows from Theorem 6 .

10. Theorem. If (S,S, y.) is any measure space,

(Fl), (F2), (F3), (F4) are equivalent for X = L00 (y)

and hold unless this space is finite-dimensional.

Proof. L00 (/i) is congruent to C (K), where K is

the Stone space of the a - complete Boolean measure algebra

of JH [14; pp. 206-207] . K is compact and basically
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disconnected; a proof might use [14; pp. 85-86] and

[5; Theorem 16.17J. The conclusion follows from Theorem 9.

11. Corollary. If Y is an infinite-dimensional

abstract L-space, then X = Y* satisfies (Fl) , (F2),

(P3), (F4).

Proof. By Kakutani's Representation Theorem [2;pp. 107-

108], Y is congruent to L (p) for a measure space (S,S,/i)

that is localizable [13] ; then Y* is congruent to L°° (JU)

[13; p. 301]. Y* is infinite-dimensional, since Y is.

By Theorem 10, X = Y* satisfies (Fl)-(F4).
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